CORRIGENDUM TO "THE WEIL-STEINBERG CHARACTER OF
 FINITE CLASSICAL GROUPS", REPRESENT. THEORY 13(2009), 427-459

G. HISS AND A. ZALESSKI

Abstract. This paper corrects the statement and the proof of Theorem 1.5 of the paper quoted in the title.

Theorem 1.5 of our paper [1] requires a correction. Below we provide a new statement of this theorem and correct the proof. A mistake in the original proof of Theorem 1.5 is due to missing the multiple 2 at a certain point of the proof (see [1, page 456 , line 23$]$).

Let \mathbf{G} be a simple algebraic group of type C_{n} defined over a field of characteristic 2 and $G=S p(2 n, q), q=2^{k}$. If μ is a dominant weight of \mathbf{G} then φ_{μ} denotes the irreducible representation of \mathbf{G} with highest weight μ, and Φ_{μ} is the representation of G afforded by the principal indecomposable module corresponding to $\left(\varphi_{\mu}\right)_{G}$ if μ is a q-restricted weight. In addition, $\omega:=\left(\varphi_{(q-1) \lambda_{n}}\right)_{G}$. Let st be the 2modular Steinberg representation of G. Recall that $s t=\left(\varphi_{(q-1)\left(\lambda_{1}+\cdots+\lambda_{n}\right)}\right)_{G}=$ $\Phi_{s t}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the fundamental weights of \mathbf{G}. The standard Frobenius endomorphism $\mathbf{G} \rightarrow \mathbf{G}$ is denoted by $F r_{0}$, and it acts on the representations and the weights of \mathbf{G} (so $F r_{0}(\mu)=2 \mu$).

Theorem 1.5 in [1] has to be corrected as follows:
Theorem 1.5 Let $\lambda_{1}, \ldots, \lambda_{n}$ be the fundamental weights of \mathbf{G}, and $\tau=(q-$ 1) $\left(\lambda_{1}+\cdots+\lambda_{n-1}\right)$. Then $\omega \otimes s t=s t \oplus \Phi_{\tau}$.

Recall that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ denote the weights of \mathbf{G} introduced in [2, Planchee III]. The following lemma is a refinement of [1, Lemma 7.2(1)].

Lemma $\varphi_{2 \lambda_{n}}$ is the only composition factor of $\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}$ occurring with multiplicity 1.

Proof. Let M be the G-module afforded by the representation $\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}$. Note that the weights of $\varphi_{\lambda_{n}}$ and hence of M are known. In terms of ε_{j} the weights of $\varphi_{\lambda_{n}}$ are $\pm \varepsilon_{1} \pm \cdots \pm \varepsilon_{n}$, so the weights of M are $\sum_{i \in N} \pm 2 \varepsilon_{i}$, where N can be any subset of $\{1, \ldots, n\}$ (possibly empty; in this case the weight in question is meant to be the zero weight). It follows that $2 \lambda_{i}=2 \varepsilon_{1}+\cdots+2 \varepsilon_{i}(i=1, \ldots, n)$ occur as weights of M.

Let $\mathbf{H}=G L\left(2 n, \bar{F}_{2}\right)$ and let $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{2 n}^{\prime}$ be the weights of the natural \mathbf{H}-module V. One can embed \mathbf{G} into \mathbf{H} so that a maximal torus \mathbf{T} of \mathbf{G} is contained in a maximal torus \mathbf{T}^{\prime} of \mathbf{H}, and $\varepsilon_{i}=\varepsilon_{i}^{\prime}\left|\mathbf{T}, \varepsilon_{n+i}^{\prime}\right| \mathbf{T}=-\varepsilon_{i}$ for $i=1, \ldots, n$. Let V_{i} $(1 \leq i \leq 2 n)$ be the i-th exterior power of V, and V_{0} the trivial \mathbf{H}-module. Set $R=\oplus_{i=0}^{2 n} V_{i}$. Then the weights of R are 0 and $\varepsilon_{j_{1}}^{\prime}+\cdots+\varepsilon_{j_{i}}^{\prime}$, where $1 \leq i \leq 2 n$ and $0<j_{1}<j_{2}<\cdots<j_{i} \leq 2 n$. It follows that the weights of $R^{\prime}:=R_{\mathbf{G}}$ are 0 and $\pm \varepsilon_{j_{1}} \pm \cdots \pm \varepsilon_{j_{i}}$ where $1 \leq i \leq n$ and $0<j_{1}<j_{2}<\cdots<j_{i} \leq n$. Therefore, the weights of $F r_{0}\left(R^{\prime}\right)$ and M are the same.

[^0]Furthermore, 0 and $\lambda_{1}, \ldots, \lambda_{n}$ are the only dominant weights of R^{\prime}. Indeed, $\varepsilon_{1}=\lambda_{1}$ and $\varepsilon_{i}=\lambda_{i}-\lambda_{i-1}$ for $i>1$. Suppose that a non-zero weight $\sum_{i \in N} \pm \varepsilon_{i}=$ $\sum_{i \in N} \pm\left(\lambda_{i}-\lambda_{i-1}\right)$ is dominant. Then the coefficient of λ_{i} is non-negative for every i. It follows that $1 \in N$ and if $i \in N, i>1$ then $i-1 \in N$. So $\sum_{i \in N} \pm \varepsilon_{i}$ is dominant if and only if it is of shape $\sum_{i=1}^{k} \varepsilon_{i}, k=1, \ldots, n$, as claimed. Therefore, if μ is the highest weight of an irreducible constituent φ_{μ} of R^{\prime} then $\mu=\lambda_{i}$ for some i or 0 .

Let $m_{i}^{\prime}(i=1, \ldots, n)$ be the multiplicity of $\varphi_{2 \lambda_{i}}$ in $F r_{0}\left(R^{\prime}\right)$ and m_{i} the multiplicity of $\varphi_{2 \lambda_{i}}$ in M; in addition, let m_{0}^{\prime}, m_{0} be the multiplicity of the trivial G-module in composition series of $F r_{0}\left(R^{\prime}\right), M$, respectively. We show that $m_{i}=m_{i}^{\prime}$. As the restriction $\varphi_{2 \lambda_{i}}$ to $S p(2 n, 2)$ is irreducible, and $\left(\varphi_{2 \lambda_{i}}\right)_{S p(2 n, 2)}$ and $\left(\varphi_{2 \lambda_{j}}\right)_{S p(2 n, 2)}$ are non-equivalent for $i \neq j$, it follows that m_{i}^{\prime}, resp., m_{i} is the multiplicity of the irreducible representation $\left(\varphi_{2 \lambda_{i}}\right)_{S p(2 n, 2)}$ in $S p(2 n, 2)$-composition series of $F r_{0}\left(R^{\prime}\right)$, resp., M. Similarly, m_{0}^{\prime} and m_{0} is the multiplicity of the trivial $S p(2 n, 2)$ module in $F r_{0}\left(R^{\prime}\right), M$, respectively. By [1, Lemma 7.2], the composition factors of $\oplus_{i=0}^{2 n}\left(V_{i}\right)_{S p(2 n, 2)}$ coincide with the composition factors of $\left(\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)_{S p(2 n, 2)}$ with regarding their multiplicities. It follows that $m_{0}^{\prime}=m_{0}$ and $m_{i}^{\prime}=m_{i}$ for $i=1, \ldots, n$.

Note that $\left(V_{i}\right)_{S p\left(2 n, \bar{F}_{2}\right)} \cong\left(V_{2 n-i}\right)_{S p\left(2 n, \bar{F}_{2}\right)}$ and $\left(V_{i}\right)_{S p\left(2 n, \bar{F}_{2}\right)}$ contains $\varphi_{\lambda_{i}}$ for $i=1, \ldots, n$. In addition, $\left(V_{0}\right)_{S p\left(2 n, \bar{F}_{2}\right)} \cong\left(V_{2 n}\right)_{S p\left(2 n, \bar{F}_{2}\right)}$. It follows that $\varphi_{\lambda_{n}}$ is the only composition factor of R^{\prime} which may occur with multiplicity 1 . By general theory, $\varphi_{2 \lambda_{n}}$ does occur in M with multiplicity 1.

Proof of Theorem 1.5. Let $\nu=a_{1} \lambda_{1}+\cdots+a_{n} \lambda_{n}$, where $0 \leq a_{1}, \ldots, a_{n} \leq q-1$, and $\nu^{\prime}=a_{1} \lambda_{1}+\cdots+a_{n-1} \lambda_{n-1}$. We show that Φ_{ν} is a direct summand of $\omega \cdot$ st if and only if $\nu=(q-1)\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ or τ. By [1, Lemma 7.4], it suffices to show that st is an irreducible constituent of $\left(\varphi_{\nu} \otimes \varphi_{(q-1) \lambda_{n}}\right)_{G}$ if and only if $\nu^{\prime}=\tau$ and $a_{n}=0$ or $q-1$.

It can be deduced from Steinberg [3, Corollary to Theorem 41 and Theorem 43] that $\varphi_{\nu}=\varphi_{\nu^{\prime}} \otimes \varphi_{a_{n} \lambda_{n}}$. In particular, $\varphi_{\nu^{\prime}} \otimes \varphi_{(q-1) \lambda_{n}}=\varphi_{\nu^{\prime}+(q-1) \lambda_{n}}$.

If $a_{n}=0$ then $\nu=\nu^{\prime}$ so the representation $\varphi_{\nu} \otimes \varphi_{(q-1) \lambda_{n}}=\varphi_{\nu^{\prime}+(q-1) \lambda_{n}}$ is irreducible. As $\nu^{\prime}+(q-1) \lambda_{n}$ is a q-restricted dominant weight, $\left(\varphi_{\nu^{\prime}+(q-1) \lambda_{n}}\right)_{G}$ is irreducible, so it is not equal to st unless $\nu^{\prime}=\tau$. If $\nu=\nu^{\prime}=\tau$ then $\left(\varphi_{\nu^{\prime}+(q-1) \lambda_{n}}\right)_{G}=s t$, so $s t$ is a direct summand of $\left(\varphi_{\nu} \otimes \varphi_{(q-1) \lambda_{n}}\right)_{G}\left(\right.$ when $\left.a_{n}=0\right)$.

Suppose that $a_{n}>0$. It follows from [1, Corollary 1.3] that every principal indecomposable module Φ_{ν} occurs as a direct summand of $\left(\varphi_{(q-1) \lambda_{n}}\right)_{G} \otimes s t$ with multiplicity at most 1 ; by [1, Lemma 7.4], this implies that st occurs as an irreducible constituent of $\left(\varphi_{\nu} \otimes \varphi_{(q-1) \lambda_{n}}\right)_{G}$ with multiplicity at most 1 . Therefore, the constituents occurring with multiplicity greater than 1 can be ignored.

We have

$$
\varphi_{\nu} \otimes \varphi_{\lambda_{(q-1) \lambda_{n}}}=\varphi_{\nu^{\prime}} \otimes \varphi_{a_{n} \lambda_{n}} \otimes \varphi_{(q-1) \lambda_{n}}
$$

We show that a composition factor of $\left(\varphi_{a_{n} \lambda_{n}} \otimes \varphi_{(q-1) \lambda_{n}}\right)_{G}$ have multiplicity greater than 1 , unless $a_{n}=q-1$, and it is of form $\left(\varphi_{(q-1) \lambda_{n}}\right)_{G}$.

Let $a_{n}=\sum_{i=0}^{k-1} 2^{i} b_{i}$ be the 2-adic expansion of a_{n} (so $0 \leq b_{i} \leq 1$). Then
$\varphi_{a_{n} \lambda_{n}} \otimes \varphi_{(q-1) \lambda_{n}}=\left(\varphi_{b_{0} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right) \otimes F r_{0}\left(\varphi_{b_{1} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right) \otimes \cdots \otimes F r_{0}^{k-1}\left(\varphi_{b_{k-1} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)$. If $b_{i}=0$ then $\varphi_{b_{i} \lambda_{n}} \otimes \varphi_{\lambda_{n}}=\varphi_{\lambda_{n}}$, otherwise $b_{i}=1$ and then, by the lemma above, the only composition factor of $\left(\varphi_{b_{i} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)_{G}$ occurring with multiplicity 1 is $\left(\varphi_{2 \lambda_{j}}\right)_{G}$ for $1 \leq j \leq n$. Therefore, the composition factors of $\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}$ distinct from $\varphi_{2 \lambda_{n}}$ can be ignored. This means that we have to decide whether st occurs as a composition factor of the representation obtained from

$$
\left(\varphi_{\nu^{\prime}} \otimes \varphi_{b_{0} \lambda_{n}} \otimes \varphi_{\lambda_{n}} \otimes \cdots \otimes F r_{0}^{k-1}\left(\varphi_{b_{k-1} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)\right)_{G}
$$

by omitting $\varphi_{b_{i} \lambda_{n}}$ whenever $b_{i}=0$, and replacing $\varphi_{b_{i} \lambda_{n}} \otimes \varphi_{\lambda_{n}}$ by $\varphi_{2 \lambda_{n}}$ whenever $b_{i}=1$. Let $B=\left\{i \in\{0, \ldots, k-1\}: b_{i}=1\right\}$.

Then we can write the resulting expression as

$$
\left(\otimes_{i \in B} F r_{0}^{i}\left(\varphi_{2 \lambda_{n}}\right) \otimes_{i \notin B} F r_{0}^{i}\left(\varphi_{\lambda_{n}}\right)\right)_{G}=\left(\otimes_{i \in B} F r_{0}^{i+1}\left(\varphi_{\lambda_{n}}\right) \otimes_{i \notin B} F r_{0}^{i}\left(\varphi_{\lambda_{n}}\right)\right)_{G} .
$$

We first consider the set $B^{\prime}:=\{i \in B: i+1 \notin B\}$ (if $i=k-1$ then $i+1$ is regarded to be 0). Suppose that B^{\prime} is non-empty (this means that $a_{n} \neq 0$ and $a_{n} \neq 2^{k}-1$). For $i \in B^{\prime}$ the lemma above applied to the term $\left(\operatorname{Fr}_{0}^{i+1}\left(\varphi_{\lambda_{n}}\right) \otimes F r_{0}^{i+1}\left(\varphi_{\lambda_{n}}\right)\right)_{G}=$ $\left(F r_{0}^{i+1}\left(\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)\right)_{G}$ tells us that, by the above reason, we can replace $\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}$ by $\varphi_{2 \lambda_{n}}$ so $\left(F r_{0}^{i+1}\left(\varphi_{\lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)\right)_{G}$ is replaced by $\left(F r_{0}^{i+2}\left(\varphi_{\lambda_{n}}\right)\right)_{G}\left(i \in B^{\prime}\right)$. One can continue the analysis by repeating this reasoning, but it is more efficient to observe that the process is parallel to the addition of the residues of integers modulo $2^{k}-1$. In order to justify this claim, we first compute $\left(\varphi_{a_{n} \lambda_{n}} \otimes F r_{0}^{i}\left(\varphi_{\lambda_{n}}\right)_{G}\right.$ for every $i=0, \ldots, k-1$), and then in general.

Note that

$$
\left(\varphi_{a_{n} \lambda_{n}} \otimes \varphi_{2^{i} \lambda_{n}}\right)_{G}=\left(F r_{0}^{i}\left(\varphi_{b_{i} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right) \otimes_{j \neq i} \varphi_{2^{j} b_{j} \lambda_{n}}\right)_{G} .
$$

If $b_{i}=0$ then $\left(\varphi_{b_{i} \lambda_{n}}\right)_{G}=1_{G}$ so $F r_{0}^{i}\left(\varphi_{b_{i} \lambda_{n}} \otimes \varphi_{\lambda_{n}}\right)_{G}=\left(F r_{0}^{i}\left(\varphi_{\lambda_{n}}\right)\right)_{G}$. Suppose that $b_{i}=1$. In view of the lemma above, the composition factors of $\varphi_{b_{i} \lambda_{n}} \otimes$ $\varphi_{\lambda_{n}}$ other than $\varphi_{2 \lambda_{n}}$ occur with multiplicity greater than 1 , so they are immaterial for our purpose. Therefore, we are left with $\varphi_{2 \lambda_{n}}$, so it suffices to compute $\left(\operatorname{Fr}_{0}^{i}\left(\varphi_{2 \lambda_{n}}\right) \otimes_{j \neq i} \varphi_{2^{j} b_{j} \lambda_{n}}\right)_{G}$. This is equal to $\left(\operatorname{Fr}_{0}^{i+1}\left(\varphi_{\lambda_{n}}\right) \otimes_{j \neq i} \varphi_{2^{j} b_{j} \lambda_{n}}\right)_{G}$. If $i+1=k$ then $\left(F r_{0}^{k}\left(\varphi_{\lambda_{n}}\right)\right)_{G}=\left(\varphi_{2^{k} \lambda_{n}}\right)_{G} \cong\left(\varphi_{\lambda_{n}}\right)_{G}$, and the replacement of $\left(\varphi_{2^{k} \lambda_{n}}\right)_{G}$ by $\left(\varphi_{\lambda_{n}}\right)_{G}$ is parallel to taking the residue modulo $2^{k}-1$. Next, if $b_{i+1}=0$ then we stop, otherwise we repeat the same trick and obtain $\left(F r_{0}^{i+2}\left(\varphi_{\lambda_{n}}\right) \otimes_{j \neq i, i+1} \varphi_{2^{j} b_{j} \lambda_{n}}\right)_{G}$. The output of the procedure will be $\varphi_{a_{n}(i)}$, where $a_{n}(i)=\left(a_{n}+2^{i}\right)\left(\bmod 2^{k}-1\right)$.

In general, applying this to $\varphi_{a_{n} \lambda_{n}} \otimes \varphi_{(q-1) \lambda_{n}}=\left(\varphi_{a_{n} \lambda_{n}} \otimes_{i=0}^{k-1} F r_{0}^{i}\left(\varphi_{\lambda_{n}}\right)\right)_{G}$, we obtain $\left(\varphi_{a_{n}^{\prime} \lambda_{n}}\right)_{G}$, where $a_{n}^{\prime}=a_{n}+1+2+\cdots+2^{k-1}\left(\bmod 2^{k}-1\right)=a_{n}$.

This is also true if B^{\prime} is empty but $a_{n}=q-1$. Indeed, the reasoning above for $i=0, \ldots, k-1$ remains valid, and we obtain $a_{n}(i)=\left(a_{n}+2^{i}\right)\left(\bmod 2^{k}-1\right)=2^{i}$. Then again $a_{n}^{\prime}=a_{n}=q-1$.

Thus, we conclude that it suffices to decide whether st is an irreducible constituent of $\left(\varphi_{\nu^{\prime}} \otimes \varphi_{a_{n} \lambda_{n}}\right)_{G}$. As mentioned above, $\varphi_{\nu^{\prime}} \otimes \varphi_{a_{n} \lambda_{n}}=\varphi_{\nu^{\prime}+a_{n} \lambda_{n}}$. Since $\nu^{\prime}+a_{n} \lambda_{n}$ is a q-restricted dominant weight, $\left(\varphi_{\nu^{\prime}+a_{n} \lambda_{n}}\right)_{G}$ is irreducible. So $s t$ is an irreducible constituent of $\left(\varphi_{\nu^{\prime}+a_{n} \lambda_{n}}\right)_{G}$ if and only if $\left(\varphi_{\nu^{\prime}+a_{n} \lambda_{n}}\right)_{G}=s t$, equivalently, $\nu^{\prime}+a_{n} \lambda_{n}=(q-1)\left(\lambda_{1}+\cdots+\lambda_{n}\right)$. This implies $\nu^{\prime}=(q-1)\left(\lambda_{1}+\cdots+\lambda_{n-1}\right)=\tau$ and $a_{n}=q-1$.

Therefore, $\omega \otimes s t=\Phi_{\tau} \oplus s t$, as required.
The comments to Theorem 1.5 in [1, page 430, line -12] concerning the decomposition numbers of $\omega \cdot S t$ connot not be applied to the new version of the theorem. In fact, we have:

Corollary $\operatorname{dim} \Phi_{\tau}=|G|_{2} \cdot\left(\operatorname{dim} \varphi_{(q-1) \lambda_{n}}-1\right)=|G|_{2} \cdot\left(q^{n}-1\right)$, and the ordinary character corresponding to Φ_{τ} is multiplicity free.

Proof. $\left(\varphi_{(q-1) \lambda_{n}}\right)_{G} \otimes s t=\Phi_{\tau} \oplus s t$, so $\operatorname{dim} \Phi_{\tau}=\operatorname{dim} s t \cdot\left(\operatorname{dim} \varphi_{(q-1) \lambda_{n}}-1\right)$. As $\operatorname{dim} s t=|G|_{2}$ and $\operatorname{dim} \varphi_{(q-1) \lambda_{n}}=2^{n k}=q^{n}$, the first claim follows. The second one follows from [1, Corollary 1.3].

Example: Let $G=S p(2, q), q$ even. Then $\tau=0$; by the above corollary, $\operatorname{dim} \Phi_{0}=q(q-1)$.

Example: Let $G=S p(4,4)$, so $n=2$. Then $\tau=3 \lambda_{1}$ and $|G|_{2}=2^{8}=256$. So $\operatorname{dim} \varphi_{3 \lambda_{2}}=4^{2}=16$. By the corollary above, $\operatorname{dim} \Phi_{\tau}=256 \cdot 15=3840$.

References

[1] G. Hiss and A.E. Zalesski, The Weil-Steinberg character of finite classical groups with an appendix by Olivier Brunat, Represent. Theory 13(2009), 427-459.
[2] N. Bourbaki, Groupes et algebres de Lie, Chaps. IV-VI, Hermann, Paris, 1968.
[3] R. Steinberg, Lectures on Chevalley groups, mimeographed lecture notes, Yale Unv. Math. Dep., New Haven, Conn., 1968.
G. Hiss: Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

E-mail address: gerhard.hiss@math.rwth-achen.de
A. Zalesski: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20126 Milano, Italy

E-mail address: alexandre.zalesski@gmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 20G40, 20C33.
 Key words and phrases. Finite classical groups, Steinberg representation, Weil representation.

