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Preface

This work deals with the investigation of p-groups with respect to the ex-
istence of tensor decomposable characters, i.e. irreducible characters which
are products of two non-linear irreducible characters.

Using the computer algebra system GAP [GAP] we made some valuable ob-
servations. On the one hand we saw that no group of order p° with p < 17
has a tensor decomposable character. This led us to conjecture that for any
prime number p there is no group of order p® possessing such a character,
and we finally succeeded in proving this claim.

On the other hand we noticed that there are groups of order p® for p €
{2,3,5,7,11} with a tensor decomposable character. This in turn led us to
conjecture that for any prime p there always is a group of order p® possessing
such a character.

Obviously we were not looking for a trivially tensor decomposable character.
By that we mean an irreducible character x € Irrc(G) of a group G with
normal subgroup N < G such that there exist irreducible projective charac-
ters U of G and € of G/N with Jy = o such that y =0 - .

The approach to prove what was conjectured before was to explicitly con-
struct a non-trivial example of a group of order p® with a tensor decomposable
character for an arbitrary prime p using power commutator presentations.
In order to find an appropriate presentation GAP again happened to be
rather useful. Indeed we reached the goal to find a presentation for a group
with the desired properties.

As final result we worked out the generic character table of this particular
group. Looking at the table we can see that not only G possesses a tensor
decomposable character, but that actually all irreducible characters of degree

p? are tensor decomposable.
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Chapter 1
Basics from Group Theory

Let throughout this chapter G be a finite group.

1.1 Semidirect products

Let us first recall some properties about the direct product of groups.

Let H, N be two subgroups of G.

If the three conditions
(1) H,N <G,
(2) HN =G,
(3) HNN ={1}

hold, GG is isomorphic to the outer direct product H x N.
For the sake of simplicity we shall use the following notation for the conju-

gation:
Notation 1.1.1 Let N <G and g € G. We denote the conjugation on N
with g by 7,, i.e.

Yg: N — N, n+ g 'ng.

It is easy to see that v, is an automorphism of N.
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Notation 1.1.2 Let N be a group.

(1) If ¢ € Aut(N) is an automorphism of N, we write n¥ for the image of

n under ¢, where n € N.

(2) Further for two elements x,y € N the conjugation of y with x is written

1

as y* = v 'yx and ®y = zyx ! respectively.

(3) We define the commutator of x,y € N as [x,y] = 2 'y lzy.

Remark 1.1.3 Let H, N < G.

(a) If N is a normal subgroup of G, then the commutator [k, n| is contained
in N forallhe H,ne N.

(b) G is the direct product of H and N, if and only if

(1') hn=nh forall h€ H,n € N,
(2) HN =G,
(3) HNN ={1}.
Proof
(a) By definition we have [h,n] = A 'n"'hn € N.
N
€

(b) Suppose G is the direct product of H and N. From part (a) we know
that [h,n] € HNN forallh € H,n € N. Since HNN = {1} it follows
that [h,n] = 1forallh € H,n € N, i.e. property (1) holds. Properties

(2) and (3) follow immediately from the assumption.

For the other direction suppose that properties (1’), (2) and (3) hold.
Let ne N, g=hm € G with h € H, m € N. Then we have

g 'ng=m"'hInhm 0 m~'nm € N, hence N < G.



Similarly we can show that H < G. Thus, property (1) holds, proper-
ties (2) and (3) hold by assumption. Hence G is the direct product of
H and N.



Definition 1.1.4 Let H, N < @.
G is called the (inner) semidirect product of H with N, if

(1) N <G,
(2) HN =G,
(3) HNN ={1}.
In this case H is called a complement of N in G.

Example 1.1.5

(1) G=S, (n>2), H={((1,2)), N =A,.
Then G is the semidirect product of H with N.

(2) Let K be a field, G the group of monomial (n x n)-matrices over K
(n > 2). Furthermore let 7' < G be the group of diagonal matrices and
W < G the group of permutation matrices. Then ' I G, WNT = {1},
G=WT.

(3) Let G = Dy, the symmetry group of a regular n-gon and let D = (d) <
G be the subgroup of rotations. If S = (s), where s is a reflection, then
G is the semidirect product of S with D.

Remark 1.1.6 Let G be the semidirect product of H with N < G; then:

(1) Every g € G has a unique representation as a product hn with h € H,
n € N (normal form).
(2) For h,i € H, n,n’ € N we have (hn)(h'n’) = (hh') (n"™"n’).

S~ N~
€eH EN

Proof

(1) The existence of the decomposition is clear. Let us show uniqueness:
Suppose hn = h'n’, with h,h’ € H, n,n’ € N. Then we obtain
(MY *h=nnte HNN ={1},ie. h=0' n=n'"



(2) (hn)(h/n,) = hh' (h,)_lnh/ "' — hh/'nw !
A/_/

n'Yh/

Definition 1.1.7 Let H and N be groups. We say that H acts on N as a

group of automorphisms, if

(1) H acts on N, and

(2) the action homomorphism ¢ : H — Sy maps H to Aut(N) < Sy, i.e.
(nn')?M) = netpe®) for all h € H, n,n' € N.

Remark 1.1.8 Let N < G.

(1) G acts on N by conjugation, the action homomorphism is

©: G — Aut(N): g — 7,.

(2) If H < G is a complement to N in G (i.e. HN =G, HN N = {1}),
then H acts on N.

(3) If N is abelian, then G/N acts on N.
Indeed ¢: G/N — Aut(N), gN +— 7, is well-defined, since N is

abelian.

Definition 1.1.9 Let H, N be two groups. Suppose H acts on N as a group
of automorphisms.

The semidirect product of H with N w.r.t. ¢: H — Aut(N), written as
H x, N (or just as H x N, if ¢ is clear from the context), is the group with
underlying set H x N and multiplication defined by:

(h,n) - (', n') == (hh',n?")n"), where h,h' € H,n,n' € N.

Convention: Let H, N be groups. If we say that H acts on N, we mean

an action as a group of automorphisms.



Remark 1.1.10 Let H, N be groups, ¢: H — Aut(N). Then G := H x,N
is a group.
Let H := {(h,1) € Hx N|h € H} and N := {(1,n) € Hx N|n € N}.
Then

HN<G N<G HN=G,HNN = {1}.

The action of H on N by conjugation is equivalent to the given action of H
on N.

1.2 Free groups and presentations

1.2.1 Free groups

A presentation is a way to define a group. This concept involves so-called
free groups. In the following we shall give a brief introduction into these

two topics. We shall state and prove relevant theorems we later work with.

Definition 1.2.1 Let F' be a group, X C F. Then F is called a free
group on X, if for all groups GG and all maps f: X — G there is a unique
homomorphism ¢: F' — G with ¢|x = f. In this case X is also called a free
generating set of F.

Remark 1.2.2
(1) Let F be a free group on X C F. Then (X) = F.
(2) Let F and G be free groups on X C F and Y C G respectively. If
| X| =Y, then FF = G.
Proof
(1) Put G = (X) < F. Now consider the map f: X — G, z — x. Since I’

is a free group we know that there exists a homomorphism ¢: F' — G
such that p(x) = f(x) for all x € X. Let «: G — F denote the

inclusion; then

top: F— F is a group homomorphism with to ¢|x =t o f|x,and

Idg: F — F is a group homomorphism with Idg |x = o f|x.



By the uniqueness of such homomorphisms we obtain toyp = Idg, hence

¢ is surjective, i.e. G = F.

(2) Let f: X =Y CGand g: Y — X C F be maps with fog = Idy
and g o f = Idx. By definition there exist group homomorphisms
¢: F — Gand : G — F with g 09|y = Idy and ¢ o p|x = Idx. By
the uniqueness we conclude that ¢ o = Idg and ¥ o ¢ = Idp, hence

@ and 1) are isomorphisms.

Definition 1.2.3 Let X be a set.

(1) A word of length n € N over X is a sequence (z1,...,2,,) with z; € X
for all 1 <17 < m, shortly written x1xs - - - x,,.
The unique word of length 0 is called the empty word and denoted by
. The set of all words over X is denoted by X*.

(2) Foroz =129, T, Yy = 11Y2 - - - Yp In X* We put zy 1= 2129+ - Tyt * ** Yn

(the concatenation). Through
X" x X" = X" (z,y) — xy

X* becomes a monoid (with neutral element ¢), called the free monoid

over X.

Theorem 1.2.4  Let X be a set. Then there exists a group F and an
injective map v: X — F such that F is a free group on o(X) (in this situation
we usually identify X with «(X) C F and call F' the free group on X. Note
that F' only depends on the cardinality of X ).

Proof Put X*:=X x {1,-1}.

For (z,a) € X* we shall write 2% and for (x,1) we shall also write x. Now
let us define an equivalence relation ~ on (X*)* by:

u ~ v if and only if there is a sequence u = wy,wo, ..., w,, = v such that
w; — Wiy or wip, — w; for all 1 <7 < m.

Here we write s — ¢ for s,t € (X*)*, if ¢ is obtained from s by an ”elementary



cancellation”, i.e. t = ax®r~*b, s = ab, with a,b € (X*)*, v € X, a €

{1,-1}.
For w € (X*)* let [w] denote the equivalence class containing w. Put F :=
{[w]|w € (X*)*}. Then:

(1)

F is a group with multiplication [v][w] := [vw], v,w € (X*)*.
The identity element is [¢] € F and for x1,..., 2, € X, a1,...,q, €
Ca

{1, -1} we have [z{* - zom]~1 =[x @m .. 27"

1: X — F: x> [z] is injective.
We have to show: If z,y € X with  ~ y, then x = y. More generally
for x € X we have: If © ~ 2" -+ 2% with z; € X, o; € {1,—-1}, 1 <

i <m,then |{i|1 <i<m,z=ua}isoddand [{i|1 <i<m,z # x;}|

1S even.

Universal property: Let G be a group and f: «(X) — G a map. Define
o F — G by ([ - 28m]) = F([oa)® - (]}, 75 € X, o €
{1,—1}, 1 < i < m. Then ¢ is well-defined, a group homomorphism
and f = o|,(x).

If ¢": F — G is a group homomorphism with ¢'|,(x) = f, then ¢’ = ¢,
since (¢(X)) = F by construction.

Example 1.2.5

(1)
(2)
(3)

The free group on X = () is the trivial group.
The free group F on X = {x} is isomorphic to (Z, +), F' = {z*| z € Z}.

If | X| > 2, the free group F on X is not abelian. In order to see that
let z # y € X. By definition of a free group there is a (surjective)

homomorphism

x— (1,2)
F— Ss3: y— (1,2,3)
z— 1, if z ¢ (z,y)

Since Ss3 is not abelian F' neither is.



1.2.2 Presentations

Definition 1.2.6 Let G be a group, S C G. We define

wsn= [

N<G, SCN

called the normal closure of S in G, which is the smallest normal subgroup
of G containing S. Note that

((S)) = (97 'sglge G ,se€Sf).

Definition 1.2.7 Let G be a group. A presentation of G' (by generators
and relations) is a pair (X, R), where X is a set and R is a subset of the free
group F' on X, such that G = F/((R)) =: (X | R).

We call (X | R) finite, if X and R are finite. In this case G = (X | R) is
called finitely presented.

Remark 1.2.8 (X | R) is the most general (largest) group generated by

the set X whose elements satisfy the relations r = 1 for r € R.

Remark 1.2.9 Let G be a group, S C G such that (S) = G. Then there
exists a set X, a bijection f: X — S and a presentation G = (X | R). If G

is finite, it is finitely presented.

Proof Let X be a set with |X| =|S| and let f: X — S be a bijection. Let
further F' be the free group on X and ¢: F' — G be the extension of f. Then

¢ is surjective and G = (X | R) for R C G with ((R)) = ker(¢p).

Let G be finite, G := {g|g € G} a set with |G| = |G| and a bijection
[:G—=G:g—g.

Let F be the free group on G and let ¢ be the homomorphism F — G extend-

ing f. Then ker(p) = <({§Eﬁ_1 lg,h € G})),ie. G= <a|ﬁﬁg_h_l,g, h e G>.

Theorem 1.2.10 Let G, H be groups, G = (X | R) a presentation of G. Let
F be the free group on X and f: X — H be a map with extension ¢: F — H.



If o(r) =1 for allr € R (in this case we say the elements f(z), v € X satisfy
the relations R), then there exists a homomorphism ©: G — H such that the

following diagram commutes

F

Y

G

Here  is defined by

P FI(R)

IS

where v(gyy denotes the canonical map vy gy : F' — F/((R)) and o denotes
the isomorphism o : F/{(R)) — G.

|

G

In particular, if H is generated by f(x), x € X, then H is isomorphic to
a factor group of G.

Proof By assumption R C ker(y), hence ((R)) < ker(y).
Writing ¢: F/{(R)) — H: w({R)) — ¢(w), the homomorphism @ := goa~!

satisfies the assertion.



Example 1.2.11

(1) Let C,, be the cyclic group of order n. Then C,, = (z|z").
(2) Let Dy, be the dihedral group of order 2n. Then Dy, = (x,y | z2, 32, (zy)™).

Proof In each of the two cases let G be the group defined by the respective

presentation. We view X as a subset of G.

(1) Let C), = (a).
Since a" = 1, there is a homomorphism ¢: G — C,, with ¢(z) = a,
which is clearly surjective. Hence |G| > |C,| = n. Now G = (x) is

cyclic, 2" =1, i.e. |G| < n. Hence |G| =n and ¢ is an isomorphism.

(2) We have that D, = (s,t) with involutions s, t such that d := st
has order n. Hence by 1.2.10 there exists a surjective homomorphism
G — Dy, x+— s, y—t, and so |G| > |Dsy,| = 2n.

In G we have

g ay)r =yr =y a7t = (zy) T,
y Hayy =y lz =y a7t = (zy) L

Therefore D := (zy) < G as well as [(zy)| < n. From G = (z,y) =
(xy,y) we conclude that G = D U Dy.

Remark 1.2.12 Let X be a set, F' the free group on X and let R, S C F.
Let G be a group with presentation (X |R), i.e. G = F/{(R)), and let

7: ' — G be an epimorphism with kernel ((R)).
If N:={(n(5)))g, then G/N = (X |RUS).

Proof Put H := (X |RUS) = F/K with K = ((RUS)) and let

f: X —H:x— xK and ¢: F — H its extension. Since R C K we have
p(r) =1 for all » € R. By 1.2.10 there is a group homomorphism ¢: G — H
such that om = ¢. Since H = (¢(x) | x € X) the map P is surjective.
Now ker(p) = n(K) = ((r(RUS)))e = ((7(5)))e = N. Since 7 is surjective
we obtain G/N = G/ker(¢) = H=(X|RUS).



Theorem 1.2.13 Let (X | R) be a presentation for a group G. Then
G/G" =2 (X |RUS) with S = {[z,y]|z,y € X}.

Proof Let F be the free group on X, 7: FF — G = F'/((R)) the canonical
homomorphism. By 1.2.12 (X | RUS) is a presentation for G/{{(m(95)))c. We
have to prove ((w(S5)))e = G'. Let z,y € X; then n([z,y]) = [n(z),7(y)] €
G’, hence 7(S) C G’ and therefore ((7(S5)))¢ C G'.

We have that G is generated by {m(z) |z € X}.

Furthermore [7(x),7(y)] = 7n([z,y]) € ((7(5)))¢ for all z,y € X. Thus
G/((m(9)))¢ is abelian, i.e. G' C ((7(9)))q.

Remark 1.2.14 Let X, Y be disjoint sets, G = (X | R), H = (Y| S). Then
GxH=(XUY|RUSU{[z,y]lr € X,y e Y}).

Corollary 1.2.15 Let F' be the free group on a finite set X = {x1,...,z,.}
with r elements. Then F/F" = (zy,..., x| |2, 25, 1 <i,j <r) and F/F' is

a free abelian group of rank r.

Proof The first statement follows from 1.2.13 (with F =G, 7 =1d, R = (),
S = {[z,y]|x,y € X}). To prove the second statement we show F/F’ =
Z X7 % --- X Z (r factors) by induction on r.

By 1.2.5(2) we have (x, |()) = Z and by induction we obtain

LX - XL=(x, .. T | [T, 2], 1 <d,5 <r—1).

r—1 factors

Using 1.2.14

\ZX'”XZ;g(\ZX“'XZ))XZ

TV TV
r factors r—1 factors

<I1,---,$T_1|[£U7;,Ij], 1 §27JST_1> X <xr|®>
<x1a-'~7$r|[xiaxj]7 1§Z,j§T>gF/F/

I
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Theorem 1.2.16 Let X and Y be sets and Fx and Fy be the free groups on
X and Y respectively. Let further R C Fx, S C Fy and define two groups
by the presentations H :== (X | R) and N := (Y | S) respectively. Moreover
let o : H — Aut(N), h — (n+— n?M) be a group homomorphism, so that
we can construct the semidirect product of H and N.

Then a presentation of the group H x N is given by
HxN =2 (XUY | RUSU{y"(y*®)ze X, yeY)).

Let R:= ((R)) < Fx, S := ({S)) < Fy and let Fx_y be the free group on
X UY. We shall view Fy as a subgroup of Fxyy .
For v € X U X! the symbol y?@) € Fx.y denotes an arbitrarily chosen
preimage of the element (yS)# ¢(@R) ¢ N in Fy < Fxuy. Note that y?® S =
(y9)?@R)  Finally write T = ((RUSU{y*(y*@) |z e X, yeY})

Fxyy.

Proof Define
G = (XUY |RUSU{yF @ N zeX, yeY))

as a quotient of Flxyy.

We have a surjective group homomorphism

¢: G— Hx, N
oT s (2R,1)
yT — (1,y§)

where z € X and y € Y. This can be seen using 1.2.10. In fact ¢ is induced
by a homomorphism F_y that maps elements z € X to (zR,1) and y € Y
to (1,y5). Now check that all relations of G’ belong to the kernel. Elements of
RUS clearly map to (1,1). Given y € Y and x € X, the element y®(y*®))~!

is mapped to

(1L,yS) "™ (1,57 8) = (1, (45) ) (1,(y5)“"(m)) ~(1,1).



Hence ¢ actually is a group homomorphism. Clearly it is surjective since
H %, N is generated by {(zR,1) |z € X} U{(1,yS)|y € Y}. Furthermore
we have a group homomorphism N —— G that maps yS to yT', where y € Y.
And we have a group homomorphism H —— G that maps =R to zT, where
r e X.

It remains to show that ¢ is injective. Suppose that x € X and y € Y.
(i) By the definition of T' we have (yT')(zT) = («T) (y*)T).
(i) Again by the definition of T we have (y 'T)*T = (y*T) " = (y#)T) -
and thus (y'7) («T) = (2T) ((*®) 7' T).

(i) Write y#=™) = ¢ ...y® in Fy, where k > 0, y; € Y and o; €
{=1,+1}. We obtain

(y"’(fl)T) T (D)™ -+ (e T)**)="
= (D)™ (g )
(7 OT)™ - (T
((fyer o gy T

Now

yf(z)g)al o (y]f(:v)g)ak
ylg)w(ﬂcﬂ’»))al o ((ykg)w(wR))ak

) 8T
yw(fl)g)so(wf?)

()™ )8 =

An application of N —= G yields ((yf(z))o‘1~-(y,f(m))°‘k)f = yT.
Hence (y‘P(fl)T)gcT = yT. Therefore, (yT)(x7'T) = (x_lf)(y*"(fl)f).

1 -1, (47)

(iv) Wehave (y'T)* T = (y* 'T)"" "= (y#@ D7) and thus (y 7)) (z'T) =



(@' T)((y?* )T,

Let us summarise our observations. Given x € X and y € Y, we have

(I (xT) = (aT)(y?™T),

(y ') (@T) = (@T)((y*)~'T),
WI)(a'T) = (@ 'T)(y*" T),
(y D)@ 'T) = (@ 'T) (" )'T).

Thus any element of G’ may be written as a product (1) (nT), where ¢ € Fy
and n € Fy. Such an element (£T)(nT) is mapped to (ER,1)(1,17S) =
(€R,nS) under ¢. If it is mapped to (1,1), we have £R = 1 and S = 1.
Applications of v and y show that this implies €7 = 1 and nT = 1. Hence
(€T)(nT) = 1. This proves that ¢ is injective, hence an isomorphism and the

proof is complete.






Chapter 2

Basics from Character Theory

2.1 Products of characters

For two characters x and v, afforded by two C [G]-modules V' and W of a
finite group G it is easy to see that the product x -1 is a class function again,
i.e. a map which is constant on each conjugacy class. However it is rather
not obvious that y -1 is a character of G again. In order to see that we will
define a new C [G]-module with the property that its afforded character is
exactly the product of the two characters y and ). Then we can immediately
deduce that the product of any two characters yields a character again. In
the following we shall first define the tensor product of two C-vector spaces
V and W which in the first place will be a C-vector space again. In case
V and W also are finite dimensional C[G]-modules we shall see later that
the resulting tensor product also has a structure as C [G]-module and which
affords the product of the characters afforded by V' and W.

Definition and Remark 2.1.1

(1) Let V and W be two finite dimensional C-vector spaces. Then there
is a C-vector space V QW of dimension dim¢ V' - dime¢ W and a C-
bilinear map ¢ : V x W — V ® W with the following property:

If {vq,...,v,} is a C-basis of V and {wy, ..., w,} a C-basis of W, then
{p(wi,w;) |1<i<n,1<j<m}isaC-basisof VRW.

21



(2) VQ W is called the tensor product of V' and W.
Forv € V,w € W we shall use the notation v®w for the image ¢ (v, w) .

Proof Ad (1): Let Z = {vy,...,v,} be a C-basis of V and € = {wy, ..., w, }
be a C-basis of W. Now define T := {f: % x ¢ — C} as the space
of all mappings from #Z x ¥ to C. This is a C-vector space with basis
{ﬂ{(vi,w-)} |11<i<n,1<j5< m} where 1Ly, ) (T) = { 0, @7 (viwj)

! ! 1, z= (v, w,)
is the indicator function of the set {(v;, w;)} .

As next step we define the map

n

o: VW -—T, (Z a;v;, Z b]-w]-) — Z Zaibj]l{(vi,wj)}.
i=1 j=1 i=1 j=1

We see that ¢ is bilinear and that {¢ (v;,w;) |1 <i<n,1<j<m}isa
basis of T' (1). In particular we have dim¢ T = n - m.
If # = {vy,...,v,,} is a basis of V and ¢’ = {w], ..., w],} a basis of W, then
we conclude from (}) together with the bilinearity of ¢ that
M = {(p (vg,w;) |1<i<n1<j< m} generates T. Hence .# is a basis
of T" and the proof is complete.

Remark 2.1.2 From 2.1.1 it follows that the tensor product V QW is
generated as a C-vector space by {v ® w | v € V,w € W}. However in general
it is not true that there is equality, i.e. VR W £ {v@w | v e V,w € W}.

Remark 2.1.3 Let V and W be finite dimensional C [G]-modules. Then
the tensor product V' @ W also has a structure as a C [G]-module satisfying
gvew)=gvgwforal ge G,veV,weW.

Further the character afforded by V- @Q W, say xv gw, is the product xv - xw
of the characters afforded by V and W respectively.

Proof Define an action of G on V' & W via the basis. More precisely, for
g € G define g (v; ® w;) := gv; ® gw;, where # = {vy,...,v,} is a C-basis of

V and € = {ws,...,w,} is a C-basis of W. Then, by linear extension, we



obtain g (v @ w) = gv@gw for allv € V,w € W. Let B = (b;;) be the matrix
induced by g on V with respect to the basis # and C' = (c¢;;) be the matrix
induced by g on W with respect to 4. We put the basis elements into the
order {v; ® wy,v1 @ W, ..., V] @ Wy, Vg @ W1, ...y Vg @ Wiy, vvy Uy @ Wy, }. Then
the matrix of g on V' (& W with respect to this basis is

bHC’ e e blnC
B®(C:=

b O - - - o o by, C

We see that the trace of this matrix, i.e., the value xy gw (g), is exactly the
product xv (9) - xw (¢9) = xv - xw (¢) and the proof is complete.

Definition and Remark 2.1.4 Let G = H x K be the product of two
finite groups H and K. Furthermore let ¢ be a character of H and ¢ a char-
acter of K. Define the map ¢ x ¥ to be the product of these two characters,
ie.

exv:HxK, (hjk)— p(h)- -0 (k).

From 2.1.3 we deduce that ¢ x ¥ is a character of G. Consider the maps

@2HXK—>C7 <h7k‘)'_>()0(h)
and analogously

~

9:HxK—C, (hk)— (k).

We know that for a normal subgroup of N <G and a character y of G/N we
obtain a character y of G by defining y : G — C, g +— x (gN).
Using the isomorphisms Hx K/({1}xK) = H and Hx K/(Hx{1}) =2 K and

the foregoing comment we deduce that ¢ and ¥ are characters of G = H x K.



Hence, by 2.1.3, the product ¢ - U is a character of G as well. This is exactly
the map ¢ x ¢ and we conclude that ¢ x 9 is a character of G.

We will now see how the irreducible characters of a direct product H x K

look like. We shall see that in this case the most intuitive approach is correct.

Theorem 2.1.5  The irreducible characters of the direct product of two

groups H and K can be describes as follows:
I (H x K)={¢xv|pelrc(H),V e re(K)}.

Proof [I, p.50, (4.21)].

2.2 Induced characters

Given a subgroup H < G of a finite group G and a character x of GG, it is easy
to see that its restriction to H yields a character of H. Hence it is natural
to rise the question whether it is possible to obtain a character of G from a
given character of H. In the following section we will present the concept of
induced characters and further give some results from the theory around
these characters. The most powerful theorem in this section is Mackey’s
Tensor Product Theorem. This will in particular be useful in the next

chapter when it comes to investigate certain products of characters.

Let for this section again GG be a finite group and H < G be a subgroup
of G.

Given a character y of G we use the notation yg for the restricted character
xu: H — C h e x(h).

Definition 2.2.1 Let ¢ be a class function of H, i.e. a function

¢ : H — C which is constant on each conjugacy class of H (confer [I, p.16



e(g) ,if g € H,
0 , otherwise.

f.]). Define the function ¢ : G — C, g +— {

Then ¢%, the induced class function on G, is defined as

G 1 : -1
@ (Q)ZWZ%O(W% ).

zeG

Remark 2.2.2 Note that for a set R of right coset representatives for G/H

we can also write “(g) = >,z ¢ (zgz™?).

We now state a rather useful lemma which is known as Frobenius Reci-

procity.

Lemma 2.2.3 (Frobenius Reciprocity)
Let ¢ be a class function on H and 9 a class function of G. Then for the

inner product we have the equality

(90719H>H - (@Gﬂg)g .

Proof [I, p.62, (5.2)].

Corollary 2.2.4 If ¢ is a character of H, then ©© is a character of G.

Proof [I, p.63, (5.3)].

Remark 2.2.5 If ¢ is an irreducible character of H, then ¢“ is not nec-

essarily irreducible again.

We shall now state and prove two handy properties of induced character.
The proofs will be rather technical, however they are a good exercise to get

a better understanding of induced characters.



Lemma 2.2.6 Let G be a finite group.

(1) Let U < H < G be a chain of subgroups of G, ¢ € Irrc(U) a character
of U. Then (pM)% = ©%.

(2) Let H < G be a subgroup of G, ¢ be a character of H, v a character
of G and by the restriction of ¢ to H. Then (¥ - )¢ = - (¢%)

Proof

(1) Let R be a set of coset representatives for G/H. Then

(™) (9) = Y oM (wga?)

= > ¢ (e

TER,
zgmfléH

= > |—(1]|Z¢(yxgﬂfly‘l)

TER, yeH
mgm_leH

:ﬁ > ¢ ((zy)glzy)™)

x€R,yeH
19171 €EH

x 1 . _
(:)m Z gp(zgz 1)

z€G,
zngleH

— ﬁ Z ¢ (zg27")

zeG

=¢%(9).

Ad(x): Since H = yHy ™! for any y € H we have that
{reRyeH|zgr e H} ={xe€Rye€ H|yrgr—'y ' € H}. Now
R is a set of coset representatives for G/H, hence {zy |z € R,y € H} =
G and the set above yields {z € G| 2927 € H}.

(2) Again we just use the definition of an induced character. We obtain

for g € G:

(e-vm)(g)= D (p-¥)(xgz ") = > ¢ (zgz™") (wga™").

zeqG, zeqG,
zgz—leH zge—leH



However, v is a class function of G, hence constant on conjugacy classes.
Therefore ¥ (xgz™) =1 (g) for all z € G and we get

Y wlegr )Y (zgr™) =w(g)- Y w(rgrh).

z€G, zeqG,
zgz*leH zgzileH
A\

»%(g)

J/

We sce that the second expression is just ¢ (g), hence (¢ - )% (g) =
(w . <pG) (¢9) and the proof is complete.

The following note is a nice lemma which describes how to obtain the

kernel of an induced character.

Lemma 2.2.7 Let ¥ be a character of H, where H < G is a subgroup of
G. Then for the kernel of the induced character 9¢ we have

ker (99) = ﬂ (ker 9)",

zelG

where ST denotes the conjugate of a set S by the element x, i.e. S* =
1Sy ={z7 sz | s € S}.

Proof Define y := 9“. By definition of the kernel of a character an element

g € G is in the kernel of yx if and only if x(g) = x(1), i.e.

’H|Zz9 rgx 1 ‘H‘Zﬁ

zeG z€G

Hence we have to investigate the condition |» .9 ) (zga~t) | = erG (1).
However we know that that ‘19 (xgx~ )‘ < ¥ (1) and we obtain | >, ¥ (zgz~t)| <
Y osec 10 (zgz~1) | < > e U (1). Therefore it follows that g € ker (x) if and
only if |9 (zgx=t)| = 9 (1) for all x € G. This is the case if and only if

g € ker (0%) for all z € G and the proof is complete.

Let us now assume that we have two subgroups U,V < G and charac-
ters ¥ of U and 1 of V. We wonder what the two induced characters ¢



and ¢ have in common. Therefore we take a look at their inner product
(wG, 190). Using Frobenius reciprocity we obtain (wG, ﬁG)G = ((QAG)U, 19)U.
The following theorem, known as Mackey’s subgroup theorem, is con-
cerned with the expression (wG)U.

Before we state and prove the theorem we shall give some preliminary defi-

nitions and remarks.

Definition and Remark 2.2.8 Let + € G and V < G. We shall use the
notation

*V = zVax~! and V* := x7'Wz. Now let ¢ be a class function (or a
character) of V' and define ¢* : V¥ — C, x vz — 1 (v). It is easy to

see that 1” is a class function (or a character) of V*.

Theorem 2.2.9 (Mackey’s Subgroup Theorem)
Let U,V < G be subgroups of G and i) be a class function of V. Let further
T be a set of (V,U)-double coset representatives so that G = J,.p VU is a

disjoint union. Then

COPE D (COIE

teT

Proof For each t € T choose a set R; of left cosets representatives for U N
Vin V,ie. V = Uepr((UNV) is a disjoint union. We have |R| =
VI/I'UNV]=V|/IUn VY.

Then we obtain {r -t |r € R;,t € T} C G as a set of representatives for the
left cosets of U in G, hence G = (J;cp U, ep, 71U, a disjoint union. This is
because we have

G = U;er VU and for a fixed t € T' we have ViU = J,cp, 7tU.

In particular for every x € G there are uniquely determined elements w € U,
teT, r € R, such that x = rtw.

v (x) ifz eV,

0 , otherwise.

Now define ¢ : G — C, ’gb(l‘):{



Let w € U. Then we have

GU:L 'xu
00 = gy 2 )

“ X X ()

teT reRy welU
1

= m Z Z Z ¥ (t“’u) (Ttwu € V if and only if ™u € V)

teT reRy wel

- ﬁzw S0 ()

teT welU
1 w
:Z|VtﬂU| Z¢(t u)
teT welU.
twycv
1 w
:Zlvthl 2 o)
teT weU,
WyueVinU
1 w
:Z\Vtﬂw Z vt (")
teT weU,
WueVinU
= Z (wtvth)U (w)
teT

and the proof is complete.

In this context there is another interesting theorem by Mackey which is
known as Mackey’s tensor product theorem. This theorem will also

become important later and we will state it now.

Theorem 2.2.10 (Mackey’s Tensor Product Theorem)
Let Hi, Hy, < G two subgroups of G, 11 a character of Hy and ¥y be a
character of Hy. Then the character ¥ - S of G is given by

R O (ISR DA L

z—lyeD

where the sum is taken over the (Hy, Hy)-double cosets D in G. There

is one summand for each D; namely we choose a pair (z,y) € G x G



with =Yy € D and take the indicated summand. If also u='v € D, then
x G u v G
[(wl wa) HlxﬂHQy] = [(wl wQ )HlumH2vi|

Proof [Curtis Reiner, p.242, (10.19)]

2.3 Normal subgroups

In this work we shall use some theorems whose origin lies in Clifford theory.
Let us assume for this section that G is as usual a finite group and N <G a
normal subgroup of G. We will now investigate the irreducible characters of
N with respect to the irreducible characters of G. This will help us later to
explicitly construct an irreducible tensor decomposable character of a group

of order pb.

Definition 2.3.1 Let ¢ € Irre(N) and take an element z € G. Consider
the map
¢ N —C, n— p(znr™)

We say ¢” is conjugate to ¢ in G.
Remark 2.3.2 It is easy to see that ¢® € Irrc(IV), if ¢ € Irre(N).

We will now state the theorem of Clifford.

Theorem 2.3.3 (Clifford) Let x € Irre(G) and ¥ € Irre(N) and suppose
that (xn,V) =: e # 0, i.e. ¥ occurs as a constituent of the restricted character
xn- Let further ¥ = 19, ¥, ..., Uy be all the distinct characters which are

conjugate to ¥ in GG. Then we have

t
XN =€ Z v;
i=1

Proof [I, (6.2), p.79].



We have an action of G on Irrc(N) by conjugation. The stabilizer of an
irreducible character ¥ € Irrc(N) under G is called the inertia group of ¥
in G.

More precisely this means the following;:

Definition 2.3.4 Let ¢ € Irr¢(N). The inertia group of ¥ in G is defined
as I¢(V) :=={g € G| 99 =V}.

Lemma 2.3.5 Let 9 € Irre(N). We then have 9¢ € Trre(G) if and only if
Ic(¥) = N.

Proof Let us first assume that 9¢ € Irre(G). We have to show that
Ig(¥) = N. We have (19@, 19G) = 1 since 99 is irreducible. Applying Frobe-
nius Reciprocity we obtain (19, (19G) N) = (ﬁG,f}G) = 1. We further have
(19G)N (1) = 99(1) = [G : N]9(1). Applying Cliffords theorem with e = 1
we obtain (), (1) = S 0i(1) = t9(1), where 9, ..., 9; are all distinct
conjugates of ¥ in G.

Hence t = [G : N]. On the other hand ¢, the length of the orbit of ¥, equals
the index of the stabilizer of ¥ in G, which is the inertia group I (¢). Thus
we obtain /g (¥) = N.

For the other direction we assume I(¢) = N. As above we have t = [G : N].
Let x € Irre(G) with (99, x) = e > 0. By Frobenius Reciprocity (9, xn) = e.
By Cliffords theorem yy = e i = 1";, where 9y,...,9; are the conju-
gates of ¥ in G. Hence ¥(1)|G: N| > x(1) = etd(1) > |G: N|J(1). Thus
x(1) = |G: N[9(1), ie. x = 9°.

Let us state another rather useful theorem.

Theorem 2.3.6 Let ¥ € Irre(N) and T := I5(9). Define

Irre(G | 9) == {x € Irre(G) | (xn, V) #0}.

Then:



1. If 1 € Trre(T | 9), then ¢ € Trre(G).
2. The map Irrc(T | 9) — Irre(G | 9), ¢ — ¥ is bijective.
3. If ¢ € Irre(T | 9), x =¥, then (xn,9) = (¥, V).

Proof [I, (6.11), p.82].

Later, in the context of tensor decomposable characters of p-groups, we
shall use the notion of an M-group. We will now define what is meant by

that and subsequently state some properties of M-groups.

Definition 2.3.7 A finite group G is said to be an M-group, if every
character x € Irr¢(G) is monomial, i.e. if there is a subgroup H < G and a
linear character \ € Irre(H) such that y = \°.

Corollary 2.3.8  Fvery nilpotent group is an M-group.

Proof [I, (6.14), p.83].

Corollary 2.3.9 Let G be a p-group. Then G is a M-Group.

Proof Since p-groups are nilpotent the claim follows from 2.3.8.

Another nice application of Clifford theory is Ito’s theorem which we shall

use later on and therefore state it here.

Theorem 2.3.10 (Ito)
Let A be an abelian normal subgroup of G. Then x(1) divides |G : A] for all
X € Irre(G).

Proof [I, (6.15), p.84].

A rather useful lemma when it later comes to determine the character

table of a certain group is the following:



Lemma 2.3.11 (Brauer’s permutation lemma)

Let A be a group which acts on Irre(G) and on the set of conjugacy classes
of G. Assume that x(g) = x“(g*) for all x € Irrc(G), a € A and g € G;
where g* is an element of Cl(g)*. Then for each a € A the number of fized

irreducible characters of G is equal to the number of fized classes.

Proof [I, (6.32), p.93].

2.4 Extendability of characters

Again we assume that G is a finite group and let V<G be a normal subgroup.
There is a lot of theory about how to extend characters of normal subgroups
to characters of the group itself under certain conditions. We will now state
and prove some theorems regarding this topic which will be of great value

later on.

Theorem 2.4.1 Let H < G be a subgroup of G such that G is the semi-
direct product of H and N, i.e. G = HN and H NN = {1}. Let further
A: N — C be a homomorphism such that A9 = X for all g € G, i.e. X\ is a
1-dimensional G-invariant representation of N.

Then X\ is extendable to a representation of G, i.e. there is a 1-dimensional

representation A G — C such that Ay = \.

Proof Let g € G. Since G is the semidirect product of H and N there exist
unique elements hy, € H and ny, € N such that g = hyn,. Now define a map

A:G—C, g Any).

We only have to prove that \is a group homomorphism. Let z,y € G,
x = hgng, y = hyn, with h,, h, € H and n,,n, € N. Using the definition of

) and the fact that ) is invariant in G we obtain:



We have shown that \ is a homomorphism and the proof is complete.

Theorem 2.4.2 Let x € Irrc(G) such that xy = U € Irre(N). Then the
characters 3 - x for B € Irrc(G/N) are irreducible, distinct and are all con-

stituents of ¥°.

Proof See [I, p.85, (6.17)].

Theorem 2.4.3 Let [G': N] be a prime number and let ¥ € Irre(N) be in-
variant in G. Then O is extendable to G. Moreover there are exactly [G : N]
extensions of ¥ to an irreducible character of G, namely {5 - x| 8 € Irrc(G/N)},

where x € Irre(G) is an arbritary extension of 9.

Proof The proof of the first assertion is given in [I, p.86, (6.20)]. Any
extension y € Irre(G) of ¥ is a constituent of 9. This can be easily seen by
applying Frobenius reciprocity: (99, x) = (9, xn) = (9,9) = 1. Hence the

second assertion immediately follows from 2.4.2.



Chapter 3

Tensor decomposable

Characters in p-Groups

In this chapter we will investigate p-groups with respect to the existence
of tensor decomposable characters. That means we wonder which p-groups
may possess irreducible characters which can be written as a product of two
non-linear characters.

Let us first give a proper definition of a tensor decomposable character.

Definition 3.0.4 Let G be a finite group.

X € Irre(G) is called tensor decomposable, if there are characters
¢, ¥ € Irre(G), ¢(1) > 1, (1) > 1, such that x = ¢ -1 .

In the subsequent section we will investigate p-groups of order p°.

3.1 Considering p-groups of order < p°

Fix a prime p. Considering the fundamental formula

Gl= > x(1) (3.1)

x€ElIrre (G)

it is obvious that no p-group of order less than or equal than p* can have a

tensor decomposable character. Yet how is the situation for groups of order

35



p°? In this section we shall see that these groups do not have such a character

either. However the argument is rather not as easy as the one before.

Theorem 3.1.1  Let G be a group of order p°. Then G does not have a

tensor decomposable character.

Proof Suppose that G has a tensor decomposable character x = ¢ - ¢ with
#(1), ¥(1) > 1. Let us first have a look at possible degrees of these charac-
ters. The order of G is p® and considering again formula (3.1) it follows that
x(1) < p. We obtain x(1)* = p? and hence ¢(1) = ¥ (1) = p.
Now we will use the fact that p-groups are M-groups (confer 2.3.9). By
definition of an M-group there are subgroups U,V < G and linear char-
acters A € Irre(U), p € TIrre(V) such that ¢ = A9 and ¢ = pu% We
have p = M\9(1) = [G: UJX(1) = [G: U] as well as p = [G: V]. Hence
\U| = |V| = p°. Using 2.2.6 we obtain ¢ -1 = A% - & = { ((AG)V. 2 }
(A (19),)¢
€ Irre(G). It follows that (/\G)V € Irre(V) and (,uG)U € Irre(U). Since
A9(1) = pu%(1) = p we conclude that U and V are not abelian because all
irreducible characters of abelian groups are of degree 1. This implies that
the derived subgroups U’ < U and V' <V are not trivial.
This fact will be useful in order to show that ¢ and 1 are not faithful, i.e.
Ker(), ker() # {11,
Since A and g are linear characters we obtain U’ C ker(A) and V' C ker(u).
As U is a maximal subgroup of the p-group GG we conclude that U is normal
in G. Together with the fact that U’ is characteristic in U it follows that U’ is
normal in G as well. By 2.2.7 we get ker(¢) = [ . (ker A)? and we conclude
——

207

that ker(¢) O U’ 2 {1}. Analogously we conclude that ker(y) 2 {1} (x).
Furthermore we have that ker(¢) Nker(y)) = {1} (x%), as otherwise

G/ (ker ¢ Nker ) would also have a tensor decomposable character. Yet as
we already argued earlier a group of order < p* cannot have such a character.
As a last step in our preparation for the final contradicting argument we will

analyse the center of G.
From [I, (2.28), p. 27] and [I, (2.30), p. 28] we obtain p* = x(1)* <



G:Z(x)] <[G:Z(G)]. Since the center of a p-group always is non-trivial
it follows that Z(G) # {1} and we conclude that |Z(G)| = p.

Now we put everything together:

For all non-trivial normal subgroups N of a p-group G it holds that
NNZ(G) # {1}. Hence, using (%), we deduce that ker(¢) N Z(G) > {1} and
ker(v)) N Z(G) > {1}. Since |Z(G)| = p we finally obtain Z(G) < ker(¢) as
well as Z(G) < ker(y) and therefore Z(G) < ker(¢) Nker(¢), which by (xx)
is the trivial group.

Hence we derive a contradiction and the proof is complete.

Remark 3.1.2 Considering 3.1.1 and in particular considering the proof
we can already make some remarks about groups of order p® which possess
a tensor decomposable character x = ¢ - ¢ with ¢(1), ¥)(1) > 1. Reasoning
just as above but for groups of order p® we see that ker(¢) > {1}, ker(¢)) >
{1} and ker(¢) N ker(¢yp) = {1}. Since {1} < Z(G) Nker(¢) and {1} <
Z(G) Nker(¢) we conclude that Z(G) has two nontrivial subgroups which
have trivial intersection. By [I, (2.30), p. 28] we obtain |Z(G)| < p? and
hence Z(G) = C, x C,. These facts will be of great value in the following
section when it comes to investigate groups of order p® with respect to the

existence of tensor decomposable characters.

3.2 Groups of order p°

After experiments using the computer algebra system GAP (confer Chapter
5) we saw that for any prime number p < 11 there are groups of order p°
which possess a tensor decomposable character. The final aim for this section
is to prove that in general for any prime number p there is such a group. This
will be done by giving a precise construction of an suitable group together
with a subsequent construction of a tensor decomposable character of this
group. Further experiments with GAP happened to be rather useful in this
context. In this section we will first analyse the structure of groups of order

p® which have a tensor decomposable character. The intention is to obtain



as much structural information as possible in order to be able to construct a
'nice’ group with the required properties, i.e. a group of order p® possessing

a tensor decomposable character.

Obviously we are looking for a non-trivial example of a group of order p°
with a tensor decomposable character. What we mean by a trivial example
we will explain in the following definition and the subsequent remark and

corollary.

Definition 3.2.1 We call a character y € Irr¢(G) trivially tensor de-
composable, if there exists a normal subgroup N < G such that yy = e
for some ¥ € Irr¢(NV), e € N with 9(1) > 1 and e > 1.

At first sight we probably do not see in which way the above definition is
related to tensor decomposable characters. However this will become clear

with the following remark and corollary.

Remark 3.2.2 If y € Irrc(G) is trivially tensor decomposable and N, e, ¢
are as in 3.2.1, then there exist irreducible projective characters (i.e. char-
acters of an irreducible projective representation in the sense of [I, p.174,
(11.1)]) ¥ of G and € of G/N with dy =9 and y =0 - .

Proof [H, (21.2)]

There are two special cases of trivially tensor decomposable characters

X € Irre(G) which we will discuss now.

Corollary 3.2.3 (i) If x = U - € is an irreducible character of G with
19,6 € Irre(G), where 0 is an extension of an irreducible G-invariant
character ¥ € Irrc(N) of a normal subgroup N <G and € is considered
as the inflation of an irreducible character ¢ € Irrc(G/N), then x is

trivially tensor decomposable.

(i1) If G is the direct product of two non-abelian groups, then G has a

trivially tensor decomposable character.



Proof (i) An irreducible character of G is in particular a projective char-

acter of G. The claim then immediately follows from 3.2.2.

(ii) This case is again a special case of (i). Suppose G = H x L, with H, L
non-abelian and set N = H; then G/N = L. Now consider irreducible
characters v of H and ¢ of L which both have degree larger than 1
(these exist since H and L are non-abelian). Further let J be the lift
of ¥ to G, consider ¢ as the inflation of € to G and define y = - e.
We easily see that ¥ and e satisfy the assumptions from case (i). From

2.1.5 it now immediately follows that y is an irreducible character of

G.

From the previous section plus additional general theory we can already
gather a lot of information which will be of great value in order to reach our

aim. We obtain the following theorem:

Theorem 3.2.4 Let G be a group of order p® which has a tensor decom-
posable character. With Z(G) we denote the center of G, with G' its derived
subgroup.

Then the following properties hold:

(1) There exist subgroups U, V < G, |U| = |V| = p® and irreducible linear
characters A € Irre(U), p € Irre(V) such that \¢ = ¢, u© = 1.

(2) U-V=aG.

(3) U and V are not abelian.

(4) U'nV'={1}.

(5) UNV is abelian.

(6) G/U NV is elementary abelian of order p*.

(7) G cUNV.



(8) G' is abelian.
(9) Z(G) is elementary abelian of order p*.

(10) Z(G)CUNV.

Proof Let x =1 - ¢ be a tensor decomposable character of G with
#(1),9(1) > 1. Since |G| = p°® it follows from 3.1 that x(1) = p? and

¢(1) =¥(1) =p.

(1) By 2.3.9 we have that G is an M-group and hence ¢ and 1) are induced
from linear characters of subgroups of GG, say ¢ is induced from a sub-
group U < G and ¢ from a subgroup V < G. Since ¢(1) = (1) =p
the orders of U and V must be p°.

(2) Let T be a set of representatives for the (U, V')-double cosets in G
so that G = J;c, UtV is a disjoint union. Using 2.2.10 we obtain
X=06- 1 =X 1% = (N - peen) € Trre(G). Thus U -V =
G, because otherwise |T'| > 1 and x would be a sum of at least two

characters of GG. Since Y is irreducible this is not possible.

((A9)y - m)
(A= (1))
()\G)V € Irre(V) and (,uG)U € Irre(U). Since A\(1) = p%(1) = p we

conclude that U and V' are not abelian.

(3) By 2.2.6 we have ¢-1p = X\ -y = { } € Irrc(G). Hence

(4) Considering 3.1.2 together with 2.2.7 we obtain {1} = ker(¢) Nker(¢) =
ker(A\%) N ker(u®) D U’ NV'. Therefore U' NV’ = {1}.

(5) We have (UNVY CU' NV’ € {1}, ie. UNV is abelian.

(6) Define W := U N V. Using the second isomorphism theorem we con-
clude that |[W| = p'. As maximal subgroups of a p-group, U and V
are normal in G'. Therefore W is also normal in G and we can consider
G/W. This is a group of order p* and hence abelian. Therefore G /W is
elementary abelian or cyclic. Suppose that G/W is cyclic. Then G/W

contains exactly one subgroup of order p and G contains exactly one



subgroup of order p® containing . Yet by (2) we have that U-V = G,
hence U # V. Further it holds that W < U and W < V which con-
tradicts the fact that G has only one subgroup of order p°. Thus G/W

cannot be cyclic and hence must be elementary abelian.

(7) Follows from (6) since G’ is the smallest normal subgroup N of G such
that G/N is abelian.

(8) Follows from (5) and (7).
(9) Confer 3.1.2 .

(10) Suppose that Z(G) € UNV. Then H :=(UNV, Z(G)) > UNV is an
abelian normal subgroup of G. We know that GG is not abelian, hence
H # Gand thus UNV < H < G. Since [UNV] = p* and |G| =
p° we conclude that |H| = p®. Applying 2.3.10, Itos theorem, every
irreducible character of G would have degree < p. Yet this contradicts
the assumption that x is an irreducible tensor decomposable character

of G and the claim follows.

Our next aim is to use all the information gathered here to construct a
group of order p® which possesses a tensor decomposable character. We shall

see the result in the following section.



3.3 Existence of indecomposable groups of or-
der p° possessing tensor decomposable char-

acters

As we see in Chapter 5 experiments with the computer algebra system GAP
showed that there actually are groups of order p® possessing tensor decom-
posable characters for all prime numbers p we worked with (which were all
prime numbers < 11). This led us to conjecture that for an arbitrary prime
number p there is a group with a tensor decomposable character which is not
trivially tensor decomposable in the meaning of 3.2.1. But the question now
is how to find a general group with the required properties? One possible

approach is to work with so called power commutator presentations.

In order to construct a group of order p® which has a tensor decomposable
character we know from 3.2.4 that we need an elementary abelian center of
order p? and an abelian derived subgroup. Further experiments with GAP
showed that for p € {5,7,11} all groups G of order p® with Z(G) = C, x C,
and derived subgroup G’ = C, x C),, x C,, x C}, have such a character. This led
us to conjecture that all groups with these properties have a tensor decom-
posable character. Yet solving this problem seemed to be anything but easy.
However we wondered whether it might be possible to find a presentation for
a group of order p® possessing a tensor decomposable character. The con-
struction was aimed at providing the group with all the properties mentioned
before. One nice side effect of choosing G’ to be elementary abelian was to
then obtain an action of G/G’ on G’. Hence we obtain a homomorphism
G/G" — Aut(G') =2 Gl4(F,). All these facts helped a lot to find a group we
were looking for.

The subsequent presentation I finally found turned out to be a nice one
which in addition satisfies all our demands. We will now present this group
in order to see a generic example of a group of order p® possessing a tensor

decomposable character.



Theorem 3.3.1 Let p € P be a prime, p # 2, 3. Define

G :=(a,b,c,d,z,y | a®, V", dP, 2P o, [a,b], [a,], [a,d], [b,c], [b,d], [c,d],

la, 2167, [a,yld™", [b,2] ™', [byy], [e,2], [e, 9], [d 2], [d,y], [z, y]a™").

Then G is a group of order p® and has a tensor decomposable character, which

is not a trivially tensor decomposable character in the meaning of 3.2.1.

The derived subgroup G' is elementary abelian of order p*.

Proof First of all we have to prove that the given presentation actually

yields a group of order p®. After being finished with this we show that G has

a tensor decomposable character. This will be done by explicit contruction

of such a character.

In order to prove the claim we shall pursue the following steps:

(1)

Define a group G using the semidirect product and show that this group

is isomorphic to G. We then shall easily see that G is a group of order

p°.

Consider two particular linear characters A\, u € Irre(G’) which have
pairwise different inertia groups in G of order p°. Denote these sub-

groups by U and V' respectively.
Extend A to a character A € Irr¢(U) and analogously p to ji € Irre(V).

Show that AS - i¢ € Irre(G). This will be a tensor decomposable

character of G.

Let (%) and () be cyclic groups of order p. Furthermore let (&, b, ¢, d)
be an elementary abelian group of order p?, i.e. {d, b, ¢, cZ} is a gener-
ating set of elements of order p which commute pairwise. Now using

the semidirect product define a group G as follows:

G = <?j> Xy <:i> Xe <da[~)7 ¢, d>a



where ¢ and v are the homomorphims defined as follows:

6 (F) — Aut (<a, b d>> (= GL4(F,))

1100 i — ab
3 0110 . b — bé
T+ , lLe.
0010 E - &
0001 d — d
and

b () — Aut ((3) x4 (

jS )

3

R
N—

Y 767 > N

a +— ad
b — b
y— | ¢ — ¢
d — d
T — Ta

Before proving the isomorphism G = G it first remains to show that G
is well defined. In order to do so we have to show that both ¢ and v

are well defined group homomorphisms.

1 100
. ) 0110 ,
(Ad ¢) The matrix M, = ¢(z) = 0010 has determinant 1,
0001
hence M, € GL4(F,) and ¢ : () — GL4(F,) is a well defined

map.
To prove that ¢ is a group homomorphism we use 1.2.10.
But (z) = (g | ¢?). The claim is proven if ¢(Z)? = MP = Ej.

By induction (see end of the proof for explicit details of the induc-



(Ad )

1 4 - 0
: . : 01 ¢« 0 ,
tion) it is easy to show that M = for all i € N.
00 1 0
00 0 1
We assumed that p # 2,3, hence 2 | p — 1 and ’# € pN. We
—1
1 p % 0
0 1 0
obtain M,? = P = F,, and the claim follows.
0 0 1 0
00 O 1

Showing that v is a well defined group homomorphism is a little
more complicated than to show this for ¢ in the previous case.
However the idea remains very similar.

Define U = (&) X (@, b, ¢ d). By 1.2.16 we obtain the following

presentation of U:

U= U:={ab,éd,

b dl, [&,d], [#,a7"o~", [&,b7"e", 2,67, [#,d71]),

=>
\.@é
%>
X
\.'ﬁ
=
u"B
=
S
=
o
=
"
o

In order to see that v is well defined, i.e. ¥(g) € Aut(U), we
again use 1.2.10. Let F' be the free group on the generating set
{&, IA), ¢, cz,i"} and define a homomorphism 7 : F/ — U which
maps a to dcz, b to l~), ¢ to ¢, d to d and # to #a. We now check
if all relations of U belong to the kernel of 7 so that we obtain
a homomorphism 7 : U — U as in 1.2.10. After that we shall
prove that 7 : U— Uis bijective and hence an isomorphism.

Thus we obtain a diagram of isomorphisms

(=23

U
Mﬁ
U

Clearly it then follows that ¢(7) € Aut(U).

U




We have 7(a?) = (ad)? = aPd? = 1. Analogoulsy we have 7(b?)

(&) =7(d) =1.

Furthermore 7:([&, b)) = la
7([b, &) = 7((b.d)) = 7([e,d]) =

(30)(ad) (3a) ad) 5! = a~'aazb! = [4,3]b! =

And we have 7([2,b"Y¢™1) = (za) 'b(za)b et =
a '@ b tact = 1.
\,_/

bé
Analogously we obtain 7([¢, #]) = 7([d, #]) = 1
It remains to show that 7(2?) = 1. Induction (see end of the proof

for explicit details of the induction) yields

L(’L 1) z(z 1)1 2)

7(2Y) = (za)' = a2z for all i € N,i > 2. Hence
T(zP) = (Za)P = :Epapbp(p 1)cp(p o=t = 1, since p ¢ 2,3 and
therefore ”Tl % € N.

Hence we have shown that all relations of U are in ker(7) and we
obtain a homomorphism 7 : U—U.

Since U is generated by {T(d), 7(b),7(¢), 7(d), T(:i“)} we conclude
T is surjective. Both U and U are groups of order p®. Hence 7
must be bijective.

All in all we now have shown that 7 is an isomorphism from U to
U and we conclude that ¢(§) € Aut(U).

It remains to prove that i is a homomorphism. Again we will
use 1.2.10 together with the presentation (z | 2?) for C,. Thus it
suffices to show that ¢(9)P = ids.

Clearly ¥(5)7(5) = b, ¥(7)(@) = & and ¥(5)7(d) = d.

Induction (see end of the proof for explicit details of the induc-
tion) leads to the following results:

() 1(@) = ad' for all i € N,i > 2 and 9(§) (&) = daid =z > for all
i € N. Hence 4(§)?(a) = ad? = a and ¢(§))?(&) = a*d" =" = 7.
This means that ¢(¢)” is the identity on a generating set of U

and therefore the identity map on U, i.e., ()’ = idz and we

conclude that v is a homomorphism.



Summarizing all, we now know that G is a well defined group. Since for
a semidirect product we have |H x N| = |H| - |N| we easily conclude
that ’é ‘ = pb.

Finally we now come to prove that G' = G. Again we shall use 1.2.10.
Consider the map f : {a,b,¢,d,z,y} — G where fla) = a, f(b) =
b, f(c) = & f(d) = d,f(z) = & and f(y) = §. Now extend f to a
homomorphism p on the free group F' = Fi,pcdayy, i€ p: F — G.
The question now is whether we can turn p into a homomorphism on
G F/{al, b P dP xP yP, [a,b], [a,c], [a,d], b, [bd], [c,d,
la, 2] b7, [a,y]d™, [b,a] ™, byl [e, 2] eyl [do 2], [d gl [, y]a™h)).
This means we again have to check whether p(r) = 1 for all relations
r of G. However this is just a very easy check which does not require
any tricks and will therefore be omitted here.

Since G is generated by p ({a,b,c,d, z,y}) we conclude that there ex-
ists a surjective homomorphism p : G — G where j(a) = @, ... and
ply) = 7.

In order to prove that p is bijective we take a look at the order of G.
We have the equality |G| = [G : G’] - |G'| and will now investigate the
order of G and the order of G/G".

We claim that G’ = (a, b, ¢, d).

Considering the relations of G it is obvious that (a,b,¢,d) C G'. To
see the other inclusion we observe that (a, b, ¢, d) <G and that the fac-
tor group G/ (a, b, ¢, d) is abelian since the generators of G/ (a,b, ¢, d)
commute.

Hence our claim is proven and we easily conclude that |G'| < p*. We
cannot say yet whether this actually is an equality since it still is pos-
sible that one of a, b, c or d or a product of these is equal to 1. However
the above inequality will be sufficient in order to show that p is bi-
jective. Now how does G /G’ look like? Using 1.2.13 and simplifying
the relations we obtain G/G" = (z,y | 2 = y? = 1, [z,y] = 1) which,
by 1.2.15, is isomorphic to C), x C,.

Thus |G/G'| = p*.



Ad (2)

Now we put the information above together and obtain

G| =[G: G- |G <p*p* = p°

Since p is surjective and |G| = p® it follows that |G/ ker(p)| = p®. Hence
G| = p°.

Together we conclude that |G| = p® and ker(p) = {1}. Therefore p

is an isomorphism and claim (1) is proven.

In order to obtain a tensor decomposable character of G we first take
a look at two linear characters of G' = (a, b, ¢, d).
Let ¢ € C be a root of unity of order p and define two linear characters

A and g on G’ by defining them on the generators a, b, ¢ and d:

1
pla) =1 pd) =1 p(c) =¢ p(d) =1.

We know that G’ is elementary abelian and by 1.2.10 A and pu clearly
are homomorphisms from G to C, i.e. linear characters of G.
Now we wonder about the inertia groups Tg (M) and Tg(p) of A and p.

We claim the following:

(a) U :=
(b) V = (G ) = Ta().

We shall prove this claim now.

(a) We have \* = A, since

A (@) = Mz laz) = Mab) = Ma)A(b) = 1 = \(a)

AT (D) = Ma ') = A(be) = M)A (c) =1 = A(b)

A (e) = Maex) = A(e)

A (d) = Mz tdz) = A(d),

ie. A*' = X on a generating set of G'. Thus \* = X\ for

all elements of G’ and we conclude that 2! € T;()\) and hence
x € Tg(A). Therefore G' < (G',z) < Tg(N\). We further notice



Ad (3)

Ad (4)

that AY"" # X because for instance XY~ (a) = Ay 'ay) = A(ad)
¢ # 1 = Ma). This means y~! ¢ Tg()\) and we obtain G’

Ta(\) < G. Since [G : G'] = p? we conclude that [G : Tg()\)] =
and [Tg(N) : G'] = p. Hence T(\) = (G, z) = U.

S
p

(b) This proof is analogous to case (a).
We have p¥ ' = y, since
e (a) = nly” ay) pab) = p(a)p(b) =1 = p(a)
o (b) = uly~'by) = p(b)
i () = nly ey) = nle)
po = (d) = ply~'dy) = p(d),
ie. pY' = p on a generating set of /. Thus p¥ ' = p for

all elements of G’ and we conclude that y=' € Tg(\) and hence
y € Tg(N). Therefore G' < (G',y) < Te(p). We further notice
1~ # u, because for instance p* (b)) = p(x~tbx) = p(be) =
u(d)p(c) = ¢ # 1 = p(b). This means 27! ¢ Tg(pn) and we get
G < Te(pn) < G. Hence we conclude that T (p) = (G’ y) = V.

From the foregoing proofs it is easy to see that both inertia groups U

and V have order p®.

We have [U : G'| = [V : G| = p and furthermore we know that A is
invariant in U and as well p is invariant in V. Now from part (1) we
deduce that U is the semidirect product of G’ with (z) as well as V' is
the semidirect product of G’ with (y). From 2.4.1 we now conclude that
we can extend A and p to a linears character on U and V' respectively.
Let us denote these extensions by A and 1 respectively.

Obviously A € Irr¢(U) and i € Irre (V) respectively since these are still

linear characters.

Finally it remains to show that A¢ - 4 € Irre(@).

Therefore we first observe that Tiz(A) = U. This is since Y # A (confer
part (a) from above) and therefore the inertia group Tg(\) < G and
must hence be U.

Analogously we have T (1) = V.



From 2.3.5 it follows that A® and (¢ are irreducible characters of G.
. . G

Applying 2.2.6 we conclude \- 4% = (()\G)V : /2) . Using 2.3.5 we now

obtain the equivalence A% i¢ € Irre(G) if and only if Ty ((S\G)V . ,&) =

V. Therefore it is reasonable to investigate the inertia group 7' :=

e <(5‘G>V ) ﬂ)

We have (;\G)V € Irre (V) because using 2.2.10, Mackeys theorem, to-

. . 1%
gether with the fact that U -V = G we obtain (\Y),, = <)\Uﬂ\/) =
AV. Let us again use that \¥ # X, hence Ty(\) = G’ and therefore
A€ Trre(V).

Obviously V' C T'. However we are able to show that T" # G because

2! does not stabilize (S\G)V - [t as we see in the following:

—1

() 7)" (6) = A9a"ba) - pu(a~b)
= A9(0) - pulbe) = 3°0) - ¢ p- C£p= (A9 - it) ().

Ad(x): Let R be a set of coset representatives for G/U, say
2.2.2 —ip i
R={Ly.y% ..y’ '}. Then \(b) "=° 32 _x A(g~"bg) = 025 My ~"by’)
(y~'by=b) <o\ .
= p-Ab)=p-1=p.
Hence we now know that V' C T # G.

The index [G : V] = p and it follows that T = V, i.e. T ((XG)V : ,1) -

~

. a
V' which is equivalent to <(>\G)V : ,&) = \9. 4% € Irrc(G).
Hence we proved claim 4 and the whole proof is finished.

Inductions

We have to prove the following claims:



1 g 1100
o1 o 0110

(1) M: = ' foralli € N, (where M, = ).
00 1 0 0010
00 0 1 0001

~i(i—1) _i(i—1)(i—2)
6

(2) 7(2) = &a'b~z ¢ forall i € N7 > 2.
(3) (7) (@) = ad' for all i € N.

(4) ¥(@§) (7) = #a'd" 7 for all i € N,i > 2.

Ad(1) We immediately see from the definition of M, that the claim is true for
1= 1.

Let us assume that the claim is correct for some i € N (x). Now do the

stepi—1+1:
We have
1 @0 o\ (1100
M i © 01 i 0 0110
00 1 0 0010
00 0 1 000 1
1 i+1 Do
o1 w10
o o 1 0
0 0 0 1

Hence the claim is correct for 7 + 1 and therefore for all 7 € N.
Ad(2) For i =2 we have 7 (&)* = (£a)® = zaia = && & 'ai a= i2ab.

=¢(&)(a)=ab
Hence the claim is correct for 7 = 2.

Let us assume that the claim is correct for some i € N, i > 2 (xx).
Now do the step ¢ +— 1+ 1 :



We have

T (@) = ) = @) - (ga) P aah e

i I _— ~’i(’i—l) - ~’L(’L—1)(Z— -
= Fit! (a: la’:c) (a: 1h™= a:)c 6 a

i(i—1
G2 e

— @ (@) @)'e(@) (0) T

N ~~~z(z 1) 1(1 1) _i(i—1)(i—2) _ i 1 ~ilit]) (+1)ii—1)
Faby ¢ 6 a=+Mat e 6 .

Hence the claim is correct for ¢ + 1 and therefore for all i € N, 7 > 2.

Ad(3) We immediately see from the definition of ¢ that the claim is true for
i =1.

Let us assume that the claim is correct for some i € N (). Now do the
stepi—i1+4+1:

We have $(§)" (@) L (9) (acﬁ) — Gdd = ad+.

Hence the claim is correct for 7 + 1 and therefore for all ¢ € N.

)

Ad(4) We immediately see from the definition of 1 that the claim is true for
1= 1.

Let us assume that the claim is correct for some i € N (1f). Now do
the step i +— i+ 1 :

We have 9(5)™ () & w(g) (:ca id"s ”) — (7d) (aidi) (dl“ ”) -

7,(7,+1)

z+1d

Hence the claim is correct for 7 + 1 and therefore for all 7 € N.

The tensor decomposable character we found is a not trivially tensor decom-
posable in the meaning of 3.2.1. In order to see this we first claim that any
normal subgroup N < G with |[N| = p*, a < 4 is abelian. Let us prove this
claim shortly:

Because G is a p-group there is a normal subgroup M <G with N < M and
|M| = p*. Thus |G/M| = p? and we conclude that G/M is abelian. But this
also means that G’ < M and hence G’ = M since we showed earlier that
G’ is elementary abelian of order p*. As N < M = G’ and G’ is abelian it



follows that IV is abelian and the claim is proven.

Now we come back to prove the original claim. Let us assume that there is
a trivially tensor decomposable character x € Irrc(G), i.e. there is a normal
subgroup N < G such that xy = ed for some ¢ € Irrc(N), e € N with
Y(1) > 1 and e > 1. Further, since N has an irreducible character of degree
> 1, we deduce that N must be non-abelian. With the foregoing remark we
now conclude that |N| = p® with a > 5. Hence G/N is cyclic. As ynx = ed the
inertia group of ¥ in G obviously is Ig(¥) = G, i.e. ¥ is invariant in G. Now
we apply 2.4.3 and obtain that ¥ is extendable to a character ¢ € Irrc(G).
Consider the inner product (¢,x) = (¢Yn,xn) = (¥,ed) = e. Yet ¢ and
X are both irreducible characters of G which includes that (¢, x) € {0,1}.
Now we derive a constradiction since we assumed e > 1. Thus the tensor

decomposable character we found cannot be trivially tensor decomposable.

Remark 3.3.2 In 3.3.1 we showed that for all prime numbers p > 5 there is
a non-trivial example of a group of order p® possessing a tensor decomposable
character.

However this is also true for p = 2,3 as examples with GAP showed. For

more details confer Chapter 5.






Chapter 4

The Character Table of G

As a last result we work out the character table of G. Afterwards we will
easily see that GG not only possesses one tensor decomposable character, but

that all irreducible characters of degree p? are tensor decomposable.

Let us now give an overview about the steps we will pursue to reach our

goal.

4.1 Outline of the determination of the char-

acter table of G

(1) Determine the character table of U and V' via the following steps:

(a) Compute the U- and V-conjugacy classes contained in G’.

(b) Use Brauers permutation lemma in order to obtain the number of
orbits and fixed points of the action of U on G’. Then determine
the number of irreducible characters of U of degree 1 and of degree

p and determine the conjugacy classes of U.

(c¢) Obtain analogously the number of irreducible characters of V' of
degree 1 and of degree p and determine the conjugacy classes of
V.
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(d) Deduce all irreducible characters of U and V' by extending or
inducing characters from Irrc(G’) to irreducible characters of U

and V| respectively.

(2) Determine the G-conjugacy classes contained in V' and obtain the num-
ber of orbits and fixed points under the action of G on CI(V).

(3) Use Brauers permutation lemma in order to obtain the number of orbits

and fixed points on Irrc(V) under the action of G.

(4) Determine the number of irreducible characters of G of degree 1, p and

P

(5) Construct all irreducible characters of G by extending and inducing

irreducible characters of V and U.

(6) Determine the conjugacy classes of G.

Notation 4.1.1 Let now for the whole chapter I := {0,1,...,p— 1} and

I := I\ {0}.

4.2 The character table of U and V

Ad(1) (a)
Since G’ is a normal subgroup of both U and V there is an action of U and
V respectively on G’ via conjugation, i.e.

G'xU — G, (g,u) — u 'gu and analogously

G'xV — G, (g,v) — v tgv.

Let us present the U- and V-conjugacy classes contained in G’ in Tables 4.1
and 4.1 by giving a representative and the length for each class. Subsequently

we will prove that the tables are correct.



Table 4.1: U-classes in G’

name | representative parameter length | number
Chis Ad° v, 0 €1 1 P’

Bgs bodd sel,del P p(p—1)
Aprs a®c'd® acl*vdel P pi(p—1)

Table 4.2: V-classes in G’

name | representative parameter length | number
Bgys b d? B,v,0 €1 1 3
Anpy a“b’c ael* pB,yel p p’(p—1)

Proof of Tables 4.1 and 4.2:

Let us first collect some general information which is useful for both the U-
and the V-conjugacy classes contained in G'.

Since G’ is abelian G’ stabilizes itself. We know that the length of the orbit
of an element is equal to the index of its stabilizer in the group. Further the
length of an orbit divides the group order. We have that U and V' are both
of order p°, G" is of order p*, hence each orbit is either of length 1 or of length
p. Now U = (z) x G' and V = (y) x G’, hence it is sufficient to investigate

how z and y act on G’. Let us recall that the matrix of x on G’ is given by

1100

0110
M, =

0010

0001

For y we obtain the matrix

1 001

01 00
M, =

0010

0001



Obviously we then obtain {c”d‘s} , 7,0 € I as orbits of length 1 under the
action of U on GG'. The remaining elements must all lie in orbits of length p.

As we already saw in the proof of 3.3.1,

n(n—1)
2

_ o O O

8
oS O O =
o O~ 3

n
1
0

for all n € N. Therefore we can explicitly calculate the conjugacy class of an
element of G’ and we obtain Cly (bd’) = {Vc"Pd® |n eI} for BeI*, 6 €1
and Cly(a®d’) = {a®brctn=Dal2¢% | € I} for o € I*, 7,0 € 1. Hence
we see that all elements in Table 4.1 listed in the column of the representa-
tives lie in different conjugacy classes. Summing up we obtain p* elements

and we conclude that we found all conjugacy classes.

We will procede analogously with the conjugacy classes of V. Obviously,
for 3,7, € I, we obtain {bﬁc'yd‘s} as orbits of length 1. It is easy to see that

o R O O
_ o o© 3

<
o O O =
o O = O

for all n € N.

Again we are able to explicitly calculate the conjugacy classes and we obtain
Cly(a®b’c") = {a*V’c?d’™ |n € I} for a € I*, 3,7 € 1. Hence we see that
all elements in Table 4.2 in the column of the representatives lie in different
conjugacy classes. Summing up we obtain p* elements and conclude that we

found all conjugacy classes.

Ad(1) (b)
We also have an action of U and V' respectively on Irre(G') via ¢*(g) =

o(wgw™),g € G',;w € U and w € V, respectively. Hence p*(g) = ¢(“g) for



all g € G',w € U and w € V, respectively and we can apply Lemma 2.3.11,

Brauers permutation lemma.

Let us first stick to U. From Table 4.1 we deduce that G’ has exactly p?
fixed points under U. Hence we conclude that there are p? fixed irreducible
characters of G’ under the action of U, i.e. there are exactly p? orbits of
length 1. Furthermore we deduce that Irrc(G’) has exactly p* + p(p? — 1)
orbits under U. Since G’ also stabilizes Irrc(G’) the length of an orbit can
again be either 1 or p.

We conclude that Irre(G’) has exactly p(p* — 1) orbits of length p and p?
orbits of length 1.

We now investigate the number of irreducible characters of U of degree 1 and

p.

A character A € Trre(G') is either extendable to a linear character of U or
induces to an irreducible character of U of degree p. We claim that vice versa
every irreducible character of U is either an extension of an irreducible char-
acter of G’ or induced by one such. Any linear character of U clearly is an
extension of an irreducible character of G'. In order to prove that any charac-
ter of U of degree p is induced from G’ consider x € Irrc(U), x(1) = p. Now
let A € Irrc(G’) such that (xgr, A) # 0, i.e. Ais a constituent of the restriction
of x to G'. Applying Frobenius reciprocity shows that (X, )\U) = (xa, A\) # 0,
hence y is a constituent of A\V. However p = x(1) = [U : G'| \(1) = A\Y(1),
i.e. AU and y have the same degree. We conclude that y = AV and the claim
is proven.

Using 2.3.5 and 2.4.1 we deduce that there are exactly p? characters in
Irrc(G’) which can be extended to a linear character of U. These are just
the ones which lie in orbits of length 1, which is equivalent to having inertia
group U or being invariant under U. From 2.4.3 we conclude that each ex-
tendable linear character of G’ has exactly p different extensions. Hence U
has exactly p? irreducible characters of degree 1.

It is easy to see that two induced characters, say AU and Y, are the same if

and only if A and p lie in the same orbit under the action of U on Irre(G').



Using this together with 2.3.5 we conclude that U has exactly p(p* —1) char-
acters of degree p. Each of them is induced by any representative of an orbit

of length p.

Since the number of conjugacy classes is equal to the number of irreducible
characters of U we deduce that U has exactly p? + p* = p*(p — 1) conjugacy

classes.

Let us give an overview of the classes in Table 4.3 containing representa-
tives together with the length of each class. Subsequently we will prove that

the table is correct.



Table 4.3: Cl(U)

name | representative parameter length | number
Cis Ad’, v, 0 €1 1 p?

Bgs vid°, sel*del P p(p—1)
Anrs a®cd’, acl* vdel P pi(p—1)
Xeas zad’, felr,a,0el| p* |pip—1)

Proof of Table 4.3:

Since we already deduced the U-classes contained in G’ we only need to inves-
tigate the elements contained in U\G’. Let us have a look at the conjugacy
classes of elements 2%a®d’, & € I*,a,6 € I. We know that any conjugacy
class is a subset of a coset ulUU’ for some u € U’. However we easily see that
U' = (b,c) and therefore has order p>. Conjugation with z,a and b shows
that Cl(z%a“d’) has more than p elements, hence it must have p? elements
and thus be equal to uU’ for some v € U. Since U' = (b,c) we conclude
that Cl(zfa®d’) = {ycfao‘cl‘sbﬁc7 | 3,7 € [}. Summing up we obtain p?(p — 1)
conjugacy classes, each of length p?, hence p® — p* elements in total. Since

|U| = p® and |G’| = p* we see that we found all conjugacy classes.

Ad(1) (¢)

In order to obtain the irreducible characters of V' we will use precisely the
same arguments and obtain that Irrc(G’) has p + p?(p — 1) orbits in total
under V', p? of them have length 1 and p?*(p — 1) have length p. Hence V has
p* linear characters and p?(p — 1) characters of degree p. We conclude that
V has p*+p?(p—1) = p*(p® + p— 1) conjugacy classes. Let us again give an
overview of the classes in Table 4.4 containing representatives together with

the length of each class.



Table 4.4: CI(V)

name | representative parameter length | number
Bg.s v de B,v,0 €1 1 p’

Aupy a®bPc? acl* pB,yvel D p’(p—1)
Yoasy ylabi e, vel* apyel D pP(p—1)

Proof of Table 4.4:

Since we already deduced the V-classes contained in G’ we only need to

investigate the elements contained in V\G’. Let us have a look at the con-

jugacy classes of elements 3a®b®cY,v € I*,a, 3,7 € I. We know that any

conjugacy class is a subset of a coset vV’ for some v € V’. We easily see that

V' = (d) and therefore has order p. Conjugation with y and a shows that

Cl(y*a“b’c?) has more than one element, hence it must have p elements and

be equal to vV’ for some v € V. Since
V' = (d) we conclude that Cl(y*a®b’c") = {y*a®*b’c'd’|§ € I}. Summing

up we obtain p*(p — 1) conjugacy classes, each of length p, hence p® — p*

elements in total. Since |V| = p® and |G'| = p* we see that we found all

conjugacy classes.



Ad(1) (d)
Let us now present the character tables of U and V' and subsequently prove

that these tables are correct. Therefore we will introduce some notation.
Notation 4.2.1

(i) Let ¢ be a complex root of unity of order p.

(i) If A € Irre(G') is invariant in U = (z) x G’ or in V' = (y) x G', we
will use the notation A for the extended linear character of Irre(U) or

Irrc(V), with respect to the construction given in the proof of 2.4.1.

(iii) By € we will denote the linear character of Irrc(U/G’) or Irre(V/G'),
respectively, with e(z) = ¢ or e(y) = (, respectively.

Furthermore we also consider € as a character of U or V', respectively.

(iv) For s € I* we define

pe = (¢TI =12 p e C

where we use the positive branch of the root function.
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In order to investigate the irreducible characters of U and V' we will need
the character table of G.
By Aijki, 1,7, k, 1 € I we denote the linear character of G’ with
Aigki(@) = Aijra(d) = ¢, Nijrale) =5 Nijrald) = ¢
Since {a, b, c,d} is a generating set for G’, a linear character is uniquely de-

termined by the image of this set.

Theorem 4.2.2
Irr@(G’) = {)\i,j,kz,l | i,j, k‘,l € [} .

Proof Since G’ is elementary abelian of order p* the claim immediately

follows from 2.1.5.

Let us now start to prove that the character table of U given in Table 4.5

1s correct.

We already know that U has p? invariant linear characters in Irre(G).

Let us determine these characters.
Lemma 4.2.3 )\, i, € Irrc(G') is invariant in U if and only if j = k = 0.

Proof Since 27! € U is of order p and therefore generates U/G’, we know
that A € Irre(GY) is invariant in U if and only if A* = X, ie. if and only
if A(x7tgz) = \(g) for all g € G'. The set {a,b,c,d} generates G’, hence we
only need to check that A(x~'gz) = A\(g) for all g € {a,b,c,d}. We obtain

Ma) = Mz~ ax) = A(ab), hence \(b) =1,
A(b) = Mz~ tbx) = A(bc), hence A(c) = 1,
Ac) = Mz ter) = M),
Md) = Mz tdz) = M\(d)

Thus A € Irre(G') is invariant in U if and only if A(b) = A(c) = 1. This means
that the character A; ;z; of G’ is invariant in U if and only if j = k = 0.



Theorem 4.2.4 The linear characters of U are given by
Llnc(U) = {5\@0,071 -e™ ‘ 1, l,m € I} .

Proof From 2.4.2, 2.4.3 and 4.2.3 it follows that any linear character of U
is of the form Ao, - €, where ¢ is a linear character of U/G'. We have
|U/G'| = p, i.e. U/G' is abelian and it follows that |Irrc(U/G’)| = p. Hence
Irrc (U/G") = {e™ | m € I}. We conclude that any linear character of U is of
the form 5\2-001 -e™ 4, l,m € I. Summing up we see that we found exactly

p?-|Irre(U/G")| = p? linear characters of U which means we have found them
all.

It remains to determine the irreducible characters of U of degree p. These

!

are induced by linear characters A € Irrc(G’) with inertia group Iy(\) = G'.
From 4.2.3 we conclude that I;(A\) = G’ if and only if j # 0 or k # 0. Hence
)‘z(',]j,k,l is an irreducible character of U if and only if 7 # 0 or k # 0.

Lemma 4.2.5

(1) Define T := z~'. Then we have )\Ef;kl = Nipjntkn(n—1)/2,j+knkl Jor all
neN,i,jklel.
Note that )\i,j,k,l = )\i(modp),j(modp),k(modp),l(modp) fO’/’ all i7j7 k7l e N.

(2) Let k € I*,i,j,l € I. Then the orbit of \;;r; under U contains an

element Ny g 1 for some i’ € 1.
(3) Let j € I*,i,l € I. Then the orbit of \; jo,; under U contains Ao _jo-

(4} Let Sy = {)\i,O,k,lHyl el ke ]*} and Ty = {/\07]'70,5 |j el*le I}

Then none of the elements from Sy U Ty are conjugate under U.

Proof

(1) We will prove the claim by induction. Therefore let o, 3,7,6 € I and
i,j,k,lel.

For n = 1 we obtain



Ai]kzl( abﬁC’ydé) = /\z‘jkl< -1 abﬁC’yd(S ) = )\z’jkl( abﬂ—i_acﬂﬁ_ﬁdé) =
Caz-ﬁ-(ﬁ—i—a)]—‘r(v-i-,@)k-i-él Ca(z+])+ﬁ(]+k) vk+dl )\Z+] ]+kkl(a b’gcwdé)

Thus the claim is correct for n =1 (7).

Assume now that the claim is correct for some n € N (%) and perform

the step n +— n + 1:

We obtain
gntl zn z (%) z (1)
A ikl ()‘Lj’kJ) - ()\i+jn+kn(n—1)/2),j+kn7k7l) -

/\H—j(n+1)+kn(n+1)/2),j+k(n+1),k,l-
We see that the claim is correct for n + 1 and hence it is correct for all

n € N.

(2) We choose n € N such that j + kn

immediately follows from part (1).

0 (mod p). Then the claim

(3) We choose n € N such that i + jn = 0 (mod p). Then the claim

immediately follows from part (1).

(4) We know that ), j;, is invariant under G’. Hence we just need to con-
sider elements of U\ G’ when investigating the action on \; ; x;. However
T generates U/G’, hence we only have to look the action of " on A; j k.

Applying part (1) we can easily calculate the orbit of (z) on A; ;.

For \iox; € Sy we obtain the orbit {/\i+kn(n71)2,kn,k,l |n € I}. Hence

none of the elements of Sy can be conjugate under U.

For Ao jo; € Sy we obtain the orbit {Aj, ;0|7 € I}. Hence none of

the elements of Ty can be conjugate under U.

If we further compare Sy with Ty we immediately see that it is not

possible for two elements of Sy U Ty to be conjugate under U.

Corollary 4.2.6

{x € Irrc(U) | x(1) = { N lil €T, kEI*}U{)\OJOl jer,lel}.



The value of )\%kl at an element v = x°a*b?cd® € U for v, a, 3,7,8 € I is
given by:

v ()_{ 0, if , if v #0,

A (u o 4
1,5,k,0 Caz+ﬁj+’yk+§l Znel Ca(jn+kn(n—1)/2)+,3(kn)’ Zf’U =0.

Proof We know that two characters A7, ; and A ;, ., are the same if and
only if A; j . and Ay jo ¢ lie in the same U-orbit. From 4.2.5 we conclude that
all characters contained in {Xy, |i,le [,ke I"} U{\},, |jel*lel}
are different to each other. Summing up we see that the set above contains
exactly p*(p — 1) + p(p — 1) = p(p* — 1) characters. As we deduced earlier

this is precisely the number of irreducible character of U of degree p.

Let us determine the value of AY,, ; at u € U.
Since A, ; is induced from G’ we have that A7}, (u) =0, if u ¢ G".
For v € G, i.e. for £ = 0 we obtain the value at u as follows:
—n 425

)‘z({jk,l(aabﬁc’ydé) = )\gj,k,l(aabﬁcvdé) = Zné[ ij,k,l(aabﬁc’yd(S) =
Enel )\i+jn+kn(n—1)/2,j+kn,k,l(aabﬂcvda) _ Znel Ca(z-l—]n—l—k:n(n—l)/2)+ﬂ(]+kn)+7k+él _
Cai+ﬁj+’yk+6l Z k ga(jn+kn(n71)/2)+ﬂ(kn)

ne :

Now we are ready to fill in the entries in the character table of U.

Let us make a last useful remark to deduce the values for the character
table of U.

Remark 4.2.7
(i) Y27y ¢"i =0 for all r € I*.

(i) ;Z;E Cm@ _ (_gka)(p2,1)/8_ /—(_1)(p—1)/2 /P = pro for all k,a €

I*, where we defined p, in 4.2.1.

Proof



(i) Since ¢, = XP~'+ XP~2 4+ .+ X? + X + 1 is the minimal polynomial
of a complex root of unity of order p we obtain that Zf:_& (" = 0. for
all r € I*.

(ii) see [EM, Lemma 3, p. 288|.

For each conjugacy class we now just insert ¢, 7, k, [ and v, «, 3,7, d in the
formula given in 4.2.6 for characters of degree p or consider 4.2.4 for linear

characters.

We now come to prove that the character table of V', given in Table 4.6,
is correct. In order to do so we will follow precisely the same arguments as

for the character table of U. Therefore we will omit the proofs at this stage.

We have:

Lemma 4.2.8 )\, i, € Irre(G’) is invariant in V' if and only if | = 0.

Theorem 4.2.9 The linear characters of V are given by
Ling(V) = {@ijkm 4,5, k,m € 1, Ojkm = Aijko €m} :

It remains to determine the irreducible characters of V' of degree p. Any
such character is induced by a character A € Irr¢(G’). From 4.2.8 we deduce
that Iy (Xijry) = G’ if and only if I # 0. Hence A/, is an irreducible
character of V' if and only if [ # 0.

Lemma 4.2.10 (1) Define i := y~*. Then we have X jr" = Nitinjki-

(2) Let Sy := {Xojki|j. k€ I,l € I"}. Then none of the elements in Sy

are conjugate under V.

Corollary 4.2.11  {x € Irrc(V) | x(1) = p} = {\ 1, i ke I, lel*}.

The explicit value of /\(‘)/,j,k,l at an element v = yYa*bPAd® € V for

v,a, 3,7,0 € I is given by:



v )_{ 0, ifv & (b,c,d)

Mg () =
0,5,k,1 ; :
/ pCIBHRAFS - otherwise

Analogously to U we can now fill in the character table of V' with the corre-

sponding character values.

4.3 The determination of the irreducible char-

acters of (¢

Ad(2)

The task is now to determine the conjugacy classes of V' under G in order to
obtain the number of orbits and fixed points under the action of G on CI(V').
Since V' is normal in G we have an action of G on V' via conjugation. In order
to obtain the G-classes in V' we need to consider how C1(V'), the conjugacy
classes of V, behave under conjugation with x, because = generates G/V .
Some of the classes may fall together whereas some may remain as they are
under conjugation with V. We will first present the conjugacy classes of V'
under G in Table 4.7 with representatives and length. Subsequently we will

give a proof that the table is correct.



Table 4.7: G-classes in V'

name | representative parameter length | number
Cs Add v,0 €1 1 p?
Vs bid° gel*del P p(p—1)
Aoy a®c’ acl*vyel p? p(p—1)
Yvﬁv yvbﬁc’y v E ]*757’7 el p2 p2(p — 1)

Proof As already mentioned we will just have to investigate how the con-
jugacy classes of V' behave under conjugation with z. We recall that the

matrix corresponding to the conjugation with z" is given by

n(n—-1)

1 n 5 0
Mn = 0 1 n 0
00 1 0
0 0 0 1

for all n € N.
Furthermore, since |G/V| = p, we note that the length of a conjugacy class
under G either is the same as it was under conjugation with V" or it is mul-

tiplied by p.

Now we can start to investigate the different classes. We know that
Z(G) = (c,d), hence we still have {"d’}, ~,0 € I as classes of length 1
under conjugation with G.

However, applying the matrix M, we see that under conjugation with 2", n €

I we have b°d’ ~ bPc"Pd’. Thus we obtain that C1(b°d°) = {V’7d’ |y € I}, B €
I*,0 € I is a conjugacy class of length p under G.

Analogously we see that a“c” ~ a®b®c” under conjugation with z. Look-
ing at Table 4.4 we see that Cly (aacy) # Cly(aabacy). This implies that
Cl(a®c”) has more than p elements under the action of G. As it had length p
under conjugation with V' it follows that it has length p? under conjugation
with G. Looking at Table 4.4, the table of CI(V'), we see that for every

a € I*, 8 € I, the p conjugacy classes A,g, 7 € I of V' (see Table 4.4) fuse

to one conjugacy class of G.



Now we have y ~ ya~! under conjugation with x. Hence the same as above
happens to each of the conjugacy classes of the third row in Table 4.4. We
find that for v € I*, 3, € I the p classes Y,q5,, @ € I fuse together to one
G-conjugacy class with representative y?b%¢?.

Summing up we see that we obtain p® = |V| elements, hence the investigation

of the G-classes in V' is complete.

Ad(3)
We also have an action of G on CI(V'). From Table 4.7 and from Table 4.4 we

can deduce the number of fixed points and orbits from this action. We obtain:

(i) p* orbits of length 1, where a set of representatives are the classes
BO’y57 e 0 € ]a

(ii) p(p—1) orbits of length p, where a set of representatives are the classes
Bgos, 3 € I*,8 € I (the class of bd° is conjugated to the classes
Wed, v el),

(iii) p(p—1) orbits of length p, where a set of representatives are the classes

Anoy, a0 € I*,y € I (the class of a*c” is conjugated to the classes
a*Pcr, B el),

(iv) p*(p—1) orbits of length p, where a set of representatives are the classes
Yoosy, v € I*, B,y € I (the class of y"b°c7 is conjugated to the classes
ya*b’c, a € I).

All in all we obtain p? orbits of length 1 and p3 4+ p? — 2p orbits of length p.
We again apply Lemma 2.3.11, Brauers permutation lemma, and conclude
that the action of G on Irrc(V) yields p? orbits of length 1 and p?® + p? — 2p
orbits of length p.

Ad(4)
Now we are concerned with the determination of the number of linear char-

acters of GG, the number of characters of degree p and of degree p*.



Lemma 4.3.1 Any x € Irrc(G) is either an extension of a character of V,

i.e. xv € Irre(V), or we have that x = o for some ¢ € Irre(V).

Proof [I, (6.19), p.86].

Theorem 4.3.2 G has exactly:
o p? characters of degree 1,

o 2p3 — p® — 1 drreducible characters of degree p, where p*(p — 1) of them
are extensions of characters from Irrc(V) and the rest, i.e. p* — 1

characters, are induced from a linear character of V,

e (p—1)? irreducible characters of degree p*.

Proof Obviously each linear character of G is an extension of a linear char-
acter of V. Furthermore we deduce from 2.4.3 that each linear character
A € Trre(V) with inertia group I¢(\) = G has exactly p different extensions
of X to a linear character of G.

From the proof of 3.3.1 we know that |G/G’| = p®. Hence it follows that G
has exactly p? linear characters. Therefore p of the p? orbits of length 1 from
the action of G on Irrc(V) contain characters of degree 1, and the rest, i.e.
p(p — 1) orbits, contain characters of degree p. Thus G has p? linear charac-
ters and p?(p — 1) characters of degree p which are extensions of irreducible
characters of V. All other characters of Irr¢(G) are induced from a character
of V' which also means that their restriction to V' is not irreducible.

How many of the remaining p® + p? — 2p characters of Irr¢(V'), which induce
to pairwise different irreducible characters of GG, are of degree 1 and how
many are of degree p? In order to answer this question we will use two facts:
Let m = |x € Irre(G) | x(1) = p, xv ¢ Irre(V)]

and n = |y € Irre(G) | x(1) = p%, xv € Irre (V)]

Then

e n+m=p’+p>—2p,



o np® + mpt = pb — P + pt — p2.
This follows from the fundamental formula 3.1, which in this case yields

2
ZXeIrrC(G)X(l) = pS. Hence

2 4 2 6 2 2 2
np® +mp* = E x(1)"=p"—= p° —p (p*(p—1))
i (1) ()
x(H)#1,xy ¢lrre (V)

— S — Pt — R
Ad (1): G has p? linear characters.

Ad (11): G has p*(p— 1) characters of degree p which are induced from
V.

From the second equation we deduce that n +mp* = p* — p* +p? — 1, hence
n = p* — p3 + p?> — 1 — mp?. Inserting this into the first equation we obtain
pt=p+p—1—mp? +m=p+p*—2p.

Thus m = (p — 1)? and n = p* — 1.

This means that G has (p —1)? irreducible characters of degree p* and p* — 1
irreducible characters of degree p which are induced from a linear character
of V.

Ad(5)

In Table 4.8 we list the conjugacy classes of G and in Table 4.3we present
the generic character table of G. We will afterwards first prove that the table
of CI(@G) is correct and subsequently we will prove that the given character

table of GG is correct.



Table 4.8: Cl(G)

name | representative parameter length | number
Cls A’ v,0 €1 1 p?
Bgs bido, gel*del P p(p—1)
Any a“c?, aecl* vel p? p(p—1)
Yvﬁ'y yvbﬁcwa v E 1*7577 el p2 pQ(p — 1)
Xoes yUrtde, cel*voel p? p?(p—1)

Notation 4.3.3

(i) Let ¢ be a the complex root of unity of order p as in 4.2.1.

(ii) If ©;jkm € Ling(V) is invariant in G, we will use the notation éijkm for
the extended linear character of Irrc(G), with respect to the construc-

tion given in the proof of 2.4.1.

(iii) By n we will denote the linear character of Irre(G/V) with n(z) = .

Furthermore we also consider 7 as character of G.
(iv) Let ps be as in 4.2.1.

(v) For [ € {2,3} we define Ts(lt) => el CST’“(?).

(vi) For j,n € I,l € I* we define x;,, as follows:
For v € V we define x;n(v) = Ay 0,(v).
Now choose 7;; € I such that j +r; =0 (mod p).
Then for g = y*2°a®bPd® € Xyes5, v,8 € I, € € I* and «, 3,7 such
that g € X,¢; we define
0, ifv#& 1,

Xj,l,n(g) - l6+nv | (2) : — € .,
pC Tj@)’lg, ifo=¢§ 1
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Proof of Table 4.8:

We first point out that we already deduced the G-conjugacy classes contained
in V' in Table 4.7. This are the first four rows of the table. Hence we just
have to investigate G\V under the action of G. Now let us determine the
conjugacy class of an element g,y := y"z%d" € G\V for some r,t € I, s € I*.
We shall use the following Lemma.

Fix [ € N. Then for all r, s,t € I we have

s(s—1) s(s—1)(s—2) 1(1-1)
lsbl 5 Cl 3 ds—= Tt

Lemma 4.3.4 (1) y~lg.y' = y"2%a

(2) blgrstbil — yrxscsldt

(S D)

(3) algmta—l =y .I‘SbSl 12 drl-l—t

Proof We will prove these properties briefly:

Let r,s,t € N.

Ad(1) First we show by induction that for all s € N we have y~lz%y' =
S slbls(s 1) ls(s 1)(5 2)d (l l)

Using induction (4) at the end of the proof of 3.3.1 we see that the

claim is true for s = 1.

Let us assume that the claim is correct for some s € N (1). Now do

the step s— s+ 1:

We have
sl Lo IN (o=l
y ety = (y ety ) (v wy')
T s(s—1) s(s—1)(s—2) 1(1-1) 1(1-1)
@ (msaSlbl =6 d 2 >(xald 2 >
c,deZ (G . s(s— 1) S(sfl)(572) l 1) 1(1—1)
(A2 28 (zr e (za )b 2 ¢ d° ald™=
sl, 1Ss=1) s(s—1)(s—2) (l 1)
= 25 (27 ax)” (2 1bm) T gld™ s dtt
e
=ab =bc
s(s+1 s(s—1)(s+1 ll 1
B e e A ) (GRIEL

Hence the claim is correct for s + 1 and therefore for all s € N.

Now using the above induction we obtain y~'g.sy' = vy 'a*y'd' =
s(s 1) ls(s 1)(3 Q)d l(l;l)th

y riaty! and the claim is proven.



Ad(2) We know that z* acts on G’ via the matrix

s(s—1)

1 s == 0

M = 0 1 s 0

0 0 1 0

00 0 1
We obtain z7%b'z* = b'c®!, hence we have blz*b~! = z5¢/*. It follows
that b'g,,b~" = by 2 div™! = y" (blasb~ 1) d! = y"2c!*dt and the claim is

proven.

Ad(3) We further know that y” acts on G’ via the matrix

100 r
0100
M, =
0010
0001
Analogously to case (2) we obtain z—%alz® = alb*'d™ 7" as well as
y~"aly" = a'd™, hence we have a'z*a™! = 20 as well as alyra™! =

y"d"". Tt follows that a'g,a™" = (a'y"a™)(a'z*a " )aldla™ = y"xsblscls(S;Dd”th

and the claim is proven.

With the information gained we now prove that the length of the conju-
gacy class Cl(grs) is at least equal to p®. We show that grg ~ y"z5a®bPc7dl
for all o, 3,y € I and for some t € I. The value of ¢ does not matter here.
Now fix a, 3,7 € I.

Using (1) choose I € I such that y~ g,y = y"z*a®z for some z € (b, c,d).
Using (3) choose I’ € I such that b=y lg /0" = y z°a®b?2 for some
2 e (c,d).

Using (2) choose I” € I such that a"b~Vy gyt a" = y z5a®bPcd for
some t € I.

Thus |Cl(g,st)| > p*. However we also have |Cl(g,s)| < p®. This is because



Z(G) = (¢,d) C Cq(grst) of grst in G as well as (grs1) € Cq(grst). Hence
(grst, ¢;d) C Ca(grst) and it follows that [Ca(grs)| > P2, ie. |Cl(grst)| =
G Calgrn)] < P

Allin all we conclude that {Cl(g,s) |7,t € I,s € I*} yield p?(p—1) differ-
ent conjugacy classes of length p*. Summing up the lengths and numbers of
conjugacy classes of the above table we see that we obtain p® = |G| elements.

Hence the investigation of the conjugacy classes of GG is complete.

In order to prove that Table 4.3 is correct we will begin with the deter-

mination of the linear characters of G.

Theorem 4.3.5
Llnc(G) = {é()’o’o,m . 77” | m,n € I} .

Proof Every linear character of G is an extension of a linear character
O, jkm € Ling(V). Hence we need to check which linear characters of V/
we can extend to G, i.e. which linear characters of V' have inertia group G.
These are just the ones which are trivial when restricted to G’, i.e. this is
the set {©p00m|m € I}.

From 2.4.2 and 2.4.3 we now deduce that every linear character of G is of
the form (:)0,07077,1 " ,m,n € I.

We have |G/V| = p, hence |Irrc(G/V)| = p. We already saw that there are
exactly p characters © € Irre(V) satisfying ©g = 1. Thus we found ex-
actly p- [Irrc(U/G")| = p? linear characters of G which means we have found
them all.

Now we will determine the irreducible characters of G of degree p. First
we investigate the irreducible characters of G of degree p which are induced
from a linear character of V. From 4.3.2 we know that these are precisely

p® — 1 characters.



Let us therefore recall the linear characters of V. These are given by:
Lln([j(V) = {@i,j,k,m ’ 1,7, k‘, m € [}

, where ©;  pm = Nijro €™

Lemma 4.3.6 Let o, 3,7,0,v € I. Then
Y aP N dlx = y“aa*“rbawrﬁ*“(g)co‘(g)JrﬁH%v(g)dm” for all r € N.

Proof Induction.

Notation 4.3.7 Let in the following z := 27 1.

Corollary 4.3.8 (0, 1m)" =0©
I.

i rr(g) g+ m— (i (5) +k(5)) fOT atlE, 3, k,m €

Proof Let v = yva®b’cd’ € V, v, «a, 3,v,6 € I. We obtain:
. s 43.6

(Oijkm)” (V) = N jrolx va") - e™(x™"va") (4:36)

Mo (yPac—vrber 8= () o (o) +ortr=v () gar+s) . om0y =

S)

P pr— N O]

Corollary 4.3.9 O, € Irrc(V), 4,5, k,m € I, induces to an irreducible
character of G if and only if t #0 or 7 # 0 or k # 0.

Theorem 4.3.10 Fori,j,k,m € I we define S; jxm := {@fjkm}
Then {x € Irrc(G) | , x is induced from a linear character of V'} = {S;oxm|i,m € I,k € I*}U
{Sojom|i€I*,meI}U{Sio00|ic I}

The value at an element g = y*25a®b’c'd® € G of X € Sijrm in each of the

cases above is given as follows:

We have x(g) =0, if g ¢ V, i.e. if € #0.



Let now £ =0, i.e. g€ V.

For x € {Siokml|i,me Il ke I"} we have
X(g) — Cia+k'y+mv Zre[ Cka(S)Jrkﬁrfivrfkv(g) .

For x € {Sojom|j € I*,m € I} we have
(0) = D)

For x € {Si000|1 € I"} we have
x(g) = Cw Zrel er-

(In order to fill in the character values into the table for these cases also

consider 4.2.7).

Proof Follows from 4.3.9 and 4.3.8.

Now we are concerned with characters x € Irrc(G), x(1) = p which are
extensions of irreducible characters of V. From 4.3.2 we know that we are

looking for precisely p*(p — 1) characters.

Lemma 4.3.11 For all j € 1,1 € I* we have Ig()\é/’j’k’l) = G if and only if
k=0.

Proof Let j € 1,1 € I*. Since zV generates G//V we have that Ia(Ag ;) =
G if and only if A, ; is invariant under .

From Table 4.6 we know that the value of )\K ik ab an element v = yPatPcd’ €
V' is given by:

0, if v & (b,c,d),
)‘Kj,k,l( ) = {

pCIBHRIHS - otherwise.

Thus we have to check that Ay, (¢ (VP d)z) = N, (bPcd) for
all 3,7,6 € I. However 2~ 1(b%c7d?)x = bPc7+Pd° and we obtain the equation



A (BPPd) = NV (0Pc7d). Since Agjri(c) = ¢* we conclude that

Ao,jk, 1 invariant under z if and only if & = 0.

Corollary 4.3.12 For all 7 € I,l € I* we have that /\ijo,l has ezxactly p

different extensions to an irreducible character of G.

We will now determine the extensions of )\g’ joiforjellel”

Lemma 4.3.13

(1) (yz) = yriaarii=D/2pril=1)2i=1)/6 crii=1)(=2)3i=1)/24gil=1)(2r(i=1)~)r/4,
(2) y"x € G has order p for all r € I.

Proof (1) Induction.

(2) Follows from part (1) since p > 5.

Corollary 4.3.14 For r € I* we define W, = (y"z,a,b,c,d).
Then W, = (y'z) x G' = C, x C;

Lemma 4.3.15 Let j € 1,1 € I and let rj; € I be such that j +ryl =0
(mod p). Then for o jo; € Irrc(G') we have [erz (Aogo1) = Wr,, and A jo,
is extendable to a linear character of W,

We will use the notation 5\0,;’,0,1 for the extended linear character of Irre(W,.,)

with respect to the construction given in the proof of 2.4.1.

Proof Fix j € I,] € I* and let z = (y"i'x)~!. Using the relations of G we ob-
tain for a, 8,7,0 € I that (A j0,)?(a®b?c7d’) = g j 0@ TP cPHrdraetd) =
Nojo1(a®bPcrd®) - ¢Itril. Since j + ryul = 0 (mod p) we conclude that A ;o
is invariant in W, . Using 4.3.14 the second assertion follows immediately
from 2.4.1.



Lemma 4.3.16
(1) Forallry € I* thereis a charactere,, € Ling(G/W,,) withe,,(y) = C.
(2) Linc(G/W,,,) = {5%1 |n e ]} for allry € I*.

(3) Letrj € I be such that j+rjl =0. Then {5\0,]-7071 e linelle I*}
are p*(p — 1) different linear characters of W,,.

Proof

(1) Since y ¢ W, , we have that {y"[r € I} is a set of coset representa-
tives for G/W, . Now the claim follows since G/W,, = C}, and thus
Irre(G/W;,,) = C,.

(2) This follows from part (1).

(3) This follows from part (2) and 2.4.3.

Theorem 4.3.17 Let j,n € I,l € I* and let rj € I* such that j +rjl =0
(mod p). Then the linear character 5\07]»70,1 2 of W,.,, induces to an irreducible
character of G.

Furthermore 5\07]-7071 €Y = Xjin and Xjin s an extension of )‘Kj,O,l’ where
Xjin 15 defined in 4.3.3. The characters X;in, j,n € I,1 € I are pairwise
different.

Proof Fix j,n € I,l € I* and let us look at the orbit of 5\0,]-,071 - €} under
G/W,,. We already saw that {y' [t € I} is a set of representatives for the
cosets of G/W,.,.

Hence the orbit of Agjou - €7

is given by {(xo,j,o,l)yf (e eIt e 1}.
Now (5\0%0,1)?’775 = j\tl,jm and €7 is invariant under y'. Hence j\o,j,o,l - el is
not invariant in G and therefore it induces to an irreducible character of G.
Using the fact that V- W, , = G and VNW, , = G" we conclude by applying

2.2.9, Mackeys Subgroup Theorem, that 5\0’]-,071 - €% is an extension of Ay ;.



In order to finally see that 5\0,]-,071 - €5 = Xjin we determine the value of
5\00-,071 eq at g = yUrfabPd e Xyes for v,0 € 1,§ € I* and «, 3,7 such
that g € Xyes:

Using 4.3.13 we see that g ¢ W, if v # & - rj;. Hence we obtain:
(5\0,3',0,1 : 5?1>G(9) =0, ifv#E .

Let now v = £ - ry;. Using 4.3.4 we obtain:

(S‘O,j,o,l : 5?1)G(9) = (;\o,j,o,l : 5?1)(;(9%5655) =

SierRojoily yatd’y!) - en(ytyatd'y') =

S ;\Oyjjovl@%gatgbt(g) A5) d5+£(§)) _

oty Cjt(g)ﬂﬁ(;) — (oo Tﬁé),lg = Xju1n(9)-

Considering the values of x;;, we see that x;;,, j,n € I,l € I* are

pairwise different characters.

The investigation of the irreducible characters of degree p is now com-
plete.
It only remains to determine the irreducible characters of degree p? of G. We

recall that we are looking for (p — 1)? characters.

Lemma 4.3.18 Fach irreducible character x of degree p? is induced by a

linear character of G'.

Proof We consider an irreducible character A € Irrc(G’) such that (ygr, A) #
0. Using Frobenius reciprocity we obtain (X, )\G) # 0. Since x is irreducible
and both y and A% are of degree p we conclude that y = \°.

Theorem 4.3.19
{x € Irc(@) [ x(1) = p*} = {ASopu | ksl € T}

0, if g ¢ (c,d),

For g = y?2%a*bPc7d® € G we have \S =
g=Y Gokil9) pCFHR otherwise.



Proof First let us prove that A§,, € Irre(G) for all k,l € I*. By 2.2.6 we
obtain A, = ()‘(‘)/,O,k,l)G‘ From 4.2.11 it we know that Ay, , € Irre(V) for
all k,l € I*. Furthermore we follow from 4.3.11 that a character A{ ikl €
Irre(V) is invariant in G if and only if £ = 0. However in our case we have
k # 0, and we conclude that I (Ayy,,) = V. This implies that Ay, in-

duces to an irreducible character of G.

The center of G is given by (¢, d). Hence A§, () = p*Aoori(c) = p*C*
and A§o ., (d) = p*Aooku(d) = p*¢'. Therefore each of the characters above
yields a different character Ago,k,l € Irre(G). Furthermore we have k, 1 € I*,
hence we obtain (p — 1)? characters from the construction above. This is ex-
actly the number of irreducible characters of G of degree p? and we conclude

that we found all the characters we were looking for.

Let us determine the value of )\OG707,€J at g:
Since Ao, € Irre(G') we clearly have A§ . ,(9) = 0,if g ¢ G', ie. if £ #0
or if v # 0.
Now let g € G'.
We have that {y*z" | r, s € 1} is a set of coset representatives for G/G’. Hence

we obtain
Aok1(9) = 2 er Dser Moori(a Ty Cgyta’) =

—r —s a s o\ (Induction)
ZTEI ZSEI AO,O,k,l(m y Ca bﬁc’yday x ) =
D orer Doser Aooki(a " a W d ) = Deer C D er Ao,k (27 aVP A dxT)
@27 ) 0, ifa#0

DY rer A0 (WP i oo = 0.

0, if g & {c,d},

Together we obtain \S =
g i01(9) { pCFH otherwise.

The investigation of the irreducible characters of G is now complete.



Let us finally state a very nice conclusion, which we easily obtain by looking

at the generic character table of G.

Theorem 4.3.20 All irreducible characters of G of degree p? are tensor de-

composable.

Proof We look at Table 4.3, the generic character table of G. Every irre-
ducible character of degree p? (confer the last row) is a product of a character
from the second row with a character from the fourth row, hence it is tensor

decomposable.






Chapter 5

GAP

During my work on this thesis I gained some valuable results using the com-
puter algebra system GAP [GAP] whose development has been started at
Lehrstuhl D fiir Mathematik, RWTH Aachen. GAP is a system for compu-
tational discrete algebra, with particular emphasis on Computational Group
Theory. It provides a programming language, a library of thousands of func-
tions implementing algebraic algorithms written in the GAP language as well
as large data libraries of algebraic objects. For this work the most useful one
was the SmallGroups library, which is written by E. A. O’Brien, B. Eick, and
H. U. Besche.

The SmallGroups library contains all groups of certain ”"small” orders.
The word ’small’ is used to mean orders less than a certain bound and orders
whose prime factorisation is small in some sense. The groups are sorted by
their orders and they are listed up to isomorphism; that is, for each of the
available orders a complete and irredundant list of isomorphism type repre-
sentatives of groups is given. Currently, the library contains the following

groups:
% those of order at most 2000 except 1024 (423 164 062 groups)
% those of cubefree order at most 50 000 (395 703 groups)

x those of order p" for n < 6 and an arbitray prime p

89



* those of order ¢"-p where ¢" divides 28, 3%, 5° or 7* and p is an arbitrary

prime not equal to ¢
x those of squarefree order
x those whose order factorises into at most 3 primes

The library also has an identification function: it returns the library num-
ber of a given group. Currently, this function is available for all orders in the
library except for the orders 512 and 1536 and for p® and p® above 2000.

I used GAP to investigate p-groups, looking for the existence of irre-
ducible tensor decomposable characters. In the following we shall present

observations and results as well as the way we gained those by using GAP.

5.1 Check if there are groups of certain order
possessing a tensor decomposable charac-

ter

In order to check if there are groups of order n possessing a tensor decom-
posable character I wrote a small GAP-program consisting of defined GAP
routines. This program is particularly written for groups of order p® and pS.
In the following we will first see the GAP code, which already contains some
comments, indicated by #. Subsequently we will give a more detailed ex-
planation of the source code and provide an overview which results I gained

using this program.

tensorsmall:=function(n, di1)

# returns a list S consisting of the ids of the groups of
# order n which possess a tensor decomposable character.
# The tensored character then has degree dl*dl and is the

# product of two characters, each of degree dl.

o O W N



local S, ids, i, g, ct, irr, ChOfSmallDeg, ChOfLargeDeg,
TensCh, M, Nil;

10 s:=[1;

11 ids:=Ids0fAllSmallGroups(n);

12

13 for i in [1..Length(ids)] do

14 g:=SmallGroup(ids[i]);

15

16 if IsAbelian(g) = false

17 then

18 ct:=CharacterTable(g) ;

19 irr:=Irr(ct);

20 ChO0fSmallDeg:=Filtered(irr, c -> Degree(c) = di1);

21 ChOfLargeDeg:=Filtered(irr, c -> Degree(c) = dixdl);
22

23 if (Length(ChOfLargeDeg)>0 and Length(ChOfSmallDeg)>0)
24 then

25 TensCh:=Tensored (ChOfSmallDeg,Ch0fSmallDeg) ;

26 M:=MatScalarProducts(TensCh, ChOfLargeDeg);

27 Nil:=NullMat (Length(ChOfLargeDeg) ,Length(TensCh)) ;
28

29 if ((M=Nil) = false)

30 then

31 Append (S, [ids[i]]);

32 fi;

33 fi;

34 fi;

35 od;

36

37 return S;
38 end;;



After defining local variables in Line 7 we generate by Ids0fA11SmallGroups
a list of the library numbers of all groups of order n (Line 11), where n is
given by the input of the user.

Now for every library number we perform the following procedure:
Generate the group corresponding to the respective library number by the
command SmallGroup (Line 14).

Next we want to reduce the number of groups we are working with by fast
methods. Therefore we first check by the command IsAbelian whether the
generated group is abelian or not (Line 16).

We continue to investigate this group just in case it is not abelian, since
abelian groups only have irreducible characters of degree 1, hence they do
not have tensor decomposable characters.

We go on and generate the character table of ¢ in Line 18.

However this does not give us all information we need so that we generate
all irreducible characters of g with the command Irr(ct) (Line 19).
Subsequentely, in Lines 20 and 21 respectively, we produce lists ChOf SmallDeg
and ChOfLargeDeg which consist of all irreducible characters of g of degree
dl and d1 * d1 respectively.

Now we check by Length (ChOfLargeDeg)>0 and Length(Ch0fSmallDeg)>0)
(Line 23), if the group possesses at least one irreducible character of degree
d1 and one of degree d1x*d1. For groups of order p°® or p® the only possibility
for a tensor decomposable character is a character of degree p?, which then
must be a product of two characters each of degree p. Since every group has
at least one linear character, the trivial character, we are looking for a group
which has irreducible characters of degree 1,p and p?. Thus we can elimi-
nate all groups whose irreducible characters have only two or less different
degrees.

If both lists contain at least one entry, which means that there is at least
one irreducible character of degree d1 and one of degree dl * d1, then we
investigate if one of the characters in the list ChOfLargeDeg is a product of
two characters contained in ChOfSmallDeg (Lines 24-29). This will be done
using the following commands:

The function Tensored (Line 25) creates a new list of characters out of the



parameters we pass on, i.e. out of two lists of characters. The result is a
list containing all products of characters of the two lists we passed on. This
list, named here with the variable TensCh, is now passed on together with
the list ChOfLargeDeg to the function MatScalarProducts (Line 26). We
obtain a matrix whose entries are the scalar products of each pair of charac-
ters, where one of the characters comes from TensCh and the other one from
ChOfLargeDeg. Hence we compute scalar products of two characters both
of degree d1%, where the one from the list ChOfLargeDeg is an irreducible
character. Hence the only possible result for each entry of this matrix is 1 or
0. We obtain 1 if and only if the two characters are the same, and 0, if and
only if they are different from each other. Comparing this matrix with the
zero matrix (Line 29) we can test, if one of the characters in ChOfLargeDeg is
a product of two characters contained in ChOfSmallDeg. In case the matrix
M of all scalar products is not the zero matrix we append the library number
of the respective group we were working with in this step to the list S (Line
31). Finally S contains all library numbers of groups of order n which have
a tensor decomposable character which is of degree d1 - d1 and we return S

(Line 37).

Results:

First I used the program for all groups of order p® for various primes p and
checked, if any of them possessed a tensor decomposable character. However
for all p-groups I considered, which were all groups of order p> with p < 17,
[ saw that neither of them has such a character. Hence I wondered whether
this is the case for all groups of order p®, where p is an arbitrary prime num-
ber and tried to prove this claim which finally worked out. The proof can be
seen in 3.1.1.

After having proven that there are no groups of order p® which have a tensor
decomposable character I started to investigate groups of order p°. Obvi-
ously, using the above program for p°, the amount of time to obtain results
became longer and longer. However I saw that there are groups of order p®

for p € {2,3,5,7,11} with the desired property. This led me to conjecture



that for any prime number p there is a group of order p° possessing a tensor
decomposable character. The result can be seen in 3.3.1. Furthermore I ob-
served that for p € {5,7,11} all groups G of order p® with Z(G) = C, x C,
and derived subgroup G' = C, x C, x C,, x C,, have a tensor decomposable
character. Therefore I started to wonder if possibly all groups with these
properties have a tensor decomposable character. Yet this problem seemed

to be anything but obvious.

Let us finally present the output of the above program for p® with p = 2
and p = 3 in order to get a better understanding of the whole context and
moreover to prove that there are tensor decomposable characters of groups

of order 2° and 3°. For p = 2 we obtain the following output:

[ [64, 81, [ 64, 91, [ 64, 101, [ 64, 111, [ 64, 12 1,
[ 64, 13 ], [ 64, 141, [ 64, 128 1, [ 64, 129 1, [ 64, 130 1],
[ 64, 131 ], [ 64, 132 1, [ 64, 133 1, [ 64, 140 1, [ 64, 141 ]
[ 64, 142 ], [ 64, 143 1, [ 64, 144 1, [ 64, 145 1, [ 64, 155 ]
[ 64, 156 1, [ 64, 157 1, [ 64, 158 1, [ 64, 159 1, [ 64, 160 ]
[ 64, 161 1, [ 64, 162 1, [ 64, 1631, [ 64, 164 1, [ 64, 165 ]
[ 64, 166 1, [ 64, 226 1, [ 64, 227 1, [ 64, 228 1, [ 64, 229 ]
[ 64, 230 1, [ 64, 231 1, [ 64, 232 1, [ 64, 233 1, [ 64, 234 ]
[ 64, 235 1, [ 64, 236 1, [ 64, 237 1, [ 64, 238 1, [ 64, 239 ]
[ 64, 240 1 ]

Analogously we obtain a similar output for p = 3:
[ [ 729, 401, [ 729, 411, [ 729, 421, [ 729, 431, ... ]

This shows that there indeed are groups of order 2° and 3% which have a
tensor decomposable character. However we are looking for a group which is
not the direct product of two non-abelian groups of order 23 respectively 33.
Otherwise we could easily construct a tensor decomposable character (refer
to 3.2.1). Therefore we will use the command
ClassPositionsOfDirectProductDecompositions(CharacterTable(G)).

This returns a list of all those pairs [Li, Ly] where L; and Ly are lists of



class positions of normal subgroups Ni, Ny of the group G such that G
is their direct product and such that |[N;| < |Ns| holds. For the group
G=SmallGroup([64,8]) we obtain the output: [ 1. Hence this group is
not a direct product at all.

For the group G=SmallGroup([729,40]) we also obtain the empty set
here. Thus, in the sense of 3.2.1, we found a non-trivial example of a group of
order 2% and a group of order 3% possessing a tensor decomposable character,
namely the groups of the GAP ’SmallGroups’-library with the library number
(64, 8] and [729, 40].

5.2 Obtain a representation of a group con-
tained in the GAP library

I proved that for any prime number p > 5 there always is a group of order p°
possessing a tensor decomposable character by giving an explicit construction
of such a group using power commutator presentations. The resulting group,
including the proof that it actually is a group with the desired properties, is
given in 3.3.1.

In order to find an appropriate presentation I used some GAP code which
will be described subsequently. With the program of the previous section
I obtained library numbers of groups contained in the GAP library for p €
{2,3,5,7,11}. The task now was to find a suitable presentation of one of
these groups which I could use to find a general group of order p® possessing a
tensor decomposable character. I gathered some further general information
about such a group in 3.2.4. Having obtained these results I tried an approach
via finding generators for the derived group and the commutator factor group,
taking representatives of each generator of the commutator factor group and
determining the order and all commutators of these elements. I aimed at
being able to generalize the order, e.g., if for p = 3, the order of an element is
9, I defined in general the order of this generator element to be p?, and so on.
As mentioned earlier I observed that for p € {5,7,11} all groups G of order
p° with Z(G) = C, x C, and derived subgroup G' = C,, x C,, x C,, x C,, have



a tensor decomposable character. Therefore the GAP code was particularly

written for groups with these properties. We will see it in the following:

1 g:=SmallGroup(<libary number>);

2  cg:=DerivedSubgroup(g);

3 cfgg:=FactorGroup(g,cg);

4

5 genscg:=Generators0fGroup(cg);

6

7  a:=genscgl[l];

8 b:=genscgl2];

9 c:=genscgl3];

10 d:=genscgl4];

11 genscfgg:=Generators0fGroup(cfgg);

12 x:=genscfgg[1];

13 y:=genscfgg[2];

14

15 preimagex:=Prelmages(NaturalHomomorphismByNormalSubgroup(g,cg),x);
16 preimagey:=PrelImages(NaturalHomomorphismByNormalSubgroup(g,cg),y);
17

18 x_:=Representative(preimagex) ;

19 y_:=Representative(preimagey) ;

20

21 gnew:=Subgroup(g, [a,b,c,d,x_,y_1);

22 hom:=EpimorphismFromFreeGroup(gnew:names:=["r","s","t", "u","v","w"]);
23

24 Print(Order(cg),"\n",

25 Order(a),",",Order(b),",",0rder(c),",",0rder(d),",",

26 Order(x_),",",Order(y_),"\n",

27 PreImagesRepresentative (hom,Comm(a,x_)),"\n",

28 PreImagesRepresentative (hom,Comm(b,x_)),"\n",

29 PreImagesRepresentative (hom,Comm(c,x_)),"\n",

30 PreImagesRepresentative (hom,Comm(d,x_)),"\n",



31 PreImagesRepresentative (hom,Comm(a,y_)),"\n",

32 PreImagesRepresentative (hom,Comm(b,y_)),"\n",
33 PreImagesRepresentative (hom,Comm(c,y_)),"\n",
34 PreImagesRepresentative (hom,Comm(d,y_)),"\n",
35 PreImagesRepresentative (hom,Comm(x_,y_)),"\n"
36 );

By the routine SmallGroup (Line 1) GAP generates a group, here named
g, with the respective library number which the user has to pass on as a
parameter. As explained above I tried to find generators for the derived
subgroup and the commutator factor group, here named by cg and cfgg
respectively (Lines 2,3). This can be easily done by using the command
Generators0fGroup (Line 5). I named the generators of the commutator
group a, b, c,d and the generators of the commutator factor group x,y. How-
ever I did not exactly need generators of the commutator factor group, but
elements of the group so that their image in the factor group are generators.
Hence I had to do some more work.
With the command NaturalHomomorphismByNormalSubgroup(g,cg) in Line
15 T first created the natural group homomorphism of the group g into the
factor group g/cg and then passed it on as a paramenter to the routine
PreImages(f,el). The routine PreImages(f,el) returns a preimage of the
element el under the homomorphism f (in case f is a homomorphism and
el contained in its image). Using these two commands I was able to obtain
cosets which generate the commutator factor group. Finally, with the com-
mand Representative, I obtained the desired elements (Lines 18,19).
We now want to know the order of our elements and their commutators. De-
ducing the order of elements is rather easy. It just requires to enter the com-
mand Order (Lines 24,25). Yet it was not that simple to obtain useful outputs
for the commutators. A small trick was necessary. First define a group gnew
as a group generated by a,b,c,d,x_,y_. We do this by using the command
Subgroup (Line 21) and generate gnew as a subgroup of the group g. Then we
define a homomorphism by the command EpimorphismFromFreeGroup (Line

22). With a known generating set (which here consists of the generators of



the derived subgroup a,b,c,d and the elements obtained from the genera-
tors of the commutator factor group x_,y_), this routine returns a homomor-
phism from a free group that maps the free generators (here r,s,t,u,v,w)
to the groups generators. Now we can represent a by r, b by s, ¢ by t
etcetera. The function Comm (Lines 27-35) returns the commutator of two
elements. Using the routine PreImagesRepresentative (Lines 27-35) I then
obtained the results for the commutators of all pairs of elements in the vari-
ables r,s,t,u,v,w. Thereby I could easily guess what the commutator in

the group of order p® with any arbitrary prime p might look like.

We now give an example and present the output of the above program
for the library number [15625,555] (which is the library number of a group of
order 5% possessing a tensor decomposable character, having an elementary
abelian derived subgroup of order p* and having an elementary abelian center

of order p?):

625
5,5,5,5,5,5

s

<identity ...>
<identity ...>
<identity ...>
t

<identity ...>
u

<identity ...>
r°4

This means that the order of the commutator group is Order (cg)=625,
the order of all a,b,c,d,x_,y_=5, the commutator Comm(a,x_)=s which
means [a,x]=b, Comm(b,x_)=<identity> which means [b,x]=1,..., and the

commutator Comm(x_,y_)=r"4 meaning [x,y]l=a"4.



Generalising this we obtain the following presentation:

(a,b,c,d,z,y | a?, 0P, dP, 2P 4", [a,b], [a,c], [a,d], [b,c], [b,d], [c,d],
la, 2] b7, [b,2], [e, 2], [d, 2], [a, 9]¢, [0yl eyl d™Y [d ), (2, 9] a).

At this point it is worth pointing out that lots of attempts did not work
out in general. However I gained more and more experience which relations
might be suitable and which not. Finally I found more or less coincidently a
presentation which actually fulfilled all our needs. This presentation with a
subsequent proof that this indeed is a group of order p® possessing a tensor

decomposable character can be found in 3.3.1.
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