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Preface

This work deals with the investigation of p-groups with respect to the ex-

istence of tensor decomposable characters, i.e. irreducible characters which

are products of two non-linear irreducible characters.

Using the computer algebra system GAP [GAP] we made some valuable ob-

servations. On the one hand we saw that no group of order p5 with p ≤ 17

has a tensor decomposable character. This led us to conjecture that for any

prime number p there is no group of order p5 possessing such a character,

and we finally succeeded in proving this claim.

On the other hand we noticed that there are groups of order p6 for p ∈
{2, 3, 5, 7, 11} with a tensor decomposable character. This in turn led us to

conjecture that for any prime p there always is a group of order p6 possessing

such a character.

Obviously we were not looking for a trivially tensor decomposable character.

By that we mean an irreducible character χ ∈ IrrC(G) of a group G with

normal subgroup N EG such that there exist irreducible projective charac-

ters ϑ̂ of G and ε of G/N with ϑ̂N = ϑ such that χ = ϑ̂ · ε.

The approach to prove what was conjectured before was to explicitly con-

struct a non-trivial example of a group of order p6 with a tensor decomposable

character for an arbitrary prime p using power commutator presentations.

In order to find an appropriate presentation GAP again happened to be

rather useful. Indeed we reached the goal to find a presentation for a group

with the desired properties.

As final result we worked out the generic character table of this particular

group. Looking at the table we can see that not only G possesses a tensor

decomposable character, but that actually all irreducible characters of degree

p2 are tensor decomposable.
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Chapter 1

Basics from Group Theory

Let throughout this chapter G be a finite group.

1.1 Semidirect products

Let us first recall some properties about the direct product of groups.

Let H,N be two subgroups of G.

If the three conditions

(1) H,N E G,

(2) HN = G,

(3) H ∩N = {1}

hold, G is isomorphic to the outer direct product H ×N .

For the sake of simplicity we shall use the following notation for the conju-

gation:

Notation 1.1.1 Let N E G and g ∈ G. We denote the conjugation on N

with g by γg, i.e.

γg : N → N, n 7→ g−1ng.

It is easy to see that γg is an automorphism of N .
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Notation 1.1.2 Let N be a group.

(1) If ϕ ∈ Aut(N) is an automorphism of N , we write nϕ for the image of

n under ϕ, where n ∈ N .

(2) Further for two elements x, y ∈ N the conjugation of y with x is written

as yx = x−1yx and xy = xyx−1 respectively.

(3) We define the commutator of x, y ∈ N as [x, y] = x−1y−1xy.

Remark 1.1.3 Let H,N ≤ G.

(a) If N is a normal subgroup of G, then the commutator [h, n] is contained

in N for all h ∈ H, n ∈ N .

(b) G is the direct product of H and N , if and only if

(1’) hn = nh for all h ∈ H, n ∈ N ,

(2) HN = G,

(3) H ∩N = {1}.

Proof

(a) By definition we have [h, n] = h−1n−1h︸ ︷︷ ︸
∈N

n ∈ N .

(b) Suppose G is the direct product of H and N . From part (a) we know

that [h, n] ∈ H ∩N for all h ∈ H, n ∈ N . Since H ∩N = {1} it follows

that [h, n] = 1 for all h ∈ H,n ∈ N , i.e. property (1’) holds. Properties

(2) and (3) follow immediately from the assumption.

For the other direction suppose that properties (1’), (2) and (3) hold.

Let n ∈ N , g = hm ∈ G with h ∈ H, m ∈ N . Then we have

g−1ng = m−1h−1nhm
(1′)
= m−1nm ∈ N , hence N E G.



Similarly we can show that H E G. Thus, property (1) holds, proper-

ties (2) and (3) hold by assumption. Hence G is the direct product of

H and N .



Definition 1.1.4 Let H,N ≤ G.

G is called the (inner) semidirect product of H with N , if

(1) N E G,

(2) HN = G,

(3) H ∩N = {1}.

In this case H is called a complement of N in G.

Example 1.1.5

(1) G = Sn (n ≥ 2), H = 〈(1, 2)〉, N = An.

Then G is the semidirect product of H with N .

(2) Let K be a field, G the group of monomial (n × n)-matrices over K

(n ≥ 2). Furthermore let T ≤ G be the group of diagonal matrices and

W ≤ G the group of permutation matrices. Then T E G, W ∩T = {1},
G = WT .

(3) Let G = D2n, the symmetry group of a regular n-gon and let D = 〈d〉 E

G be the subgroup of rotations. If S = 〈s〉, where s is a reflection, then

G is the semidirect product of S with D.

Remark 1.1.6 Let G be the semidirect product of H with N E G; then:

(1) Every g ∈ G has a unique representation as a product hn with h ∈ H,

n ∈ N (normal form).

(2) For h, h′ ∈ H, n, n′ ∈ N we have (hn)(h′n′) = (hh′)︸ ︷︷ ︸
∈H

(nγh′n′)︸ ︷︷ ︸
∈N

.

Proof

(1) The existence of the decomposition is clear. Let us show uniqueness:

Suppose hn = h′n′, with h, h′ ∈ H, n, n′ ∈ N . Then we obtain

(h′)−1h = n′n−1 ∈ H ∩N = {1}, i.e. h = h′, n = n′.



(2) (hn)(h′n′) = hh′ (h′)−1nh′︸ ︷︷ ︸
nγh′

n′ = hh′nγh′n′.

Definition 1.1.7 Let H and N be groups. We say that H acts on N as a

group of automorphisms, if

(1) H acts on N , and

(2) the action homomorphism ϕ : H −→ SN maps H to Aut(N) ≤ SN , i.e.

(nn′)ϕ(h) = nϕ(h)n′ϕ(h) for all h ∈ H, n, n′ ∈ N .

Remark 1.1.8 Let N E G.

(1) G acts on N by conjugation, the action homomorphism is

ϕ : G→ Aut(N) : g 7→ γg.

(2) If H ≤ G is a complement to N in G (i.e. HN = G, H ∩ N = {1}),
then H acts on N .

(3) If N is abelian, then G/N acts on N .

Indeed ϕ : G/N → Aut(N), gN 7→ γg is well-defined, since N is

abelian.

Definition 1.1.9 Let H, N be two groups. Suppose H acts on N as a group

of automorphisms.

The semidirect product of H with N w.r.t. ϕ : H → Aut(N), written as

H nϕ N (or just as H nN , if ϕ is clear from the context), is the group with

underlying set H ×N and multiplication defined by:

(h, n) · (h′, n′) := (hh′, nϕ(h′)n′), where h, h′ ∈ H,n, n′ ∈ N.

Convention: Let H, N be groups. If we say that H acts on N , we mean

an action as a group of automorphisms.



Remark 1.1.10 Let H, N be groups, ϕ : H → Aut(N). Then G := HnϕN

is a group.

Let H̄ := {(h, 1) ∈ H n N |h ∈ H} and N̄ := {(1, n) ∈ H n N |n ∈ N}.
Then

H̄, N̄ ≤ G, N̄ E G, H̄ N̄ = G, H̄ ∩ N̄ = {1}.

The action of H̄ on N̄ by conjugation is equivalent to the given action of H

on N .

1.2 Free groups and presentations

1.2.1 Free groups

A presentation is a way to define a group. This concept involves so-called

free groups. In the following we shall give a brief introduction into these

two topics. We shall state and prove relevant theorems we later work with.

Definition 1.2.1 Let F be a group, X ⊆ F . Then F is called a free

group on X, if for all groups G and all maps f : X → G there is a unique

homomorphism ϕ : F → G with ϕ|X = f . In this case X is also called a free

generating set of F .

Remark 1.2.2

(1) Let F be a free group on X ⊆ F . Then 〈X〉 = F .

(2) Let F and G be free groups on X ⊆ F and Y ⊆ G respectively. If

|X| = |Y |, then F ∼= G.

Proof

(1) Put G = 〈X〉 ≤ F . Now consider the map f : X → G, x 7→ x. Since F

is a free group we know that there exists a homomorphism ϕ : F → G

such that ϕ(x) = f(x) for all x ∈ X. Let ι : G → F denote the

inclusion; then

ι ◦ ϕ : F → F is a group homomorphism with ι ◦ ϕ|X = ι ◦ f |X , and

IdF : F → F is a group homomorphism with IdF |X = ι ◦ f |X .



By the uniqueness of such homomorphisms we obtain ι◦ϕ = IdF , hence

ι is surjective, i.e. G = F .

(2) Let f : X → Y ⊆ G and g : Y → X ⊆ F be maps with f ◦ g = IdY

and g ◦ f = IdX . By definition there exist group homomorphisms

ϕ : F → G and ψ : G→ F with ϕ ◦ ψ|Y = IdY and ψ ◦ ϕ|X = IdX . By

the uniqueness we conclude that ϕ ◦ ψ = IdG and ψ ◦ ϕ = IdF , hence

ϕ and ψ are isomorphisms.

Definition 1.2.3 Let X be a set.

(1) A word of length n ∈ N over X is a sequence (x1, . . . , xm) with xi ∈ X
for all 1 ≤ i ≤ m, shortly written x1x2 · · ·xm.

The unique word of length 0 is called the empty word and denoted by

ε. The set of all words over X is denoted by X∗.

(2) For x = x1x2, · · ·xm, y = y1y2 · · · yn inX∗ we put xy := x1x2 · · ·xmy1 · · · yn
(the concatenation). Through

X∗ ×X∗ : → X∗ : (x, y) 7→ xy

X∗ becomes a monoid (with neutral element ε), called the free monoid

over X.

Theorem 1.2.4 Let X be a set. Then there exists a group F and an

injective map ι : X → F such that F is a free group on ι(X) (in this situation

we usually identify X with ι(X) ⊆ F and call F the free group on X. Note

that F only depends on the cardinality of X).

Proof Put X± := X × {1,−1}.
For (x, α) ∈ X± we shall write xα and for (x, 1) we shall also write x. Now

let us define an equivalence relation ∼ on (X±)∗ by:

u ∼ v if and only if there is a sequence u = w1, w2, . . . , wm = v such that

wi → wi+1 or wi+1 → wi for all 1 ≤ i ≤ m.

Here we write s→ t for s, t ∈ (X±)∗, if t is obtained from s by an ”elementary



cancellation”, i.e. t = axαx−αb, s = ab, with a, b ∈ (X±)∗, x ∈ X, α ∈
{1,−1}.
For w ∈ (X±)∗ let [w] denote the equivalence class containing w. Put F :=

{[w] |w ∈ (X±)∗}. Then:

(1) F is a group with multiplication [v][w] := [vw], v, w ∈ (X±)∗.

The identity element is [ε] ∈ F and for x1, . . . , xm ∈ X, α1, . . . , αm ∈
{1,−1} we have [xα1

1 · · ·xαm
m ]−1 = [x−αm

m · · ·x−α1
1 ].

(2) ι : X → F : x 7→ [x] is injective.

We have to show: If x, y ∈ X with x ∼ y, then x = y. More generally

for x ∈ X we have: If x ∼ xα1
1 · · ·xαm

m with xi ∈ X, αi ∈ {1,−1}, 1 ≤
i ≤ m, then |{i | 1 ≤ i ≤ m,x = xi}| is odd and |{i | 1 ≤ i ≤ m,x 6= xi}|
is even.

(3) Universal property: Let G be a group and f : ι(X) → G a map. Define

ϕ : F → G by ϕ([xα1
1 · · ·xαm

m ]) := f([x1])
α1 · · · f([xm])αm , xi ∈ X, αi ∈

{1,−1}, 1 ≤ i ≤ m. Then ϕ is well-defined, a group homomorphism

and f = ϕ|ι(X).

If ϕ′ : F → G is a group homomorphism with ϕ′|ι(X) = f , then ϕ′ = ϕ,

since 〈ι(X)〉 = F by construction.

Example 1.2.5

(1) The free group on X = ∅ is the trivial group.

(2) The free group F onX = {x} is isomorphic to (Z,+), F = {xz | z ∈ Z}.

(3) If |X| ≥ 2, the free group F on X is not abelian. In order to see that

let x 6= y ∈ X. By definition of a free group there is a (surjective)

homomorphism

F → S3 :


x 7→ (1, 2)

y 7→ (1, 2, 3)

z 7→ 1, if z /∈ 〈x, y〉

Since S3 is not abelian F neither is.



1.2.2 Presentations

Definition 1.2.6 Let G be a group, S ⊆ G. We define

〈〈S〉〉 :=
⋂

NEG, S⊆N

N,

called the normal closure of S in G, which is the smallest normal subgroup

of G containing S. Note that

〈〈S〉〉 = 〈g−1sg | g ∈ G, s ∈ S〉.

Definition 1.2.7 Let G be a group. A presentation of G (by generators

and relations) is a pair (X,R), where X is a set and R is a subset of the free

group F on X, such that G ∼= F/〈〈R〉〉 =: 〈X | R〉.
We call 〈X | R〉 finite, if X and R are finite. In this case G ∼= 〈X | R〉 is

called finitely presented.

Remark 1.2.8 〈X | R〉 is the most general (largest) group generated by

the set X whose elements satisfy the relations r = 1 for r ∈ R.

Remark 1.2.9 Let G be a group, S ⊆ G such that 〈S〉 = G. Then there

exists a set X, a bijection f : X → S and a presentation G ∼= 〈X | R〉. If G

is finite, it is finitely presented.

Proof Let X be a set with |X| = |S| and let f : X → S be a bijection. Let

further F be the free group on X and ϕ : F → G be the extension of f . Then

ϕ is surjective and G ∼= 〈X | R〉 for R ⊆ G with 〈〈R〉〉 = ker(ϕ).

Let G be finite, G := {g | g ∈ G} a set with |G| = |G| and a bijection

f : G→ G : g 7→ g.

Let F be the free group on G and let ϕ be the homomorphism F → G extend-

ing f . Then ker(ϕ) = 〈〈{g h gh−1 | g, h ∈ G}〉〉, i.e. G ∼=
〈
G | g h gh−1

, g, h ∈ G
〉
.

Theorem 1.2.10 Let G, H be groups, G ∼= 〈X | R〉 a presentation of G. Let

F be the free group on X and f : X → H be a map with extension ϕ : F → H.



If ϕ(r) = 1 for all r ∈ R (in this case we say the elements f(x), x ∈ X satisfy

the relations R), then there exists a homomorphism ϕ : G→ H such that the

following diagram commutes

F
ϕ

��>
>>

>>
>>

π����
��

��
�

G
ϕ

// H

Here π is defined by

F
ν〈〈R〉〉 //

π

&&MMMMMMMMMMMMMMM F/〈〈R〉〉

α

��
G

where ν〈〈R〉〉 denotes the canonical map ν〈〈R〉〉 : F −→ F/〈〈R〉〉 and α denotes

the isomorphism α : F/〈〈R〉〉 −→ G.

In particular, if H is generated by f(x), x ∈ X, then H is isomorphic to

a factor group of G.

Proof By assumption R ⊆ ker(ϕ), hence 〈〈R〉〉 ≤ ker(ϕ).

Writing ϕ̃ : F/〈〈R〉〉 → H : w〈〈R〉〉 7→ ϕ(w), the homomorphism ϕ := ϕ̃◦α−1

satisfies the assertion.



Example 1.2.11

(1) Let Cn be the cyclic group of order n. Then Cn ∼= 〈x |xn〉.

(2) LetD2n be the dihedral group of order 2n. ThenD2n
∼= 〈x, y |x2, y2, (xy)n〉.

Proof In each of the two cases let G be the group defined by the respective

presentation. We view X as a subset of G.

(1) Let Cn = 〈a〉.
Since an = 1, there is a homomorphism ϕ : G → Cn with ϕ(x) = a,

which is clearly surjective. Hence |G| ≥ |Cn| = n. Now G = 〈x〉 is

cyclic, xn = 1, i.e. |G| ≤ n. Hence |G| = n and ϕ is an isomorphism.

(2) We have that D2n = 〈s, t〉 with involutions s, t such that d := st

has order n. Hence by 1.2.10 there exists a surjective homomorphism

G→ D2n : x 7→ s, y 7→ t, and so |G| ≥ |D2n| = 2n.

In G we have

x−1(xy)x = yx = y−1x−1 = (xy)−1,

y−1(xy)y = y−1x = y−1x−1 = (xy)−1.

Therefore D := 〈xy〉 E G as well as |〈xy〉| ≤ n. From G = 〈x, y〉 =

〈xy, y〉 we conclude that G = D ∪Dy.

Remark 1.2.12 Let X be a set, F the free group on X and let R,S ⊆ F .

Let G be a group with presentation 〈X |R〉, i.e. G ∼= F/〈〈R〉〉, and let

π : F → G be an epimorphism with kernel 〈〈R〉〉.
If N := 〈〈π(S)〉〉G, then G/N ∼= 〈X |R ∪ S〉.

Proof Put H := 〈X |R ∪ S〉 = F/K with K = 〈〈R ∪ S〉〉 and let

f : X → H : x 7→ xK and ϕ : F → H its extension. Since R ⊆ K we have

ϕ(r) = 1 for all r ∈ R. By 1.2.10 there is a group homomorphism ϕ : G→ H

such that ϕ ◦ π = ϕ. Since H = 〈ϕ(x) |x ∈ X〉 the map ϕ is surjective.

Now ker(ϕ) = π(K) = 〈〈π(R∪S)〉〉G = 〈〈π(S)〉〉G = N . Since π is surjective

we obtain G/N = G/ker(ϕ̄) ∼= H = 〈X |R ∪ S〉.



Theorem 1.2.13 Let 〈X |R〉 be a presentation for a group G. Then

G/G′ ∼= 〈X |R ∪ S〉 with S = {[x, y] |x, y ∈ X}.

Proof Let F be the free group on X, π : F → G = F/〈〈R〉〉 the canonical

homomorphism. By 1.2.12 〈X |R∪S〉 is a presentation for G/〈〈π(S)〉〉G. We

have to prove 〈〈π(S)〉〉G = G′. Let x, y ∈ X; then π([x, y]) = [π(x), π(y)] ∈
G′, hence π(S) ⊆ G′ and therefore 〈〈π(S)〉〉G ⊆ G′.

We have that G is generated by {π(x) |x ∈ X}.
Furthermore [π(x), π(y)] = π([x, y]) ∈ 〈〈π(S)〉〉G for all x, y ∈ X. Thus

G/〈〈π(S)〉〉G is abelian, i.e. G′ ⊆ 〈〈π(S)〉〉G.

Remark 1.2.14 Let X,Y be disjoint sets, G = 〈X |R〉, H = 〈Y |S〉. Then

G×H = 〈X ∪ Y |R ∪ S ∪ {[x, y] |x ∈ X, y ∈ Y }〉.

Corollary 1.2.15 Let F be the free group on a finite set X = {x1, . . . , xr}
with r elements. Then F/F ′ ∼= 〈x1, . . . , xr | [xi, xj], 1 ≤ i, j ≤ r〉 and F/F ′ is

a free abelian group of rank r.

Proof The first statement follows from 1.2.13 (with F = G, π = Id, R = ∅,
S = {[x, y] |x, y ∈ X}). To prove the second statement we show F/F ′ ∼=
Z× Z× · · · × Z (r factors) by induction on r.

By 1.2.5(2) we have 〈xr | ∅〉 ∼= Z and by induction we obtain

Z× · · · × Z︸ ︷︷ ︸
r−1 factors

∼= 〈x1, . . . , xr−1 | [xi, xj], 1 ≤ i, j ≤ r − 1〉.

Using 1.2.14

Z× · · · × Z︸ ︷︷ ︸
r factors

∼= (Z× · · · × Z︸ ︷︷ ︸
r−1 factors

)× Z

∼= 〈x1, . . . , xr−1 | [xi, xj], 1 ≤ i, j ≤ r − 1〉 × 〈xr | ∅〉
∼= 〈x1, . . . , xr | [xi, xj], 1 ≤ i, j ≤ r〉 ∼= F/F ′.



Theorem 1.2.16 Let X and Y be sets and FX and FY be the free groups on

X and Y respectively. Let further R ⊆ FX , S ⊆ FY and define two groups

by the presentations H := 〈X | R〉 and N := 〈Y | S〉 respectively. Moreover

let ϕ : H −→ Aut(N), h 7→ (n 7→ nϕ(h)) be a group homomorphism, so that

we can construct the semidirect product of H and N .

Then a presentation of the group H oN is given by

H oN ∼= 〈X ∪ Y | R ∪ S ∪ {yx(yϕ(x))−1 | x ∈ X, y ∈ Y }〉.

Let R̄ := 〈〈R〉〉E FX , S̄ := 〈〈S〉〉E FY and let FX∪Y be the free group on

X ∪ Y . We shall view FY as a subgroup of FX∪Y .

For x ∈ X ∪ X−1 the symbol yϕ(x) ∈ FX∪Y denotes an arbitrarily chosen

preimage of the element (yS̄)ϕ(xR̄) ∈ N in FY ≤ FX∪Y . Note that yϕ(x)S̄ =

(yS̄)ϕ(xR̄). Finally write T̄ := 〈〈R ∪ S ∪ {yx(yϕ(x))−1 | x ∈ X, y ∈ Y }〉〉 E

FX∪Y .

Proof Define

G := 〈X ∪ Y | R ∪ S ∪ {yx(yϕ(x))−1 | x ∈ X, y ∈ Y }〉

as a quotient of FX∪Y .

We have a surjective group homomorphism

φ : G −→ H oϕ N

xT̄ 7→
(
xR̄, 1

)
yT̄ 7→

(
1, yS̄

)
where x ∈ X and y ∈ Y . This can be seen using 1.2.10. In fact φ is induced

by a homomorphism FX∪Y that maps elements x ∈ X to (xR̄, 1) and y ∈ Y

to (1, yS̄). Now check that all relations of G belong to the kernel. Elements of

R∪S clearly map to (1, 1). Given y ∈ Y and x ∈ X, the element yx(yϕ(x))−1

is mapped to

(
1, yS̄

)(xR̄,1)
(1, yϕ(x)S̄)−1 = (1,

(
yS̄
)ϕ(xR̄)

)

(
1,
(
yS̄
)ϕ(xR̄)

)−1

= (1, 1) .



Hence φ actually is a group homomorphism. Clearly it is surjective since

H oϕ N is generated by
{
(xR̄, 1) |x ∈ X

}
∪
{
(1, yS̄) | y ∈ Y

}
. Furthermore

we have a group homomorphism N
ν−→ G that maps yS̄ to yT̄ , where y ∈ Y .

And we have a group homomorphism H
χ−→ G that maps xR̄ to xT̄ , where

x ∈ X.

It remains to show that φ is injective. Suppose that x ∈ X and y ∈ Y .

(i) By the definition of T̄ we have (yT̄ )(xT̄ ) = (xT̄ )
(
yϕ(x)T̄

)
.

(ii) Again by the definition of T̄ we have (y−1T̄ )xT̄ = (yxT̄ )−1 =
(
yϕ(x)T̄

)−1

and thus
(
y−1T̄

) (
xT̄
)

=
(
xT̄
) ((

yϕ(x)
)−1

T̄
)
.

(iii) Write yϕ(x−1) = yα1
1 · · · yαk

k in FY , where k ≥ 0, yi ∈ Y and αi ∈
{−1,+1}. We obtain

(
yϕ(x

−1)T̄
)xT̄

= ((y1T̄ )α1 · · · (ykT̄ )αk)xT̄

= (yx1 T̄ )α1 · · · (yxk T̄ )αk

def. of T̄
= (y

ϕ(x)
1 T̄ )α1 · · · (yϕ(x)

k T̄ )αk

= ((y
ϕ(x)
1 )α1 · · · (yϕ(x)

k )αk)T̄ .

Now

((y
ϕ(x)
1 )α1 · · · (yϕ(x)

k )αk)S̄ = (y
ϕ(x)
1 S̄)α1 · · · (yϕ(x)

k S̄)αk

= ((y1S̄)ϕ(xR̄))α1 · · · ((ykS̄)ϕ(xR̄))αk

= ((yα1
1 · · · yαk

k )S̄)ϕ(xR̄)

= (yϕ(x−1)S̄)ϕ(xR̄)

= ((yS̄)ϕ(x−1R̄))ϕ(xR̄)

= yS̄ .

An application of N
ν−→ G yields ((y

ϕ(x)
1 )α1 · · · (yϕ(x)

k )αk)T̄ = yT̄ .

Hence (yϕ(x−1)T̄ )xT̄ = yT̄ . Therefore, (yT̄ )(x−1T̄ ) = (x−1T̄ )(yϕ(x−1)T̄ ).

(iv) We have (y−1T̄ )x
−1T̄ = (yx

−1
T̄ )−1 (iii)

= (yϕ(x−1)T̄ )−1 and thus (y−1T̄ )(x−1T̄ ) =



(x−1T̄ )((yϕ(x−1))−1T̄ ).

Let us summarise our observations. Given x ∈ X and y ∈ Y , we have

(yT̄ )(xT̄ ) = (xT̄ )(yϕ(x)T̄ ),

(y−1T̄ )(xT̄ ) = (xT̄ )((yϕ(x))−1T̄ ),

(yT̄ )(x−1T̄ ) = (x−1T̄ )(yϕ(x−1)T̄ ),

(y−1T̄ )(x−1T̄ ) = (x−1T̄ )((yϕ(x−1))−1T̄ ).

Thus any element of G may be written as a product (ξT̄ )(ηT̄ ), where ξ ∈ FX
and η ∈ FY . Such an element (ξT̄ )(ηT̄ ) is mapped to (ξR̄, 1)(1, ηS̄) =

(ξR̄, ηS̄) under φ. If it is mapped to (1, 1), we have ξR̄ = 1 and ηS̄ = 1.

Applications of ν and χ show that this implies ξT̄ = 1 and ηT̄ = 1. Hence

(ξT̄ )(ηT̄ ) = 1. This proves that φ is injective, hence an isomorphism and the

proof is complete.





Chapter 2

Basics from Character Theory

2.1 Products of characters

For two characters χ and ψ, afforded by two C [G]-modules V and W of a

finite group G it is easy to see that the product χ ·ψ is a class function again,

i.e. a map which is constant on each conjugacy class. However it is rather

not obvious that χ · ψ is a character of G again. In order to see that we will

define a new C [G]-module with the property that its afforded character is

exactly the product of the two characters χ and ψ. Then we can immediately

deduce that the product of any two characters yields a character again. In

the following we shall first define the tensor product of two C-vector spaces

V and W which in the first place will be a C-vector space again. In case

V and W also are finite dimensional C [G]-modules we shall see later that

the resulting tensor product also has a structure as C [G]-module and which

affords the product of the characters afforded by V and W .

Definition and Remark 2.1.1

(1) Let V and W be two finite dimensional C-vector spaces. Then there

is a C-vector space V
⊗

W of dimension dimC V · dimCW and a C-

bilinear map ϕ : V ×W −→ V ⊗W with the following property:

If {v1, . . . , vn} is a C-basis of V and {w1, . . . , wm} a C-basis of W , then

{ϕ (vi, wj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a C-basis of V
⊗

W .
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(2) V
⊗

W is called the tensor product of V and W .

For v ∈ V,w ∈ W we shall use the notation v⊗w for the image ϕ (v, w) .

Proof Ad (1): Let B = {v1, ..., vn} be a C-basis of V and C = {w1, ..., wm}
be a C-basis of W . Now define T := {f : B × C −→ C} as the space

of all mappings from B × C to C. This is a C-vector space with basis{
11{(vi,wj)} | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
where 11{(vi,wj)} (x) =

{
0 , x 6= (vi, wj)

1 , x = (vi, wj)

is the indicator function of the set {(vi, wj)} .

As next step we define the map

ϕ : V ×W −→ T ,

(
n∑
i=1

aivi,
m∑
j=1

bjwj

)
7→

n∑
i=1

m∑
j=1

aibj11{(vi,wj)}.

We see that ϕ is bilinear and that {ϕ (vi, wj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a

basis of T (†). In particular we have dimC T = n ·m.

If B′ = {v′1, ..., v′n} is a basis of V and C ′ = {w′
1, ..., w

′
m} a basis of W , then

we conclude from (†) together with the bilinearity of ϕ that

M :=
{
ϕ
(
v′i, w

′
j

)
| 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
generates T . Hence M is a basis

of T and the proof is complete.

Remark 2.1.2 From 2.1.1 it follows that the tensor product V
⊗

W is

generated as a C-vector space by {v ⊗ w | v ∈ V,w ∈ W}. However in general

it is not true that there is equality, i.e. V
⊗

W 6= {v ⊗ w | v ∈ V,w ∈ W}.

Remark 2.1.3 Let V and W be finite dimensional C [G]-modules. Then

the tensor product V
⊗

W also has a structure as a C [G]-module satisfying

g (v ⊗ w) = gv ⊗ gw for all g ∈ G, v ∈ V,w ∈ W .

Further the character afforded by V
⊗

W , say χV NW , is the product χV ·χW
of the characters afforded by V and W respectively.

Proof Define an action of G on V
⊗

W via the basis. More precisely, for

g ∈ G define g (vi ⊗ wj) := gvi ⊗ gwj, where B = {v1, ..., vn} is a C-basis of

V and C = {w1, ..., wm} is a C-basis of W . Then, by linear extension, we



obtain g (v ⊗ w) = gv⊗gw for all v ∈ V,w ∈ W . Let B = (bij) be the matrix

induced by g on V with respect to the basis B and C = (cij) be the matrix

induced by g on W with respect to C . We put the basis elements into the

order {v1 ⊗ w1, v1 ⊗ w2, ..., v1 ⊗ wm, v2 ⊗ w1, ..., v2 ⊗ wm, ..., vn ⊗ wm}. Then

the matrix of g on V
⊗

W with respect to this basis is

B ⊗ C :=


b11C · · · · · b1nC

· ·
· ·
· ·

bn1C · · · · · bnnC

 .

We see that the trace of this matrix, i.e., the value χV NW (g), is exactly the

product χV (g) · χW (g) = χV · χW (g) and the proof is complete.

Definition and Remark 2.1.4 Let G = H × K be the product of two

finite groups H and K. Furthermore let ϕ be a character of H and ϑ a char-

acter of K. Define the map ϕ× ϑ to be the product of these two characters,

i.e.

ϕ× ϑ : H ×K, (h, k) 7→ ϕ (h) · ϑ (k) .

From 2.1.3 we deduce that ϕ× ϑ is a character of G. Consider the maps

ϕ̂ : H ×K −→ C, (h, k) 7→ ϕ (h)

and analogously

ϑ̂ : H ×K −→ C, (h, k) 7→ ϑ (k) .

We know that for a normal subgroup of N EG and a character χ̂ of G/N we

obtain a character χ of G by defining χ : G −→ C, g 7→ χ̂ (gN).

Using the isomorphismsH×K/({1}×K) ∼= H andH×K/(H×{1}) ∼= K and

the foregoing comment we deduce that ϕ̂ and ϑ̂ are characters of G = H×K.



Hence, by 2.1.3, the product ϕ̂ · ϑ̂ is a character of G as well. This is exactly

the map ϕ× ϑ and we conclude that ϕ× ϑ is a character of G.

We will now see how the irreducible characters of a direct product H×K
look like. We shall see that in this case the most intuitive approach is correct.

Theorem 2.1.5 The irreducible characters of the direct product of two

groups H and K can be describes as follows:

IrrC (H ×K) = {ϕ× ϑ | ϕ ∈ IrrC (H) , ϑ ∈ IrrC (K)} .

Proof [I, p.50, (4.21)].

2.2 Induced characters

Given a subgroup H ≤ G of a finite group G and a character χ of G, it is easy

to see that its restriction to H yields a character of H. Hence it is natural

to rise the question whether it is possible to obtain a character of G from a

given character of H. In the following section we will present the concept of

induced characters and further give some results from the theory around

these characters. The most powerful theorem in this section is Mackey’s

Tensor Product Theorem. This will in particular be useful in the next

chapter when it comes to investigate certain products of characters.

Let for this section again G be a finite group and H ≤ G be a subgroup

of G.

Given a character χ of G we use the notation χH for the restricted character

χH : H −→ C, h 7→ χ(h).

Definition 2.2.1 Let ϕ be a class function of H, i.e. a function

ϕ : H −→ C which is constant on each conjugacy class of H (confer [I, p.16



f.]). Define the function ϕ̇ : G −→ C, g 7→

{
ϕ(g) , if g ∈ H,
0 , otherwise.

Then ϕG, the induced class function on G, is defined as

ϕG (g) =
1

|H|
∑
x∈G

ϕ̇
(
xgx−1

)
.

Remark 2.2.2 Note that for a set R of right coset representatives for G/H

we can also write ϕG(g) =
∑

x∈R ϕ̇ (xgx−1) .

We now state a rather useful lemma which is known as Frobenius Reci-

procity.

Lemma 2.2.3 (Frobenius Reciprocity)

Let ϕ be a class function on H and ϑ a class function of G. Then for the

inner product we have the equality

(ϕ, ϑH)H =
(
ϕG, ϑ

)
G
.

Proof [I, p.62, (5.2)].

Corollary 2.2.4 If ϕ is a character of H, then ϕG is a character of G.

Proof [I, p.63, (5.3)].

Remark 2.2.5 If ϕ is an irreducible character of H, then ϕG is not nec-

essarily irreducible again.

We shall now state and prove two handy properties of induced character.

The proofs will be rather technical, however they are a good exercise to get

a better understanding of induced characters.



Lemma 2.2.6 Let G be a finite group.

(1) Let U ≤ H ≤ G be a chain of subgroups of G, ϕ ∈ IrrC(U) a character

of U . Then (ϕH)G = ϕG.

(2) Let H ≤ G be a subgroup of G, ϕ be a character of H, ψ a character

of G and ψH the restriction of ψ to H. Then (ψH · ϕ)G = ψ · (ϕG)

Proof

(1) Let R be a set of coset representatives for G/H. Then

(
ϕH
)G

(g) =
∑
x∈R

ϕ̇H
(
xgx−1

)
=

∑
x∈R,

xgx−1∈H

ϕH
(
xgx−1

)
=

∑
x∈R,

xgx−1∈H

1

|U |
∑
y∈H

ϕ̇
(
yxgx−1y−1

)
=

1

|U |
∑

x∈R,y∈H

xgx−1∈H

ϕ̇
(
(xy)g(xy)−1

)
(∗)
=

1

|U |
∑
z∈G,

zgz−1∈H

ϕ̇
(
zgz−1

)
=

1

|U |
∑
z∈G

ϕ̇
(
zgz−1

)
= ϕG (g) .

Ad(∗): Since H = yHy−1 for any y ∈ H we have that

{x ∈ R, y ∈ H |xgx−1 ∈ H} = {x ∈ R, y ∈ H | yxgx−1y−1 ∈ H}. Now

R is a set of coset representatives for G/H, hence {xy |x ∈ R, y ∈ H} =

G and the set above yields {z ∈ G | zgz−1 ∈ H}.

(2) Again we just use the definition of an induced character. We obtain

for g ∈ G:

(ϕ · ψH) (g) =
∑
x∈G,

xgx−1∈H

(ϕ · ψ)
(
xgx−1

)
=

∑
x∈G,

xgx−1∈H

ϕ
(
xgx−1

)
ψ
(
xgx−1

)
.



However, ψ is a class function ofG, hence constant on conjugacy classes.

Therefore ψ (xgx−1) = ψ (g) for all x ∈ G and we get∑
x∈G,

xgx−1∈H

ϕ
(
xgx−1

)
ψ
(
xgx−1

)
= ψ (g) ·

∑
x∈G,

xgx−1∈H

ϕ
(
xgx−1

)
︸ ︷︷ ︸

ϕG(g)

.

We see that the second expression is just ϕG (g), hence (ϕ · ψH)G (g) =(
ψ · ϕG

)
(g) and the proof is complete.

The following note is a nice lemma which describes how to obtain the

kernel of an induced character.

Lemma 2.2.7 Let ϑ be a character of H, where H ≤ G is a subgroup of

G. Then for the kernel of the induced character ϑG we have

ker
(
ϑG
)

=
⋂
x∈G

(kerϑ)x,

where Sx denotes the conjugate of a set S by the element x, i.e. Sx =

x−1Sx = {x−1sx | s ∈ S}.

Proof Define χ := ϑG. By definition of the kernel of a character an element

g ∈ G is in the kernel of χ if and only if χ(g) = χ(1), i.e.

1

|H|
∑
x∈G

ϑ̇
(
xgx−1

)
=

1

|H|
∑
x∈G

ϑ (1) .

Hence we have to investigate the condition |
∑

x∈G ϑ̇ (xgx−1) | =
∑

x∈G ϑ (1).

However we know that that
∣∣∣ϑ̇ (xgx−1)

∣∣∣ ≤ ϑ (1) and we obtain |
∑

x∈G ϑ̇ (xgx−1) | ≤∑
x∈G |ϑ̇ (xgx−1) | ≤

∑
x∈G ϑ (1). Therefore it follows that g ∈ ker (χ) if and

only if |ϑ (xgx−1) | = ϑ (1) for all x ∈ G. This is the case if and only if

g ∈ ker (ϑx) for all x ∈ G and the proof is complete.

Let us now assume that we have two subgroups U, V ≤ G and charac-

ters ϑ of U and ψ of V . We wonder what the two induced characters ϑG



and ψG have in common. Therefore we take a look at their inner product(
ψG, ϑG

)
. Using Frobenius reciprocity we obtain

(
ψG, ϑG

)
G

=
((
ψG
)
U
, ϑ
)
U
.

The following theorem, known as Mackey’s subgroup theorem, is con-

cerned with the expression
(
ψG
)
U
.

Before we state and prove the theorem we shall give some preliminary defi-

nitions and remarks.

Definition and Remark 2.2.8 Let x ∈ G and V ≤ G. We shall use the

notation
xV := xV x−1 and V x := x−1V x. Now let ψ be a class function (or a

character) of V and define ψx : V x −→ C, x−1vx 7→ ψ (v). It is easy to

see that ψx is a class function (or a character) of V x.

Theorem 2.2.9 (Mackey’s Subgroup Theorem)

Let U, V ≤ G be subgroups of G and ψ be a class function of V . Let further

T be a set of (V, U)-double coset representatives so that G =
⋃
t∈T V tU is a

disjoint union. Then

(
ψG
)
U

=
∑
t∈T

((
ψt
)
V t∩U

)
.

Proof For each t ∈ T choose a set Rt of left cosets representatives for tU ∩
V in V , i.e. V =

⋃
r∈Rt

r (tU ∩ V ) is a disjoint union. We have |Rt| =

|V |/|tU ∩ V | = |V |/|U ∩ V t|.
Then we obtain {r · t | r ∈ Rt, t ∈ T} ⊆ G as a set of representatives for the

left cosets of U in G, hence G =
⋃
t∈T
⋃
r∈Rt

rtU , a disjoint union. This is

because we have

G =
⋃
t∈T V tU and for a fixed t ∈ T we have V tU =

⋃
r∈Rt

rtU .

In particular for every x ∈ G there are uniquely determined elements w ∈ U ,

t ∈ T , r ∈ Rt such that x = rtw.

Now define ψ̇ : G −→ C, ψ̇ (x) =

{
ψ (x) , if x ∈ V,
0 , otherwise.



Let u ∈ U . Then we have

ψG (u) =
1

|V |
∑
x∈G

ψ̇ (xu)

=
1

|V |
∑
t∈T

∑
r∈Rt

∑
w∈U

ψ̇
(
rtwu

)
=

1

|V |
∑
t∈T

∑
r∈Rt

∑
w∈U

ψ̇
(
twu
) (

rtwu ∈ V if and only if twu ∈ V
)

=
1

|V |
∑
t∈T

|Rt|
∑
w∈U

ψ̇
(
twu
)

=
∑
t∈T

1

|V t ∩ U |
∑
w∈U,

twu∈V

ψ
(
twu
)

=
∑
t∈T

1

|V t ∩ U |
∑
w∈U,

wu∈V t∩U

ψ
(
twu
)

=
∑
t∈T

1

|V t ∩ U |
∑
w∈U,

wu∈V t∩U

ψt (wu)

=
∑
t∈T

(
ψtV t∩U

)U
(u)

and the proof is complete.

In this context there is another interesting theorem by Mackey which is

known as Mackey’s tensor product theorem. This theorem will also

become important later and we will state it now.

Theorem 2.2.10 (Mackey’s Tensor Product Theorem)

Let H1, H2 ≤ G two subgroups of G, ψ1 a character of H1 and ψ2 be a

character of H2. Then the character ψG1 · ψG2 of G is given by

ψG1 · ψG2 =
∑

x−1y∈D

[
(ψ1

x ψ2
y)H1

x∩H2
y

]G
,

where the sum is taken over the (H1, H2)-double cosets D in G. There

is one summand for each D; namely we choose a pair (x, y) ∈ G × G



with x−1y ∈ D and take the indicated summand. If also u−1v ∈ D, then[
(ψ1

x ψ2
y)H1

x∩H2
y

]G
=
[
(ψ1

u ψ2
v)H1

u∩H2
v

]G
Proof [Curtis Reiner, p.242, (10.19)]

2.3 Normal subgroups

In this work we shall use some theorems whose origin lies in Clifford theory.

Let us assume for this section that G is as usual a finite group and N EG a

normal subgroup of G. We will now investigate the irreducible characters of

N with respect to the irreducible characters of G. This will help us later to

explicitly construct an irreducible tensor decomposable character of a group

of order p6.

Definition 2.3.1 Let ϕ ∈ IrrC(N) and take an element x ∈ G. Consider

the map

ϕx : N −→ C, n 7→ ϕ(xnx−1)

We say ϕx is conjugate to ϕ in G.

Remark 2.3.2 It is easy to see that ϕx ∈ IrrC(N), if ϕ ∈ IrrC(N).

We will now state the theorem of Clifford.

Theorem 2.3.3 (Clifford) Let χ ∈ IrrC(G) and ϑ ∈ IrrC(N) and suppose

that (χN , ϑ) =: e 6= 0, i.e. ϑ occurs as a constituent of the restricted character

χN . Let further ϑ = ϑ1, ϑ2, ... , ϑt be all the distinct characters which are

conjugate to ϑ in G. Then we have

χN := e

t∑
i=1

ϑi

Proof [I, (6.2), p.79].



We have an action of G on IrrC(N) by conjugation. The stabilizer of an

irreducible character ϑ ∈ IrrC(N) under G is called the inertia group of ϑ

in G.

More precisely this means the following:

Definition 2.3.4 Let ϑ ∈ IrrC(N). The inertia group of ϑ in G is defined

as IG(ϑ) := {g ∈ G | ϑg = ϑ}.

Lemma 2.3.5 Let ϑ ∈ IrrC(N). We then have ϑG ∈ IrrC(G) if and only if

IG(ϑ) = N .

Proof Let us first assume that ϑG ∈ IrrC(G). We have to show that

IG(ϑ) = N . We have
(
ϑG, ϑG

)
= 1 since ϑG is irreducible. Applying Frobe-

nius Reciprocity we obtain
(
ϑ,
(
ϑG
)
N

)
=
(
ϑG, ϑG

)
= 1. We further have(

ϑG
)
N

(1) = ϑG(1) = [G : N ]ϑ(1). Applying Cliffords theorem with e = 1

we obtain
(
ϑG
)
N

(1) =
∑t

i=1 ϑi(1) = tϑ(1), where ϑ1, ..., ϑt are all distinct

conjugates of ϑ in G.

Hence t = [G : N ]. On the other hand t, the length of the orbit of ϑ, equals

the index of the stabilizer of ϑ in G, which is the inertia group IG(ϑ). Thus

we obtain IG(ϑ) = N .

For the other direction we assume IG(ϑ) = N . As above we have t = [G : N ].

Let χ ∈ IrrC(G) with (ϑG, χ) = e > 0. By Frobenius Reciprocity (ϑ, χN) = e.

By Cliffords theorem χN = e
∑
i = 1tϑi, where ϑ1, ..., ϑt are the conju-

gates of ϑ in G. Hence ϑ(1)|G : N | ≥ χ(1) = etϑ(1) ≥ |G : N |ϑ(1). Thus

χ(1) = |G : N |ϑ(1), i.e. χ = ϑG.

Let us state another rather useful theorem.

Theorem 2.3.6 Let ϑ ∈ IrrC(N) and T := IG(ϑ). Define

IrrC(G | ϑ) := {χ ∈ IrrC(G) | (χN , ϑ) 6= 0} .

Then:



1. If ψ ∈ IrrC(T | ϑ), then ψG ∈ IrrC(G).

2. The map IrrC(T | ϑ) −→ IrrC(G | ϑ), ψ 7→ ψG is bijective.

3. If ψ ∈ IrrC(T | ϑ), χ = ψG, then (χN , ϑ) = (ψN , ϑ).

Proof [I, (6.11), p.82].

Later, in the context of tensor decomposable characters of p-groups, we

shall use the notion of an M -group. We will now define what is meant by

that and subsequently state some properties of M -groups.

Definition 2.3.7 A finite group G is said to be an M-group, if every

character χ ∈ IrrC(G) is monomial, i.e. if there is a subgroup H ≤ G and a

linear character λ ∈ IrrC(H) such that χ = λG.

Corollary 2.3.8 Every nilpotent group is an M-group.

Proof [I, (6.14), p.83].

Corollary 2.3.9 Let G be a p-group. Then G is a M-Group.

Proof Since p-groups are nilpotent the claim follows from 2.3.8.

Another nice application of Clifford theory is Ito’s theorem which we shall

use later on and therefore state it here.

Theorem 2.3.10 (Ito)

Let A be an abelian normal subgroup of G. Then χ(1) divides [G : A] for all

χ ∈ IrrC(G).

Proof [I, (6.15), p.84].

A rather useful lemma when it later comes to determine the character

table of a certain group is the following:



Lemma 2.3.11 (Brauer’s permutation lemma)

Let A be a group which acts on IrrC(G) and on the set of conjugacy classes

of G. Assume that χ(g) = χa(ga) for all χ ∈ IrrC(G), a ∈ A and g ∈ G;

where ga is an element of Cl(g)a. Then for each a ∈ A the number of fixed

irreducible characters of G is equal to the number of fixed classes.

Proof [I, (6.32), p.93].

2.4 Extendability of characters

Again we assume that G is a finite group and let NEG be a normal subgroup.

There is a lot of theory about how to extend characters of normal subgroups

to characters of the group itself under certain conditions. We will now state

and prove some theorems regarding this topic which will be of great value

later on.

Theorem 2.4.1 Let H ≤ G be a subgroup of G such that G is the semi-

direct product of H and N , i.e. G = HN and H ∩ N = {1}. Let further

λ : N −→ C be a homomorphism such that λg = λ for all g ∈ G, i.e. λ is a

1-dimensional G-invariant representation of N .

Then λ is extendable to a representation of G, i.e. there is a 1-dimensional

representation λ̂ : G −→ C such that λ̂N = λ.

Proof Let g ∈ G. Since G is the semidirect product of H and N there exist

unique elements hg ∈ H and ng ∈ N such that g = hgng. Now define a map

λ̂ : G −→ C, g 7→ λ(ng).

We only have to prove that λ̂ is a group homomorphism. Let x, y ∈ G,

x = hxnx, y = hyny with hx, hy ∈ H and nx, ny ∈ N . Using the definition of

λ̂ and the fact that λ is invariant in G we obtain:



λ̂(xy) = λ̂(hxnxhyny) = λ̂

hxhy︸︷︷︸
∈H

hy
−1nxhyny︸ ︷︷ ︸

∈N

 = λ(hy
−1nxhyny)

= λ(hy
−1nxhy)λ(ny) = λhy

−1

(nx)λ(ny) = λ(nx)λ(ny) = λ̂(nx)λ̂(ny).

We have shown that λ̂ is a homomorphism and the proof is complete.

Theorem 2.4.2 Let χ ∈ IrrC(G) such that χN = ϑ ∈ IrrC(N). Then the

characters β · χ for β ∈ IrrC(G/N) are irreducible, distinct and are all con-

stituents of ϑG.

Proof See [I, p.85, (6.17)].

Theorem 2.4.3 Let [G : N ] be a prime number and let ϑ ∈ IrrC(N) be in-

variant in G. Then ϑ is extendable to G. Moreover there are exactly [G : N ]

extensions of ϑ to an irreducible character of G, namely {β · χ | β ∈ IrrC(G/N)},
where χ ∈ IrrC(G) is an arbritary extension of ϑ.

Proof The proof of the first assertion is given in [I, p.86, (6.20)]. Any

extension χ ∈ IrrC(G) of ϑ is a constituent of ϑG. This can be easily seen by

applying Frobenius reciprocity: (ϑG, χ) = (ϑ, χN) = (ϑ, ϑ) = 1. Hence the

second assertion immediately follows from 2.4.2.



Chapter 3

Tensor decomposable

Characters in p-Groups

In this chapter we will investigate p-groups with respect to the existence

of tensor decomposable characters. That means we wonder which p-groups

may possess irreducible characters which can be written as a product of two

non-linear characters.

Let us first give a proper definition of a tensor decomposable character.

Definition 3.0.4 Let G be a finite group.

χ ∈ IrrC(G) is called tensor decomposable, if there are characters

φ, ψ ∈ IrrC(G), φ(1) > 1, ψ(1) > 1, such that χ = φ · ψ .

In the subsequent section we will investigate p-groups of order p5.

3.1 Considering p-groups of order ≤ p5

Fix a prime p. Considering the fundamental formula

|G| =
∑

χ∈IrrC(G)

χ(1)2 (3.1)

it is obvious that no p-group of order less than or equal than p4 can have a

tensor decomposable character. Yet how is the situation for groups of order
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p5? In this section we shall see that these groups do not have such a character

either. However the argument is rather not as easy as the one before.

Theorem 3.1.1 Let G be a group of order p5. Then G does not have a

tensor decomposable character.

Proof Suppose that G has a tensor decomposable character χ = φ · ψ with

φ(1), ψ(1) > 1. Let us first have a look at possible degrees of these charac-

ters. The order of G is p5 and considering again formula (3.1) it follows that

χ(1) ≤ p2. We obtain χ(1)2 = p2 and hence φ(1) = ψ(1) = p.

Now we will use the fact that p-groups are M -groups (confer 2.3.9). By

definition of an M -group there are subgroups U, V ≤ G and linear char-

acters λ ∈ IrrC(U), µ ∈ IrrC(V ) such that φ = λG and ψ = µG. We

have p = λG(1) = [G : U ]λ(1) = [G : U ] as well as p = [G : V ]. Hence

|U | = |V | = p5. Using 2.2.6 we obtain φ · ψ = λG · µG =

{
(
(
λG
)
V
· µ)G

(λ ·
(
µG
)
U
)G

}
∈ IrrC(G). It follows that

(
λG
)
V
∈ IrrC(V ) and

(
µG
)
U
∈ IrrC(U). Since

λG(1) = µG(1) = p we conclude that U and V are not abelian because all

irreducible characters of abelian groups are of degree 1. This implies that

the derived subgroups U ′ ≤ U and V ′ ≤ V are not trivial.

This fact will be useful in order to show that φ and ψ are not faithful, i.e.

ker(φ), ker(ψ) 6= {1}.
Since λ and µ are linear characters we obtain U ′ ⊆ ker(λ) and V ′ ⊆ ker(µ).

As U is a maximal subgroup of the p-group G we conclude that U is normal

in G. Together with the fact that U ′ is characteristic in U it follows that U ′ is

normal in G as well. By 2.2.7 we get ker(φ) =
⋂
g∈G (kerλ)g︸ ︷︷ ︸

⊇U ′

and we conclude

that ker(φ) ⊇ U ′ ) {1}. Analogously we conclude that ker(ψ) ) {1} (∗).
Furthermore we have that ker(φ) ∩ ker(ψ) = {1} (∗∗), as otherwise

G/ (kerφ ∩ kerψ) would also have a tensor decomposable character. Yet as

we already argued earlier a group of order ≤ p4 cannot have such a character.

As a last step in our preparation for the final contradicting argument we will

analyse the center of G.

From [I, (2.28), p. 27] and [I, (2.30), p. 28] we obtain p4 = χ(1)2 ≤



[G : Z(χ)] ≤ [G : Z(G)]. Since the center of a p-group always is non-trivial

it follows that Z(G) 6= {1} and we conclude that |Z(G)| = p.

Now we put everything together:

For all non-trivial normal subgroups N of a p-group G it holds that

N ∩Z(G) 6= {1}. Hence, using (∗), we deduce that ker(φ)∩Z(G)  {1} and

ker(ψ) ∩ Z(G)  {1}. Since |Z(G)| = p we finally obtain Z(G) ≤ ker(φ) as

well as Z(G) ≤ ker(ψ) and therefore Z(G) ≤ ker(φ) ∩ ker(ψ), which by (∗∗)
is the trivial group.

Hence we derive a contradiction and the proof is complete.

Remark 3.1.2 Considering 3.1.1 and in particular considering the proof

we can already make some remarks about groups of order p6 which possess

a tensor decomposable character χ = φ · ψ with φ(1), ψ(1) > 1. Reasoning

just as above but for groups of order p6 we see that ker(φ)  {1}, ker(ψ) 
{1} and ker(φ) ∩ ker(ψ) = {1}. Since {1} � Z(G) ∩ ker(φ) and {1} �
Z(G) ∩ ker(ψ) we conclude that Z(G) has two nontrivial subgroups which

have trivial intersection. By [I, (2.30), p. 28] we obtain |Z(G)| ≤ p2 and

hence Z(G) ∼= Cp × Cp. These facts will be of great value in the following

section when it comes to investigate groups of order p6 with respect to the

existence of tensor decomposable characters.

3.2 Groups of order p6

After experiments using the computer algebra system GAP (confer Chapter

5) we saw that for any prime number p ≤ 11 there are groups of order p6

which possess a tensor decomposable character. The final aim for this section

is to prove that in general for any prime number p there is such a group. This

will be done by giving a precise construction of an suitable group together

with a subsequent construction of a tensor decomposable character of this

group. Further experiments with GAP happened to be rather useful in this

context. In this section we will first analyse the structure of groups of order

p6 which have a tensor decomposable character. The intention is to obtain



as much structural information as possible in order to be able to construct a

’nice’ group with the required properties, i.e. a group of order p6 possessing

a tensor decomposable character.

Obviously we are looking for a non-trivial example of a group of order p6

with a tensor decomposable character. What we mean by a trivial example

we will explain in the following definition and the subsequent remark and

corollary.

Definition 3.2.1 We call a character χ ∈ IrrC(G) trivially tensor de-

composable, if there exists a normal subgroup N E G such that χN = eϑ

for some ϑ ∈ IrrC(N), e ∈ N with ϑ(1) > 1 and e > 1.

At first sight we probably do not see in which way the above definition is

related to tensor decomposable characters. However this will become clear

with the following remark and corollary.

Remark 3.2.2 If χ ∈ IrrC(G) is trivially tensor decomposable and N, e, ϑ

are as in 3.2.1, then there exist irreducible projective characters (i.e. char-

acters of an irreducible projective representation in the sense of [I, p.174,

(11.1)]) ϑ̂ of G and ε of G/N with ϑ̂N = ϑ and χ = ϑ̂ · ε.

Proof [H, (21.2)]

There are two special cases of trivially tensor decomposable characters

χ ∈ IrrC(G) which we will discuss now.

Corollary 3.2.3 (i) If χ = ϑ̂ · ε is an irreducible character of G with

ϑ̂, ε ∈ IrrC(G), where ϑ̂ is an extension of an irreducible G-invariant

character ϑ ∈ IrrC(N) of a normal subgroup N EG and ε is considered

as the inflation of an irreducible character ε ∈ IrrC(G/N), then χ is

trivially tensor decomposable.

(ii) If G is the direct product of two non-abelian groups, then G has a

trivially tensor decomposable character.



Proof (i) An irreducible character of G is in particular a projective char-

acter of G. The claim then immediately follows from 3.2.2.

(ii) This case is again a special case of (i). Suppose G = H ×L, with H,L

non-abelian and set N = H; then G/N ∼= L. Now consider irreducible

characters ϑ of H and ε of L which both have degree larger than 1

(these exist since H and L are non-abelian). Further let ϑ̂ be the lift

of ϑ to G, consider ε as the inflation of ε to G and define χ = ϑ̂ · ε.
We easily see that ϑ̂ and ε satisfy the assumptions from case (i). From

2.1.5 it now immediately follows that χ is an irreducible character of

G.

From the previous section plus additional general theory we can already

gather a lot of information which will be of great value in order to reach our

aim. We obtain the following theorem:

Theorem 3.2.4 Let G be a group of order p6 which has a tensor decom-

posable character. With Z(G) we denote the center of G, with G′ its derived

subgroup.

Then the following properties hold:

(1) There exist subgroups U , V ≤ G, |U | = |V | = p5 and irreducible linear

characters λ ∈ IrrC(U), µ ∈ IrrC(V ) such that λG = φ, µG = ψ.

(2) U · V = G.

(3) U and V are not abelian.

(4) U ′ ∩ V ′ = {1}.

(5) U ∩ V is abelian.

(6) G/U ∩ V is elementary abelian of order p2.

(7) G′ ⊂ U ∩ V .



(8) G′ is abelian.

(9) Z(G) is elementary abelian of order p2.

(10) Z(G) ⊆ U ∩ V .

Proof Let χ = ψ · φ be a tensor decomposable character of G with

φ(1), ψ(1) > 1. Since |G| = p6 it follows from 3.1 that χ(1) = p2 and

φ(1) = ψ(1) = p.

(1) By 2.3.9 we have that G is an M -group and hence φ and ψ are induced

from linear characters of subgroups of G, say φ is induced from a sub-

group U ≤ G and ψ from a subgroup V ≤ G. Since φ(1) = ψ(1) = p

the orders of U and V must be p5.

(2) Let T be a set of representatives for the (U, V )-double cosets in G

so that G =
⋃
t∈T UtV is a disjoint union. Using 2.2.10 we obtain

χ = φ ·ψ = λG ·µG =
∑

t∈T (λtUt∩V · µUt∩V )
G ∈ IrrC(G). Thus U · V =

G, because otherwise |T |  1 and χ would be a sum of at least two

characters of G. Since χ is irreducible this is not possible.

(3) By 2.2.6 we have φ ·ψ = λG ·µG =

{
(
(
λG
)
V
· µ)G

(λ ·
(
µG
)
U
)G

}
∈ IrrC(G). Hence(

λG
)
V
∈ IrrC(V ) and

(
µG
)
U
∈ IrrC(U). Since λG(1) = µG(1) = p we

conclude that U and V are not abelian.

(4) Considering 3.1.2 together with 2.2.7 we obtain {1} = ker(φ) ∩ ker(ψ) =

ker(λG) ∩ ker(µG) ⊇ U ′ ∩ V ′. Therefore U ′ ∩ V ′ = {1}.

(5) We have (U ∩ V )′ ⊆ U ′ ∩ V ′ (4)
= {1}, i.e. U ∩ V is abelian.

(6) Define W := U ∩ V . Using the second isomorphism theorem we con-

clude that |W | = p4. As maximal subgroups of a p-group, U and V

are normal in G. Therefore W is also normal in G and we can consider

G/W . This is a group of order p2 and hence abelian. Therefore G/W is

elementary abelian or cyclic. Suppose that G/W is cyclic. Then G/W

contains exactly one subgroup of order p and G contains exactly one



subgroup of order p5 containing W . Yet by (2) we have that U ·V = G,

hence U 6= V . Further it holds that W ≤ U and W ≤ V which con-

tradicts the fact that G has only one subgroup of order p5. Thus G/W

cannot be cyclic and hence must be elementary abelian.

(7) Follows from (6) since G′ is the smallest normal subgroup N of G such

that G/N is abelian.

(8) Follows from (5) and (7).

(9) Confer 3.1.2 .

(10) Suppose that Z(G) * U ∩V . Then H := 〈U ∩V, Z(G)〉  U ∩V is an

abelian normal subgroup of G. We know that G is not abelian, hence

H 6= G and thus U ∩ V � H � G. Since |U ∩ V | = p4 and |G| =

p6 we conclude that |H| = p5. Applying 2.3.10, Itos theorem, every

irreducible character of G would have degree ≤ p. Yet this contradicts

the assumption that χ is an irreducible tensor decomposable character

of G and the claim follows.

Our next aim is to use all the information gathered here to construct a

group of order p6 which possesses a tensor decomposable character. We shall

see the result in the following section.



3.3 Existence of indecomposable groups of or-

der p6 possessing tensor decomposable char-

acters

As we see in Chapter 5 experiments with the computer algebra system GAP

showed that there actually are groups of order p6 possessing tensor decom-

posable characters for all prime numbers p we worked with (which were all

prime numbers ≤ 11). This led us to conjecture that for an arbitrary prime

number p there is a group with a tensor decomposable character which is not

trivially tensor decomposable in the meaning of 3.2.1. But the question now

is how to find a general group with the required properties? One possible

approach is to work with so called power commutator presentations.

In order to construct a group of order p6 which has a tensor decomposable

character we know from 3.2.4 that we need an elementary abelian center of

order p2 and an abelian derived subgroup. Further experiments with GAP

showed that for p ∈ {5, 7, 11} all groups G of order p6 with Z(G) ∼= Cp ×Cp

and derived subgroup G′ ∼= Cp×Cp×Cp×Cp have such a character. This led

us to conjecture that all groups with these properties have a tensor decom-

posable character. Yet solving this problem seemed to be anything but easy.

However we wondered whether it might be possible to find a presentation for

a group of order p6 possessing a tensor decomposable character. The con-

struction was aimed at providing the group with all the properties mentioned

before. One nice side effect of choosing G′ to be elementary abelian was to

then obtain an action of G/G′ on G′. Hence we obtain a homomorphism

G/G′ −→ Aut(G′) ∼= Gl4(Fp). All these facts helped a lot to find a group we

were looking for.

The subsequent presentation I finally found turned out to be a nice one

which in addition satisfies all our demands. We will now present this group

in order to see a generic example of a group of order p6 possessing a tensor

decomposable character.



Theorem 3.3.1 Let p ∈ P be a prime, p 6= 2, 3. Define

G :=〈a, b, c, d, x, y | ap, bp, cp, dp, xp, yp, [a, b] , [a, c] , [a, d] , [b, c] , [b, d] , [c, d] ,

[a, x] b−1, [a, y] d−1, [b, x] c−1, [b, y] , [c, x] , [c, y] , [d, x] , [d, y] , [x, y] a−1〉.

Then G is a group of order p6 and has a tensor decomposable character, which

is not a trivially tensor decomposable character in the meaning of 3.2.1.

The derived subgroup G′ is elementary abelian of order p4.

Proof First of all we have to prove that the given presentation actually

yields a group of order p6. After being finished with this we show that G has

a tensor decomposable character. This will be done by explicit contruction

of such a character.

In order to prove the claim we shall pursue the following steps:

(1) Define a group G̃ using the semidirect product and show that this group

is isomorphic to G. We then shall easily see that G is a group of order

p6.

(2) Consider two particular linear characters λ, µ ∈ IrrC(G′) which have

pairwise different inertia groups in G of order p5. Denote these sub-

groups by U and V respectively.

(3) Extend λ to a character λ̂ ∈ IrrC(U) and analogously µ to µ̂ ∈ IrrC(V ).

(4) Show that λ̂G · µ̂G ∈ IrrC(G). This will be a tensor decomposable

character of G.

Ad (1) Let 〈x̃〉 and 〈ỹ〉 be cyclic groups of order p. Furthermore let 〈ã, b̃, c̃, d̃〉
be an elementary abelian group of order p4, i.e.

{
ã, b̃, c̃, d̃

}
is a gener-

ating set of elements of order p which commute pairwise. Now using

the semidirect product define a group G̃ as follows:

G̃ := 〈ỹ〉nψ 〈x̃〉nφ 〈ã, b̃, c̃, d̃〉,



where φ and ψ are the homomorphims defined as follows:

φ : 〈x̃〉 −→ Aut
(
〈ã, b̃, c̃, d̃〉

)
(∼= GL4(Fp))

x̃ 7−→


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

, i.e.


ã 7→ ãb̃

b̃ 7→ b̃c̃

c̃ 7→ c̃

d̃ 7→ d̃


and

ψ : 〈ỹ〉 −→ Aut
(
〈x̃〉nφ 〈ã, b̃, c̃, d̃〉

)
.

ỹ 7−→


ã 7→ ãd̃

b̃ 7→ b̃

c̃ 7→ c̃

d̃ 7→ d̃

x̃ 7→ x̃ã



Before proving the isomorphism G ∼= G̃ it first remains to show that G̃

is well defined. In order to do so we have to show that both φ and ψ

are well defined group homomorphisms.

(Ad φ) The matrix Mx := φ(x̃) =


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

 has determinant 1,

hence Mx ∈ GL4(Fp) and φ : 〈x̃〉 −→ GL4(Fp) is a well defined

map.

To prove that φ is a group homomorphism we use 1.2.10.

But 〈x̃〉 ∼= 〈g | gp〉. The claim is proven if φ(x̃)p = Mp
x = E4.

By induction (see end of the proof for explicit details of the induc-



tion) it is easy to show that M i
x =


1 i i(i−1)

2
0

0 1 i 0

0 0 1 0

0 0 0 1

 for all i ∈ N.

We assumed that p 6= 2, 3, hence 2 | p − 1 and p(p−1)
2

∈ pN. We

obtain Mx
p =


1 p p(p−1)

2
0

0 1 p 0

0 0 1 0

0 0 0 1

 = E4, and the claim follows.

(Ad ψ) Showing that ψ is a well defined group homomorphism is a little

more complicated than to show this for φ in the previous case.

However the idea remains very similar.

Define Ũ := 〈x̃〉 nφ 〈ã, b̃, c̃, d̃〉. By 1.2.16 we obtain the following

presentation of Ũ :

Ũ ∼= Û := 〈 â, b̂, ĉ, d̂, x̂ | âp, b̂p, ĉp, d̂p, x̂p, [â, b̂], [â, ĉ], [â, d̂], [b̂, ĉ],

[b̂, d̂], [ĉ, d̂], [x̂, â−1]b̂−1, [x̂, b̂−1]ĉ−1, [x̂, ĉ−1], [x̂, d̂−1] 〉.

In order to see that ψ is well defined, i.e. ψ(ỹ) ∈ Aut(Ũ), we

again use 1.2.10. Let F be the free group on the generating set{
â, b̂, ĉ, d̂, x̂

}
and define a homomorphism τ : F −→ Ũ which

maps â to ãd̃, b̂ to b̃, ĉ to c̃, d̂ to d̃ and x̂ to x̃ã. We now check

if all relations of Û belong to the kernel of τ so that we obtain

a homomorphism τ̄ : Û −→ Ũ as in 1.2.10. After that we shall

prove that τ̄ : Û −→ Ũ is bijective and hence an isomorphism.

Thus we obtain a diagram of isomorphisms

Ũ
∼= //

ψ(ỹ)
##GGGGGGGGGGGG Û

τ̄

��

Ũ

Clearly it then follows that ψ(ỹ) ∈ Aut(Ũ).



We have τ(âp) = (ãd̃)p = ãpd̃p = 1. Analogoulsy we have τ(b̂p) =

τ(ĉp) = τ(d̂p) = 1.

Furthermore τ([â, b̂]) = [ãd̃, b̃] = 1, as well as τ([â, ĉ]) = τ([â, d̂]) =

τ([b̂, ĉ]) = τ([b̂, d̂]) = τ([ĉ, d̂]) = 1. Next we have τ([x̂, â−1]b̂−1) =

(x̃ã)−1(ãd̃)(x̃ã)(ãd̃)−1b̃−1 = ã−1x̃−1ãx̃b̃−1 = [ã, x̃]b̃−1 = 1.

And we have τ([x̂, b̂−1]ĉ−1) = (x̃ã)−1b̃(x̃ã)b̃−1c̃−1 =

ã−1 x̃−1b̃x̃︸ ︷︷ ︸
b̃c̃

b̃−1ãc̃−1 = 1.

Analogously we obtain τ([ĉ, x̂]) = τ([d̂, x̂]) = 1.

It remains to show that τ(x̂p) = 1. Induction (see end of the proof

for explicit details of the induction) yields

τ(x̂i) = (x̃ã)i = x̃iãib̃
i(i−1)

2 c̃
i(i−1)(i−2)

6 for all i ∈ N, i ≥ 2. Hence

τ(x̂p) = (x̃ã)p = x̃pãpb̃
p(p−1)

2 c̃
p(p−1)(p−2)

6 = 1, since p /∈ 2, 3 and

therefore p−1
2
, (p−1)(p−2)

6
∈ N.

Hence we have shown that all relations of Û are in ker(τ) and we

obtain a homomorphism τ̄ : Û −→ Ũ .

Since Ũ is generated by
{
τ(â), τ(b̂), τ(ĉ), τ(d̂), τ(x̂)

}
we conclude

τ̄ is surjective. Both Û and Ũ are groups of order p5. Hence τ̄

must be bijective.

All in all we now have shown that τ̄ is an isomorphism from Û to

Ũ and we conclude that ψ(ỹ) ∈ Aut(Ũ).

It remains to prove that ψ is a homomorphism. Again we will

use 1.2.10 together with the presentation 〈x | xp〉 for Cp. Thus it

suffices to show that ψ(ỹ)p = ideU .

Clearly ψ(ỹ) p(b̃) = b̃, ψ(ỹ) p(c̃) = c̃ and ψ(ỹ) p(d̃) = d̃.

Induction (see end of the proof for explicit details of the induc-

tion) leads to the following results:

ψ(ỹ) i(ã) = ãd̃i for all i ∈ N, i ≥ 2 and ψ(ỹ) i(x̃) = x̃ãid̃
i(i−1)

2 for all

i ∈ N. Hence ψ(ỹ) p(ã) = ãd̃p = ã and ψ(ỹ) p(x̃) = x̃ãpd̃
p(p−1)

2 = x̃.

This means that ψ(ỹ)p is the identity on a generating set of Ũ

and therefore the identity map on Ũ , i.e., ψ(ỹ)p = ideU and we

conclude that ψ is a homomorphism.



Summarizing all, we now know that G̃ is a well defined group. Since for

a semidirect product we have |H nN | = |H| · |N | we easily conclude

that
∣∣∣G̃∣∣∣ = p6.

Finally we now come to prove that G ∼= G̃. Again we shall use 1.2.10.

Consider the map f : {a, b, c, d, x, y} −→ G̃ where f(a) = ã, f(b) =

b̃, f(c) = c̃, f(d) = d̃, f(x) = x̃ and f(y) = ỹ. Now extend f to a

homomorphism ρ on the free group F = F{a,b,c,d,x,y}, i.e. ρ : F −→ G̃.

The question now is whether we can turn ρ into a homomorphism on

G ∼= F/〈〈ap, bp, cp, dp, xp, yp, [a, b] , [a, c] , [a, d] , [b, c] , [b, d] , [c, d] ,

[a, x] b−1, [a, y] d−1, [b, x] c−1, [b, y] , [c, x] , [c, y] , [d, x] , [d, y] , [x, y] a−1〉〉.
This means we again have to check whether ρ(r) = 1 for all relations

r of G. However this is just a very easy check which does not require

any tricks and will therefore be omitted here.

Since G̃ is generated by ρ ({a, b, c, d, x, y}) we conclude that there ex-

ists a surjective homomorphism ρ̂ : G −→ G̃ where ρ̂(a) = ã, ... and

ρ̂(y) = ỹ.

In order to prove that ρ̂ is bijective we take a look at the order of G.

We have the equality |G| = [G : G′] · |G′| and will now investigate the

order of G and the order of G/G′.

We claim that G′ = 〈a, b, c, d〉.
Considering the relations of G it is obvious that 〈a, b, c, d〉 ⊆ G′. To

see the other inclusion we observe that 〈a, b, c, d〉EG and that the fac-

tor group G/ 〈a, b, c, d〉 is abelian since the generators of G/ 〈a, b, c, d〉
commute.

Hence our claim is proven and we easily conclude that |G′| 6 p4. We

cannot say yet whether this actually is an equality since it still is pos-

sible that one of a, b, c or d or a product of these is equal to 1. However

the above inequality will be sufficient in order to show that ρ̂ is bi-

jective. Now how does G/G′ look like? Using 1.2.13 and simplifying

the relations we obtain G/G′ ∼= 〈x, y | xp = yp = 1, [x, y] = 1〉 which,

by 1.2.15, is isomorphic to Cp × Cp.

Thus |G/G′| = p2.



Now we put the information above together and obtain

|G| = [G : G′] · |G′| ≤ p2 · p4 = p6.

Since ρ̂ is surjective and |G̃| = p6 it follows that |G/ ker(ρ̂)| = p6. Hence

|G| > p6.

Together we conclude that |G| = p6 and ker(ρ̂) = {1}. Therefore ρ̂

is an isomorphism and claim (1) is proven.

Ad (2) In order to obtain a tensor decomposable character of G we first take

a look at two linear characters of G′ = 〈a, b, c, d〉.
Let ζ ∈ C be a root of unity of order p and define two linear characters

λ and µ on G′ by defining them on the generators a, b, c and d:

λ(a) = 1 λ(b) = 1 λ(c) = 1 λ(d) = ζ,

µ(a) = 1 µ(b) = 1 µ(c) = ζ µ(d) = 1.

We know that G′ is elementary abelian and by 1.2.10 λ and µ clearly

are homomorphisms from G to C, i.e. linear characters of G.

Now we wonder about the inertia groups TG(λ) and TG(µ) of λ and µ.

We claim the following:

(a) U := 〈G′, x〉 = TG(λ).

(b) V := 〈G′, y〉 = TG(µ).

We shall prove this claim now.

(a) We have λx = λ, since

λx
−1

(a) = λ(x−1ax) = λ(ab) = λ(a)λ(b) = 1 = λ(a)

λx
−1

(b) = λ(x−1bx) = λ(bc) = λ(b)λ(c) = 1 = λ(b)

λx
−1

(c) = λ(x−1cx) = λ(c)

λx
−1

(d) = λ(x−1dx) = λ(d),

i.e. λx
−1

= λ on a generating set of G′. Thus λx
−1

= λ for

all elements of G′ and we conclude that x−1 ∈ TG(λ) and hence

x ∈ TG(λ). Therefore G′ � 〈G′, x〉 ≤ TG(λ). We further notice



that λy
−1 6= λ because for instance λy

−1
(a) = λ(y−1ay) = λ(ad) =

ζ 6= 1 = λ(a). This means y−1 /∈ TG(λ) and we obtain G′ �
TG(λ) � G. Since [G : G′] = p2 we conclude that [G : TG(λ)] = p

and [TG(λ) : G′] = p. Hence TG(λ) = 〈G′, x〉 = U .

(b) This proof is analogous to case (a).

We have µy
−1

= µ, since

µy
−1

(a) = µ(y−1ay) = µ(ab) = µ(a)µ(b) = 1 = µ(a)

µy
−1

(b) = µ(y−1by) = µ(b)

µy
−1

(c) = µ(y−1cy) = µ(c)

µy
−1

(d) = µ(y−1dy) = µ(d),

i.e. µy
−1

= µ on a generating set of G′. Thus µy
−1

= µ for

all elements of G′ and we conclude that y−1 ∈ TG(λ) and hence

y ∈ TG(λ). Therefore G′ � 〈G′, y〉 ≤ TG(µ). We further notice

µx
−1 6= µ, because for instance µx

−1
(b) = µ(x−1bx) = µ(bc) =

µ(b)µ(c) = ζ 6= 1 = µ(b). This means x−1 /∈ TG(µ) and we get

G � TG(µ) � G. Hence we conclude that TG(µ) = 〈G′, y〉 = V .

From the foregoing proofs it is easy to see that both inertia groups U

and V have order p5.

Ad (3) We have [U : G′] = [V : G′] = p and furthermore we know that λ is

invariant in U and as well µ is invariant in V . Now from part (1) we

deduce that U is the semidirect product of G′ with 〈x〉 as well as V is

the semidirect product of G′ with 〈y〉. From 2.4.1 we now conclude that

we can extend λ and µ to a linears character on U and V respectively.

Let us denote these extensions by λ̂ and µ̂ respectively.

Obviously λ̂ ∈ IrrC(U) and µ̂ ∈ IrrC(V ) respectively since these are still

linear characters.

Ad (4) Finally it remains to show that λ̂G · µ̂G ∈ IrrC(G).

Therefore we first observe that TG(λ̂) = U . This is since λy 6= λ (confer

part (a) from above) and therefore the inertia group TG(λ̂) � G and

must hence be U .

Analogously we have TG(µ̂) = V .



From 2.3.5 it follows that λ̂G and µ̂G are irreducible characters of G.

Applying 2.2.6 we conclude λ̂G ·µ̂G =
(
(λ̂G)V · µ̂

)G
. Using 2.3.5 we now

obtain the equivalence λ̂G ·µ̂G ∈ IrrC(G) if and only if TG

(
(λ̂G)V · µ̂

)
=

V . Therefore it is reasonable to investigate the inertia group T :=

TG

(
(λ̂G)V · µ̂

)
.

We have (λ̂G)V ∈ IrrC(V ) because using 2.2.10, Mackeys theorem, to-

gether with the fact that U · V = G we obtain (λ̂G)V =
(
λ̂U∩V

)V
=

λV . Let us again use that λy 6= λ, hence TV (λ) = G′ and therefore

λV ∈ IrrC(V ).

Obviously V ⊆ T . However we are able to show that T 6= G because

x−1 does not stabilize (λ̂G)V · µ̂ as we see in the following:

(
(λ̂G)V · µ̂

)x−1

(b) = λ̂G(x−1bx) · µ(x−1bx)

= λ̂G(b) · µ(bc) = λ̂G(b) · ζ (∗)
= p · ζ 6= p =

(
(λ̂G)V · µ̂

)
(b).

Ad(∗): Let R be a set of coset representatives for G/U , say

R = {1, y, y2, ..., yp−1}. Then λ̂G(b)
2.2.2
=
∑

g∈R λ̂(g−1bg) =
∑p−1

i=0 λ̂(y−ibyi)
(y−1by=b)

= p · λ̂(b) = p · 1 = p.

Hence we now know that V ⊆ T 6= G.

The index [G : V ] = p and it follows that T = V , i.e. TG

(
(λ̂G)V · µ̂

)
=

V which is equivalent to
(
(λ̂G)V · µ̂

)G
= λ̂G · µ̂G ∈ IrrC(G).

Hence we proved claim 4 and the whole proof is finished.

Inductions

We have to prove the following claims:



(1) M i
x =


1 i i(i−1)

2
0

0 1 i 0

0 0 1 0

0 0 0 1

 for all i ∈ N, (where Mx =


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

).

(2) τ (x̂)i = x̃iãib̃
i(i−1)

2 c̃
i(i−1)(i−2)

6 for all i ∈ N, i ≥ 2.

(3) ψ(ỹ)i(ã) = ãd̃i for all i ∈ N.

(4) ψ(ỹ)i (x̃) = x̃ãid̃
i(i−1)

2 for all i ∈ N, i ≥ 2.

Ad(1) We immediately see from the definition of Mx that the claim is true for

i = 1.

Let us assume that the claim is correct for some i ∈ N (∗). Now do the

step i 7→ i+ 1 :

We have

Mx
i+1 = Mx

i ·Mx
(∗)
=


1 i i(i−1)

2
0

0 1 i 0

0 0 1 0

0 0 0 1

 ·


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1



=


1 i+ 1 i(i+1)

2
0

0 1 i+ 1 0

0 0 1 0

0 0 0 1

 .

Hence the claim is correct for i+ 1 and therefore for all i ∈ N.

Ad(2) For i = 2 we have τ (x̂)2 = (x̃ã)2 = x̃ãx̃ã = x̃x̃ x̃−1ãx̃︸ ︷︷ ︸
=φ(x̂)(a)=ãb̃

ã = x̃2ã2b̃.

Hence the claim is correct for i = 2.

Let us assume that the claim is correct for some i ∈ N, i > 2 (∗∗).
Now do the step i 7→ i+ 1 :



We have

τ (x̂)i+1 = (x̃ã)i+1 = (x̃ã)i · (x̃ã) (∗∗)
= x̃iãib̃

i(i−1)
2 c̃

i(i−1)(i−2)
6 · x̃ã

= x̃i+1
(
x̃−1ãix̃

) (
x̃−1b̃

i(i−1)
2 x̃

)
c̃

i(i−1)(i−2)
6 ã

= x̃i+1φ (x̃) (ã)iφ (x̃)
(
b̃
) i(i−1)

2
c̃

i(i−1)(i−2)
6 ã

= x̃i+1ãib̃ib̃
i(i−1)

2 c̃
i(i−1)

2 c̃
i(i−1)(i−2)

6 ã = x̃i+1ãi+1b̃
i(i+1)

2 c̃
(i+1)i(i−1)

6 .

Hence the claim is correct for i+ 1 and therefore for all i ∈ N, i ≥ 2.

Ad(3) We immediately see from the definition of ψ that the claim is true for

i = 1.

Let us assume that the claim is correct for some i ∈ N (†). Now do the

step i 7→ i+ 1 :

We have ψ(ỹ)i+1 (ã)
(†)
= ψ(ỹ)

(
ãd̃i
)

= ãd̃d̃i = ãd̃i+1.

Hence the claim is correct for i+ 1 and therefore for all i ∈ N.

Ad(4) We immediately see from the definition of ψ that the claim is true for

i = 1.

Let us assume that the claim is correct for some i ∈ N (††). Now do

the step i 7→ i+ 1 :

We have ψ(ỹ)i+1 (x̃)
(††)
= ψ(ỹ)

(
x̃ãid̃

i(i−1)
2

)
= (x̃ã)

(
ãid̃i

)(
d̃

i(i−1)
2

)
=

x̃ãi+1d̃
i(i+1)

2 .

Hence the claim is correct for i+ 1 and therefore for all i ∈ N.

The tensor decomposable character we found is a not trivially tensor decom-

posable in the meaning of 3.2.1. In order to see this we first claim that any

normal subgroup N E G with |N | = pa, a ≤ 4 is abelian. Let us prove this

claim shortly:

Because G is a p-group there is a normal subgroup M EG with N ≤M and

|M | = p4. Thus |G/M | = p2 and we conclude that G/M is abelian. But this

also means that G′ ≤ M and hence G′ = M since we showed earlier that

G′ is elementary abelian of order p4. As N ≤ M = G′ and G′ is abelian it



follows that N is abelian and the claim is proven.

Now we come back to prove the original claim. Let us assume that there is

a trivially tensor decomposable character χ ∈ IrrC(G), i.e. there is a normal

subgroup N E G such that χN = eϑ for some ϑ ∈ IrrC(N), e ∈ N with

ϑ(1) > 1 and e > 1. Further, since N has an irreducible character of degree

> 1, we deduce that N must be non-abelian. With the foregoing remark we

now conclude that |N | = pa with a ≥ 5. HenceG/N is cyclic. As χN = eϑ the

inertia group of ϑ in G obviously is IG(ϑ) = G, i.e. ϑ is invariant in G. Now

we apply 2.4.3 and obtain that ϑ is extendable to a character ψ ∈ IrrC(G).

Consider the inner product (ψ, χ) = (ψN , χN) = (ϑ, eϑ) = e. Yet ψ and

χ are both irreducible characters of G which includes that (ψ, χ) ∈ {0, 1}.
Now we derive a constradiction since we assumed e > 1. Thus the tensor

decomposable character we found cannot be trivially tensor decomposable.

Remark 3.3.2 In 3.3.1 we showed that for all prime numbers p ≥ 5 there is

a non-trivial example of a group of order p6 possessing a tensor decomposable

character.

However this is also true for p = 2, 3 as examples with GAP showed. For

more details confer Chapter 5.





Chapter 4

The Character Table of G

As a last result we work out the character table of G. Afterwards we will

easily see that G not only possesses one tensor decomposable character, but

that all irreducible characters of degree p2 are tensor decomposable.

Let us now give an overview about the steps we will pursue to reach our

goal.

4.1 Outline of the determination of the char-

acter table of G

(1) Determine the character table of U and V via the following steps:

(a) Compute the U - and V -conjugacy classes contained in G′.

(b) Use Brauers permutation lemma in order to obtain the number of

orbits and fixed points of the action of U on G′. Then determine

the number of irreducible characters of U of degree 1 and of degree

p and determine the conjugacy classes of U .

(c) Obtain analogously the number of irreducible characters of V of

degree 1 and of degree p and determine the conjugacy classes of

V .
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(d) Deduce all irreducible characters of U and V by extending or

inducing characters from IrrC(G′) to irreducible characters of U

and V , respectively.

(2) Determine the G-conjugacy classes contained in V and obtain the num-

ber of orbits and fixed points under the action of G on Cl(V ).

(3) Use Brauers permutation lemma in order to obtain the number of orbits

and fixed points on IrrC(V ) under the action of G.

(4) Determine the number of irreducible characters of G of degree 1, p and

p2.

(5) Construct all irreducible characters of G by extending and inducing

irreducible characters of V and U .

(6) Determine the conjugacy classes of G.

Notation 4.1.1 Let now for the whole chapter I := {0, 1, ..., p− 1} and

I∗ := I\ {0}.

4.2 The character table of U and V

Ad(1) (a)

Since G′ is a normal subgroup of both U and V there is an action of U and

V respectively on G′ via conjugation, i.e.

G′ × U −→ G′, (g, u) 7→ u−1gu and analogously

G′ × V −→ G′, (g, v) 7→ v−1gv.

Let us present the U - and V -conjugacy classes contained in G′ in Tables 4.1

and 4.1 by giving a representative and the length for each class. Subsequently

we will prove that the tables are correct.



Table 4.1: U -classes in G′

name representative parameter length number
Cγδ cγdδ γ, δ ∈ I 1 p2

Bβδ bβdδ β ∈ I∗, δ ∈ I p p(p− 1)
Aαγδ aαcγdδ α ∈ I∗, γ, δ ∈ I p p2(p− 1)

Table 4.2: V -classes in G′

name representative parameter length number
Bβγδ bβcγdδ β, γ, δ ∈ I 1 p3

Aαβγ aαbβcγ α ∈ I∗, β, γ ∈ I p p2(p− 1)

Proof of Tables 4.1 and 4.2:

Let us first collect some general information which is useful for both the U -

and the V -conjugacy classes contained in G′.

Since G′ is abelian G′ stabilizes itself. We know that the length of the orbit

of an element is equal to the index of its stabilizer in the group. Further the

length of an orbit divides the group order. We have that U and V are both

of order p5, G′ is of order p4, hence each orbit is either of length 1 or of length

p. Now U = 〈x〉 n G′ and V = 〈y〉 n G′, hence it is sufficient to investigate

how x and y act on G′. Let us recall that the matrix of x on G′ is given by

Mx =


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

 .

For y we obtain the matrix

My =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 .



Obviously we then obtain
{
cγdδ

}
, γ, δ ∈ I as orbits of length 1 under the

action of U on G′. The remaining elements must all lie in orbits of length p.

As we already saw in the proof of 3.3.1,

Mn
x =


1 n n(n−1)

2
0

0 1 n 0

0 0 1 0

0 0 0 1


for all n ∈ N. Therefore we can explicitly calculate the conjugacy class of an

element of G′ and we obtain ClU(bβdδ) =
{
bβcnβdδ |n ∈ I

}
for β ∈ I∗, δ ∈ I

and ClU(aαcγdδ) =
{
aαbnαcγ+n(n−1)α/2dδ |n ∈ I

}
for α ∈ I∗, γ, δ ∈ I. Hence

we see that all elements in Table 4.1 listed in the column of the representa-

tives lie in different conjugacy classes. Summing up we obtain p4 elements

and we conclude that we found all conjugacy classes.

We will procede analogously with the conjugacy classes of V . Obviously,

for β, γ, δ ∈ I, we obtain
{
bβcγdδ

}
as orbits of length 1. It is easy to see that

Mn
y =


1 0 0 n

0 1 0 0

0 0 1 0

0 0 0 1


for all n ∈ N.

Again we are able to explicitly calculate the conjugacy classes and we obtain

ClV (aαbβcγ) =
{
aαbβcγdβn |n ∈ I

}
for α ∈ I∗, β, γ ∈ I. Hence we see that

all elements in Table 4.2 in the column of the representatives lie in different

conjugacy classes. Summing up we obtain p4 elements and conclude that we

found all conjugacy classes.

Ad(1) (b)

We also have an action of U and V respectively on IrrC(G′) via ϕw(g) =

ϕ(wgw−1), g ∈ G′, w ∈ U and w ∈ V , respectively. Hence ϕw(g) = ϕ(wg) for



all g ∈ G′, w ∈ U and w ∈ V , respectively and we can apply Lemma 2.3.11,

Brauers permutation lemma.

Let us first stick to U . From Table 4.1 we deduce that G′ has exactly p2

fixed points under U . Hence we conclude that there are p2 fixed irreducible

characters of G′ under the action of U , i.e. there are exactly p2 orbits of

length 1. Furthermore we deduce that IrrC(G′) has exactly p2 + p(p2 − 1)

orbits under U . Since G′ also stabilizes IrrC(G′) the length of an orbit can

again be either 1 or p.

We conclude that IrrC(G′) has exactly p(p2 − 1) orbits of length p and p2

orbits of length 1.

We now investigate the number of irreducible characters of U of degree 1 and

p.

A character λ ∈ IrrC(G′) is either extendable to a linear character of U or

induces to an irreducible character of U of degree p. We claim that vice versa

every irreducible character of U is either an extension of an irreducible char-

acter of G′ or induced by one such. Any linear character of U clearly is an

extension of an irreducible character of G′. In order to prove that any charac-

ter of U of degree p is induced from G′ consider χ ∈ IrrC(U), χ(1) = p. Now

let λ ∈ IrrC(G′) such that (χG′ , λ) 6= 0, i.e. λ is a constituent of the restriction

of χ to G′. Applying Frobenius reciprocity shows that
(
χ, λU

)
= (χG′ , λ) 6= 0,

hence χ is a constituent of λU . However p = χ(1) = [U : G′]λ(1) = λU(1),

i.e. λU and χ have the same degree. We conclude that χ = λU and the claim

is proven.

Using 2.3.5 and 2.4.1 we deduce that there are exactly p2 characters in

IrrC(G′) which can be extended to a linear character of U . These are just

the ones which lie in orbits of length 1, which is equivalent to having inertia

group U or being invariant under U . From 2.4.3 we conclude that each ex-

tendable linear character of G′ has exactly p different extensions. Hence U

has exactly p3 irreducible characters of degree 1.

It is easy to see that two induced characters, say λU and µU , are the same if

and only if λ and µ lie in the same orbit under the action of U on IrrC(G′).



Using this together with 2.3.5 we conclude that U has exactly p(p2−1) char-

acters of degree p. Each of them is induced by any representative of an orbit

of length p.

Since the number of conjugacy classes is equal to the number of irreducible

characters of U we deduce that U has exactly p3 + p2 = p2(p− 1) conjugacy

classes.

Let us give an overview of the classes in Table 4.3 containing representa-

tives together with the length of each class. Subsequently we will prove that

the table is correct.



Table 4.3: Cl(U)

name representative parameter length number
Cγδ cγdδ, γ, δ ∈ I 1 p2

Bβδ bβdδ, β ∈ I∗, δ ∈ I p p(p− 1)
Aαγδ aαcγdδ, α ∈ I∗, γ, δ ∈ I p p2(p− 1)
Xξαδ xξaαdδ, ξ ∈ I∗, α, δ ∈ I p2 p2(p− 1)

Proof of Table 4.3:

Since we already deduced the U -classes contained in G′ we only need to inves-

tigate the elements contained in U\G′. Let us have a look at the conjugacy

classes of elements xξaαdδ, ξ ∈ I∗, α, δ ∈ I. We know that any conjugacy

class is a subset of a coset uU ′ for some u ∈ U ′. However we easily see that

U ′ = 〈b, c〉 and therefore has order p2. Conjugation with x, a and b shows

that Cl(xξaαdδ) has more than p elements, hence it must have p2 elements

and thus be equal to uU ′ for some u ∈ U . Since U ′ = 〈b, c〉 we conclude

that Cl(xξaαdδ) =
{
xξaαdδbβcγ | β, γ ∈ I

}
. Summing up we obtain p2(p− 1)

conjugacy classes, each of length p2, hence p5 − p4 elements in total. Since

|U | = p5 and |G′| = p4 we see that we found all conjugacy classes.

Ad(1) (c)

In order to obtain the irreducible characters of V we will use precisely the

same arguments and obtain that IrrC(G′) has p3 + p2(p − 1) orbits in total

under V , p3 of them have length 1 and p2(p− 1) have length p. Hence V has

p4 linear characters and p2(p − 1) characters of degree p. We conclude that

V has p4 + p2(p− 1) = p2(p2 + p− 1) conjugacy classes. Let us again give an

overview of the classes in Table 4.4 containing representatives together with

the length of each class.



Table 4.4: Cl(V )

name representative parameter length number
Bβγδ bβcγdδ β, γ, δ ∈ I 1 p3

Aαβγ aαbβcγ α ∈ I∗, β, γ ∈ I p p2(p− 1)
Yυαβγ yυaαbβcγ, υ ∈ I∗, α, β, γ ∈ I p p3(p− 1)

Proof of Table 4.4:

Since we already deduced the V -classes contained in G′ we only need to

investigate the elements contained in V \G′. Let us have a look at the con-

jugacy classes of elements yυaαbβcγ, υ ∈ I∗, α, β, γ ∈ I. We know that any

conjugacy class is a subset of a coset vV ′ for some v ∈ V ′. We easily see that

V ′ = 〈d〉 and therefore has order p. Conjugation with y and a shows that

Cl(yυaαbβcγ) has more than one element, hence it must have p elements and

be equal to vV ′ for some v ∈ V . Since

V ′ = 〈d〉 we conclude that Cl(yυaαbβcγ) =
{
yυaαbβcγdδ | δ ∈ I

}
. Summing

up we obtain p3(p − 1) conjugacy classes, each of length p, hence p5 − p4

elements in total. Since |V | = p5 and |G′| = p4 we see that we found all

conjugacy classes.



Ad(1) (d)

Let us now present the character tables of U and V and subsequently prove

that these tables are correct. Therefore we will introduce some notation.

Notation 4.2.1

(i) Let ζ be a complex root of unity of order p.

(ii) If λ ∈ IrrC(G′) is invariant in U = 〈x〉 n G′ or in V = 〈y〉 n G′, we

will use the notation λ̂ for the extended linear character of IrrC(U) or

IrrC(V ), with respect to the construction given in the proof of 2.4.1.

(iii) By ε we will denote the linear character of IrrC(U/G′) or IrrC(V/G′),

respectively, with ε(x) = ζ or ε(y) = ζ, respectively.

Furthermore we also consider ε as a character of U or V , respectively.

(iv) For s ∈ I∗ we define

ρs := (−ζs)(p2−1)/8 ·
√

(−1)(p−1)/2 · √p ∈ C,

where we use the positive branch of the root function.
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In order to investigate the irreducible characters of U and V we will need

the character table of G′.

By λi,j,k,l, i, j, k, l ∈ I we denote the linear character of G′ with

λi,j,k,l(a) = ζ i, λi,j,k,l(b) = ζj, λi,j,k,l(c) = ζk, λi,j,k,l(d) = ζk.

Since {a, b, c, d} is a generating set for G′, a linear character is uniquely de-

termined by the image of this set.

Theorem 4.2.2

IrrC(G′) = {λi,j,k,l | i, j, k, l ∈ I} .

Proof Since G′ is elementary abelian of order p4, the claim immediately

follows from 2.1.5.

Let us now start to prove that the character table of U given in Table 4.5

is correct.

We already know that U has p2 invariant linear characters in IrrC(G′).

Let us determine these characters.

Lemma 4.2.3 λi,j,k,l ∈ IrrC(G′) is invariant in U if and only if j = k = 0.

Proof Since x−1 ∈ U is of order p and therefore generates U/G′, we know

that λ ∈ IrrC(G′) is invariant in U if and only if λx
−1

= λ, i.e. if and only

if λ(x−1gx) = λ(g) for all g ∈ G′. The set {a, b, c, d} generates G′, hence we

only need to check that λ(x−1gx) = λ(g) for all g ∈ {a, b, c, d}. We obtain

λ(a) = λ(x−1ax) = λ(ab), hence λ(b) = 1,

λ(b) = λ(x−1bx) = λ(bc), hence λ(c) = 1,

λ(c) = λ(x−1cx) = λ(c),

λ(d) = λ(x−1dx) = λ(d).

Thus λ ∈ IrrC(G′) is invariant in U if and only if λ(b) = λ(c) = 1. This means

that the character λi,j,k,l of G′ is invariant in U if and only if j = k = 0.



Theorem 4.2.4 The linear characters of U are given by

LinC(U) =
{
λ̂i,0,0,l · εm | i, l,m ∈ I

}
.

Proof From 2.4.2, 2.4.3 and 4.2.3 it follows that any linear character of U

is of the form ˆλi,0,0,l · ε, where ε is a linear character of U/G′. We have

|U/G′| = p, i.e. U/G′ is abelian and it follows that |IrrC(U/G′)| = p. Hence

IrrC(U/G′) = {εm |m ∈ I}. We conclude that any linear character of U is of

the form λ̂i00l · εm, i, l,m ∈ I. Summing up we see that we found exactly

p2 · |IrrC(U/G′)| = p3 linear characters of U which means we have found them

all.

It remains to determine the irreducible characters of U of degree p. These

are induced by linear characters λ ∈ IrrC(G′) with inertia group IU(λ) = G′.

From 4.2.3 we conclude that IU(λ) = G′ if and only if j 6= 0 or k 6= 0. Hence

λUi,j,k,l is an irreducible character of U if and only if j 6= 0 or k 6= 0.

Lemma 4.2.5

(1) Define x̄ := x−1. Then we have λx̄
n

i,j,k,l = λi+jn+kn(n−1)/2,j+kn,k,l for all

n ∈ N, i, j, k, l ∈ I.
Note that λi,j,k,l = λi(mod p),j(mod p),k(mod p),l(mod p) for all i, j, k, l ∈ N.

(2) Let k ∈ I∗, i, j, l ∈ I. Then the orbit of λi,j,k,l under U contains an

element λi′,0,k,l for some i′ ∈ I.

(3) Let j ∈ I∗, i, l ∈ I. Then the orbit of λi,j,0,l under U contains λ0,j,0,l.

(4) Let SU := {λi,0,k,l | i, l ∈ I, k ∈ I∗} and TU := {λ0,j,0,l | j ∈ I∗, l ∈ I}.
Then none of the elements from SU ∪ TU are conjugate under U .

Proof

(1) We will prove the claim by induction. Therefore let α, β, γ, δ ∈ I and

i, j, k, l ∈ I.
For n = 1 we obtain



λx̄i,j,k,l(a
αbβcγdδ) = λi,j,k,l(x

−1aαbβcγdδx) = λi,j,k,l(a
αbβ+αcγ+βdδ) =

ζαi+(β+α)j+(γ+β)k+δl = ζα(i+j)+β(j+k)+γk+δl = λi+j,j+k,k,l(a
αbβcγdδ).

Thus the claim is correct for n = 1 (†).
Assume now that the claim is correct for some n ∈ N (∗) and perform

the step n 7→ n+ 1:

We obtain

λx̄
n+1

i,j,k,l =
(
λx̄

n

i,j,k,l

)x̄ (∗)
=
(
λi+jn+kn(n−1)/2),j+kn,k,l

)x̄ (†)
=

λi+j(n+1)+kn(n+1)/2),j+k(n+1),k,l.

We see that the claim is correct for n+ 1 and hence it is correct for all

n ∈ N.

(2) We choose n ∈ N such that j + kn ≡ 0 (mod p). Then the claim

immediately follows from part (1).

(3) We choose n ∈ N such that i + jn ≡ 0 (mod p). Then the claim

immediately follows from part (1).

(4) We know that λi,j,k,l is invariant under G′. Hence we just need to con-

sider elements of U\G′ when investigating the action on λi,j,k,l. However

x̄ generates U/G′, hence we only have to look the action of x̄n on λi,j,k,l.

Applying part (1) we can easily calculate the orbit of 〈x̄〉 on λi,j,k,l.

For λi,0,k,l ∈ SU we obtain the orbit
{
λi+kn(n−1)2,kn,k,l |n ∈ I

}
. Hence

none of the elements of SU can be conjugate under U .

For λ0,j,0,l ∈ SU we obtain the orbit {λjn,j,0,l |n ∈ I}. Hence none of

the elements of TU can be conjugate under U .

If we further compare SU with TU we immediately see that it is not

possible for two elements of SU ∪ TU to be conjugate under U .

Corollary 4.2.6

{χ ∈ IrrC(U) |χ(1) = p} =
{
λUi,0,k,l | i, l ∈ I, k ∈ I∗

}
∪
{
λU0,j,0,l | j ∈ I∗, l ∈ I

}
.



The value of λUijkl at an element u = xυaαbβcγdδ ∈ U for υ, α, β, γ, δ ∈ I is

given by:

λUi,j,k,l(u) =

{
0, if , if υ 6= 0,

ζαi+βj+γk+δl
∑

n∈I ζ
α(jn+kn(n−1)/2)+β(kn), if υ = 0.

Proof We know that two characters λUi,j,k,l and λUi′,j′,k′,l′ are the same if and

only if λi,j,k,l and λi′,j′,k′,l′ lie in the same U -orbit. From 4.2.5 we conclude that

all characters contained in
{
λUi,0,k,l | i, l ∈ I, k ∈ I∗

}
∪
{
λU0,j,0,l | j ∈ I∗, l ∈ I

}
are different to each other. Summing up we see that the set above contains

exactly p2(p − 1) + p(p − 1) = p(p2 − 1) characters. As we deduced earlier

this is precisely the number of irreducible character of U of degree p.

Let us determine the value of λUi,j,k,l at u ∈ U .

Since λUi,j,k,l is induced from G′ we have that λUi,j,k,l(u) = 0, if u /∈ G′.

For u ∈ G′, i.e. for ξ = 0 we obtain the value at u as follows:

λUi,j,k,l(a
αbβcγdδ) = λUi,j,k,l(a

αbβcγdδ) =
∑

n∈I λ
x̄n

i,j,k,l(a
αbβcγdδ)

4.2.5
=∑

n∈I λi+jn+kn(n−1)/2,j+kn,k,l(a
αbβcγdδ) =

∑
n∈I ζ

α(i+jn+kn(n−1)/2)+β(j+kn)+γk+δl =

ζαi+βj+γk+δl
∑

n∈I ζ
α(jn+kn(n−1)/2)+β(kn).

Now we are ready to fill in the entries in the character table of U .

Let us make a last useful remark to deduce the values for the character

table of U .

Remark 4.2.7

(i)
∑p−1

i=0 ζ
ri = 0 for all r ∈ I∗.

(ii)
∑p−1

n=0 ζ
kα

n(n−1)
2 =

(
−ζkα

)(p2−1)/8 ·
√

(−1)(p−1)/2 · √p = ρkα for all k, α ∈
I∗, where we defined ρs in 4.2.1.

Proof



(i) Since φp = Xp−1 +Xp−2 + ...+X2 +X + 1 is the minimal polynomial

of a complex root of unity of order p we obtain that
∑p−1

i=0 ζ
ri = 0. for

all r ∈ I∗.

(ii) see [EM, Lemma 3, p. 288].

For each conjugacy class we now just insert i, j, k, l and υ, α, β, γ, δ in the

formula given in 4.2.6 for characters of degree p or consider 4.2.4 for linear

characters.

We now come to prove that the character table of V , given in Table 4.6,

is correct. In order to do so we will follow precisely the same arguments as

for the character table of U . Therefore we will omit the proofs at this stage.

We have:

Lemma 4.2.8 λi,j,k,l ∈ IrrC(G′) is invariant in V if and only if l = 0.

Theorem 4.2.9 The linear characters of V are given by

LinC(V ) =
{

Θijkm | i, j, k,m ∈ I,Θijkm = λ̂ijk0 · εm
}
.

It remains to determine the irreducible characters of V of degree p. Any

such character is induced by a character λ ∈ IrrC(G′). From 4.2.8 we deduce

that IV (λi,j,k,l) = G′ if and only if l 6= 0. Hence λVi,j,k,l is an irreducible

character of V if and only if l 6= 0.

Lemma 4.2.10 (1) Define ȳ := y−1. Then we have λi,j,k,l
ȳn

= λi+ln,j,k,l.

(2) Let SV := {λ0,j,k,l | j, k ∈ I, l ∈ I∗}. Then none of the elements in SV

are conjugate under V .

Corollary 4.2.11 {χ ∈ IrrC(V ) |χ(1) = p} =
{
λV0,j,k,l | j, k ∈ I, l ∈ I∗

}
.

The explicit value of λV0,j,k,l at an element v = yυaαbβcγdδ ∈ V for

υ, α, β, γ, δ ∈ I is given by:



λV0,j,k,l(v) =

{
0, if v /∈ 〈b, c, d〉
pζjβ+kγ+lδ, otherwise

Analogously to U we can now fill in the character table of V with the corre-

sponding character values.

4.3 The determination of the irreducible char-

acters of G

Ad(2)

The task is now to determine the conjugacy classes of V under G in order to

obtain the number of orbits and fixed points under the action of G on Cl(V ).

Since V is normal in G we have an action of G on V via conjugation. In order

to obtain the G-classes in V we need to consider how Cl(V ), the conjugacy

classes of V , behave under conjugation with x, because x generates G/V .

Some of the classes may fall together whereas some may remain as they are

under conjugation with V . We will first present the conjugacy classes of V

under G in Table 4.7 with representatives and length. Subsequently we will

give a proof that the table is correct.



Table 4.7: G-classes in V

name representative parameter length number
Cγδ cγdδ γ, δ ∈ I 1 p2

Vβδ bβdδ β ∈ I∗, δ ∈ I p p(p− 1)
Aαγ aαcγ α ∈ I∗, γ ∈ I p2 p(p− 1)
Yυβγ yυbβcγ υ ∈ I∗, β, γ ∈ I p2 p2(p− 1)

Proof As already mentioned we will just have to investigate how the con-

jugacy classes of V behave under conjugation with x. We recall that the

matrix corresponding to the conjugation with xn is given by

Mn
x =


1 n n(n−1)

2
0

0 1 n 0

0 0 1 0

0 0 0 1


for all n ∈ N.

Furthermore, since |G/V | = p, we note that the length of a conjugacy class

under G either is the same as it was under conjugation with V or it is mul-

tiplied by p.

Now we can start to investigate the different classes. We know that

Z(G) = 〈c, d〉, hence we still have
{
cγdδ

}
, γ, δ ∈ I as classes of length 1

under conjugation with G.

However, applying the matrixMn
x , we see that under conjugation with xn, n ∈

I we have bβdδ ∼ bβcnβdδ. Thus we obtain that Cl(bβdδ) =
{
bβcγdδ | γ ∈ I

}
, β ∈

I∗, δ ∈ I is a conjugacy class of length p under G.

Analogously we see that aαcγ ∼ aαbαcγ under conjugation with x. Look-

ing at Table 4.4 we see that ClV (aαcγ) 6= ClV (aαbαcγ). This implies that

Cl(aαcγ) has more than p elements under the action of G. As it had length p

under conjugation with V it follows that it has length p2 under conjugation

with G. Looking at Table 4.4, the table of Cl(V ), we see that for every

α ∈ I∗, β ∈ I, the p conjugacy classes Aαβγ, γ ∈ I of V (see Table 4.4) fuse

to one conjugacy class of G.



Now we have y ∼ ya−1 under conjugation with x. Hence the same as above

happens to each of the conjugacy classes of the third row in Table 4.4. We

find that for υ ∈ I∗, β, γ ∈ I the p classes Yυαβγ, α ∈ I fuse together to one

G-conjugacy class with representative yυbβcγ.

Summing up we see that we obtain p5 = |V | elements, hence the investigation

of the G-classes in V is complete.

Ad(3)

We also have an action of G on Cl(V ). From Table 4.7 and from Table 4.4 we

can deduce the number of fixed points and orbits from this action. We obtain:

(i) p2 orbits of length 1, where a set of representatives are the classes

B0γδ, γ, δ ∈ I,

(ii) p(p−1) orbits of length p, where a set of representatives are the classes

Bβ0δ, β ∈ I∗, δ ∈ I (the class of bβdδ is conjugated to the classes

bβcγdδ, γ ∈ I),

(iii) p(p−1) orbits of length p, where a set of representatives are the classes

Aα0γ, α ∈ I∗, γ ∈ I (the class of aαcγ is conjugated to the classes

aαbβcγ, β ∈ I),

(iv) p2(p−1) orbits of length p, where a set of representatives are the classes

Yυ0βγ, υ ∈ I∗, β, γ ∈ I (the class of yυbβcγ is conjugated to the classes

yυaαbβcγ, α ∈ I).

All in all we obtain p2 orbits of length 1 and p3 + p2 − 2p orbits of length p.

We again apply Lemma 2.3.11, Brauers permutation lemma, and conclude

that the action of G on IrrC(V ) yields p2 orbits of length 1 and p3 + p2 − 2p

orbits of length p.

Ad(4)

Now we are concerned with the determination of the number of linear char-

acters of G, the number of characters of degree p and of degree p2.



Lemma 4.3.1 Any χ ∈ IrrC(G) is either an extension of a character of V ,

i.e. χV ∈ IrrC(V ), or we have that χ = ϕG for some ϕ ∈ IrrC(V ).

Proof [I, (6.19), p.86].

Theorem 4.3.2 G has exactly:

• p2 characters of degree 1,

• 2p3 − p2 − 1 irreducible characters of degree p, where p2(p− 1) of them

are extensions of characters from IrrC(V ) and the rest, i.e. p3 − 1

characters, are induced from a linear character of V ,

• (p− 1)2 irreducible characters of degree p2.

Proof Obviously each linear character of G is an extension of a linear char-

acter of V . Furthermore we deduce from 2.4.3 that each linear character

λ̂ ∈ IrrC(V ) with inertia group IG(λ̂) = G has exactly p different extensions

of λ to a linear character of G.

From the proof of 3.3.1 we know that |G/G′| = p2. Hence it follows that G

has exactly p2 linear characters. Therefore p of the p2 orbits of length 1 from

the action of G on IrrC(V ) contain characters of degree 1, and the rest, i.e.

p(p− 1) orbits, contain characters of degree p. Thus G has p2 linear charac-

ters and p2(p− 1) characters of degree p which are extensions of irreducible

characters of V . All other characters of IrrC(G) are induced from a character

of V which also means that their restriction to V is not irreducible.

How many of the remaining p3 + p2 − 2p characters of IrrC(V ), which induce

to pairwise different irreducible characters of G, are of degree 1 and how

many are of degree p? In order to answer this question we will use two facts:

Let m = |χ ∈ IrrC(G) |χ(1) = p, χV /∈ IrrC(V )|
and n = |χ ∈ IrrC(G) |χ(1) = p2, χV /∈ IrrC(V )|.
Then

• n+m = p3 + p2 − 2p,



• np2 +mp4 = p6 − p5 + p4 − p2.

This follows from the fundamental formula 3.1, which in this case yields∑
χ∈IrrC(G)

χ(1)2 = p6. Hence

np2 +mp4 =
∑

χ∈IrrC(G),

χ(1)6=1,χV /∈IrrC(V )

χ(1)2 = p6 − p2︸︷︷︸
(†)

−p2 (p2(p− 1))︸ ︷︷ ︸
(††)

= p6 − p5 + p4 − p2.

Ad (†): G has p2 linear characters.

Ad (††): G has p2(p−1) characters of degree p which are induced from

V .

From the second equation we deduce that n+mp2 = p4 − p3 + p2 − 1, hence

n = p4 − p3 + p2 − 1−mp2. Inserting this into the first equation we obtain

p4 − p3 + p2 − 1−mp2 +m = p3 + p2 − 2p.

Thus m = (p− 1)2 and n = p3 − 1.

This means that G has (p−1)2 irreducible characters of degree p2 and p3−1

irreducible characters of degree p which are induced from a linear character

of V .

Ad(5)

In Table 4.8 we list the conjugacy classes of G and in Table 4.3we present

the generic character table of G. We will afterwards first prove that the table

of Cl(G) is correct and subsequently we will prove that the given character

table of G is correct.



Table 4.8: Cl(G)

name representative parameter length number
Cγδ cγdδ γ, δ ∈ I 1 p2

Bβδ bβdδ, β ∈ I∗, δ ∈ I p p(p− 1)
Aαγ aαcγ, α ∈ I∗, γ ∈ I p2 p(p− 1)
Yυβγ yυbβcγ, υ ∈ I∗, β, γ ∈ I p2 p2(p− 1)
Xυξδ yυxξdδ, ξ ∈ I∗, υ, δ ∈ I p3 p2(p− 1)

Notation 4.3.3

(i) Let ζ be a the complex root of unity of order p as in 4.2.1.

(ii) If Θijkm ∈ LinC(V ) is invariant in G, we will use the notation Θ̂ijkm for

the extended linear character of IrrC(G), with respect to the construc-

tion given in the proof of 2.4.1.

(iii) By η we will denote the linear character of IrrC(G/V ) with η(x) = ζ.

Furthermore we also consider η as character of G.

(iv) Let ρs be as in 4.2.1.

(v) For l ∈ {2, 3} we define τ
(l)
s,t =

∑
r∈I ζ

sr+t(r
l).

(vi) For j, n ∈ I, l ∈ I∗ we define χj,l,n as follows:

For v ∈ V we define χj,l,n(v) = λV0,j,0,l(v).

Now choose rjl ∈ I such that j + rjl ≡ 0 (mod p).

Then for g = yυxξaαbβcγdδ ∈ Xυξδ, υ, δ ∈ I, ξ ∈ I∗ and α, β, γ such

that g ∈ Xυξδ we define

χj,l,n(g) =

 0, if υ 6= ξ · rjl,
pζ lδ+nυ · τ (2)

j(ξ
2),lξ

, if υ = ξ · rjl
.



T
ab

le
4.

9:
T

h
e

g
e
n
e
ri

c
ch

a
ra

ct
e
r

ta
b
le

o
f
G

ce
n
tr

al
iz

er
or

d
er

p6
p5

p4
p4

p4

co
n
ju

ga
cy

cl
as

s
C
γ
δ

B
β
δ

A
α
γ

Y
υ
β
γ

X
υ
ξ
δ

p
ar

am
et

er
γ
,δ
∈
I

β
∈
I
∗ ,
δ
∈
I

α
∈
I
∗ ,
γ
∈
I

υ
∈
I
∗ ,
β
,γ

∈
I

ξ
∈
I
∗ ,
υ
,δ
∈
I

#
p
ar

am
et

er
p2

p(
p
−

1)
p(
p
−

1)
p2

(p
−

1)
p2

(p
−

1)

p2
m
,n

∈
I

Θ̂
0
,0
,0
,m
·η

n
1

1
1

ζ
n
υ

ζ
m
ξ
+
n
υ

p2
(p
−

1)
j,
n
∈
I
,l
∈
I
∗

χ
0
,j
,0
,l
,n

pζ
lδ

pζ
jβ

+
lδ

0
0

0,
if
υ
6=
ξ
·r

jl

ζ
lδ

+
n
υ
·τ

(2
)

j (
ξ 2
),
lξ
,

if
υ

=
ξ
·r
jl

p
−

1
i
∈
I
∗

Θ
G i,
0
,0
,0

p
p

pζ
iα

0
0

p2
(p
−

1)
i,
m
∈
I
,k

∈
I
∗

Θ
G i,
0
,k
,m

pζ
k
γ

0
ζ
iα

+
k
γ
·ρ

k
α

τ
(3

)
k
β
−
iυ
,−
k
υ

0

p(
p
−

1)
j
∈
I
∗ ,
m
∈
I

Θ
G 0
,j
,0
,m

p
pζ

jβ
0

ζ
jβ

+
m
υ
·ρ

−
jυ

0

(p
−

1)
2

k
,l
∈
I
∗

λ
G 0
,0
,k
,l

p2
ζ
k
γ
+
lδ

0
0

0
0



Proof of Table 4.8:

We first point out that we already deduced the G-conjugacy classes contained

in V in Table 4.7. This are the first four rows of the table. Hence we just

have to investigate G\V under the action of G. Now let us determine the

conjugacy class of an element grst := yrxsdt ∈ G\V for some r, t ∈ I, s ∈ I∗.
We shall use the following Lemma.

Fix l ∈ N. Then for all r, s, t ∈ I we have

Lemma 4.3.4 (1) y−lgrsty
l = yrxsalsbl

s(s−1)
2 cl

s(s−1)(s−2)
6 ds

l(l−1)
2

+t

(2) blgrstb
−l = yrxscsldt

(3) algrsta
−l = yrxsbslcl

s(s−1)
2 drl+t

Proof We will prove these properties briefly:

Let r, s, t ∈ N.

Ad(1) First we show by induction that for all s ∈ N we have y−lxsyl =

xsaslbl
s(s−1)

2 cl
s(s−1)(s−2)

6 ds
l(l−1)

2 :

Using induction (4) at the end of the proof of 3.3.1 we see that the

claim is true for s = 1.

Let us assume that the claim is correct for some s ∈ N (†). Now do

the step s 7→ s+ 1 :

We have

y−lxs+1yl = (y−lxsyl)(y−lxyl)
(†)
=
(
xsaslbl

s(s−1)
2 cl

s(s−1)(s−2)
6 ds

l(l−1)
2

)(
xald

l(l−1)
2

)
(c,d∈Z(G))

= xs(xx−1)asl(xx−1)bl
s(s−1)

2 xcl
s(s−1)(s−2)

6 ds
l(l−1)

2 ald
l(l−1)

2

= xs+1(x−1ax︸ ︷︷ ︸
=ab

)
sl
(x−1bx︸ ︷︷ ︸

=bc

)
l
s(s−1)

2 alcl
s(s−1)(s−2)

6 d(s+1)
l(l−1)

2

= xs+1a(s+1)lbl
s(s+1)

2 cl
s(s−1)(s+1)

6 d(s+1)
l(l−1)

2 .

Hence the claim is correct for s+ 1 and therefore for all s ∈ N.

Now using the above induction we obtain y−lgrsty
l = yry−lxsyldt =

yrxsaslbl
s(s−1)

2 cl
s(s−1)(s−2)

6 ds
l(l−1)

2
+t and the claim is proven.



Ad(2) We know that xs acts on G′ via the matrix

M s
x =


1 s s(s−1)

2
0

0 1 s 0

0 0 1 0

0 0 0 1

 .

We obtain x−sblxs = blcsl, hence we have blxsb−l = xscls. It follows

that blgrstb
−l = blyrxsdtb−l = yr(blxsb−l)dt = yrxsclsdt and the claim is

proven.

Ad(3) We further know that yr acts on G′ via the matrix

M r
y =


1 0 0 r

0 1 0 0

0 0 1 0

0 0 0 1

 .

Analogously to case (2) we obtain x−salxs = albslcl
s(s−1)

2 as well as

y−ralyr = aldrl, hence we have alxsa−l = xsbslcl
s(s−1)

2 as well as alyra−l =

yrdlr. It follows that algrsta
−l = (alyra−l)(alxsa−l)aldta−l = yrxsblscl

s(s−1)
2 drl+t

and the claim is proven.

With the information gained we now prove that the length of the conju-

gacy class Cl(grst) is at least equal to p3. We show that grst ∼ yrxsaαbβcγdt̃

for all α, β, γ ∈ I and for some t̃ ∈ I. The value of t̃ does not matter here.

Now fix α, β, γ ∈ I.
Using (1) choose l ∈ I such that y−lgrsty

l = yrxsaαz for some z ∈ 〈b, c, d〉.
Using (3) choose l′ ∈ I such that b−l

′
y−lgrsty

lbl
′

= yrxsaαbβz′ for some

z′ ∈ 〈c, d〉.
Using (2) choose l′′ ∈ I such that a−l

′′
b−l

′
y−lgrsty

lbl
′
al

′′
= yrxsaαbβcγdt̃ for

some t̃ ∈ I.
Thus |Cl(grst)| ≥ p3. However we also have |Cl(grst)| ≤ p3. This is because



Z(G) = 〈c, d〉 ⊆ CG(grst) of grst in G as well as 〈grst〉 ⊆ CG(grst). Hence

〈grst, c, d〉 ⊆ CG(grst) and it follows that |CG(grst)| ≥ p3, i.e. |Cl(grst)| =

[G : CG(grst)] ≤ p3.

All in all we conclude that {Cl(grst) | r, t ∈ I, s ∈ I∗} yield p2(p−1) differ-

ent conjugacy classes of length p3. Summing up the lengths and numbers of

conjugacy classes of the above table we see that we obtain p6 = |G| elements.

Hence the investigation of the conjugacy classes of G is complete.

In order to prove that Table 4.3 is correct we will begin with the deter-

mination of the linear characters of G.

Theorem 4.3.5

LinC(G) :=
{

Θ̂0,0,0,m · ηn |m,n ∈ I
}
.

Proof Every linear character of G is an extension of a linear character

Θi,j,k,m ∈ LinC(V ). Hence we need to check which linear characters of V

we can extend to G, i.e. which linear characters of V have inertia group G.

These are just the ones which are trivial when restricted to G′, i.e. this is

the set {Θ0,0,0,m |m ∈ I} .
From 2.4.2 and 2.4.3 we now deduce that every linear character of G is of

the form Θ̂0,0,0,m · ηn ,m, n ∈ I.
We have |G/V | = p, hence |IrrC(G/V )| = p. We already saw that there are

exactly p characters Θ ∈ IrrC(V ) satisfying ΘG′ = 1G′ . Thus we found ex-

actly p · |IrrC(U/G′)| = p2 linear characters of G which means we have found

them all.

Now we will determine the irreducible characters of G of degree p. First

we investigate the irreducible characters of G of degree p which are induced

from a linear character of V . From 4.3.2 we know that these are precisely

p3 − 1 characters.



Let us therefore recall the linear characters of V . These are given by:

LinC(V ) = {Θi,j,k,m | i, j, k,m ∈ I}

, where Θi,j,k,m = λ̂i,j,k,0 · εm.

Lemma 4.3.6 Let α, β, γ, δ, υ ∈ I. Then

x−ryυaαbβcγdδxr = yυaα−υrbαr+β−υ(
r
2)cα(

r
2)+βr+γ−υ(r

3)dαr+δ for all r ∈ N.

Proof Induction.

Notation 4.3.7 Let in the following x̄ := x−1.

Corollary 4.3.8 (Θi,j,k,m)x̄
r

= Θi+jr+k(r
2),j+kr,k,m−(ir+j(r

2)+k(r
3)) for all i, j, k,m ∈

I.

Proof Let v = yυaαbβcγdδ ∈ V, υ, α, β, γ, δ ∈ I. We obtain:

(Θi,j,k,m)x̄
r
(v) = λ̂i,j,k,0(x

−rvxr) · εm(x−rvxr)
(4.3.6)
=

λ̂i,j,k,0(y
υaα−υrbαr+β−υ(

r
2)cα(

r
2)+βr+γ−υ(r

3)dαr+δ) · εm(yυ) =

Θi+jr+k(r
2),j+kr,k,m−(ir+j(r

2)+k(k
3))(v).

Corollary 4.3.9 Θi,j,k,m ∈ IrrC(V ), i, j, k,m ∈ I, induces to an irreducible

character of G if and only if i 6= 0 or j 6= 0 or k 6= 0.

Theorem 4.3.10 For i, j, k,m ∈ I we define Si,j,k,m :=
{
ΘG
i,j,k,m

}
.

Then {χ ∈ IrrC(G) | , χ is induced from a linear character of V } = {Si,0,k,m | i,m ∈ I, k ∈ I∗}∪
{S0,j,0,m | j ∈ I∗,m ∈ I} ∪ {Si,0,0,0 | i ∈ I∗}.

The value at an element g = yυxξaαbβcγdδ ∈ G of χ ∈ Si,j,k,m in each of the

cases above is given as follows:

We have χ(g) = 0, if g /∈ V , i.e. if ξ 6= 0.



Let now ξ = 0, i.e. g ∈ V .

For χ ∈ {Si,0,k,m | i,m ∈ I, k ∈ I∗} we have

χ(g) = ζ iα+kγ+mυ
∑

r∈I ζ
kα(r

2)+kβr−iυr−kυ(r
3).

For χ ∈ {S0,j,0,m | j ∈ I∗,m ∈ I} we have

χ(g) = ζjβ+mυ
∑

r∈I ζ
jαr−jυ(r

2).

For χ ∈ {Si,0,0,0 | i ∈ I∗} we have

χ(g) = ζ iα
∑

r∈I ζ
iυr.

(In order to fill in the character values into the table for these cases also

consider 4.2.7).

Proof Follows from 4.3.9 and 4.3.8.

Now we are concerned with characters χ ∈ IrrC(G), χ(1) = p which are

extensions of irreducible characters of V . From 4.3.2 we know that we are

looking for precisely p2(p− 1) characters.

Lemma 4.3.11 For all j ∈ I, l ∈ I∗ we have IG(λV0,j,k,l) = G if and only if

k = 0.

Proof Let j ∈ I, l ∈ I∗. Since xV generates G/V we have that IG(λV0,j,k,l) =

G if and only if λV0,j,k,l is invariant under x.

From Table 4.6 we know that the value of λV0,j,k,l at an element v = yυaαbβcγdδ ∈
V is given by:

λV0,j,k,l(v) =

{
0, if v /∈ 〈b, c, d〉 ,
pζjβ+kγ+lδ, otherwise.

Thus we have to check that λV0,j,k,l
(
x−1(bβcγdδ)x

)
= λV0,j,k,l

(
bβcγdδ

)
for

all β, γ, δ ∈ I. However x−1(bβcγdδ)x = bβcγ+βdδ and we obtain the equation



λV0,j,k,l
(
bβcγ+βdδ

)
= λV0,j,k,l

(
bβcγdδ

)
. Since λ0,j,k,l(c) = ζk we conclude that

λ0,j,k,l is invariant under x if and only if k = 0.

Corollary 4.3.12 For all j ∈ I, l ∈ I∗ we have that λV0,j,0,l has exactly p

different extensions to an irreducible character of G.

We will now determine the extensions of λV0,j,0,l for j ∈ I, l ∈ I∗.

Lemma 4.3.13

(1) (yrx)i = yrixiari(i−1)/2bri(i−1)(2i−1)/6cri(i−1)(i−2)(3i−1)/24di(i−1)(2r(i−1)−1)r/4.

(2) yrx ∈ G has order p for all r ∈ I.

Proof (1) Induction.

(2) Follows from part (1) since p ≥ 5.

Corollary 4.3.14 For r ∈ I∗ we define Wr = 〈yrx, a, b, c, d〉.
Then Wr

∼= 〈yrx〉nG′ ∼= Cp n C4
p

Lemma 4.3.15 Let j ∈ I, l ∈ I∗ and let rjl ∈ I be such that j + rjll ≡ 0

(mod p). Then for λ0,j,0,l ∈ IrrC(G′) we have IWrjl
(λ0,j,0,l) = Wrjl

and λ0,j,0,l

is extendable to a linear character of Wrjl
.

We will use the notation λ̂0,j,0,l for the extended linear character of IrrC(Wrjl
)

with respect to the construction given in the proof of 2.4.1.

Proof Fix j ∈ I, l ∈ I∗ and let z = (yrjlx)−1. Using the relations of G we ob-

tain for α, β, γ, δ ∈ I that (λ0,j,0,l)
z(aαbβcγdδ) = λ0,j,0,l(a

αbα+βcβ+γdrjlα+δ) =

λ0,j,0,l(a
αbβcγdδ) · ζj+rjll. Since j + rjll ≡ 0 (mod p) we conclude that λ0,j,0,l

is invariant in Wrjl
. Using 4.3.14 the second assertion follows immediately

from 2.4.1.



Lemma 4.3.16

(1) For all rjl ∈ I∗ there is a character εrjl
∈ LinC(G/Wrjl

) with εrjl
(y) = ζ.

(2) LinC(G/Wrjl
) =

{
εnrjl

|n ∈ I
}

for all rjl ∈ I∗.

(3) Let rjl ∈ I be such that j+rjll ≡ 0. Then
{
λ̂0,j,0,l · εnrjl

| j, n ∈ I, l ∈ I∗
}

are p2(p− 1) different linear characters of Wrjl
.

Proof

(1) Since y /∈ Wrjl
we have that {yr | r ∈ I} is a set of coset representa-

tives for G/Wrjl
. Now the claim follows since G/Wrjl

∼= Cp and thus

IrrC(G/Wrjl
) ∼= Cp.

(2) This follows from part (1).

(3) This follows from part (2) and 2.4.3.

Theorem 4.3.17 Let j, n ∈ I, l ∈ I∗ and let rjl ∈ I∗ such that j + rjll ≡ 0

(mod p). Then the linear character λ̂0,j,0,l ·εnjl of Wrjl
induces to an irreducible

character of G.

Furthermore λ̂0,j,0,l · εnjl = χj,l,n and χj,l,n is an extension of λV0,j,0,l, where

χj,l,n is defined in 4.3.3. The characters χj,l,n, j, n ∈ I, l ∈ I∗ are pairwise

different.

Proof Fix j, n ∈ I, l ∈ I∗ and let us look at the orbit of λ̂0,j,0,l · εnjl under

G/Wrjl
. We already saw that {yt | t ∈ I} is a set of representatives for the

cosets of G/Wrjl
.

Hence the orbit of λ̂0,j,0,l · εnjl is given by
{

(λ̂0,j,0,l)
yt · (εnjl)y

t | t ∈ I t | t ∈ I
}

.

Now (λ̂0,j,0,l)
y−t

= λ̂tl,j,0,l and εnjl is invariant under yt. Hence λ̂0,j,0,l · εnjl is

not invariant in G and therefore it induces to an irreducible character of G.

Using the fact that V ·Wrjl
= G and V ∩Wrjl

= G′ we conclude by applying

2.2.9, Mackeys Subgroup Theorem, that λ̂0,j,0,l · εnjl is an extension of λV0,j,0,l.



In order to finally see that λ̂0,j,0,l · εnjl = χj,l,n we determine the value of

λ̂0,j,0,l · εnjl at g = yυxξaαbβcγdδ ∈ Xυξδ for υ, δ ∈ I, ξ ∈ I∗ and α, β, γ such

that g ∈ Xυξδ:

Using 4.3.13 we see that g /∈ Wrjl
if υ 6= ξ · rjl. Hence we obtain:

(λ̂0,j,0,l · εnjl)G(g) = 0, if υ 6= ξ · rjl.
Let now υ = ξ · rjl. Using 4.3.4 we obtain:

(λ̂0,j,0,l · εnjl)G(g) = (λ̂0,j,0,l · εnjl)G(yυxξdδ) =∑
t∈I(λ̂0,j,0,l(y

−tyυxξdδyt) · εnjl(y−tyυxξdδyt) =

ζnυ
∑

t∈I λ̂0,j,0,l(y
υxξatξbt(

ξ
2)ct(

ξ
3)dδ+ξ(

t
2)) =

ζ lδ+nυ
∑

t∈I ζ
jt(ξ

2)+lξ(t
2) = ζ lδ+nυ · τ (2)

j(ξ
2),lξ

= χj,l,n(g).

Considering the values of χj,l,n we see that χj,l,n, j, n ∈ I, l ∈ I∗ are

pairwise different characters.

The investigation of the irreducible characters of degree p is now com-

plete.

It only remains to determine the irreducible characters of degree p2 of G. We

recall that we are looking for (p− 1)2 characters.

Lemma 4.3.18 Each irreducible character χ of degree p2 is induced by a

linear character of G′.

Proof We consider an irreducible character λ ∈ IrrC(G′) such that (χG′ , λ) 6=
0. Using Frobenius reciprocity we obtain

(
χ, λG

)
6= 0. Since χ is irreducible

and both χ and λG are of degree p we conclude that χ = λG.

Theorem 4.3.19

{
χ ∈ IrrC(G) |χ(1) = p2

}
=
{
λG0,0,k,l | k, l ∈ I∗

}
.

For g = yυxξaαbβcγdδ ∈ G we have λG0,0,k,l(g) =

{
0, if g /∈ 〈c, d〉 ,
pζkγ+lδ, otherwise.



Proof First let us prove that λG0,0,k,l ∈ IrrC(G) for all k, l ∈ I∗. By 2.2.6 we

obtain λG0,0,k,l =
(
λV0,0,k,l

)G
. From 4.2.11 it we know that λV0,0,k,l ∈ IrrC(V ) for

all k, l ∈ I∗. Furthermore we follow from 4.3.11 that a character λV0,j,k,l ∈
IrrC(V ) is invariant in G if and only if k = 0. However in our case we have

k 6= 0, and we conclude that IG
(
λV0,0,k,l

)
= V . This implies that λV0,0,k,l in-

duces to an irreducible character of G.

The center of G is given by 〈c, d〉. Hence λG0,0,k,l(c) = p2λ0,0,k,l(c) = p2ζk

and λG0,0,k,l(d) = p2λ0,0,k,l(d) = p2ζ l. Therefore each of the characters above

yields a different character λG0,0,k,l ∈ IrrC(G). Furthermore we have k, l ∈ I∗,

hence we obtain (p− 1)2 characters from the construction above. This is ex-

actly the number of irreducible characters of G of degree p2 and we conclude

that we found all the characters we were looking for.

Let us determine the value of λG0,0,k,l at g:

Since λ0,0,k,l ∈ IrrC(G′) we clearly have λG0,0,k,l(g) = 0, if g /∈ G′, i.e. if ξ 6= 0

or if υ 6= 0.

Now let g ∈ G′.

We have that {ysxr | r, s ∈ I} is a set of coset representatives for G/G′. Hence

we obtain

λG0,0,k,l(g) =
∑

r∈I
∑

s∈I λ0,0,k,l(x
−ry−sgysxr) =∑

r∈I
∑

s∈I λ0,0,k,l(x
−ry−saαbβcγdδysxr)

(Induction)
=∑

r∈I
∑

s∈I λ0,0,k,l(x
−raαbβcγdδ+sαxr) =

∑
s∈I ζ

sα
∑

r∈I λ0,0,k,l(x
−raαbβcγdδxr)

(4.2.7)
=

{
0, if α 6= 0

p
∑

r∈I λ0,0,k,l(b
β+rαcγ+rβdδ), if α = 0.

Together we obtain λG0,0,k,l(g) =

{
0, if g /∈ {c, d} ,
pζkγ+lδ, otherwise.

The investigation of the irreducible characters of G is now complete.



Let us finally state a very nice conclusion, which we easily obtain by looking

at the generic character table of G.

Theorem 4.3.20 All irreducible characters of G of degree p2 are tensor de-

composable.

Proof We look at Table 4.3, the generic character table of G. Every irre-

ducible character of degree p2 (confer the last row) is a product of a character

from the second row with a character from the fourth row, hence it is tensor

decomposable.





Chapter 5

GAP

During my work on this thesis I gained some valuable results using the com-

puter algebra system GAP [GAP] whose development has been started at

Lehrstuhl D für Mathematik, RWTH Aachen. GAP is a system for compu-

tational discrete algebra, with particular emphasis on Computational Group

Theory. It provides a programming language, a library of thousands of func-

tions implementing algebraic algorithms written in the GAP language as well

as large data libraries of algebraic objects. For this work the most useful one

was the SmallGroups library, which is written by E. A. O’Brien, B. Eick, and

H. U. Besche.

The SmallGroups library contains all groups of certain ”small” orders.

The word ’small’ is used to mean orders less than a certain bound and orders

whose prime factorisation is small in some sense. The groups are sorted by

their orders and they are listed up to isomorphism; that is, for each of the

available orders a complete and irredundant list of isomorphism type repre-

sentatives of groups is given. Currently, the library contains the following

groups:

∗ those of order at most 2000 except 1024 (423 164 062 groups)

∗ those of cubefree order at most 50 000 (395 703 groups)

∗ those of order pn for n ≤ 6 and an arbitray prime p
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∗ those of order qn ·p where qn divides 28, 36, 55 or 74 and p is an arbitrary

prime not equal to q

∗ those of squarefree order

∗ those whose order factorises into at most 3 primes

The library also has an identification function: it returns the library num-

ber of a given group. Currently, this function is available for all orders in the

library except for the orders 512 and 1536 and for p5 and p6 above 2000.

I used GAP to investigate p-groups, looking for the existence of irre-

ducible tensor decomposable characters. In the following we shall present

observations and results as well as the way we gained those by using GAP.

5.1 Check if there are groups of certain order

possessing a tensor decomposable charac-

ter

In order to check if there are groups of order n possessing a tensor decom-

posable character I wrote a small GAP-program consisting of defined GAP

routines. This program is particularly written for groups of order p5 and p6.

In the following we will first see the GAP code, which already contains some

comments, indicated by #. Subsequently we will give a more detailed ex-

planation of the source code and provide an overview which results I gained

using this program.

1 tensorsmall:=function(n, d1)

2 # returns a list S consisting of the ids of the groups of

3 # order n which possess a tensor decomposable character.

4 # The tensored character then has degree d1*d1 and is the

5 # product of two characters, each of degree d1.

6



7 local S, ids, i, g, ct, irr, ChOfSmallDeg, ChOfLargeDeg,

8 TensCh, M, Nil;

9

10 S:=[];

11 ids:=IdsOfAllSmallGroups(n);

12

13 for i in [1..Length(ids)] do

14 g:=SmallGroup(ids[i]);

15

16 if IsAbelian(g) = false

17 then

18 ct:=CharacterTable(g);

19 irr:=Irr(ct);

20 ChOfSmallDeg:=Filtered(irr, c -> Degree(c) = d1);

21 ChOfLargeDeg:=Filtered(irr, c -> Degree(c) = d1*d1);

22

23 if (Length(ChOfLargeDeg)>0 and Length(ChOfSmallDeg)>0)

24 then

25 TensCh:=Tensored(ChOfSmallDeg,ChOfSmallDeg);

26 M:=MatScalarProducts(TensCh, ChOfLargeDeg);

27 Nil:=NullMat(Length(ChOfLargeDeg),Length(TensCh));

28

29 if((M=Nil) = false)

30 then

31 Append(S,[ids[i]]);

32 fi;

33 fi;

34 fi;

35 od;

36

37 return S;

38 end;;



After defining local variables in Line 7 we generate by IdsOfAllSmallGroups

a list of the library numbers of all groups of order n (Line 11), where n is

given by the input of the user.

Now for every library number we perform the following procedure:

Generate the group corresponding to the respective library number by the

command SmallGroup (Line 14).

Next we want to reduce the number of groups we are working with by fast

methods. Therefore we first check by the command IsAbelian whether the

generated group is abelian or not (Line 16).

We continue to investigate this group just in case it is not abelian, since

abelian groups only have irreducible characters of degree 1, hence they do

not have tensor decomposable characters.

We go on and generate the character table of g in Line 18.

However this does not give us all information we need so that we generate

all irreducible characters of g with the command Irr(ct) (Line 19).

Subsequentely, in Lines 20 and 21 respectively, we produce lists ChOfSmallDeg

and ChOfLargeDeg which consist of all irreducible characters of g of degree

d1 and d1 ∗ d1 respectively.

Now we check by Length(ChOfLargeDeg)>0 and Length(ChOfSmallDeg)>0)

(Line 23), if the group possesses at least one irreducible character of degree

d1 and one of degree d1∗d1. For groups of order p5 or p6 the only possibility

for a tensor decomposable character is a character of degree p2, which then

must be a product of two characters each of degree p. Since every group has

at least one linear character, the trivial character, we are looking for a group

which has irreducible characters of degree 1, p and p2. Thus we can elimi-

nate all groups whose irreducible characters have only two or less different

degrees.

If both lists contain at least one entry, which means that there is at least

one irreducible character of degree d1 and one of degree d1 ∗ d1, then we

investigate if one of the characters in the list ChOfLargeDeg is a product of

two characters contained in ChOfSmallDeg (Lines 24-29). This will be done

using the following commands:

The function Tensored (Line 25) creates a new list of characters out of the



parameters we pass on, i.e. out of two lists of characters. The result is a

list containing all products of characters of the two lists we passed on. This

list, named here with the variable TensCh, is now passed on together with

the list ChOfLargeDeg to the function MatScalarProducts (Line 26). We

obtain a matrix whose entries are the scalar products of each pair of charac-

ters, where one of the characters comes from TensCh and the other one from

ChOfLargeDeg. Hence we compute scalar products of two characters both

of degree d12, where the one from the list ChOfLargeDeg is an irreducible

character. Hence the only possible result for each entry of this matrix is 1 or

0. We obtain 1 if and only if the two characters are the same, and 0, if and

only if they are different from each other. Comparing this matrix with the

zero matrix (Line 29) we can test, if one of the characters in ChOfLargeDeg is

a product of two characters contained in ChOfSmallDeg. In case the matrix

M of all scalar products is not the zero matrix we append the library number

of the respective group we were working with in this step to the list S (Line

31). Finally S contains all library numbers of groups of order n which have

a tensor decomposable character which is of degree d1 · d1 and we return S

(Line 37).

Results:

First I used the program for all groups of order p5 for various primes p and

checked, if any of them possessed a tensor decomposable character. However

for all p-groups I considered, which were all groups of order p5 with p ≤ 17,

I saw that neither of them has such a character. Hence I wondered whether

this is the case for all groups of order p5, where p is an arbitrary prime num-

ber and tried to prove this claim which finally worked out. The proof can be

seen in 3.1.1.

After having proven that there are no groups of order p5 which have a tensor

decomposable character I started to investigate groups of order p6. Obvi-

ously, using the above program for p6, the amount of time to obtain results

became longer and longer. However I saw that there are groups of order p6

for p ∈ {2, 3, 5, 7, 11} with the desired property. This led me to conjecture



that for any prime number p there is a group of order p6 possessing a tensor

decomposable character. The result can be seen in 3.3.1. Furthermore I ob-

served that for p ∈ {5, 7, 11} all groups G of order p6 with Z(G) ∼= Cp × Cp

and derived subgroup G′ ∼= Cp × Cp × Cp × Cp have a tensor decomposable

character. Therefore I started to wonder if possibly all groups with these

properties have a tensor decomposable character. Yet this problem seemed

to be anything but obvious.

Let us finally present the output of the above program for p6 with p = 2

and p = 3 in order to get a better understanding of the whole context and

moreover to prove that there are tensor decomposable characters of groups

of order 26 and 36. For p = 2 we obtain the following output:

[ [ 64, 8 ], [ 64, 9 ], [ 64, 10 ], [ 64, 11 ], [ 64, 12 ],

[ 64, 13 ], [ 64, 14 ], [ 64, 128 ], [ 64, 129 ], [ 64, 130 ],

[ 64, 131 ], [ 64, 132 ], [ 64, 133 ], [ 64, 140 ], [ 64, 141 ],

[ 64, 142 ], [ 64, 143 ], [ 64, 144 ], [ 64, 145 ], [ 64, 155 ],

[ 64, 156 ], [ 64, 157 ], [ 64, 158 ], [ 64, 159 ], [ 64, 160 ],

[ 64, 161 ], [ 64, 162 ], [ 64, 163 ], [ 64, 164 ], [ 64, 165 ],

[ 64, 166 ], [ 64, 226 ], [ 64, 227 ], [ 64, 228 ], [ 64, 229 ],

[ 64, 230 ], [ 64, 231 ], [ 64, 232 ], [ 64, 233 ], [ 64, 234 ],

[ 64, 235 ], [ 64, 236 ], [ 64, 237 ], [ 64, 238 ], [ 64, 239 ],

[ 64, 240 ] ]

Analogously we obtain a similar output for p = 3:

[ [ 729, 40 ], [ 729, 41 ], [ 729, 42 ], [ 729, 43 ], ... ]

This shows that there indeed are groups of order 26 and 36 which have a

tensor decomposable character. However we are looking for a group which is

not the direct product of two non-abelian groups of order 23 respectively 33.

Otherwise we could easily construct a tensor decomposable character (refer

to 3.2.1). Therefore we will use the command

ClassPositionsOfDirectProductDecompositions(CharacterTable(G)).

This returns a list of all those pairs [L1, L2] where L1 and L2 are lists of



class positions of normal subgroups N1, N2 of the group G such that G

is their direct product and such that |N1| ≤ |N2| holds. For the group

G=SmallGroup([64,8]) we obtain the output: [ ]. Hence this group is

not a direct product at all.

For the group G=SmallGroup([729,40]) we also obtain the empty set

here. Thus, in the sense of 3.2.1, we found a non-trivial example of a group of

order 26 and a group of order 36 possessing a tensor decomposable character,

namely the groups of the GAP ’SmallGroups’-library with the library number

[64, 8] and [729, 40].

5.2 Obtain a representation of a group con-

tained in the GAP library

I proved that for any prime number p ≥ 5 there always is a group of order p6

possessing a tensor decomposable character by giving an explicit construction

of such a group using power commutator presentations. The resulting group,

including the proof that it actually is a group with the desired properties, is

given in 3.3.1.

In order to find an appropriate presentation I used some GAP code which

will be described subsequently. With the program of the previous section

I obtained library numbers of groups contained in the GAP library for p ∈
{2, 3, 5, 7, 11}. The task now was to find a suitable presentation of one of

these groups which I could use to find a general group of order p6 possessing a

tensor decomposable character. I gathered some further general information

about such a group in 3.2.4. Having obtained these results I tried an approach

via finding generators for the derived group and the commutator factor group,

taking representatives of each generator of the commutator factor group and

determining the order and all commutators of these elements. I aimed at

being able to generalize the order, e.g., if for p = 3, the order of an element is

9, I defined in general the order of this generator element to be p2, and so on.

As mentioned earlier I observed that for p ∈ {5, 7, 11} all groups G of order

p6 with Z(G) ∼= Cp×Cp and derived subgroup G′ ∼= Cp×Cp×Cp×Cp have



a tensor decomposable character. Therefore the GAP code was particularly

written for groups with these properties. We will see it in the following:

1 g:=SmallGroup(<libary number>);

2 cg:=DerivedSubgroup(g);

3 cfgg:=FactorGroup(g,cg);

4

5 genscg:=GeneratorsOfGroup(cg);

6

7 a:=genscg[1];

8 b:=genscg[2];

9 c:=genscg[3];

10 d:=genscg[4];

11 genscfgg:=GeneratorsOfGroup(cfgg);

12 x:=genscfgg[1];

13 y:=genscfgg[2];

14

15 preimagex:=PreImages(NaturalHomomorphismByNormalSubgroup(g,cg),x);

16 preimagey:=PreImages(NaturalHomomorphismByNormalSubgroup(g,cg),y);

17

18 x_:=Representative(preimagex);

19 y_:=Representative(preimagey);

20

21 gnew:=Subgroup(g,[a,b,c,d,x_,y_]);

22 hom:=EpimorphismFromFreeGroup(gnew:names:=["r","s","t","u","v","w"]);

23

24 Print(Order(cg),"\n",

25 Order(a),",",Order(b),",",Order(c),",",Order(d),",",

26 Order(x_),",",Order(y_),"\n",

27 PreImagesRepresentative(hom,Comm(a,x_)),"\n",

28 PreImagesRepresentative(hom,Comm(b,x_)),"\n",

29 PreImagesRepresentative(hom,Comm(c,x_)),"\n",

30 PreImagesRepresentative(hom,Comm(d,x_)),"\n",



31 PreImagesRepresentative(hom,Comm(a,y_)),"\n",

32 PreImagesRepresentative(hom,Comm(b,y_)),"\n",

33 PreImagesRepresentative(hom,Comm(c,y_)),"\n",

34 PreImagesRepresentative(hom,Comm(d,y_)),"\n",

35 PreImagesRepresentative(hom,Comm(x_,y_)),"\n"

36 );

By the routine SmallGroup (Line 1) GAP generates a group, here named

g, with the respective library number which the user has to pass on as a

parameter. As explained above I tried to find generators for the derived

subgroup and the commutator factor group, here named by cg and cfgg

respectively (Lines 2,3). This can be easily done by using the command

GeneratorsOfGroup (Line 5). I named the generators of the commutator

group a,b,c,d and the generators of the commutator factor group x,y. How-

ever I did not exactly need generators of the commutator factor group, but

elements of the group so that their image in the factor group are generators.

Hence I had to do some more work.

With the command NaturalHomomorphismByNormalSubgroup(g,cg) in Line

15 I first created the natural group homomorphism of the group g into the

factor group g/cg and then passed it on as a paramenter to the routine

PreImages(f,el). The routine PreImages(f,el) returns a preimage of the

element el under the homomorphism f (in case f is a homomorphism and

el contained in its image). Using these two commands I was able to obtain

cosets which generate the commutator factor group. Finally, with the com-

mand Representative, I obtained the desired elements (Lines 18,19).

We now want to know the order of our elements and their commutators. De-

ducing the order of elements is rather easy. It just requires to enter the com-

mand Order (Lines 24,25). Yet it was not that simple to obtain useful outputs

for the commutators. A small trick was necessary. First define a group gnew

as a group generated by a,b,c,d,x_,y_. We do this by using the command

Subgroup (Line 21) and generate gnew as a subgroup of the group g. Then we

define a homomorphism by the command EpimorphismFromFreeGroup (Line

22). With a known generating set (which here consists of the generators of



the derived subgroup a,b,c,d and the elements obtained from the genera-

tors of the commutator factor group x_,y_), this routine returns a homomor-

phism from a free group that maps the free generators (here r,s,t,u,v,w)

to the groups generators. Now we can represent a by r, b by s, c by t

etcetera. The function Comm (Lines 27-35) returns the commutator of two

elements. Using the routine PreImagesRepresentative (Lines 27-35) I then

obtained the results for the commutators of all pairs of elements in the vari-

ables r,s,t,u,v,w. Thereby I could easily guess what the commutator in

the group of order p6 with any arbitrary prime p might look like.

We now give an example and present the output of the above program

for the library number [15625,555] (which is the library number of a group of

order 56 possessing a tensor decomposable character, having an elementary

abelian derived subgroup of order p4 and having an elementary abelian center

of order p2):

625

5,5,5,5,5,5

s

<identity ...>

<identity ...>

<identity ...>

t

<identity ...>

u

<identity ...>

r^4

This means that the order of the commutator group is Order(cg)=625,

the order of all a,b,c,d,x_,y_=5, the commutator Comm(a,x_)=s which

means [a,x]=b, Comm(b,x_)=<identity> which means [b,x]=1,..., and the

commutator Comm(x_,y_)=r^4 meaning [x,y]=a^4.



Generalising this we obtain the following presentation:

〈a, b, c, d, x, y | ap, bp, cp, dp, xp, yp, [a, b] , [a, c] , [a, d] , [b, c] , [b, d] , [c, d] ,

[a, x] b−1, [b, x] , [c, x] , [d, x] , [a, y] c−1, [b, y] , [c, y] d−1, [d, y] , [x, y] a〉.

At this point it is worth pointing out that lots of attempts did not work

out in general. However I gained more and more experience which relations

might be suitable and which not. Finally I found more or less coincidently a

presentation which actually fulfilled all our needs. This presentation with a

subsequent proof that this indeed is a group of order p6 possessing a tensor

decomposable character can be found in 3.3.1.
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