CORRIGENDUM TO "THE WEIL-STEINBERG CHARACTER OF FINITE CLASSICAL GROUPS", REPRESENT. THEORY 13(2009), 427-459

G. HISS AND A. ZALESSKI

ABSTRACT. This paper corrects the statement and the proof of Theorem 1.5 of the paper quoted in the title.

Theorem 1.5 of our paper [1] requires a correction. Below we provide a new statement of this theorem and correct the proof. A mistake in the original proof of Theorem 1.5 is due to missing the multiple 2 at a certain point of the proof (see [1, page 456, line 23]).

Let **G** be a simple algebraic group of type C_n defined over a field of characteristic 2 and G = Sp(2n, q), $q = 2^k$. If μ is a dominant weight of **G** then φ_{μ} denotes the irreducible representation of **G** with highest weight μ , and Φ_{μ} is the representation of *G* afforded by the principal indecomposable module corresponding to $(\varphi_{\mu})_G$ if μ is a *q*-restricted weight. In addition, $\omega := (\varphi_{(q-1)\lambda_n})_G$. Let *st* be the 2modular Steinberg representation of *G*. Recall that $st = (\varphi_{(q-1)(\lambda_1 + \dots + \lambda_n)})_G = \Phi_{st}$, where $\lambda_1, \dots, \lambda_n$ are the fundamental weights of **G**. The standard Frobenius endomorphism $\mathbf{G} \to \mathbf{G}$ is denoted by Fr_0 , and it acts on the representations and the weights of **G** (so $Fr_0(\mu) = 2\mu$).

Theorem 1.5 in [1] has to be corrected as follows:

Theorem 1.5 Let $\lambda_1, \ldots, \lambda_n$ be the fundamental weights of **G**, and $\tau = (q - 1)(\lambda_1 + \cdots + \lambda_{n-1})$. Then $\omega \otimes st = st \oplus \Phi_{\tau}$.

Recall that $\varepsilon_1, \ldots, \varepsilon_n$ denote the weights of **G** introduced in [2, Planchee III]. The following lemma is a refinement of [1, Lemma 7.2(1)].

Lemma $\varphi_{2\lambda_n}$ is the only composition factor of $\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}$ occurring with multiplicity 1.

Proof. Let M be the **G**-module afforded by the representation $\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}$. Note that the weights of φ_{λ_n} and hence of M are known. In terms of ε_j the weights of φ_{λ_n} are $\pm \varepsilon_1 \pm \cdots \pm \varepsilon_n$, so the weights of M are $\sum_{i \in N} \pm 2\varepsilon_i$, where N can be any subset of $\{1, \ldots, n\}$ (possibly empty; in this case the weight in question is meant to be the zero weight). It follows that $2\lambda_i = 2\varepsilon_1 + \cdots + 2\varepsilon_i$ $(i = 1, \ldots, n)$ occur as weights of M.

Let $\mathbf{H} = GL(2n, \overline{F}_2)$ and let $\varepsilon'_1, \ldots, \varepsilon'_{2n}$ be the weights of the natural **H**-module V. One can embed **G** into **H** so that a maximal torus **T** of **G** is contained in a maximal torus **T'** of **H**, and $\varepsilon_i = \varepsilon'_i |_{\mathbf{T}}$, $\varepsilon'_{n+i} |_{\mathbf{T}} = -\varepsilon_i$ for $i = 1, \ldots, n$. Let V_i $(1 \le i \le 2n)$ be the *i*-th exterior power of V, and V_0 the trivial **H**-module. Set $R = \bigoplus_{i=0}^{2n} V_i$. Then the weights of R are 0 and $\varepsilon'_{j_1} + \cdots + \varepsilon'_{j_i}$, where $1 \le i \le 2n$ and $0 < j_1 < j_2 < \cdots < j_i \le 2n$. It follows that the weights of $R' := R_{\mathbf{G}}$ are 0 and $\pm \varepsilon_{j_1} \pm \cdots \pm \varepsilon_{j_i}$ where $1 \le i \le n$ and $0 < j_1 < j_2 < \cdots < j_i \le n$. Therefore, the weights of $Fr_0(R')$ and M are the same.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20G40, 20C33.

Key words and phrases. Finite classical groups, Steinberg representation, Weil representation.

Furthermore, 0 and $\lambda_1, \ldots, \lambda_n$ are the only dominant weights of R'. Indeed, $\varepsilon_1 = \lambda_1$ and $\varepsilon_i = \lambda_i - \lambda_{i-1}$ for i > 1. Suppose that a non-zero weight $\sum_{i \in N} \pm \varepsilon_i = \sum_{i \in N} \pm (\lambda_i - \lambda_{i-1})$ is dominant. Then the coefficient of λ_i is non-negative for every i. It follows that $1 \in N$ and if $i \in N, i > 1$ then $i - 1 \in N$. So $\sum_{i \in N} \pm \varepsilon_i$ is dominant if and only if it is of shape $\sum_{i=1}^k \varepsilon_i, k = 1, \ldots, n$, as claimed. Therefore, if μ is the highest weight of an irreducible constituent φ_{μ} of R' then $\mu = \lambda_i$ for some i or 0.

Let m'_i (i = 1, ..., n) be the multiplicity of $\varphi_{2\lambda_i}$ in $Fr_0(R')$ and m_i the multiplicity of $\varphi_{2\lambda_i}$ in M; in addition, let m'_0, m_0 be the multiplicity of the trivial G-module in composition series of $Fr_0(R'), M$, respectively. We show that $m_i = m'_i$. As the restriction $\varphi_{2\lambda_i}$ to Sp(2n, 2) is irreducible, and $(\varphi_{2\lambda_i})_{Sp(2n,2)}$ and $(\varphi_{2\lambda_j})_{Sp(2n,2)}$ are non-equivalent for $i \neq j$, it follows that m'_i , resp., m_i is the multiplicity of the irreducible representation $(\varphi_{2\lambda_i})_{Sp(2n,2)}$ in Sp(2n, 2)-composition series of $Fr_0(R')$, resp., M. Similarly, m'_0 and m_0 is the multiplicity of the trivial Sp(2n, 2)-module in $Fr_0(R'), M$, respectively. By [1, Lemma 7.2], the composition factors of $\bigoplus_{i=0}^{2n} (V_i)_{Sp(2n,2)}$ coincide with the composition factors of $(\varphi_{\lambda_n} \otimes \varphi_{\lambda_n})_{Sp(2n,2)}$ with regarding their multiplicities. It follows that $m'_0 = m_0$ and $m'_i = m_i$ for $i = 1, \ldots, n$.

Note that $(V_i)_{Sp(2n,\overline{F}_2)} \cong (V_{2n-i})_{Sp(2n,\overline{F}_2)}$ and $(V_i)_{Sp(2n,\overline{F}_2)}$ contains φ_{λ_i} for $i = 1, \ldots, n$. In addition, $(V_0)_{Sp(2n,\overline{F}_2)} \cong (V_{2n})_{Sp(2n,\overline{F}_2)}$. It follows that φ_{λ_n} is the only composition factor of R' which may occur with multiplicity 1. By general theory, $\varphi_{2\lambda_n}$ does occur in M with multiplicity 1.

Proof of Theorem 1.5. Let $\nu = a_1\lambda_1 + \cdots + a_n\lambda_n$, where $0 \le a_1, \ldots, a_n \le q-1$, and $\nu' = a_1\lambda_1 + \cdots + a_{n-1}\lambda_{n-1}$. We show that Φ_{ν} is a direct summand of $\omega \cdot st$ if and only if $\nu = (q-1)(\lambda_1 + \cdots + \lambda_n)$ or τ . By [1, Lemma 7.4], it suffices to show that st is an irreducible constituent of $(\varphi_{\nu} \otimes \varphi_{(q-1)\lambda_n})_G$ if and only if $\nu' = \tau$ and $a_n = 0$ or q - 1.

It can be deduced from Steinberg [3, Corollary to Theorem 41 and Theorem 43] that $\varphi_{\nu} = \varphi_{\nu'} \otimes \varphi_{a_n \lambda_n}$. In particular, $\varphi_{\nu'} \otimes \varphi_{(q-1)\lambda_n} = \varphi_{\nu'+(q-1)\lambda_n}$.

If $a_n = 0$ then $\nu = \nu'$ so the representation $\varphi_{\nu} \otimes \varphi_{(q-1)\lambda_n} = \varphi_{\nu'+(q-1)\lambda_n}$ is irreducible. As $\nu' + (q-1)\lambda_n$ is a q-restricted dominant weight, $(\varphi_{\nu'+(q-1)\lambda_n})_G$ is irreducible, so it is not equal to st unless $\nu' = \tau$. If $\nu = \nu' = \tau$ then $(\varphi_{\nu'+(q-1)\lambda_n})_G = st$, so st is a direct summand of $(\varphi_{\nu} \otimes \varphi_{(q-1)\lambda_n})_G$ (when $a_n = 0$).

Suppose that $a_n > 0$. It follows from [1, Corollary 1.3] that every principal indecomposable module Φ_{ν} occurs as a direct summand of $(\varphi_{(q-1)\lambda_n})_G \otimes st$ with multiplicity at most 1; by [1, Lemma 7.4], this implies that st occurs as an irreducible constituent of $(\varphi_{\nu} \otimes \varphi_{(q-1)\lambda_n})_G$ with multiplicity at most 1. Therefore, the constituents occurring with multiplicity greater than 1 can be ignored.

We have

 $\varphi_{\nu}\otimes\varphi_{\lambda_{(q-1)\lambda_n}}=\varphi_{\nu'}\otimes\varphi_{a_n\lambda_n}\otimes\varphi_{(q-1)\lambda_n}.$

We show that a composition factor of $(\varphi_{a_n\lambda_n} \otimes \varphi_{(q-1)\lambda_n})_G$ have multiplicity greater than 1, unless $a_n = q - 1$, and it is of form $(\varphi_{(q-1)\lambda_n})_G$.

Let
$$a_n = \sum_{i=0}^{\kappa-1} 2^i b_i$$
 be the 2-adic expansion of a_n (so $0 \le b_i \le 1$). Then

 $\varphi_{a_n\lambda_n} \otimes \varphi_{(q-1)\lambda_n} = (\varphi_{b_0\lambda_n} \otimes \varphi_{\lambda_n}) \otimes Fr_0(\varphi_{b_1\lambda_n} \otimes \varphi_{\lambda_n}) \otimes \cdots \otimes Fr_0^{k-1}(\varphi_{b_{k-1}\lambda_n} \otimes \varphi_{\lambda_n}).$ If $b_i = 0$ then $\varphi_{b_i\lambda_n} \otimes \varphi_{\lambda_n} = \varphi_{\lambda_n}$, otherwise $b_i = 1$ and then, by the lemma above, the only composition factor of $(\varphi_{b_i\lambda_n} \otimes \varphi_{\lambda_n})_G$ occurring with multiplicity 1 is $(\varphi_{2\lambda_j})_G$ for $1 \leq j \leq n$. Therefore, the composition factors of $\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}$ distinct from $\varphi_{2\lambda_n}$ can be ignored. This means that we have to decide whether st occurs as a composition factor of the representation obtained from

$$(\varphi_{\nu'}\otimes\varphi_{b_0\lambda_n}\otimes\varphi_{\lambda_n}\otimes\cdots\otimes Fr_0^{k-1}(\varphi_{b_{k-1}\lambda_n}\otimes\varphi_{\lambda_n}))_G$$

by omitting $\varphi_{b_i\lambda_n}$ whenever $b_i = 0$, and replacing $\varphi_{b_i\lambda_n} \otimes \varphi_{\lambda_n}$ by $\varphi_{2\lambda_n}$ whenever $b_i = 1$. Let $B = \{i \in \{0, \ldots, k-1\} : b_i = 1\}$.

Then we can write the resulting expression as

$$(\otimes_{i\in B}Fr_0^i(\varphi_{2\lambda_n})\otimes_{i\notin B}Fr_0^i(\varphi_{\lambda_n}))_G = (\otimes_{i\in B}Fr_0^{i+1}(\varphi_{\lambda_n})\otimes_{i\notin B}Fr_0^i(\varphi_{\lambda_n}))_G.$$

We first consider the set $B' := \{i \in B : i+1 \notin B\}$ (if i = k-1 then i+1 is regarded to be 0). Suppose that B' is non-empty (this means that $a_n \neq 0$ and $a_n \neq 2^k - 1$). For $i \in B'$ the lemma above applied to the term $(Fr_0^{i+1}(\varphi_{\lambda_n}) \otimes Fr_0^{i+1}(\varphi_{\lambda_n}))_G = (Fr_0^{i+1}(\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}))_G$ tells us that, by the above reason, we can replace $\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}$ by $\varphi_{2\lambda_n}$ so $(Fr_0^{i+1}(\varphi_{\lambda_n} \otimes \varphi_{\lambda_n}))_G$ is replaced by $(Fr_0^{i+2}(\varphi_{\lambda_n}))_G$ ($i \in B'$). One can continue the analysis by repeating this reasoning, but it is more efficient to observe that the process is parallel to the addition of the residues of integers modulo $2^k - 1$. In order to justify this claim, we first compute $(\varphi_{a_n\lambda_n} \otimes Fr_0^i(\varphi_{\lambda_n})_G$ for every $i = 0, \ldots, k - 1$), and then in general.

Note that

$$(\varphi_{a_n\lambda_n}\otimes\varphi_{2^i\lambda_n})_G=(Fr_0^i(\varphi_{b_i\lambda_n}\otimes\varphi_{\lambda_n})\otimes_{j\neq i}\varphi_{2^jb_j\lambda_n})_G.$$

If $b_i = 0$ then $(\varphi_{b_i\lambda_n})_G = 1_G$ so $Fr_0^i(\varphi_{b_i\lambda_n} \otimes \varphi_{\lambda_n})_G = (Fr_0^i(\varphi_{\lambda_n}))_G$. Suppose that $b_i = 1$. In view of the lemma above, the composition factors of $\varphi_{b_i\lambda_n} \otimes \varphi_{\lambda_n}$ other than $\varphi_{2\lambda_n}$ occur with multiplicity greater than 1, so they are immaterial for our purpose. Therefore, we are left with $\varphi_{2\lambda_n}$, so it suffices to compute $(Fr_0^i(\varphi_{2\lambda_n})\otimes_{j\neq i}\varphi_{2^jb_j\lambda_n})_G$. This is equal to $(Fr_0^{i+1}(\varphi_{\lambda_n})\otimes_{j\neq i}\varphi_{2^jb_j\lambda_n})_G$. If i+1=kthen $(Fr_0^k(\varphi_{\lambda_n}))_G = (\varphi_{2^k\lambda_n})_G \cong (\varphi_{\lambda_n})_G$, and the replacement of $(\varphi_{2^k\lambda_n})_G$ by $(\varphi_{\lambda_n})_G$ is parallel to taking the residue modulo $2^k - 1$. Next, if $b_{i+1} = 0$ then we stop, otherwise we repeat the same trick and obtain $(Fr_0^{i+2}(\varphi_{\lambda_n})\otimes_{j\neq i,i+1}\varphi_{2^jb_j\lambda_n})_G$. The output of the procedure will be $\varphi_{a_n(i)}$, where $a_n(i) = (a_n + 2^i) (\mod 2^k - 1)$.

In general, applying this to $\varphi_{a_n\lambda_n} \otimes \varphi_{(q-1)\lambda_n} = (\varphi_{a_n\lambda_n} \otimes_{i=0}^{k-1} Fr_0^i(\varphi_{\lambda_n}))_G$, we obtain $(\varphi_{a'_n\lambda_n})_G$, where $a'_n = a_n + 1 + 2 + \dots + 2^{k-1} (\operatorname{mod} 2^k - 1) = a_n$.

This is also true if B' is empty but $a_n = q - 1$. Indeed, the reasoning above for $i = 0, \ldots, k - 1$ remains valid, and we obtain $a_n(i) = (a_n + 2^i) \pmod{2^k - 1} = 2^i$. Then again $a'_n = a_n = q - 1$.

Thus, we conclude that it suffices to decide whether st is an irreducible constituent of $(\varphi_{\nu'} \otimes \varphi_{a_n\lambda_n})_G$. As mentioned above, $\varphi_{\nu'} \otimes \varphi_{a_n\lambda_n} = \varphi_{\nu'+a_n\lambda_n}$. Since $\nu' + a_n\lambda_n$ is a *q*-restricted dominant weight, $(\varphi_{\nu'+a_n\lambda_n})_G$ is irreducible. So st is an irreducible constituent of $(\varphi_{\nu'+a_n\lambda_n})_G$ if and only if $(\varphi_{\nu'+a_n\lambda_n})_G = st$, equivalently, $\nu' + a_n\lambda_n = (q-1)(\lambda_1 + \cdots + \lambda_n)$. This implies $\nu' = (q-1)(\lambda_1 + \cdots + \lambda_{n-1}) = \tau$ and $a_n = q - 1$.

Therefore, $\omega \otimes st = \Phi_{\tau} \oplus st$, as required.

The comments to Theorem 1.5 in [1, page 430, line -12] concerning the decomposition numbers of $\omega \cdot St$ connot not be applied to the new version of the theorem. In fact, we have:

Corollary dim $\Phi_{\tau} = |G|_2 \cdot (\dim \varphi_{(q-1)\lambda_n} - 1) = |G|_2 \cdot (q^n - 1)$, and the ordinary character corresponding to Φ_{τ} is multiplicity free.

Proof. $(\varphi_{(q-1)\lambda_n})_G \otimes st = \Phi_\tau \oplus st$, so dim $\Phi_\tau = \dim st \cdot (\dim \varphi_{(q-1)\lambda_n} - 1)$. As dim $st = |G|_2$ and dim $\varphi_{(q-1)\lambda_n} = 2^{nk} = q^n$, the first claim follows. The second one follows from [1, Corollary 1.3].

Example: Let G = Sp(2,q), q even. Then $\tau = 0$; by the above corollary, $\dim \Phi_0 = q(q-1)$.

Example: Let G = Sp(4, 4), so n = 2. Then $\tau = 3\lambda_1$ and $|G|_2 = 2^8 = 256$. So $\dim \varphi_{3\lambda_2} = 4^2 = 16$. By the corollary above, $\dim \Phi_{\tau} = 256 \cdot 15 = 3840$.

G. HISS AND A. ZALESSKI

References

- G. Hiss and A.E. Zalesski, The Weil-Steinberg character of finite classical groups with an appendix by Olivier Brunat, Represent. Theory 13(2009), 427-459.
- [2] N. Bourbaki, Groupes et algebres de Lie, Chaps. IV-VI, Hermann, Paris, 1968.
- [3] R. Steinberg, *Lectures on Chevalley groups*, mimeographed lecture notes, Yale Unv. Math. Dep., New Haven, Conn., 1968.

G. Hiss: Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

$E\text{-}mail\ address:\ \texttt{gerhard.hiss@math.rwth-achen.de}$

A. Zalesski: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20126 Milano, Italy

 $E\text{-}mail\ address: \texttt{alexandre.zalesski@gmail.com}$