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§1 Introduction

It is the goal of this thesis to extend the knowledge of the (Multi-)Letterplace ring.
In [LSLO9], the authors used the Letterplace ring to embed the free associative alge-
bra K(X) into a Letterplace ring. By use of this embedding, it is possible to compute
Grobner bases in a non-commutative algebra with commutative methods. The authors
continued their work in [LSL13], when they achieved more general results and analyzed
the results obtained in [LSL09] from a more abstract point of view. This thesis now
generalizes many results from this paper, so that they can not only be applied to the
Letterplace ring, but also to the Multi-Letterplace ring. Although this thesis consists
of six sections, it can be roughly divided into four parts. This first section is an intro-
duction of the basics which are needed for the upcoming sections. After that, sections
two and three capture the ideas of [LSL13] and generalize them. These sections yield
many useful results for a special class of ideals. Hence, section four and five show two
new approaches to make these results applicable to a wider class of ideals. In the last
section, a brief application of the theory is given in the context of difference equations.
In this first section, we will introduce the basic knowledge we need in the following sec-
tions. We start with the basics of monomials orders, Grébner bases and the Buchberger
criterion. This section is mainly based on [Eis95]. After that, we introduce graded
algebras and modules with some interesting propositions. This part mostly relies on
[Lan02]. In the last subsection the Multi-Letterplace ring will be defined and a short
introduction is given.

In the second section, we take a closer look at the skew monoid ring S = X % P, whereby
P is a commutative polynomial ring and X is a submonoid of End(P). We will illustrate
the concepts by choosing P to be a Multi-Letterplace ring, since this ring is our primary
interest. We will present a new criterion for the Buchberger algorithm for graded ideals
in S by using our knowledge of £. This result requires some thoughts and ideas about
suitable orderings on S first. The ideas and the approach in this section rely on [LSL13].
In fact, it is a generalization of the results obtained in section 4 and 5 of this paper.
Hence, many proofs were also only slightly changed to fit the new setting.

The third section transfers the results of the second section to a special class of ideals in
P. For this purpose, we define a new type of basis called X-basis. Once again, we obtain
a useful adaption of the Buchberger criterion. We also present an interesting embedding
from P to S by introducing the concept of multi-weight functions. We will show that
an ideal I in P, which is w-graded, corresponds to a multi-graded ideal in S. By use of
this embedding, we are in fact able to transfer homogeneous Groébner bases in S onto
Grobner X-bases in P and vice versa. This section is based on section five of [LSL13]
and, similar to the last section, can be seen as a generalization of the results obtained
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there. The biggest change is the transition from weight functions to multi-weight func-
tions which ultimately yields multi-graded ideals in S.

After section three, we only focus on the Multi-Letterplace ring. Sections three and four
present entirely new results and focus on determining and extending the applicability
of the theory presented in sections two and three. Since the results of section three
demand the ideal in P to be w-graded, it is interesting to find out which ideals are w-
graded. The fourth section mainly deals with this question. We will characterize when
a multi-weight function exists such that an element f is w-homogeneous. If we find such
a function, the ideal with X-basis {f} is w-graded. Based on this characterization, we
present an algorithm which constructs a suitable multi-weight function for given f. If
there is no such function, the algorithm will return a negative result. At the end of
this section, a proposition yields a method to determine wether there is a multi-weight
function suitable for two elements. This proposition is also proven constructively and
yields a similar result for n elements.

The fourth section revealed that there are ideals which are not w-graded for any multi-
weight function w. Hence, the fifth section proposes a homogenization of such ideals
to solve this problem. The first main result shows that the ideal membership problem
can be transferred into the w-graded world whenever the X-basis is finite. Since one
important advantage of 2-bases is the fact that it is very often finite even if a normal
basis is infinite, this assumption is not too restrictive. The other important result allows
us to compute Grobner bases of the homogenized ideal and project them onto Grobner
bases of the original ideal. For this purpose, the original ideal may even have an infinite
2.-basis.

The last section shows a short application of the Multi-Letterplace ring. We describe
how difference equations can be embedded and take a closer look at systems of linear
difference equations.

Note that Roberto La Scala’s paper [LS13] shows some intersections with this thesis.
He focuses on partial difference equations, thus the application of the theory is more on
the spot. However, he also uses the Multi-Letterplace ring (although he does not use
this name and its appearance is sometimes only implicit) and he also suggests a homog-
enization. Nonetheless, his approach is not entirely the same. Instead of a multi-weight
function he defines a weight-function and an order-function. This approach results in
two main differences. First, the weight-function and the order-function are unique, so
the process of constructing weight-functions for certain ideals does not arise. In addi-
tion, his weight- and order-function result in a grading and not in a multi-grading. This
basically relies on the decision to map the weight on IN, while we will map it on IN" in
this thesis. Hence, many results in this field are very different. Furthermore, there are
also huge differences in the process of homogenization. His basic approach is closer to
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the classical homogenization, so both yield different but interesting results.

1.1 Monomial Orders and Grobner Bases

In this subsection, we will introduce the theory of Grobner bases we will need in the fol-
lowing sections. It mainly bases on the chapter of Grobner bases in [Eis95]. Throughout
this chapter, X = {z; | i € I} will denote the set of variables for a finite or countably
infinite set I. Without loss of generality, we can assume that I C IN holds and, therefore,
I is ordered. Furthermore, P = k[X] denotes the commutative polynomial ring for an
arbitrary field k.

Throughout this thesis, IN will denote the set of the non-negative integers {0, 1,2, ...}.

1.1.1 Monomial Orders

In the theory of Grébner bases, monomial orders play an important role. While monomi-
als in a polynomial ring of one variable are ordered naturally, the definition of a suitable
order on monomials in more variables is very important. The set of all monomials in P
will be denoted as mon(P). If m is a monomial, we find (p;);e; with u; € IN such that
m = [L;er 4" holds. It is important to note that only finitely many y; are not equal to
0. The total degree of m is defined as tdeg(m) = Yy i

We will now precisely define when we call an order on a set M total.

(1.1) Definition
Let M be a set and < an order on M. We say that < is a total order if

1. m <m (reflexivity)

22.m<n An<m = m=n (antisymmetry)
3. m<n An<p = m<p (transitivity)

4. m<norn<m (totality)

for all m,n,p € M.

(1.2) Example
Fix M = mon(P) and let m,n be two arbitrary elements of mon(P). There are

Wi)ier, (Ni)ier C N@ such that both m = [Lic; 2% and n = ; [x-A" hold. We
el > S¥ g}
put
m<pexn & JjEl: pj <A
and p; = \; for all i < j
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and call this order the lexicographical order. Tt is in fact a total order on mon(P).

(1.3) Example

Consider M = mon(P) again. By combining the lexicographical order with the total
degree of the monomial we obtain the graded lexicographical order. 1t is defined precisely
via

m <gieg 1 < tdeg(m) < tdeg(n) or (tdeg(m) = tdeg(n) and m <jez n) .

It is easy to see that this order is also a total order.

(1.4) Remark
These two orders correspond to two total orders on IN"*. For [,n € IN", you can define
two total orderings via

[ <jpegm <& 3dje€ {1,..,m} lj <mn;
and [; =n; for all i < j

and
[ <giezm & Zli<2ni or (Zli:Zni and | <jeq n)

We will also call these orders the lexicographical order and the graded lexicographical
order. It will always be clear from context which one is actually meant.

For the purpose of Grobner basis computations, we are often interested in the termi-
nation of the corresponding algorithms. Therefore, we need to make sure that every
nonempty subset of monomials has a least element.

(1.5) Definition
Let < be a total ordering on a set M. We say that < is a well-order if every nonempty
subset of M has a least element with respect to <.

(1.6) Remark
Note that both the lexicographical and the graded lexicographical order suffice this
condition.

We will also require a compatibility with the multiplication in P.

(1.7) Definition
Let < be a total ordering on a set mon(P). We say that < is compatible with multipli-
cation if
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1. f<g & fm<gm

2. f<fp
for all f,g,m,p € mon(P) with p # 1.

(1.8) Remark
Considering their definition, it is easy to check that <., and <g, are compatible with
multiplication.

Since we are interested in orderings which satisfy all these conditions, the next definition
summarizes them.

(1.9) Definition
Let < be an order on mon(P). If < is a total well-order which is compatible with
multiplication, we call < a monomial order.

We will now define the concepts of ged and lem on monomials.

(1.10) Definition
Let m,n be two arbitrary elements of mon(P). There are (1;)icr, (Ai)ier € N such

that both m = [;e; 2/ and n = [lier xf‘l hold. We define the greatest common divisor
and the least common multiple as

ged(m,n) = Tlier pmin{p,Ai}
lem(m,n) = [lier pmax{u; A}

1.1.2 Grobner Bases of ldeals

We will now briefly define the basics of Grobner bases of ideals and state the most
important propositions. Fix any f = i a;m; € P with a; € k\ {0} and m; €
mon(P). From now on, we assume that P is endowed with a monomial order <. Thus,
choose g € I such that my = max;{m;} is holds. In addition, let G be a subset of P.
We will use the following abbreviations:

Symbol Notation
Im(f) mg
le(f) ag
() le(f) - lm(f)
Im(G) {im(f) | f € G\{0}}

LM(G) ideal generated by Im(G)
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In the polynomial ring k[z] and in general in any Euclidean ring, there is a Euclidean
division. However, since k[X] is not even a principal ideal domain, we can not expect the
existence of such a division in k[X]. The following theorem is a very popular solution
to this problem.

(1.11) Proposition
For any G C P and f € P there is an expression

n
[ = th‘gi—i-f/, hi, ' € P,gi € G
=1

with Im(f) > Im(h;g;). In addition, no monomial of f’ is contained in LM (G). Any
such f’ is called a remainder of f with respect to G.

Proof

cf. [Eis95]

The proof in [Eis95] demands G to be finite, but we will explain in the next subsec-
tion, when we present the division algorithm for modules, that this assumption may be
omitted. (]

(1.12) Remark
Note that the remainder of f is neither unique nor unique up to units.

We are now able to define Grobner bases.

(1.13) Definition
Let I be an arbitrary ideal of P. Then G C P is a Grobner basis of I if LM(G) =
LM(I).

(1.14) Remark
Any Grobner basis of an ideal I is also an ordinary basis of I.

If G is a basis of I, there is a very useful characterization of Grobner bases we will use
in this thesis. The following definition is important for this characterization.

(1.15) Definition
Let f, g be two elements of P with m = Im(f),n = lm(g) and | = lem(m,n). Then,
the s-polynomial is defined as

S(F.9) = telg)-f 1) o

10
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We will now state the famous Buchberger Criterion for ideals.

(1.16) Proposition (Buchberger criterion)
Let G be a basis of I. Then, GG is a Grébner basis of I if and only if

V f,g € G: aremainder of s(f,g) with respect to G is zero.

Proof

cf. [Eis95]

The original proof was only given for a finite subset G. Anyway, this assumption is not
needed, which will be explained in more detail in the next paragraph when we cite the
Buchberger criterion for modules. ]

1.1.3 Grobner Bases of Modules

We will extend the theory presented in the last subsection for submodules of free mod-
ules. Hence, we will assume that F' is a free P-module with basis {e;} ;e for a finite or
countably infinite set J.

First, we need some adjusted definitions of known concepts. Note that these definitions
often depend on the choice of the basis.

(1.17) Definition
The set of monomials of F' is defined as

mon(F) = {me; | m € mon(P), j € J}.

If f €mon(F) and s € k\ {0}, we call sf a term.

The definition of monomials allows us to define the term monomial order for modules.
(1.18) Definition
A total well-order < on mon(F') is called monomial if for any mi, ma € mon(F) and
n € mon(P)\ {1}
mp <mo = mip <nmip<<nmsa
holds.
(1.19) Example
Recall that we can assume that J C IN holds and, thus, we can use the natural order of

IN on J. Let < be a monomial order on mon(P). For two monomials me; and ne; we
define a monomial order via

me; <nej < 1 <jor (i=jandm<n).

11
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From now on, we assume that F'is endowed with a monomial order. The next definition
introduces divisibility in mon(F).

(1.20) Definition
Let m = sme; and n = rne; be two terms of F. We say that m divides n if ¢ = j and
n

there are a € k and p € mon(P) such that smap = rn holds. We write ~ = ape;.

Furthermore, we define

ged(mej, nej) = 05gcd(m, n)e;,

lem(me;, nej) = dilem(m, n)e;.

Note that the definitions of the leading term, the leading monomial and the leading
coefficient in P can be naturally transferred to F' by use of the definitions of this sub-
section. Hence, also Grobner bases and s-polynomials are defined analogously. Thus, we
can restate the division with remainder in the case of modules by only making a slight
adaption.

(1.21) Proposition
For any G C F and f € F' there is an expression

n
f=> higi+f , hieP.geG feF
i=1

with Im(f) > Im(h;g;). In addition, no monomial of f’ is contained in LM (G). Any
such f’ is called a remainder of f with respect to G.

Proof

cf. [Eis95].

The proof is given for a finitely generated module F' and a finite set G. In fact, such an
assumption is not needed, since the order is monomial.

We put f1 := f. If im(f1) € LM(G), we find g;; € G such that Im(g;,) divides
Im(f). Hence, we define fy := f1 — lltt((g}:ll)) gi; and remark that Im(f1) > Im(f2) holds.
We iterate this process as long as f; # 0 and Im(f;) € LM(G) hold. This process
terminates, because the elements f; induce a strictly descending chain

lm(fl) > lm(fg) > ..

which has to be finite since < is a well-ordering.
n ~

Thus, we obtain f = Y hig; + f with g; € G, h; € P and Im(f) > Im(h;g;). We also
i=1

12
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~

know that Im(f) is not contained in LM (G). However, there might be a monomial
of f contained in LM (G). In this case, we continue the reduction process. Assume
[ =3, aim; with a; € k\ {0} and m; € mon(P). Without loss of generality, we may
assume that m; > m;yq holds. Denote j the minimal index such that m; € LM(G)
holds. We continue similarly to the first reduction process and obtain ﬁ Note that
this reduction does not affect the terms of f whose monomial is greater than m;. After
this reduction, there might still be monomials of f; in LM (G). If this is the case, we
apply the process to the greatest of these monomials. The assumption that there are
infinitely many such monomials occuring in this process yields again an infinitely strictly
descending chain of monomials which contradicts the fact that the order is a well-order.
Hence, we obtain termination and the last ﬁ is equal to f’. ]

We will now state the famous Buchberger Criterion for modules.

(1.22) Proposition (Buchberger criterion)
Let G be a basis of M C F. Then, G is a Grobner basis of M if and only if

V f,g € G: aremainder of s(f,g) with respect to G is zero.

Proof

cf. [Eis95].

Note that the proof is given when F is finitely generated and G is also finite. But, the
proof still holds true without these assumptions, since the monomial order allows us to
deduce the infinite case from the finite case. We have already seen that the division
algorithm, which is crucial for this proof, still holds true and the rest of the proof does
not make use of the additional assumptions. L]

1.2 Graded Algebras and Modules

In this subsection, we will recall some basic definitions and results concerning the grading
of algebras and modules. Note that any ring mentioned in this thesis is a ring with
identity.

(1.23) Definition
Let A be a commutative ring. We say that A is graded, if there is a direct sum compo-

A=P A,

oeEL

sition of A:

13
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whereby % is a monoid with operation x and A, are additive abelian groups. This
composition has to be compatible with the ring multiplication, i.e. for any o,7 € X the
equation

AcAr C Agur

holds.
An element f € A, is called homogeneous (with respect to the grading) of degree o.

(1.24) Remark
Note that A;4, endowed with the multiplication in A, is a subring of A since A;qA;q C Ajq
holds. Hence, any A, can be interpreted as an A;s-module.

(1.25) Remark

Assume that A is a R-algebra for any commutative non-graded ring R and assume also
that the mapping R — A, r + r-14 is injective. By use of the identification r = r- 14,
this means that we may assume R C A. Then, we say that A is graded if and only if
it is graded as a ring. In this case, we endow R with the trivial grading R = R;4 and
obtain R C A;4. Hence, all A, are R-modules.

(1.26) Example
Consider the polynomial ring in n variables A := k[xz1, ..., z,] as a k-algebra. Denote Ay
the additive group of all monomials with total degree d. Then, we obtain

A= @ A;
€N
and the equation A;A; C A;y; obviously holds too for any 7,7,€ IN. In fact, this
example motivated the term grading in the first place.

We will now introduce a similar concept for modules.

(1.27) Definition
Let A be a graded ring over the monoid X and let M be a A-module. We say that M
is a graded module if we can write M as

M = @ M,
oEeX
such that
AUMT C Moxr

holds. Here, M, are additive abelian groups.
An element f € M, is called homogeneous (with respect to the grading) of degree o. Note
that every element in M can be uniquely written as a sum of homogeneous elements.

14
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(1.28) Remark
Since A;qM, C M, holds, M, is an A;j-module for any o € X.

(1.29) Remark

An ideal I C A is called graded if I = @ I, with I, = 1N A,.
ocEX

The next definition is a natural extension of the definition of homogeneous elements.

(1.30) Definition

Let M be a graded module and let G be a subset of M. If G = U GN M,, then G is
ogeX
called a homogeneous subset of M.

The theory presented in this subsection leads to an interesting application on the ideal
membership problem.

(1.31) Proposition

Let A be a graded algebra over a commutative ring R and assume that the mapping
R — A, v+ r-1y4 is injective. Fix any ideal I C A and let H C I be a homogeneous
R-basis of I. Denote H, = HN A, and fix f = >, fo € A with f, € A,. We obtain
that the set My := {0 € X | fo # 0} C X is finite. Then, f € I if and only if f is

contained in the R-ideal generated by H' = U H,.
O'EMf

Proof
Recall that R C A;4 holds. Since H is a homogeneous R-basis of I, it follows immediately

that H, is a R-basis of I,. Hence, |J H, is an R-basis of & I[,. By definition of
O'EMf O'EMf

My, it is obvious that f € I if and only if f € @ I, which implies the proposition.[]
O'EMf

(1.32) Remark

This proposition states that we do not necessarily need to compute the whole basis to

decide the membership problem. Consequently, the problem might be decidable even if

the basis itself is infinite. We will investigate this problem in the next sections further.

1.3 Multi-Letterplace Ring
In this subsection, we will introduce an algebraic structure which we will call a Multi-

Letterplace ring. 1t is a generalization of the Letterplace ring which was first introduced
in [Fey51] in the context of representation theory. This ring was then used in both

15
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[LSL09] and [LSL13] to compute Grobner bases in free associative algebras. Especially
in [L.SL13], the authors used an abstract point of view to understand the Letterplace ring
and to find useful embeddings. In this thesis, we will try to generalize these results for the
Multi-Letterplace ring. Thus, in the next two sections, we will develop a general theory
designed for the Multi-Letterplace ring in combination with a monoid of endomorphisms.
So, this ring will be the prototype used to exemplify the results obtained in the next
sections.

(1.33) Definition
Let k be a field, m € IN and let X = {xg, z1,...} be a finite or countably infinite set.
The Multi-Letterplace ring P is defined as

P :=Ek[X xIN"].
J1 J
Instead of writing = | ¢, | : , we will use the notation x;
Jm Jm
(1.34) Example

Choose k = R and m = 3. We obtain the ring P := R[X x N?]. An element f € P
has a form like

4 10 1
f=2x3|3|as| 3| —a1|1
3 12

Note that the Multi-Letterplace ring is a commutative ring with identity, since it is
induced by a field k.
Consider the element

J
T ’
Jn
J1
we call x; the letter and | : | the multi-place of the element. The term multi-place
Jn

might seem arbitrary, but it is motivated by the ordinary Letterplace ring: Consider the
embedding of the free associative algebra k(X) into the Letterplace ring via

T k(X)) = k[X X NJ, @y ooy, = 25 (1) -2, (n).

This is a very important embedding which helps computing Grobner bases in k(X)
with commutative methods (cf. [LSL09]). In this case, the place of an element stores

16
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the information of the position of the element x;; which would be normally lost by the
commutativity of the Letterplace ring. Hence, the term places is obvious and the term
multi-place just follows this notation.

It is clear that computations in the Multi-Letterplace ring might be very complicated
if X is infinite. However, embeddings in the Multi-Letterplace often only use a small
subring, which allows effective computation. We will try to benefit from this fact by
taking appropriate monoids of endomorphisms in consideration. One important class of
monoids are the ones generated by (q-)shifts in the i-th component of a multi-place.

17
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§ 2 Skew Monoid Rings

Let P be a k-algebra and ¥ a monoid of ring endomorphisms. In this section, we
will examine the action of X on P by taking the skew monoid ring S = P % X into
consideration. We will especially consider ideals in P which are invariant under the
action of 2. It is our goal to extend the theory presented in [LSL13]. The results and
proofs in this chapter are generalizations of the original proofs presented in the cited

paper.

To clarify notations, we will use the following symbols:

Symbol Meaning
k arbitrary field
P commutative k-algebra
z submonoid of Endy(P)
S=PxX skew monoid ring

We will use the abbreviation

fo=o0(f)o VoeX, feP.

We construct S now more precisely. If we denote the operation on X by o, we will use
the notation o7 := g o7r. We put S = P&, 50 an element f € S is a function from X
to P such that the set {c € £ | f(0) # 0} is finite. Then, S is a free P-module with
basis {e, | 0 € £}, whereby e, denotes the element

1l =0
0 otherwise

€o - Z—>P,Tr—>{

Hence, every f € S can be uniquely written as

f=2> flo)e.

oEL

This sum is finite, since only finitely many f(c) are not equal zero. We define a multi-
plication on S via

oeX TEL o,TEL veX \ o,7€X
oT=V

fr9= (Z f(a)ea) | (Zg(f)er) =2 f(0)9(7)7eor = 3 | 22 f(0)9(n)” | e

18
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We will now identify e, with o and p € P with p-idy. Then we can write w.l.o.g. P C S
and obtain

f=7>flo)o

oeX
together with

frg=> flo)g(r)oT.

o,TEY
If p € P and o € X, this implies

op=7p’o.
Hence, we can interpret an element of S as a finite sum Y. r,o with r, € P. Conse-

ocEL
quently, we obtain
(Z TUU) . (Z 87-7') = Z TeSTOT
ocEX TEL o,TEY

which is similar to the multiplication in skew polynomial rings.
Note that S is a non-commutative k-algebra if and only if £ # {id}.

(2.1) Remark
We can interpret S as a free P-module with left basis 2.

Since we will investigate the computations of Grobner bases in S, we are interested in
gradings of the ring S. The next lemma presents a natural grading induced by 2.

(2.2) Lemma
Denote S, the additive abelian group Po of S for each ¢ € X. Then, we can write
S = @ S, as a graded ring. Note that S;; = P.

cEL
Proof
Since S, NS, = () for 0 # 7 and S = > S, follow directly from the definitions of S
oeX
respectively S,, we can conclude that S = @ S, holds. According to Definition 1.23,

e
we have to check S;5; C S, for each 0,7 € X. For any p = propem € S,;5; with

p1,p2 € P we can conclude p = p1pjor € S,+, and, therefore, we have S;5; C Sor. U

The following lemma reveals another interpretation of S in a special case.

(2.3) Lemma
Let ¥ be freely generated by o1,...,0.,. If ¥ is also abelian, S is isomorphic (as a
k-algebra) to a multiple Ore extension of P, namely

S = Pls1;01][s2;02] -+ [sm;om] =t P.
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Proof
Consider the P-linear mapping ¢ : S — P defined by

¢ (Z a;mioyt .. .a,”,{”) = aimgsyt ... sy
i i

This mapping is well-defined because X is freely generated by oy, ..., 0, and also bijec-
tive. In addition,

o(oip) = ¢(0i(p)oi) = oi(p)si = sip = ¢(0:)@(p) Vp € P,i € {1,...,m}

holds, so ¢ is a k-algebra isomorphism. (]

From now on, we will assume that X suffices the assumptions of Lemma 2.3. Therefore,
we will interpret S as P and we will identify ¥ with (s1,..., 8;,). In addition, we will

3

also write s = [] s;* for any v € N™.
i=1

(2.4) Definition
Fix any v € IN" and consider the element f = ns’ for any n € P. We define the
s-degree of f as degs(f) = v.

In the following example, we will introduce the prototype of the theory presented in this
section.

(2.5) Example
Consider the k-algebra P = k[X x IN™]| with a finite or countably infinite set X. Let
o; denote the shift in the i-th component, i.e.

J J1
oi s k[ X xIN™] = kE[X x N™], x| ji | = ap | ji+1
Jn Jn

Then, ¥ = (o1, ..., 0m,) is a commutative, freely generated submonoid of EndyP. Thus,
S is isomorphic to k[X x IN™]|[s1; 01][s2; 02] - - - [$n; om]-
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2.1 Skew Monoid Rings of Commutative Polynomial Rings

We now assume that P is a commutative polynomial ring, i.c. P = k[X] for a finite or
countably infinite set X = {xq,z1,...}. In addition, we assume that every o; is injective
and monomial (that means o(p) is a monomial for any monomial p). Since P is a
domain, this means that also S is domain. Note that the example of the last subsection
(the Multi-Letterplace ring) suffices these assumptions. In what follows, we will make
use of the following notations:

Symbol Meaning
mon(P) set of Monomials of P
mon(S) set of Monomials of S

Mon(S) {ms|m € mon(P), s € mon(S)}

In order to examine Grobner bases of ideals, it is important to clarify divisibility in S.
Note that, since s; already represents the variable corresponding to o;, we will use the
notations s%, o’ to denote arbitrary elements of mon(S) and X respectively. It does not
denote the power of s or o.

(2.6) Definition

For (ki)ien, (g1)ien € NN p1 = [ 2% py = ] 2 P), s!

or (ki)ieN, (9i)ieN € y P1 = ‘Hoxi P2 = 'Hﬂxi € mon(P), s
1= 1=

|
jiamp
»
S0
S
w
[\
I

‘]TIL[O si" € mon(S) and f,g € S, we say that

1. pp divides po if k; < g; Vi.

2. st divides s2 if ¢; < w; Vi.

3. f left-divides g if there is h € S fulfilling g = hf.
We use the notation a|b to denote that a left-divides b.

(2.7) Remark
If f,g € Mon(S) and g = hf, we can conclude that h € Mon(S) holds because each o;
is both monomial and injective.

The next proposition connects these concepts of divisibility.

(2.8) Proposition
Denote v = ms!, w = ns?> € Mon(S) with m,n € mon(P) and s!,s? € mon(S). Then

82
v left-divides w if and only if s!|s? and msT|n.
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Proof

Assume v left-divides w. Then, there is a = ks® € Mon(S),k € mon(P), s> € mon(9)

with ns2 = w = av = ks3ms! = km® s3s!. Thus s3s! = s2, which implies both 51\32
2 52 52

and s3 = i—l Furthermore, kms' = n and, therefore, msT |n.

3

Assume now that s> € mon(S) and k € mon(P) fulfill s3s! = 52 and km* = n
respectively. Then, fix a = ks® € Mon(S) and we have av = ks?ms! = km® 35! =
ns? = w. Thus, v left-divides w. ]

The concept of divisibility in P also induces another concept of divisibility in Mon(.S).

(2.9) Definition
Denote v = ms!, w = ns? € Mon(S) with m,n € mon(P) and s', s> € mon(S). Then
v P-divides w if s' = s% and m/n.

It is obvious that P-divisibility implies left-divisibility. The next lemma investigates the
connection between the two concepts closer.

(2.10) Lemma
Denote v = ms!, w = ns? € Mon(S) with m,n € mon(P) and s, s> € mon(S). Then
v left-divides w if and only if sv P-divides w for some s € mon(S).

Proof

If v left-divides w there is a = ks € Mon(S),k € mon(P),s € mon(S) such that
ns? = w = av = ksms' = km®ss! holds. Hence ss'
sv P-divides w.

Choose s € mon(S) such that sv P-divides w. This implies km® = n for some k €
mon(P) and ss' = s2. Therefore, we have ksv = km*ss' = ns?> = w and we conclude

that v left-divides w. OJ

= 52 and m®|n which implies that

We say that w is a multiple of v, if there are a,b € Mon(S) fulfilling w = avb. These
last results offer us a possibility to characterize when w is a multiple of v.

(2.11) Lemma
Let v = ms', w = ns? be in Mon(S) with m,n € mon(P) and s, s> € mon(S). Then,
the following are equivalent:

1. w is a multiple of v
2. w is a left-multiple of vs for some s € mon(S)

3. w is a P-multiple of 5vs for some 3,5 € mon(S).
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Proof

1) = 2)

Since w is a multiple of v, there are a,b € Mon(S) such that w = avb. Since b €
Mon(S), there are s € mon(S) and p € mon(P) with b = ps. This implies w = ap® v3.
Thus, w is a left multiple of vs.

2) = 3)

Since w is a left-multiple of v3 there is a = ¢s with ¢ € mon(P),s € mon(S) such that
w = avs. Therefore w = ¢svs, which means that w is a P-multiple of svs.

3)=1)

Since mon(S), mon(P) C Mon(S) this implication is obvious. O

2.2 Monomial Orderings and X~-Compatibility

In this subsection, we will take a closer look at monomial orderings on both mon(P)
and Mon(S). From now on, we will use Y to denote mon(P) or Mon(S) whenever it
is convenient. Recall the definition of a monomial order on Y.

(2.12) Remark

If < is a monomial ordering on Y, we can conclude that 1 < w VYw € Y: Assume
1 > w for some w € Y. Since < is compatible with multiplication, it follows that
w” > w"t ¥n € IN. Therefore, the set {1,w,w?, ...} has no minimal element, in
contradiction to the fact that < is a well-ordering.

(2.13) Remark

Considering the definition of <y, and <, it is easy to see that these orderings are
compatible with the shift operation, i.e. v <giez/1e, w if and only if €; + v <giep/ien
e; + w for any w,v € N™ and i € {1,..,m}.

In this thesis, we are interested in monomial orderings on mon(P) which are compatible
with the action of 2. The next definition specifies this concept of compatibility.

(2.14) Definition

Let < be a monomial ordering on mon(P). Then o € X is compatible with < if m <n
implies m? < n? for all m,n € mon(P).

We call ¥ compatible with < if every o € ¥ is compatible with <.

(2.15) Remark
For any ¥ = (o1, ..,0p), it follows that X is compatible with < if and only if o; is
compatible with < for all ¢ € {1,..,m}.
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(2.16) Example

Consider P = k[X x IN™] and recall the total well-ordering <glew on IN™. We will define
a monomial ordering <p on mon(P), which we will call a "letter over place ordering’.
We put 1 <p ¢ for all ¢ € mon(P)\ {1} and start by defining an ordering on monomials
of degree one:

J i J i1
Tk <p I = k<lor (k = [ and <glex )
q/ j’il n/
We can write any ¢,n € mon(P) as ¢ = [[ ¢; with ¢; =z, | : | and n = [] n; with
i=1 | . i=1
Jin
hi,
n; =, | ‘ |. Since we have already ordered monomials of degree one, we can assume
h

in

that both ¢; <p ¢i+1 and n; <p n;4+1 hold for all 7. We say that ¢ <p n if and only
if ¢ < n' or ¢ =n' and there is a j € {1,...,n'} such that ¢; = n; for all i < j and
¢; <p mj. This ordering is obviously total and compatible with multiplication. Since
<glex is a well-ordering, it is also easy to see that <p is a well-ordering. Thus, <p is a
monomial ordering.

The ordering is also compatible with %, since <, is compatible with the shift operation
(recall Remark 2.13): Since X only affects the multi-places and not the total degree nor
the letters, it is sufficient to note that

7 i1
<glex
jTL ?/Tl
holds if and only if
J i
e+ | | <glex €i T
Jn in

holds.

The following proposition demonstrates that the claim of ¥ compatibility is not too
restrictive.
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(2.17) Proposition
Let < be a monomial ordering on Mon(S). Denote < the restriction of < on mon(P).
Then, ¥ is compatible with < and, for all n,l € mon(P), s',s?> € Mon(S) we have:

nst <1s*> = n<lors' <s® ()

Proof

Consider n < [ with n,l € mon(P). By compatibility with multiplication, we can
conclude s;n < s;l and therefore n®is; < [*is; for any ¢ € {1,..,m}.This implies n®% < [%
since assuming n® > [% leads to the contradiction n’is; > [%is;. By recalling Remark
2.15, we have shown that X is compatible with <.

We shall proof (*) by contraposition. Thus, assume n > [ and s' > s2. It follows
immediately that nst > ns? > 1s? holds. U

The following proposition reverses the last result.

(2.18) Proposition
Let <, and < denote monomial orderings on mon(P) and mon(S), respectively. Con-
sider the total ordering < on Mon(S) defined by

2 1 2

& st <y s or (3 = s and m <, n) Vm,n € mon(P) s!

ms' < ns .52 € mon(S).

If ¥ is compatible with <, then < is a monomial ordering on Mon(S) extending <.

Proof
It is obvious, that the restriction of < on mon(P) is in fact <p. So, we only have to
prove that < is a well-ordering which is compatible with multiplication.

1. < is a well-ordering:
Assume that an infinitely descending chain of the form

nlsl > n252 > n353 > ...

with n; € mon(P) and s' € mon(S) exists. By definition of <, it is obvious that
s; > s;4+1 holds for all i. This implies that the set {s* | i € IN'\ {0}} is finite.
Otherwise, since the ordering is total, we get an infinitely descending chain of the
form

s'() > s(2) > s() >p

whereby v : IN — IN is a strictly increasing mapping. This chain contradicts the
fact that < is a well-ordering.
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Thus, the existence of first chain implies the existence of another infinitely de-
scending chain. Since the set {s* | i € IN'\ {0}} is finite, there is some t € mon(S)
which occurs infinitely often in the initial chain. Considering this sub-chain and
the definition of <, we obtain

Nr(1) Zp Mx(2) =p Nr(3) Zp -

whereby 7 : IN — IN is a strictly increasing mapping. But, this chain contradicts
the assumption that <, is a well-ordering. Therefore, < is also a well-ordering.

2. < is compatible with multiplication
We will only prove that < is compatible with left multiplication, since right mul-
tiplication is proven analogously. Fix a = ms!',b = ns?® ¢ = ¢s3 € Mon(S)
with m,n,q € mon(P) and s',s? s> € mon(S) and assume a < b. This im-

plies either s' < 32 or 51 = 52 If s <, 52, then s3s1 <, s3s2 and, therefore,
ca = qs*mst = gm® s3sl < qn 3352 = ¢s°ns® = cb.
If s' = 52, it follows that s3s' = s3s% and m <p n. Since X is compatible

$3

and gm?® s° <p qnsg hold. This im-
341,
s

. 3
with <,, we can conclude that m® <p n

plies, by definition of <, gqm?® 53 I < qn %5 so we can conclude again that

ca = ¢s*mst = gm® Ts3sl < qn’ 5352 = gs3ns? = ¢b holds. 0

These last propositions result in the following corollary.

(2.19) Corollary
S has a monomial ordering if and only if P has a monomial ordering compatible with X.

Proof

Note that the existence of monomial orderings on mon(P) and mon(S) is guaranteed
by Higman’s Lemma ([High2]). In Proposition 2.17 we have shown that a monomial
ordering on S induces a monomial ordering on P which is compatible with 2. If we
have a compatible, monomial order on P, we can, by choosing an arbitrary monomial
ordering on mon(S), construct a monomial ordering on S by use of Proposition 2.18.0J

(2.20) Example

Reconsider P = k[X x IN™] and £ = (o1, ..,0pn) whereby each o; denotes the shift in
the i-th component. We have already defined a monomial ordering <p on P which is
compatible with ¥ in Remark 2.16. We can endow mon(.S) with the graded lexicographic
order <g, which is also a monomial order. These orderings induce now a X-compatible
ordering on Mon(S) as shown in Proposition 2.18.
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2.3 Grobner Bases in S and P

In this subsection, we assume that S is endowed with a monomial ordering <. As usual,

m .
we start with some new notations. Fix f = 3 aym;s’ € S with a; € k\ {0}, m; €

=1

mon(P), s € mon(S) and G C S. By choosing g € {1,..,m} such that mysy =

max . {m;s'} holds we obtain:

Symbol Notation
Im(f) mygs?
Lsm(f) "s-degree of f" s9
le(f) g
() 1e(f) - m(f)
Im(G) {im(f) | f € G\{0}}
LM(G) ideal generated by Im(G)
LM;(G) left ideal generated by Im(G)
LMp(G) P-module generated by Im(G)

Recall the definition of Grobner bases.
(2.21) Definition

Let J be a (left) ideal in S. We call G C J a Grébner basis of J, it LM(G) = LM (J)
(LM;(G) = LM;(J)). If J is an ideal in P or a module over S or P, we obtain analogous

definitions.

The next proposition illustrates a very important aspect of Grébner bases, since a Grob-

ner basis G of an ideal [ satisfies LM (G) = LM(I).
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(2.22) Proposition
Let J be an ideal in S. Then

{w+J|we Mon(S)\ LM(J)}

is a k-basis of S/ J.
Let J be a left ideal in S. Then

{w+J|we Mon(S)\ LM;(J)}

is a k-basis of S/ J.
Let J be a P-submodule of S. Then

{w+J|we Mon(S)\ LMp(J)}

is a k-basis of S/ J.

Proof

Let J be an ideal in S. The case J = S is trivial, so we will assume that J is a proper
ideal. Denote N = span{Mon(S)\ LM (J)} and fix a monomial w € Mon(S). We
shall prove that there is f € N such that w — f € J holds by induction on the monomial
ordering.

Induction base: It is w = 1, so we can conclude w € Mon(S)\ LM(J) since J # S.
Thus, we can choose f = w.

Induction step: If w € N, the statement is obvious. If w ¢ N, there are p,q € Mon(S)
and g € J such that w = p-Im(g)-q. Consider f := w — —~pgq and note that

le(g)
Im(f) < w. By use of the induction hypothesis, there is h € N fulfilling f —h € J.

1
Since pgq € J, it follows that w —h = f —h+ ——pgq € J. Note that if f € NN J,
—

le(g)
eJ
then f = 0 and therefore w = M%)pgq e J. ]

The reduction process of the last proof yields an important characterization of Grébner
bases.
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(2.23) Proposition
Let J be a (left) ideal in S or a submodule of a free S-module and G C J. Then, the
following are equivalent:

1. G is a (left) Grébner basis of J

2. For any f € J, there is a Grobner representation of f with respect to G. (i.e. f
h;

Zfzgzhz respectively f = Zfzgz with g; € G and Im(f) > Im(fi) -lm(g;) -1 ( i))-

Proof

Note that if G is a Grobner basis, we have LM (G) = LM (J) respectively LM;(G) =
LM;(J). Since [f] = [0] in S/J, the reduction process in Proposition 2.22 yields the
desired Grobner representation of f with respect to G. By reversing the arguments one
obtains the other implication. ]

(2.24) Remark

A monomial ordering on S induces a natural multi-grading on S. By denoting Ss = Ps

for all s € mon(S) we can write S = @  Ss. Furthermore, we have S,1 - S22 C Sg1 0
semon(S)

(in general S - Sy # Sgi2!) and S = P. We call an element f € Sy s-homogeneous.

If the ideal J is graded with respect to <, we obtain a useful characterization of bases
and Grobner bases.

(2.25) Proposition
Let J be a graded ideal of S and let G be a subset of s-homogeneous elements of J.
Then, the following are equivalent:

i) G is a basis of J
ii) GZ is a left basis of J

iii) XGX is a P-basis of J

Proof

Note that, since G is a subset of s-homogeneous elements, every element of G has the

form g;s with g; € P and s* € mon(9).

i) = ii)

Fix f € J. Since G is basis of J, we can write f as f = Zfigisihi with f;, h; € S and
1

gis' € G. By rewriting h; = 3 hj,5;, with hy, € mon(P) and 5, € mon(S) one obtains
k
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f=3 figis" S higse = 30 fihf,igisiEk. Thus, GZ is a left basis of J.
) k 1k
i) = i)
For any f € J, there are fj € S, gis' € G and 5; € mon(S) such that f = 3 figis's;
1

holds. If we rewrite f; = Ek:fikgk, then f =} (Zk: fzk8k> Gis'5; = Z%fikékgisigi. We
1 1

can conclude that XGX is a P-basis of J since f;; € P.

iii) = i)

The ideal I generated by G is obviously a subset of J. In addition, the P-module
generated by 2GX is on the one hand a subset of I, and, on the other hand, it is equal
to J by assumption. Thus, we obtain both J C [ and I C J and can conclude that G is
a basis of J. O]

(2.26) Proposition
Let J be a graded ideal of S and let G be a subset of s-homogeneous elements of J.
Then, the following are equivalent:

i) G is a Grobner basis of J
ii) GX is a Grobner left basis of J

ili) XGX is a Grébner P-basis of J

Proof
Note that, since G is a subset of s-homogeneous elements, every element of G has the
form g;s* with g; € P and s* € mon(S).
i) = ii)
Fix f € J. Since G is a Grobner basis of J, f has a Grobner representation with respect
to G, ie. f= Zfigisihz’ with f;, h; € S and gisi € G. By rewriting h; = Zk: h;xSp with
7
hir € mon(P) and s, € mon(S) one obtains f = Zfigisi%hiﬁk = Zfi%hf,igis%k.
(2 (2
Since Im(f) > Im(f;) - Im(gi)s* - Im(hix)5k = Im(f;) ~lm‘(hi/yf)“>’z -Im(g;)s' - 55, we can
conclude (since ¥ is compatible <) Im(f) > Im(f;) - Im(h3,) - Im(g;)s* - 5. Thus, f has
a Grobner representation with respect to GX as a left basis.
i) = iii)
For any f € J, we have a Grobner representation with respect to GZ, i.e. there are f; €
S, gis' € G and §; € mon(S) such that f =Y figis's;. If we rewrite f; = %f“ﬁk, then
1

f=X (% fik3k> 9is's; = Z%fik%gisi%' Since Im(f) > Im(fir) - Sk - Im(gs) - s - 8,

this is in fact a Grobner representation of f with respect to 2GX as a P-basis.
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i) = 1)
Since every Grobner representation with respect to XGX as a P-basis is also a Grobner
representation with respect to GG as an S-basis, this implication is obvious. ]

One of our goals is the improvement of the computation of s-homogeneous Groébner
bases. Therefore, we have to investigate the influence of £ on divisibility and the gcd of
two elements.

(2.27) Remark

Since all ¢ € X are ring homomorphisms, we can conclude that f|g implies f7]g°.

Furthermore, the equation o (g) = % holds for any o € Z.

The next proposition will motivate when to define ¥ as compatible with divisibility

in mon(P). Recall that we identify each element o = ﬁ o% of £ with the element
i=1

s= I s;* € mon(S).
=1

(2.28) Proposition
Let s be an arbitrary element of mon(.S). Then the following are equivalent:

i) ged(xf,z3) =1 foralli # j

ii) ged(m?®,n®) = ged(m,n)® for all m,n € mon(P)

Proof
i) = ii)
Consider m,n € mon(P) with ged(m,n) = 1. We rewrite m = z;, - ... - ;, and
n = zj ... - x;, and conclude {z;, ...,z } N {zj,,...,xj;} = 0. Therefore, by use of

the assumption, it follows that {z7 ...,z } N {xﬂ,. " ]l} = () holds. Thus, we can
derive ged(m®,n®) =1 = 1°.

If ged(m,n) = u for some u € mon(P), we obtain ged(™,2) = 1. We have al-
ready shown that gcd(( ) ,(ﬂ)s) = 1 and by use of Remark 2.27 it follows that

u
gcd( e, u:) = 1 which yields ged(m?®, n®) = u®.
i) = 1)
Since X is monomial, we can conclude that both z; and z7 are elements of mon(P).
Thus, this implication is trivial. 0]

(2.29) Remark
If s € mon(S) fulfills these equivalent conditions, it follows immediately that the corre-
sponding homomorphism ¢ is injective.
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In the situation of the last proposition we easily obtain two useful results.

(2.30) Corollary
If s € mon(9S) fulfills ged(zf, z7) = 1 for all i # j, we can conclude that

m|n < m®|n® Ym,n € mon(P)

and
lem(m?®,n®) = lem(m,n)* Vm,n € mon(P)

hold.

Proof

Considering Remark 2.27, we only have to prove m*|n® = m|n. If we assume m?®|n® for
some m,n € mon(P), we obtain, by applying Proposition 2.28, m® = ged(m?®,n®) =
ged(m,n)®. Since the endomorphism o € ¥ corresponding to s is injective, we conclude
m = gcd(m,n), which implies m|n.

By applying Proposition 2.28 and Remark 2.27 we immediately obtain

= = lem(m?® n®).

ged(m,n) ) ged(ms, n®)

lem(m, n)® = (

mn s msn®
)

These last results yield the following definition.

(2.31) Definition

We say that o € X is compatible with divisibility in mon(P) if i # j implies ged(27,27) =
1.

If every o € ¥ is compatible with divisibility in mon(P), we call £ compatible with
divisibility in mon(P).

(2.32) Remark
If ¥ = (o1, ..,0m), then X is compatible with divisibility in mon(P) if and only if o; is
compatible with divisibility in mon(P) for all i € {1,...,n}.

2.4 The Buchberger Algorithm and the X-Criterion

In this subsection we will recall basic results concerning Grobner bases computations
of modules and apply it to S as a P-module. Furthermore, we will introduce a special
criterion which is applicable for any s-homogeneous basis of an ideal J C S. We will
call this criterion X-criterion.
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(2.33) Definition
Fix f,g € S\ {0} such that Im(f) = ms and Im(g) = ns with m,n € mon(P) and
s € mon(S). Denote a = lc(f),b =lc(g) and | = lem(m,n).

Then the s-polynomial of f,g is defined as spoly(f,g) = Lo %g. Note that the

am
equation spoly(f,g) = —spoly(g, f) holds.

The following proposition is one of the most famous criteria in Grobner basis computa-
tions for modules. We have already stated it in the introduction. This version is just
the adaption to our current setting.

For this purpose, we interpret S as a P-module and omit the action of X on P. Hence,
we interpret S as a left P-module.

(2.34) Proposition (Buchberger criterion)

Let G be a generating set of a P-module J C S. Then G is a Grobner basis of J if and
only if for all f, g € G\ {0} fulfilling lsm(f) = lsm(g) the s-polynomial spoly(f,g) has
a Grobner representation with respect to G.

The following lemma will prove beneficial for finding a X-criterion.

(2.35) Lemma

Fix f,g € S and choose s', s> € mon(S) such that Ism(fs') = lsm(s' f) = lsm(s?g) =
Ism(gs?). Denote s = gcd(s!',s?) and fix t1,t2 € mon(S) fulfilling st; = s'. Then,
spoly(s'f,s%g) = s (spoly(t1f,tag)) and spoly(fst, gs?) = spoly(fti, gta)s.

Proof

We shall prove the first claim, the other one is proven analogously. Note that lsm(t1f) =
lsm(t2g), so the s-polynomial is well defined. By use of the notations

Symbol Notation
it(s'f) am?’ sf 5!
It(s?g) bn®” 5952
lt(t1f) am® s'ty
lt(tag) bn'2 59ty
lem(m't n'2) q
lcm(msl,n32) cf. Corollary 2.30 q°
we obtain h = spoly(t1f,tag) = —Lyt1f — o5t2g. Therefore, we conclude
_ q q ¢ ¢ o 1, 2
sh=s <amt1t1f_ bnt2t2g> = ams1$ f= bnszs 9= spoly(s fis g)' W
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We now introduce the 2-criterion for an s-homogeneous basis of an ideal J C S.

(2.36) Proposition (X-criterion)
Let G be an s-homogeneous basis of a graded two-sided ideal J C S. Then, G is a
Grobner basis if and only if

Vf, g€ G\ {0} and s',s? 53, s* € mon(S) such that Ism(s!fs?) = lsm(s3gs?)
and ged(s', s3) = 1 = ged(s?, s*) hold, the s-poynomial
spoly(s' fs%,53gs*) has a Grobner representation with respect to G/ = ZGX.

Proof

If G is a Grobner basis of J, the implication is obviously right, since every s-polynomial

spoly(s' fs2,s3gs*) is an element of J (cf. Proposition 2.23).

Assume now, that the second condition holds. By Proposition 2.26 it is sufficient to prove

that G’ := G is a Grobner basis of J as a P-module. Since G is a generating set of J,

Proposition 2.25 yields that G’ is a basis of J as a P-module. Considering the Buchberger

criterion (cf. Proposition 2.34), it is sufficient to show that every s-polynomial h =

spoly(s' fs?, s3gst) with f,g € G and s* € mon(S) such that Ism(s'fs?) = lsm(s3gs?)

holds has a Grobner representation with respect to G.

We denote s := ged(s!, s?),5 = ged(s?,s*) and choose t; € mon(S) such that s!3 =

st1,3 and s24 = sto 4 hold. Furthermore, we define h = spoly(ti fte, tsgts). By use of

Lemma 2.35, we can conclude that A = sh3 holds. By assumption, h has a Grébner

representation with respect to G’.

Therefore, we will now show that if any A € S has a Grobner representation with

respect to G', the same holds true for sht for any s,t € mon(S). So, if we write

h = Y pig; with p; € P,g; € G’ and Im(h) > Im(pig;), we obtain immediately sht =
7

s| Xpigi |t = X pisgit. Since sgit € ZG'E = G' and Im(sht) = slm(h)t > slm(p;) -
7 7

Im(gi)t = Im(p$)stm(g;)t = Im(pi) - Im(sg;t), we can conclude that sht has a Grobner
representation with respect to G. (]

The next criterion yields a similar result for left ideals in S. Note that this criterion
holds without the assumption of an s-homogeneous basis.
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(2.37) Proposition (Left Z-criterion)
Let G be a basis of a left ideal J C S. Then, G is a Grobner basis if and only if

Vf,g € G\ {0} and s, s € mon(S) such that Ism(s'f) = lsm(s?g)
and ged(s', s%) = 1 the s-poynomial
spoly(s' f, s%2gs) has a Grébner representation with respect to G/ = LG.

Proof

The proof is similar to the last proof:

If G is a Grobner basis of J, the implication is obviously right, since every s-polynomial
spoly (st f,s%g) is an element of J (cf. Proposition 2.23).

Assume now, that the second condition holds. It is sufficient to prove that G’ := G is a
Grobner basis of J as a P-module. Since G is a generating set of J,we can conclude that
G’ is a basis of J as a P-module. Note that G does not need to be an s-homogeneous
subset for this implication to hold. Considering the Buchberger criterion (cf. Proposition
2.34), it is sufficient to show that every s-polynomial h = spoly(s' f, s2g) with f,g € G
and s' € mon(S) such that lsm(s!f) = lsm(s%g) holds has a Grobner representation
with respect to G.

We denote s := ged(s!,s?) and choose t; € mon(S) such that s? = st;9 holds.
Furthermore, we define h := spoly(t1 f,t2g). By use of Lemma 2.35, we can conclude
h = sh. By assumption, h has a Grobner representation with respect to G’. Therefore,
it only remains to show that if any h € S has a Grobner representation with respect
to G', the same holds true for sh for any s € mon(S). But, we have already proven a
stronger result in the proof of Proposition 2.36. 0]

We will now use this Proposition to establish an algorithm to compute an s-homogeneous
Grobner basis in a more efficient way than the ordinary Buchberger algorithm would.
For this purpose we recall a standard procedure to determine the normal form of a
polynomial.

Algorithm 1: Reduce Procedure

Data: fe S, GCS

Result: h € S such that f —h € (G)p with h =0or h ¢ (LM(G))p
h:=f;

while h # 0 and h € (LM (G))p do

find g € G\ {0} such that Im(g) P-divides Im(h) ;
._ 1t(h)
end
return h;
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The next algorithm is an adaption of the classic Buchberger algorithm taking the last
proposition into consideration. We did not include the product criterion for brevity, but
this is of course another possible improvement.

Algorithm 2: SkewGBasis
Data: H, an s-homogeneous basis of a graded two sided ideal J in S

Result: G, an s-homogeneous Grébner basis of J
G := H;
B:=1{(f,9)| f.9€ G}
while B # () do
choose (f,g) €
B=B\{(f.g )
for s1,s2 53 s1 € mon(S) with ged(st, s3) =1 = ged(s?, s*) such that
lsm(slfs ) = lsm(s3gs?) do
h :=REDUCE(spoly(s! fs?, s3gs*), ZGL);
if h # 0 then
B:= BU{(h,h),(h,k),(k,h) | k € G} ;
G := GU{h};

end

end
end
return G,

The following proposition states that we can compute truncated bases of some graded
two-sided ideal of S in finite time.

(2.38) Proposition

Let J C S be a graded two-sided ideal and v € IN"*. We assume that there are only
finitely many w € IN™ fulfilling w < v. If H is an s-homogeneous basis of J and
H, ={f € H| degs(f) < v} is finite, then there is an s-homogeneous Grobner basis G
of J such that G, is also finite. In addition, the algorithm SKEWGBASIS can compute
this basis in a finite number of steps.

Proof

Since H, is finite, the set L = {s¥fs' | f € H,, w+ degs(f) +1 < v} is also finite.
Thus, the set X’ C X containing all variables occurring in L is also finite. By use of the
notations PV = k[X'] and SV = @,,<, P"s", we can conclude that a v-truncated version

(degree boundary v in the for-loop) of SKEWGBASIS actually computes a Grobner basis
of JV as a PV module. Here, JY is the PY submodule of S¥ generated by L. Obviously, S
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has finite rank and therefore both P and S" are noetherian. Thus, all strictly increasing
chains of submodules of S are finite, which implies that there can only be finitely many
loop runs: The sets named G in the algorithm , which are updated in every loop run,
induce a a strictly increasing subset of modules. Consequently, we obtain termination.[]

(2.39) Remark

Note that there are total orderings on IN"* such that there are only finitely many w € IN™
fulfilling w < v for any v € IN™. One important example is the graded lexicographic
order.

In this section we have studied graded ideals of S and their Grébner bases. This theory
was presented in [LSL13| for a cyclic monoid £ = (o) whereby ¢ has infinite order. We
have extended this theory for a commutative, freely generated ¥ = (o1, .., 0y,). While
some proofs had to be adapted to the new environment, the main ideas were taken over.
In the next section, we will examine a special class of ideals in P, which are invariant
under the action of X. We will see a close connection between these ideals and the
graded ideals of S, and, therefore, we will be able to apply the results of this section to
obtain useful results considering the ideals in P.
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§ 3 X2-Invariant Ideals of P

In this section, we will take a close look at certain ideals of P. By defining a new kind of
basis which generates the ideal up to the action of X, we will be able to use the results
of the last section to obtain new results. In the sixth sections, we will see that the ideals
we consider are very important in the application of the Multi-Letterplace ring.
Similarly to the last section, our approach is based on [LSL13] and generalizes the results
obtained in this paper.

In this section, X will be an arbitrary submonoid of End(P) freely generated by o1, . .., op,.
We start by defining, when we call a module/ideal X-invariant.

(3.1) Definition

Let M be a P-module. We say that M is X-invariant if there is a monoid homomor-
phism p : ¥ — Endi(M) such that p(o)(fz) = f7p(co)(x) for all f € P,oc € ¥ and
x € M. If this is the case, we write o - 2 to denote p(o)(z).

A module homomorphism f : M — M’ of two X-invariant modules is called a homo-
morphism of X-invariant modules if f(o-m) = o - f(m) for all 0 € X and m € M.

(3.2) Remark

Note that if I is an ideal in P, I is X-invariant if o(I) C I for all 0 € X. This fact
illustrates the term X-invariant and allows us to interpret I as an S-module by use of
the scalar multiplication o - f = f°.

The next proposition links ¥-invariant P-modules and left S-modules.

(3.3) Proposition
The category of X-invariant P-modules is equal to the category of left S-modules.

Proof

Let M be a X-invariant P-module. We have to define an S-module structure on M. By
use of the endomorphism p, we can define (3; pio;) - = > ; pip(0;)(x) for all x € M
and f =Y pio; €S,

If M is a left S-module , it is also a P-module since P C S. Furthermore, the mapping
p: X — Endp(M) with p(o)(z) = o - x is a suitable monoid homomorphism, whereby
o - x is the scalar multiplication inherited by the left S-module structure.

We still have to prove that any homomorphism f : M — M’ of X-invariant P-modules
M and M’ is also a homomorphism of M and M’ as left S-modules. Thus, we have
to prove f((X;pioi)-x) = (X;pioi) - f(x) . In fact, since f is P-linear, we obtain
F(Sipioi) o) = Simifloi-a) = Sipiloi- () = (Simios) - (@), =

38



Haase §3 X-Invariant Ideals of P

We will now define a new kind of basis for X-invariant ideals.
(3.4) Definition

Let I be a X-invariant ideal in P and let G be a subset of I. We say that G is a X-basis
of I if G is a basis of I as a left S-module.

(3.5) Remark
It is obvious that GG is a X-basis if and only if X - GG is a basis of [ as a P-ideal.

From now on, we will assume that X is compatible with our monomial ordering and
divisibility. Then, we immediately obtain the following proposition.

(3.6) Proposition
Let G be a subset of P. Then, we have Im(X-G) = X -Im(G). Therefore, if I is a
Y-invariant ideal in P, LMp(I) is also X-invariant.

Proof
The compatibility of ¥ with the monomial ordering on P yields Im(o - f) = o - Im(f)
for any 0 € X and f € P. (]

The following definition is a natural combination of the two concepts of X-bases and
Grobner bases.

(3.7) Definition

Let I C P be a Z-invariant ideal and let G be a subset of I. Then, G is a Grébner
Y-basis of I if Im(G) is a basis of LMp(I) as a left S-module, or, equivalently, ¥ - G is
a Grobner basis of I as a P-ideal.

We will now introduce a similar criterion to the one presented in Proposition 2.36. Before
we can prove this criterion, we need a lemma similar to Lemma 2.35.

(3.8) Lemma
Fix f,g € P and s!,s?> € £. Then, the equation

st 52

(sl £ .52 aq) = ged(st. s2) - spol . )
spoly(s™ - f,s°-g) = ged(s,s%) Spoy(gcd(sl,sz) f’gcd(sl,SZ) 9)

holds.

Proof
Denote s = gcd(sl7 32) and choose t1,ty € X such that s-¢; = s’ holds. By use of the
notations
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Symbol Notation
It(f) am
It(g) bn
It(t1- f) amht
lt(te - g) bn'?
Iit(st-f) am®'
It(s?-g) bn®”
lem(mtt, nt2) q
lcm(msl,ns2) cf. corollary 2.30 q°

we immediately obtain s - spoly(ty - f,ta-g) = s- (argtl tr- f— gyt g) = ag;l -

szQSQ-g: spoly(st - f,s%-g). O

We are now able to prove the X-criterion in P.

(3.9) Proposition (Z-criterion in P)

Let G be a X-basis of a X-invariant ideal I C P. Then, G is a Grobner X-basis if and
only if for all s, s? € mon(S) with ged(s!, s?) = 1 and for all f,g € G, the s-polynomial
spoly(st - f,s% - g) has a Grobner representation with respect to G.

Proof

If G is a Grobner X-basis, we can conclude that G’ = % -G is a Grobner basis of 1.
Thus, by considering Proposition 1.16, we immediately obtain the first implication.
Assume now that the second condition holds. We have to prove that for any f,g € G and
st s2 € ¥ the s-polynomial h = spoly(s! - f, s2. g) has a Grobner representation with
respect to G'. By use of Lemma 3.8 we obtain h = s - h, whereby s = ged(s', s?) and
h = spoly(% - f, § - g). By assumption, we know that h has a Grobner representation
with respect to G’. Therefore, it is sufficient to prove that if any h € P has a Grobner
representation, the same holds for s - h for any s € .

Assume that h = Y f; (s;-¢g;) with f; € P,s; € £ and g; € G holds. Then, for any
l

s € X we can write s-h = s- (Zfl (sl~gl)> =3 (s-f1)((ss1)-¢g1). Since s- f; € P
l l

and (ss;) - g1 € G’ = £G, we can conclude that s - h has a Grobner representation with
respect to G'. Note that Im(h) > Im(fi(s;- g1)) implies Im(s-h) > Im((s- fi)(ss;-g1))-
Thus G’ is a Grobner basis and this implies by definition of G’ that G is a Grobner
2-basis of I. (]
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We are now able to establish a similar algorithm to the one presented in the last section
for ideals in P.

Algorithm 3: SigmaGBasis

Data: H, a X-basis of a Z-invariant ideal J in P

Result: GG, a Grobner X-basis of J

G := H;

B:={(f.9)|f,9€G};

while B # () do

choose (f,g) € B ;

Bi= B\{(f.0)}

for s',s%2 € mon(S) with gcd(st,s?) =1 do
h :=REDUCE(spoly(s' - f,5%-¢), % - G);

if h # 0 then
B:= BU{(h,h),(h,k),(k,h) | k € G} ;
G:=GU{h};

end

end
end
return G,

We will now introduce a new P-module homomorphism 7 : S — P with s — 1 for all
s € mon(S). This mapping will help us applying the results of the last section in order
to obtain useful results concerning 2-invariant ideals of P. Note that 7 is a left S-module
epimorphism: Fix any as € S with a € k and s € mon(S). Consider f = % | a;m;s’
with a; € k, m; € mon(P) and s* € mon(S). We obtain

(ol 1) = #(af*) = 3 anim = o (s (; i) ) = a(s:x(1).

Since 7 is a homomorphism, we can conclude that it is in fact a left S-module homo-
morphism.

(3.10) Definition
Let J be a graded ideal of S. By use of the mapping m we obtain a corresponding ideal
in P, namely J*' = 7 (J).

Note that the ideal J¥ is in fact Z-invariant.

(3.11) Lemma
Let J be a graded ideal of S. Then, J¥ is a T-invariant ideal of P.
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Proof
We have to prove that a® € J¥ for any a € J and s € mon(S). Since a € JP . there is

some t € mon(S) such that at € J, Thus, we can conclude sat = a®st € J. This implies
that a® = 7(a®st) € J¥ holds. O

We will now examine if the mapping 7 is compatible with bases of ideals.

(3.12) Proposition
Let J be a graded ideal of S and let G be an s-homogeneous basis of .J. Then, G¥' = 7(G)
is a X-basis of JZ.

Proof

Recall that 7 is a left S-module epimorphism. Since G is s-homogeneous, every element
of G has the form g;s* with g; € P and s* € mon(S). Thus, we can conclude that GX
is a left basis of J: For any h € J we have h = }; lLigis'r; = i ligis* 25 @ijMmijSij =
Zi Zj ligisiaijmijsij = Zz Zj liaijmf;gisisij Whereby li,T’Z‘ € S and r; = Zj Q5515 S54
with m;; € mon(P), sij € mon(S) and a;; € k\ {0}.

Therefore G¥ = 7(G) = 7(GX) is a basis of I as a left S-module, which implies that
GP is a Y-basis. ]

3.1 X-Compatible Multi-Gradings on P

In the last subsection we have established a mapping from S to P preserving bases.
Before we are able to provide a corresponding mapping from P to S, we have to es-
tablish a new special multi-grading on P. For this purpose, we will introduce a new
monoid extending (N, max(+,-)), whereby max depends on the chosen total ordering

—

on N Denote N™ = IN" U {—oo} and consider the monoid (N, max(-,-)) with
max (v, —00) = —oo for all v € IN™. Thus, —oo is the new identity and the monoid is
both commutative and idempotent.

(3.13) Remark

If we denote 0=°° = 0 for all o € X, we can extend X in a similar way: Define & = U {0}
(with 0o = 0) and we can conclude that % 2 IN" holds. (Consider the homomorphism
f: % — N™ with f(s¥) = ke; for all i.) Furthermore, we denote S = X % P and
7 : S — P, whereby 7 is the left S-module homomorphism with sé- — 1 foralli e N
and j € {1,..n}.

We will now declare —oo +v = —oc for all v € N, which leads us to the following
definition.
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(3.14) Definition
A mapping w : mon(P) — IN™ fulfilling

i) w(l) = -0

ii) w(mn) = max{w(m),w(n)} for all m,n € mon(P)
iii) w(s;-m) =e; +w(m) for all i € {1,..,m}
is called a multi-weight function.
(3.15) Remark

If we denote P, = span{m € mon(P) | w(m) = v} for any v € N, it follows

immediately that P = & P,. We will call an element f € P, w-homogeneous of
veIN™
weight v and we will write w(f) = v, even if f is not monomial.

(3.16) Remark

Note that property iii) implies w(s”-m) = v 4+ w(m) for any v € IN™. This property
could also be generalized by replacing it with the condition w(s; - m) = v; +w(m) for
arbitrary v; € IN™.

(3.17) Example
Reconsider the Multi-Letterplace ring P = k[X x IN™]. In this case, the construction
of a multi-weight function w is natural:

w : mon(k[X x N™]) — N"

J J
x; | ¢ — l, 1= —00
Jn Jn
n ji1 jil
w il:[lxki : :m?x w | Tg,
Jin Jin

By definition of w, both property i) and ii) are fulfilled. So, only the last one remains
to be proven. Remember that o; is the shift in the i-th component, which implies

J1 J1 J1 J1 J1
w | s x| i =w |z |7i+1 =|nt+tl|=e+|Jji|=€e+w|zk|Ji
Jn Jn Jn Jn Jn
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Similar to graded ideals with respect to a certain grading, we will now define when we
call an ideal in P w-graded.

(3.18) Definition

Let I be an ideal in P. We call I w-graded if I = 2 I, with I, = I N P,.
veIN™

Recall the notation s = s;* for any v € N™. From now on, we will also use

=3

i=1

E—

(3.19) Definition

For any f € P, consider the (finite) sum decomposition f = ¥, f, with f, € P,. We
define the mapping £ : P — S via f = >, fvs’. Then, £ is obviously both injective and
homogeneous, i.e. a w-homogeneous element of P is mapped onto an s-homogeneous
element of S.

We will now investigate the influence of £ on &.

(3.20) Proposition
The map £ is X-equivariant.

Proof
We have to prove £(s? - f) = sV¢(f) for all f € P and v € N™. Since ¢ is a linear map,

it is sufficient to prove the equation for f € P, for an arbitrary w € N™.
So, for any v € IN"*, we obtain s” - f € P,4+4. Thus, we can conclude that the equation

é-(sv'f) — (Sv'f) SU+’w — Svfsw — Svf(f)
holds. ]

Note that (1) C S holds for any proper ideal I in P, because I # P implies I_o, = {0}.
Thus, we will only consider proper ideals from now on. By this restriction, we avoid the
use of —oo and, since only proper ideals are interesting concerning Grobner bases and
membership problems, this restriction is in fact none.

(3.21) Definition
Let I C P be a w-graded E-invariant ideal. Then, the ideal I° = (£(1)) in S is called
the skew analogue of I.

(3.22) Lemma
Let I C P be a w-graded X-invariant ideal. Then,
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i) I%is generated by G° :=¢( U L) = U {fs'|fel}
veIN™ veIN™

ii) I’ is left generated by G°%
iii) I° is generated as a P-module by ZGSX.

Proof

i)

Note that, due to the linearity of &, £(I) = £(X, Iv) = >, (L) = 3, Ipys”. Thus, we
can conclude (£(1)) = (G®).

i) i)

Follow immediately from the fact that G° is an s-homogeneous basis of I as an ideal in
S (cf. Proposition 2.26). O]

The next proposition will clarify the connection between the mappings 7 and &.

(3.23) Proposition
Let I € P be a w-graded X-invariant ideal. Then, the projection of 7 reverses the action
of & i.e

PP =7

Proof

Denote J = I°Y = 7(I°) and note that the elements f,s with f, € I, and w > v form
a left basis of I° (cf. Lemma 3.22). For any fixed f, and w > v we obtain 7(f,s") =
fv € J. Since 7 is a left S-module homomorphism, the elements 7 (f,s*) = f, form a
left basis of J. Since they are all contained in I, we can conclude that J C I holds.

On the other hand, the elements f, form a basis of I, since we can write [ = Y, I,.
Thus, it follows immediately that I C J holds too which implies I°F = J = I. O]

(3.24) Remark

The last proposition revealed a one-to-one correspondence between all w-graded, X-
invariant proper ideals in P and their skew analogues. Our next goal is to find a one-
to-one correspondence between certain (Grobner) bases as well. For this purpose, the
following lemmata will prove useful.

(3.25) Lemma
If any m,n € mon(P) and s” € mon(S) fulfill (s”-m)|n, we can conclude that the
inequation w(n) — v > w(m) holds.
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Proof
By assumption, there is ¢ € mon(P) with n = ¢(s¥-m). We obtain, by recalling
Definition 3.14(ii) and iii), that w(n) > w(s”-m) = v+ w(m) holds, which implies the

i) 1)

desired equation. (]

v

The last lemma yields another important equation helping understand the connection
between the least common multiple and the weight function w.

(3.26) Lemma
Fix m,n € mon(P) and | = lem(m,n). Then, the weight of [ is the maximum weight
of m and n, i.e. w(l) = max{w(m),w(n)}.

Proof
Note that we both have m, n|l and I|mn. By use of Lemma 3.25 with v = (0,..,0) € N,
we can conclude that the inequality

} < w(l) < w(mn) = max{w(m),w(n)}

holds, which directly implies w(l) = max{w(m),w(n)}. O

(3.27) Remark

Fix f € P, and g € P, and denote | = lem(Im(f),lm(g)). We have just shown that
w(l) = max{w(lm(f)),w(lm(g))} = max{w(f), w(g)} holds. Since h := spoly(f,g) =
%f — %9 it follows that w(h) = w(l) if h # 0: For every summand h; of ﬁf

we have w(h;) = max{w (), w(f)} since f € P,. An analogous argument holds for

1(f)
g and therefore w(ﬁ f) and w(ﬁg) are both well defined. One summand of ﬁ f

is obviously [, so w(%f) = w(l), the same holds for %g. Thus, w(h) is both well

defined and equal to w(l).

We will now see that certain X2-bases of ideals I C P are mapped onto ordinary bases
of I° ¢ S. This property is remarkable because a L-basis is in general a proper subset
of an ordinary basis.

(3.28) Proposition

Let I € P be a w-graded X-invariant ideal. If G = J, G, is a w-homogeneous X-basis
of I (with G,, C 1), then G® := ¢£(G) = {fs" | f € G,} is an s-homogeneous basis of
15,
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Proof

We have already seen that the elements fs" with f € I, and w > v form a left basis of
I9. Therefore, it is sufficient to show that all fs* are contained in the ideal generated
by G°. Since G° is obviously s-homogeneous, we can apply Lemma 2.25 and conclude
that it is also sufficient to show that all fs" are contained in the P-module generated
by ZG°X.

So, fix f € I, and choose an arbitrary w > v. By assumption, we can write f as
[ = Yiaifi(s“ - gy,) with a; € k, f; € mon(P),w; € N™ and ¢,, € G,,. Since
w(f) = v, we can conclude w(f;(s™i - gy,)) = v for all i. By use of Lemma 3.25, it
follows that v — w; > wv; holds. Therefore, it follows immediately that w — w; > v;
holds and consequently g,;s"~"" € GS%. This implies fs¥ = ¥, a;fi(s™ Cgy;)SY =
> aifisVgy, s and, by taking into consideration that s"ig,, sV~ € YGY holds,
we have proven that fs® is in fact contained in the P-module generated by LG°L. O

(3.29) Remark

Recall that the compatibility of the monomial ordering with the multiplication in §
implies that ms < ns if and only if m < n for all m,n € mon(P) and s € mon(S).
Thus, for any f € P we immediately obtain Im(fs) =Im(f)s € S.

(3.30) Proposition
Let I C P be a w-graded T-invariant ideal and denote G = |, I,. Then, G* = £(G) is
an s-homogeneous Grobner basis of I°.

Proof

By definition of I°, G° is an s-homogenecous basis of I°. In addition, G is a Grébner
Y-basis of I, since I =3, I, (f =3, f, implies Im(f) = Im(fy) for some w and hence
Im(f) € LM(G)). Considering Proposition 2.26, we will prove that ZG°%. is a Grébner
basis of I as a P-module. Buchbergers criterion (cf. Proposition 2.34) now states that
this holds true if spoly(sk/ fsVsk, st gswsl) has a Grobner representation with respect to
YGO% for any f € Gy, g € Gy and k, k', 1,1 € N™ fulfilling ¥’ +v+k=0U'4+w+1=:c.
Obviously, h = spoly(sk/ - f, s g) has a Grobner representation with respect to X - G.
Thus, we can write h = Y5, hq(s" - g4) with hy € P and g, € G and we obtain:

spoly(sk/fs”sk, sl/gswsl) = Spoly((sk/ ) f)sk/+“+k, (sl/ ~g)sl/+w+l)

— K . U . c _ c _ vq | c _ Vg c—q
Prop.2.35 spoly(s™ - f,5" - g)s" = hs zq: hq(s" - gq)s zq:hqs 9q5

Due to the definition of £, we have to check that ¢ > v, + w(g,) holds. Recall Remark
3.27 which implies w(h) = max{w(s* - f},w(s" - ¢)} = max{k’ +w(f),' + w(g)}.

47




Haase §3 X-Invariant Ideals of P

In addition, we know that w(h) = max{w(hy),w(s" - gq)} > vy + w(gq) holds. The
definition of ¢ yields:

:{k’+v+k2k’+v:k’+w(f):w( )

sk~f
Vtw+l>l+w=10+uw(g)=w(s"-g)

which implies ¢ > max(w(s* - f),w(s' - ¢)) = w(h) > vg +w(gq).
Furthermore, note that im(h) > Im(hy(s" - g4)) implies Im(hs®) > Im(hqy(s% - g4)s¢).00

We will now prepare the analysis of the behavior of Grobner bases under the action of &.
The following lemma will start by proving that the leading monomial is invariant under

.
(3.31) Lemma

Let G be a subset of U P, and let ] C P be a w-graded X-invariant ideal. Then,
/UEINTTL

both Im(G)® = Im(G®) and LMp(I)® = LM (I?) hold.

Proof

Fix any f in P, for any v € IN™. Since f is w-homogeneous, we can conclude that
w(lm(f)) = w(f) = v holds. Thus, £(f) = fs¥ and {(Im(f)) = Im(f)s". Recalling
Remark 3.29 yields Im(fs®) = Im(f)s” which immediately implies Im(G)* = Im(G?).
Denote now G = U, I,. Then, I° is the ideal generated by G°. Since I = ¥, I,
it also follows that im(G) = Im(I). Note that G C U, Py, so we have Im(G)° =
Im(G®). Therefore, LMp(I)° is generated by Im(G®) and, by taking Proposition 3.30
into consideration, we obtain that LM (I°) is also generated by Im(G*) which obviously
implies LMp(I)S = LM(I%). O

We are now finally able to prove that certain Grébner bases in P are mapped onto
Grobner bases in S.

(3.32) Proposition
Let I C P be a w-graded X-invariant ideal and let G = U, G, be a w-homogeneous
Crobner X-basis of I.Then, G° = £(G) is an s-homogeneous Grobner basis of 9.

Proof

By definition of ¢ and since G is w-homogeneous, it is obvious that G° is s-homogeneous.
Note that Im(G) is a w-homogeneous X-basis of LMp(I). By use of Proposition 3.28
it follows that Im(G)® is a basis of LMp(I)®. So, considering Lemma 3.31, we can
conclude that Im(G*) is a basis of LM (I°). Thus, by definition, G° is a Grébner basis
of I°. U
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Of course, we are also interested in the other direction and we will now see that we get
a similar result by use of the mapping 7.

(3.33) Proposition
Let I C P be a w-graded X-invariant ideal and let G be an s-homogeneous Grébner
basis of I°. Then, G = 7(G) is a Grébner X-basis of 1.

Proof

Note that it is sufficient to prove that Im(f) is contained in the ideal generated by
Im(GF) for f € I, for any v € N™. Thus, fix any f € I, and consider £(f) = fs” € I®.
Since G is an s-homogeneous Grobner basis of I9, there is ¢gs* € G with ¢ € P and
k€ IN™ fulfilling Im(fs’) = ¢s“Im(gs*)s” with w,r € N™ and ¢ € mon(P). We
conclude that

Im(f)s® = Im(fs®) = ¢gs®lm(gs*)s" = gs¥lm(g)s"™" = glm(s? - g)s®TETT

holds, which implies im(f) = glm(s" - g). Considering g = m(gs*) € GF, we have
proven that GF is in fact a Grobner T-basis of L (]

(3.34) Remark

These last two propositions complete the result described in Remark 3.24 since we have
now an equivalence of certain bases of corresponding ideals. From a computational
point of view, the Grobner bases computation of w-graded X-invariant ideals can be
transferred to the Grobner bases computation of their skew analogues and vice versa.

(3.35) Proposition

Let J C P be a w-graded X-invariant ideal and fix v € IN™ such that there are only
finitely many w € N with w < v. If H is a w-homogeneous basis of J and H, = {f €
H | w(f) < v} is finite, then there is w-homogeneous Grobner basis G of J such that
G, is also finite. In addition, the algorithm SIGMAGBASIS can compute this basis in a
finite number of steps.

Proof

The algorithm SIGMAGBASIS computes a set G C P such that X - G is a Grobner basis
of J. Considering Lemma 3.26 and property (iii) of Definition 3.14, we conclude that
the elements of both ¥ - H and X - G are w-homogeneous. Since H, is finite, the set
L={s?-f|q+w(f) <wv}is also finite. Thus, the set X’ C X containing all variables
occurring in L is also finite. By use of the notation P¥ = k[X'] we can conclude that a
v-truncated version (multidegree boundary v in the for-loop) of SIGMAGBASIS actually
computes a Grobner basis of JY as an ideal in PY. Here, JV is the ideal generated by
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L. Note that PV is noetherian. Hence, all strictly increasing chains of ideals in PY are
finite, which implies that there can only be finitely many loop runs: The sets named
G in the algorithm, which are updated in every loop run, induce a a strictly increasing
chain of ideals. Consequently, we obtain termination. (]

(3.36) Remark

Note that there are orderings (like the graded lexicographic ordering) on IN" such that
any v € IN™ has only finitely many predecessors. Then, this assumption is always
satisfied.

In this section, we have seen that X-invariant w-graded ideals of P allow us to improve
Grobner bases computations and solve the membership problem. The ideas in this
chapter are based on [LSL13| with some changes due to the more general setting. One
important difference is the transition from weight functions to multi-weight functions,
which allows us to obtain multi-graded ideals in S.
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§ 4 Multi-Weight Functions in the
Multi-Letterplace Ring

In this thesis, we have already introduced multi-weight functions in the third section.
We will now take a closer look at multi-weight functions for the Multi-Letterplace ring.
Our main goal is to determine wether there is a suitable multi-weight function w to make
a fixed ideal w-graded. If this is the case, we can avoid the homogenization presented
in the next section which is important in terms of computational effectivity. However,
we will see that it is not always possible to endow the Multi-Letterplace ring with a
multi-weight function suitable for a fixed ideal.

Throughout this section, we will consider P to be a Multi-Letterplace ring with X =
{z; | i € I} for a finite or countably infinite set /. Furthermore, let X = (071, ..,0.,) be
the monoid generated by the shifts. In addition, w will denote the standard multi-weight
function presented in Example 3.17.

First of all, recall the definition of a multi-weight function:

(4.1) Definition
A mapping w : mon(P) — IN™ fulfilling

i) w(l) = -0
ii) w(mn) = max{w(m),w(n)} for all m,n € mon(P)
iii) w(s;-m) =e; +w(m) for all i € {1,..,m}

is called a multi-weight function.

The following definition will simplify notations throughout this section.
(4.2) Definition
Let v = (v1,..,v,)7 € N™ be an arbitrary vector. We will use the notation
U1
zi(v) = x;

Um

Then, 0, € X denotes the shift fulfilling oy, - 2;(0) = x;(v) for any i, i.e.
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(4.3) Definition
Fix v,w € IN™. Then we define max(v,w) € N™ via max(v,w); = max{v;,w;} for all
ie{l,..,m}.

Before we will try to find multi-weight functions adjusted to ensure that a certain ideal
is w-graded, we will investigate when two multi-weight functions are equal.

(4.4) Proposition
Let w, v : mon(P) — N™ be two multi-weight functions.
Then

w=v < w(x;(0)) =ov(z;(0)) Vi € I.

Proof

The first implication is obvious, so assume that the second condition holds. Let n =
[1; zx,(a;) be an arbitrary monomial with a; € IN™ and k; € I. By use of property i)
and 4i7) of the multi-weight functions, we obtain:

w(n) = max{uw(rg, (a:))} = max{u(oa, - 71, (0))} = max{a; + w(a, (0))
) O

= max{a; + v(r5,(0))} = max{v(o, -2, (0))} = max{v(xy, (a:)} = v(n

By use of the last proposition, the next corollary follows immediately.

(4.5) Corollary
Let w be an arbitrary multi-weight function. Then, w(z;(v)) = w(z;(0)) + w(z;(v)) =
w(z;(0)) + v holds for any x;(v) € P.

The last proposition gives us an idea of the possibilities we have (or do not have) to
construct a multi-weight function. Fix any f € P and denote F' = {f}. We will now try
to find a multi-weight function which makes the ideal J = (X - F') w-graded. In order
to illustrate the next proposition, consider the following two examples.

In these examples, we choose the ring P = R[X x IN?] and we endow IN? with the
lexicographical order.

(4.6) Example

Fix X = {x1,29,23} and f = 9 (;) 3 (é) — 71 (?) and note that

() 0)) = () ()= ()
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holds. Consequently, f is not w-homogeneous. However, we can use the fact that the
1
multi-places < 2) and (?) belong to different letters. Hence, we define a multi-weight

function w via

ol ) ) ) ()
()10 )0
)+ 0)- () =) -+l ()0

holds. Thus, f is w-homogeneous and, since f is a X-basis of J, J is w-graded.

conclude that

(4.7) Example

Consider now f = 17 0 + x1 (8) and X = {x1}. We will show that there is no

non-trivial multi-weight function w such that f is w-homogeneous. Hence, let w be an
arbitrary multi-weight function. Note that

o)) el () = ()2 3)

holds as long as w (xl (0

0)) # —oo. Hence, only the multi-weight function v = —o0o

makes f homogeneous.

We will now describe when there is a multi-weight function which makes a fixed f € P
homogeneous. Consider first the following definition.

(4.8) Definition
Let f = >, a;m; with a; # 0 be a polynomial in P. Then, X denotes the set of all
letters occurring in f, i.e.

Xy = {x; | v € N such that z;(v) divides m; for some j}.

The maximum Multi-place vector v for a fixed letter z; will be denoted by vy ;.
We denote the set of all vectors occurring in f as V, i.e.

Vi ={veIN"| z;(v) divides m; for some i € N and z; € Xs}.
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Furthermore, we define the mazimum vector vy of f as

U1
vE =1 : with v; = min{k € IN | lcszwer}.

Um

This proposition solves the problem of finding a suitable multi-weight function.

(4.9) Proposition
Fixn € N and let f = Z a;m; with a; € k\ {0} and m; € mon(P) be an arbitrary ele-

ment of P. There is a non trwlal multi-weight function w such that f is w-homogeneous
if and only if for all i € {1,..n} there are x;, € X; and v; € IN"* such that

zj,(vi)|m; and zj,(v")|my implies v < v Vk € {1,..,n},v" € N™.

Proof
Assume that the second condition holds and choose j; € X; and v; € IN™ such that
they fulfill the condition for any i € {1,..n}. We define a multi-weight function w via

w(zj;(0)) =vp—wv; forallie{l,. n}
=0 for all k # j; Vi € {1,..,n}.

Note that vy —v; € IN™. According to Proposition 4.4, w is uniquely determined
by these values. It follows now that w (z;(v;)) = vy and w(zj(v')) < vy (since
v < vy and Corollary 4.5) for any v" € IN™ such that @, (v")|my, for some k € {1,..,n}.
Furthermore, by definition of ¢, we can conclude w (z;(u)) = @ (z;(u)) < vy for any
| # i; and v € IN™ fulfilling z;(u)|my, for some k € {1,..,n}. Hence, we conclude
w(m;) = vy for all i € {1,..,n} which implies that f is w-homogeneous.

Later on, we will need minimal multi-weight functions (this will be defined precisely
later). For this purpose, we define a multi-weight function w; via

w1 (24,(0)) = w (z;,(0)) —re; forallie {1,..,n}
wy (2(0)) =0 for all k # j; Vi € {1,..,n}.

whereby r € IN is the maximal number such that wy is still positive (i.e. w(z;(0)) € N™)
and f is still wi-homogeneous. We continues this procedure for all p € {2,...,m}.

We will prove the other implication by proving its contraposition. Hence, assume that
the second condition does not hold. Therefore, without loss of generality, there is no
z; € Xy and u € IN™ such that zj(u)|m; and x;(u')|my implies v > «'. Let now w
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be an arbitrary multi-weight function. We have to prove that f is not w-homogeneous.
Choose x;(u) such that a;(u)|m; and w (z;(u)) = w(my) hold. By assumption, there is
xy(u) fulfilling x;(u')|my for k # 1 and v’ > w. It follows

w(mi) = w (z(w) = w(2(0) + u < w(@(0) + o' = w (x(u)) < wlmy),

so f is not w-homogeneous. 0

This proposition also shows that the problem of finding a multi-weight function for fixed
f can be solved by an algorithm in finite time. For this purpose, we will first introduce
an algorithm 4 which determines the maximal vector v for any letter occurring in a
polynomial f € P. Note that this algorithm obviously depends on the chosen total
ordering on IN"".

Algorithm 4: MaxVectors

Data: f = Z aim; € P, m; = H x4, (vi,), X¢ C I contains all letters occurring in f
=1

Result: M C ]Nm x Hx P ({1,..,n}) a set containing the maximal vector v for any
i € H and the monomials inheriting the maximal element z;(v).
M = 0
for r; € Xy do
mazx ;=0 € N"; K := ()
for j from 1 ton do
for [ from 1 to n; do
if j; =i then
if vj, > max then
max := vj,;
K:={j}
end
if vj, = max then
| K= KUu{j};
end

end
end

end
M = M U{(maz,i,K)};
end

return M,
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The next algorithm 5 now constructs a multi-weight function w if there is any. It
returns a set W which consists of all tuples (i,v) with ¢ € I and v € IN™\ {0} such
that w(z;(0)) = v. If there is no tuple with j € I then we define w(z;(0)) = 0.
Note, by considering the proof of Proposition 4.9, that the set W is finite. Remark that
this algorithm does not consider the reduction process in order to slightly simplify the
algorithm.

Algorithm 5: MWeight

Data: f = Z a;m; € P, Xy contains all letters occurring in f, vy

Result: W C I x IN"* a finite set which defines a multi-weight function w such that f
is w-homogeneous. If there is no such function, the set {—1} will be returned.
M :=MaxVectors(f,X);
for j from 1 to n do
ismax = false;
for (v,i,K') € M do
if 7 € K’ then
Wi=WU{(/,vf =)}
ismax = true;
break;
end

end

if —ismax then
return {—1};

end

end
return W;

The next two examples will illustrate these algorithms. We fix £k = R and m = 2.
Furthermore, we consider X = {x1, z2, 3} and endow IN? with the graded lexicographic
order.

(4.10) Example
We want to apply the algorithms on

) ()= ()

We write f = mi + mo with
mp = i) mo = X i) X
! ! 3 1)’ ! 0 2 3 0/
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First, note that vy = g holds. The first algorithm looks for the maximum vector

of each letter and stores this combination and the corresponding monomials. Thus, we

=) ) (6) ) (o) 5 )

Hence, for any monomial m; of f there is a letter z; such that there is an element
(v,i,K) € My with j € K. In this case, we even have two indices for the monomial ma.
Thus, there is no unique output of our algorithm.

2
For my we pick the letter x; with v; = < > and for mgy we choose x5 and consequently

3

vy = (2) Therefore, we obtain the multi-weight function w defined by

w0 = ().
w(ea0) = ().
w(z3(0)) = (8) .

In fact, f is w-homogeneous with w(f) = <§> = vy.

(4.11) Example
In this example, consider

o (i) )00

We write f = mj + mg 4+ m3 with

Y IR Y PR )

We obtain vy = (Z) The first algorithm yields
2 2
=40 2w) ()2 )}
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We note that there is no ¢ = (vy, 44, Ky) € My such that 3 € K, holds. Thus, the third
monomial does not satisfy the condition of the proposition and there is no multi-weight
function w such that f is w-graded.

You can also obtain this result by use of this inequality

R ) o ) R 1 ) T R o e

Before we are able to solve the same question for more than one f, we need some
definitions. Note that if f is w-graded, then f is also w’-graded if w'(m) = w(m) + v
for all m € mon(P) and for some fixed v € IN™. Of course, these additional solutions
are not really interesting, since they only yield more complex gradings in S = P * ..

(4.12) Definition

Let w be a multi-weight function such that f = ", a;m; € P is w-homogeneous. Con-
sider the set @ = {x; | v € N™ : z;(v)|m; and w(z;(v))) = w(f)}. We say that w is
minimal (w.r.t. f) if w(z;(0)) = 0 for all 2; ¢ @Q and the function defined by

—oyy = ] w@i(0)) —v o me @
(e:(0)) = { w((0)  m€Q

is a non-positive (i.e. w(x;(0)) € Z™\ IN™ for some z; € Q) function for any v €
IN™\ {0}

(4.13) Remark

Note that multi-weight functions obtained by the construction in Proposition 4.9 are
minimal. We have to show that w — ey, is non-positive. After the reduction process, we
can conclude that there is an index s € @ and a vector v € N such that w(zs(v)) =
w(f),w(zs(0))r = 0. Hence, w(zk(0)) —e; ¢ N™. (We know that w — e, is non-
positive, this means that w(z;(0)); = 0 for some ¢; defined in the proof, or f is not
w-homogeneous. In this case, there must be some x; € X such that I # j; and x;(w(f))
occurs in f. Hence, w(z;(0)) = 0 and z; € Q, so w is non-positive.)

The next definition combines the results of Proposition 4.9 with the last definition.

(4.14) Definition

Let f = Y aym; with a; € k\ {0} and m; € mon(P) be an arbitrary element of P.
i=1

Then we define a set of all possibilities to construct a multi-weight function w such that

f is w-graded:

Comy = {(jl,vl) X oo X (fnyvn) € (I x N™)" | 2, (v;)|m; and
zj,(V)|my = v <oVke{l,.,n},v e N"}.
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For any ¢y = (J1,v1) X oo X (Jn,vp) € Comy, we define the set of dependencies as
Dy, = {(isjrovi—vg) € IXIxZ™|1<i<k<n}.

We will write, by abuse of notation, j; € ¢ to denote that the index j; occurs in ¢ and
we will also write g1 N o for ¢; € Comy.

From Proposition 4.9 it follows that every ¢y induces a multi-weight function wg, such
that f is wg,-homogeneous.

(4.15) Remark

Note that the multi-weight functions wy, are minimal. Thus, the set {wg, | g5 € Comy}
is the set of all minimal multi-weight functions such that f is homogeneous. In addition,
Comy is always finite.

From now on, we will always consider two different polynomials f and g in P. We
want to characterize when there is a multi-weight function w such that f and g are
w-homogeneous. For this purpose, we analyze when g € Comy and g4 € Comy are
compatible with each other. This compatibility is necessary to combine two multi-weight
functions wy and wy, which make f, g wy ,-homogeneous, to a multi-weight function w
suitable for both f and g.

(4.16) Definition

Fix f,g € P and choose gy € Comy and g4 € Comg. We say that Dy, and Dy, are
compatible if w = v holds for all (i, j,w) € Dy, and (i,7,v) € Dg,.

If there is an index i € gy N gy, then we put d(qy,qy) = max(wg, (2i(0)), wg, (2:(0))) —
way (#1(0)) and (g, 47) = ma(1g,(£:(0)). gy (75(0))) gy (1:(0)).

Otherwise, we set d(qy,qq) = d(qq,q7) = 0.

(4.17) Remark

Note that d(qy, g¢) is well-defined, since it does not depend on the choice of the index z: If
i,J € qf Nqg, then we can conclude wy, (7;(0)) — wg, (7;(0)) = wg, (2:(0)) — wy, (z;(0))
since Dy, and Dy, are compatible. Hence, it follows wg, (i(0)) —wy, (2i(0)) = wy, (2;(0)) —
wgq, (27(0)) which immediately implies the statement.

These definitions now yield the following proposition. Note that this result can naturally
be extended to finitely many functions. In this proof, we will use the notation ¢ € Xy
do denote z; € Xy if it is convenient.
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(4.18) Proposition

Fix f,g € P. Then, there is a non-trivial multi-weight function w such that f and g are
w-homogeneous if and only if there are ¢y € Comy and ¢4 € Comyg such that Dy, and
Dy, are compatible and, for any i € X with i € gy but i € g4 the inequality

wg, (2i(0)) +vi g + d(qg, qr) < we, (f) +d(qy, qq)

holds and an analogous inequality holds with f and g switched.

Proof

P

We write g = (j1,v1) X ... X (Jin,vn) and g4 = (j1, 1) X ... X (j1,,vl,). The proof con-
sists of two steps.

Step 1: Assume jj, = j;, for some k, k’. Define v € IN"™ as max(wg, (2, (0)), wq, (;,(0))).
Then, consider g ¢ and Wy, defined via

g, (2i(0)) = wg, (i(0)) + v — wq, (25,(0)) = wq, (2:(0)) + d(qg, qr) Vi € g4
@qg(%‘(o)) = ng(xi(O)) Vi ¢ qq
Wq; (2i(0)) = we; (2i(0)) + v — we; (25,(0)) = wg, (2i(0)) + d(ay, a9) Vi € g5
g, (24(0)) = wg, (2:(0)) Vi & gy

This implies @, (75,(0)) = v = @4, (;,(0)). Note that f is @y,-homogeneous and g is
Wg,~-homogeneous. In addition, the inequality of the assumption yields

Wa, (2i(0)) +vp i < Wy, (f)-

Step 2: We will now assume that step 1 is done. We rename wy, := wg, and wg, 1= Wy,
Fix now any j; € gy N ¢y if gy N gy # 0. Then, after step 1, we can conclude that there is
an index ji € gy Mgy such that wy,(5,)(0)) = wg,(2;,(0)) holds (j; = ji is possible).
This implies

Weq s (IJL(O)) = Wqy (IJL(UL)) — Vj; = Wgqy (Ijk (Ujk)) — Uy, = Wgy (Ij (0)) + Vi — Vg
and

wqg (x]l(o)) = ng (x]z (,U‘;Z)) - ,U‘;‘i = qu ('T]k (U‘;k)> - /U‘;.i = ng (x] (O)) + U}k - U_;Z
Since Dg, and Dg, are compatible, it follows that

way (2,(0)) = wq, (2, (0)) + vj, —vj; = we, (5,(0)) + vj, — v, = wg, (2;,(0))
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holds.
Hence, we define a multi-weight function as follows

w(@i(0)) = wq, (i(0)) = wq, (2:(0)) Vi € g4 N gy
w(zi(0)) = wg, (2:(0)) Vi € ¢4\ a5
w(i(0)) = wq, (2:(0)) Vi € g7 \ g

For all other indices i, we obtain, by definition of wg, and wg,, that wg,(z;(0) =
wgq, (2;(0)) = 0 holds. Therefore we also put w(z;(0)) = 0. In addition, the inequality
of the assumption yields for all i € (X Nqy) \ q¢

w(zi(vif)) = we, (2i(0)) +vif < wy,(f)

and vice versa. This implies w(f) = wq, and w(g) = wg,(g). Thus, both f and g are
w-homogeneous.

» s »

Assume that both f and g are w-homogeneous. We write f = 3=; ajm; with a; € k\ {0}
and m; € mon(P).

Consider the set Hy = {i € I | w(z;(v;)) = w(f) and z;(v;)|m; for some j }. If it con-
tains more than n elements, then we can omit these additional indices such that there
is still an index for any monomial m;. Thus, we may assume that # H; < n holds. We
define H, analogously.

Before we continue, we show that we may assume that Hy N Hy is not empty if XN H,
is not empty (or Xg N Hy # 0): If Hf N Hy = 0, let 4y, ..,4; be the indices in Xy N Hy,.
W.l.o.g. 71 is the index such that

U}(f) - w('rij (Uij7f))
is minimal. Then we define a new multi-weight function v’ via

w'(2i(0)) = w(zi(0)) +w(f)  VieH,
w'(2(0)) = w(z;(0)) + w(zi (vi, 5)) Vj € Hy
w'(z(0)) = w(x;(0)) Vk ¢ HyU Hj

Then, f and g are w’-homogeneous, since

w'(wi; (viyp)) = wlzg; (vig,p)) +w(f) < wlai (viy,5) + w(f) = w'(25(v5)) = w'(f)

and
W' (k; (Vh,9)) < wlwg; (V) +wlwi (vi,p) < w(g) +w(f) =w'(g)
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hold for all k; € Xg. In addition, w'(x;, (v;y,r)) = w'(f), and hence, i1 € HyN H} for
w’. Hence, we can continue with w’ and rename w := w'.

We will now define a minimal multi-weight function wy. For this purpose, we define the
multi-weight function w' via

w}(a:z(())) = w(xZ(O)) Vi € Hf
w}(mZ(O)) =0 Vi ¢ Hf.

Then, we apply the reduction process of Proposition 4.9 on w} to obtain wy. This
reduction process yields an element ny € IN™ such that

wy(:(0) = w(ai(0) —ny Vi€ H
wf(xi(())) =0 \] ¢ Hf.

holds.

Then, wy is minimal and thus corresponds to a gy € Comy. In addition f is w-graded.
Define wy and g4 analogously. We will now prove that g, g4 fulfill the conditions.

We have to show that D,, and D,, are compatible. Hence, assume (i, v;), (j,v;) € qy
and (4,u;), (j,u;) € q4. Without loss of generality, we may assume ¢ = 1 and j = 2.
We need to show v1 —v2 = u3 — uz. By definition of w; and wy we obtain

w(z1(0)) = wg(21(0)) +ny = wy(1(0)) +ng

and
w(z2(0)) = wy(2(0)) +nyp = wy(x2(0)) +ng
hold. This implies

wy(21(0)) = wy(22(0)) = wy(1(0)) — wy(2(0))

and, hence,

v1 — vz + wp(21(0)) —wy(22(0)) = wy(z1(v1)) — wr(w2(v2))
= wy(f) —ws(f) =0 =wy(g) —wy(g)
= wy(z1(u1)) —wy(z2(u2)) = ur —uz +wy(21(0)) — wy(22(0))
implies v; — vo = u; — u2.
We now prove the second condition. Without loss of generality, we only prove one

inequality. If (X \ ¢f) Ngy = 0, the second condition is an empty condition. Hence, we
assume that there is an i € (X \ ¢f) Ngy. We have already seen that this implies that
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qf N qq is not empty.
Fix now j € g Nqy. Then, we obtain

and can conclude

d(qs,q9) = p—w(x;(0)) +ny
d(qg,q5) = p — w(z;(0)) + ng

Thus, fix any ¢ € Xy with ¢ € g7 but i € g5. We obtain

way (2i(0)) + vpi + d(gg,45) = w(zi(vy)) +p = w(2;(0)) < w(f) +p—w(z;(0))
= w(f) —ns+p—w(z;0)) +np=w(f) + d(w,wg,). m

(4.19) Remark

Note that this result can be extended to finitely many elements f; € P. There is Multi-
weight function w such that all f; are w-homogeneous if there are ¢y, such that D, 5, are
pairwise compatible and the inequalities also holds for any pair of elements.

In the next two examples, we put X = {x1,292,23,74},k = R,m = 2 and endow IN?
with the graded lexicographic order.

e (0 ) ()
o)) ()

We pick the elements gy € Comy and g, € Comy defined by
2 1 3

u=(0) = (2.0)) < (4 6)
2 1 2

o= ()< (G)) < (- (0)
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These elements correspond to the two multi-weight functions w; and w, defined by

g
)
© W)

O 1

Note that Dy and Dy are compatible, since the only pair of indices 1,2 € gr N gy yields
wr(x1(0)) —ws(x2(0)) = wy(x1(0)) — wy(x2(0)) . Furthermore, we have to check the
inequality for the index 3, since 3 € X; \ ¢y and 3 € gy. First, we note

0 1
d(as:q9) = <0> d(ag,q7) = <2> :
Thus, we obtain

wg, (23(0)) + vs 5 + d(qg. q7) = <(1)> n (é) n (;) _ (g)
- ()-0)-)

Consequently, we can construct a multi-function w such that both f and g are w-

and

homogeneous. Following the proof of the last proposition (7 < 7) yields

0
S TR o )
R TR O )
S (TR O O

In fact, w(f) — @ and w(g) = @ hold.
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(4.21) Example
We will now take a closer look at

f=a <§>—I—x2 (2)
nf)onl)

There are only one gy € Comy and one g, € Comy which are defined by

= () (- 6)
o= ()2 )

These elements correspond to the two multi-weight functions wy and w, defined by

and

and

g
> ) ()
co )

Note that Dy and Dy are not compatible, because we obtain for the indices 1 and 2

wrler(0) = wrlea0) = () # (73 = wlr(00) = wy a0

Hence, there is no non-trivial multi-weight function w such that both f and g are w-
homogeneous.
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§ 5 w-Homogenization in the Multi-Letterplace
Ring

In section two and three, we have found many useful results concerning w-graded ideals
in P. We were able to improve the computation of Grobner bases and, in special cases,
we were even able to guarantee a finite computation time of truncated Grobner bases.
These results allow us, for instance, to solve the ideal membership problem in w-graded
2-invariant ideals. However, whenever we embed a certain structure into the Multi-
Letterplace ring, we might not obtain w-graded ideals. While the assumption that
an ideal is X-invariant is natural (especially considering that we can choose X), it is
rather restrictive to assume the ideals to be w-graded. Therefore, we will develop a
w-homogenization in this section to extend the applicability of our theory.

In the last section we have instead tried to construct a multi-weight function w such
that an ideal is w-graded. While this solution is more effective if it works, we have seen
that it is not always possible to construct such a function.

Contrary to the second and third sections, we will now only focus on the Multi-Letterplace
ring in order to improve the efficiency of the homogenization.

5.1 Motivation

Consider the following system of difference equations in several variables:
0= fi(n+1,m)2fa(n,m) — fs(n,m+2) V(n,m) e N
0= fz3(n+1,m+1)fi(n+1,m)— fa(n,m) V(n,m)ecN?

whereby each f; is a function from IN" to IR. We are now interested in determining if
an equation ¢ = 0 is a consequence of the system and we are also interested in finding
an equivalent system which is probably easier to analyze.

In the last section, we will define an embedding of these problems in a more general way.
By use of the identification

T (2) < filn 4+ v, m+ vy)

) #0040 -0
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in the Multi-Letterplace ring P = R[{z1,z2, 73} x IN?]. Hereby, we choose the monoid
Y. = (01, 02), whereby o; denotes the shift in the i-th component. We clearly see that

P ) = 0 - (0) () ()= )]

is a X-basis.

Hence, [ is a X-invariant ideal, but, we also note that the ideal is not w-graded with
respect to the standard multi-weight function or any other multi-weight function. In the
next subsection a possible solution of this problem is being presented.

5.2 w-Homogenization

Before we are able to establish a homogenization, we need to introduce some new nota-
tions. We will denote P = k[X x IN™] and P’ = k[(X U{y}) x N™].

In this subsection, ¥ will always denote the submonoid of Endy(P) generated by the
shifts o1, ..., 0, while &' will analogously be the submonoid of Endy(P) also gener-
ated by the shifts of,...,0},. In addition, w and w’ will be the multi-weight functions
introduced in Example 3.17.

(5.1) Definition

Let f € P be an arbitrary element. We can write f as f = i a;m; with a; € k\ {0}
i=1
and m; € mon(P). Then, we define the leading w-vector of f as

lwo(f) = max{w(m;) | i € {1,..,n}}

for any fixed ordering on IN"".
11
If v=1 : [, recall the notation

im

By use of this definition, we obtain an embedding of P in P’

(5.2) Definition
Fix any ordering < on IN"*. Then, we call

7: PP, f—yllwo(f)f

the homogenization function of P with respect to <.
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(5.3) Remark
Note that, by definition of lwv(f), 7(f) is in fact in Pl’wv( 7y and hence w’-homogeneous.

Note that 7 is in general not multiplicative. However, the equation 7(hf) = y(max{lwv(h),lwv(f)})hf
holds.

(5.4) Example
Consider X = {z1, 22,73} and m = 2 and endow IN? with the graded lexicographic

order. Then, we can conclude for f = x; <(1)> 9 (8) — 3 (g) that

and thus

hold.

The next lemma will show that 7 is compatible with (X,%'), which will be crucial to

prove a one-to-one correspondence between X-invariant ideals in P and a special class
of ideals in P’.

(5.5) Lemma
The homogenization function commutes with (X,%/), i.e.

Too=ooT
whereby o € X and ¢’ € ¥/ fulfill ¢/|p = 0.

Proof

Note that it is sufficient to prove the statement for o; and o). By definition of w, we have
w(o;-m) = e; +w(m) for any m € mon(P) which implies lwv(o; - f) = e; + lwv(f).
Hence, we can conclude

(rooi)(f) =7(oi- f) = ylei +lwo(f))(oi- ) = oi- (y(lwo(f)) f) = (o707)(f)

for any f € P. (]

After having established an embedding from P to P’, we are now interested in an
projection from P’ onto P.
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(5.6) Definition
Consider the ring homomorphism defined by

J
7: PSP, oyl :|—1
Jm
and 7 |p = id. Then, this mapping is surjective and fulfills 7 o7 = 7.

(5.7) Remark
It is obvious that 7 is a left inverse of 7, i.e. mo7T = id|p.

It is useful to notice that 7, similar to 7, commutes with (X,%').

(5.8) Lemma
The homomorphism 7 commutes with (X,%), i.e.

Too =cgonm
whereby 0 € X and o’ € ¥/ fulfill ¢'|, = 0.

Proof

Once again, it is sufficient to prove the statement for o; and o/. In addition, we only have
to consider monomials of total degree 1, since m, o; and o} are ring homomorphisms.
Hence, fix any i € {1,..,m} and f € {z;(v) |z € X, v e N"}U{y(v) | v € N™}.

If f=xj(v), we obtain

(mooi)(wj(v) = m(w;(v+ei) = wj(v+ei) = o(x;(v) = (0 07)(2;(v))

and, if f = y(v), we conclude

(moo))(y(v)) =7(y(v+e)) =1=0(1) = (oom)(y(v)). O

In order to obtain information about X-invariant ideals in P, we have to define a corre-
sponding ideal in P’.

(5.9) Definition

Let I C P be a X-invariant ideal with X-basis F* C I. Then, consider the ideal I’ C P’
generated by X' - 7(F). We will call this ideal the homogeneous analogue of I (with
respect to F). Note that 7(F) is a X/-basis of I’.

Let now J be an ideal in P’. We denote the ideal J™ = 7 (.J) and call it the projection
of J.
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(5.10) Remark
Note that I’ strongly depends on the choice of the X-basis F'. Hence, since a X-basis is
not unique, I’ is also not unique.

(5.11) Remark
Since 7 commutes with (X,%/), it is easy to see that ¥’ - 7(F) = 7(X - F) holds.

The fact that 7 o7 = id|p holds leads us to the assumption that also I = (I’)™ holds.

(5.12) Proposition
Let I be a X-invariant ideal in P with X-basis F.. Then, I = (I')™ holds.

Proof

e

Fix any o - f € ¥-F. Note that 7(o - f) is contained in I’ and, hence, we conclude
w(1t(o- f)) € (I')™. Recalling Remark 5.7 yields 7(7(c - f)) = o - f, which implies
Y- F C (I')". We have just shown that a basis of I is contained in (I')™, which implies
IC(rr.

"5

Fix any f € I'. By definition of I’, there are finitely many (o%)" - f/ € X' 7(F)
and g; € P’ such that f = ¥;¢;((0?)" - f!) holds. By recalling Lemma 5.8, it follows
immediately that 7(f) = > 7(g;) (o - 7(f])) = ¥ 7(gi) (0" - fi) is contained in I. O

We will now verify that the homogeneous analogue of I is in fact w-graded.

(5.13) Proposition
Let I C P be a X-invariant ideal with X-basis F'. Then, I’ is both ¥/-invariant and
w-graded.

Proof

Since F' := 7(F) is a X-basis of I, I’ is obviously X-invariant.

Let f be an arbitrary element of I’. Then, there are (0?)"- f/ € /- F', a; € k and g; €
mon(P') such that f = 3, a;gi((?)" - f/) holds. Recall that all f/ are w-homogeneous,
so w'((0%)" - 1) is well-defined. Denote v = max{w(g;),w((¢*)" - f/)} and it follows
immediately that a;g;((o?)" - /) is contained in P!. Since a;g;((0?)"- f!) € I', we can

conclude that a;g;((0) - f!) € I} holds.
Hence, f € 3=, I/ which implies I C 3", I, and thus I = 3, I,,. O
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One of our original goals was finding a way to transfer the membership problem from
arbitrary X-invariant ideals to w-graded ideals. Assume now that the set F' C P, which
is a X-basis of I, is finite. For this purpose, we have to introduce a new mapping. But,
first of all, we need to recall the following definitions for f = Y"; a;m; € P with a; # 0.
The set of all vectors occurring in f is denoted by V.

Vi ={v e N™| z;(v) divides m; for some i € N and z; € X¢}.
We also need the maximum vector vy of f.
U1

vp= | | withv; = min{k € N | k > w; Vw € V}}.

Um

(5.14) Remark
Note that V;, = V; UV, holds for any f,g € P.

From now on, we assume that IN™" is endowed with an ordering satisfying the following
condition: For any v € IN™ there are only finitely many w € N™ such that w < v holds.
One important ordering satisfying this condition is the graded lexicographic order.

In addition, we will make use of the following definition.

(5.15) Definition
Let F C P be a finite set. Then we define

vp = max{lwv(f;) | fi € F}.

Fix now any g in P. We denote by y r a monomial in P’ defined by

Yfr = H y(v).

v<vrtup

This definition now induces a new embedding from P into P’

(5.16) Definition
Fix any finite subset F' of P. Then, 7z denotes the injective mapping

TP P— P, fr—>yf7F~f.

(5.17) Remark
Once again, we notice that 77 has the left inverse 7 like 7. The proof is completely
analogous.
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In plain words, the function 7p multiplies the argument with a product of all y(v),

whereby v are the vectors less than or equal the sum of the maximum vectors of f and
F.

(5.18) Example
Reconsider the case when X = {1, 72,23} and m = 2 and endow IN? with the graded

lexicographic order. Then, we can conclude for f = x; <é> o (8) — 3 (2) and g =
0 0
{:EQ <0> — X3 <1>} that

and thus

holds. Furthermore, we notice

0 1
v =14 and, consequently, vy + vy = 5

which yields

=0 (o)u{o)o () (1)) (= o) ) - 3))

This technical lemma will simplify the next important proposition.

(5.19) Lemma
Fix any finite set F' as a X-basis of an ideal I in P. Consider now f = ¥; a;hi(a’- f;) € I
with a; € k\ {0}, h; € mon(P) and o' - f; € £ - F. Then, we can conclude

Y (lwv (ai . fz)) divides y; p Vi.

Proof
Assume that the statement is wrong. This implies that there is an index j such that

lwv (aj : fj) > v¢ +vp holds. Since f; € F implies lwv (f;) < vp we can conclude with

a slight abuse of notation that
0

o’ : > vy
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holds. This immediately implies that the intersection of V; and V;. 5 is empty. If we
rewrite ajh; (aj : fj) = Y i bpng with ng € mon(P) and b, € k\ {0}, it follows that
m; # ny, for all 7, k. Hence, all summands of h; (aj . f]—) must be eliminated by other
summands.

We will now assume that he (6¢- fe) = > ¢q with ¢ € mon(P) and ¢ € k\ {0}
satisfies gy = nys for some I',k'. By showing that this implies that also he (o€ - fe) is
completely eliminated we can conclude that all these summands can be omitted which
implies the statement.

By assumption, it follows that there is a v € Vj, (ge.s,) With v > vy 4+ vp. Recall that
Vhe(oe-f.) = Vie U Voe.g, holds (cf. Remark 5.14). If v € V},,, then, since he is monomial,
q # m; for all ,i. Thus, he(0€- fe) is completely eliminated. If v € Vje.;, we can once
again conclude that lwv(o®- fe) > vy + vp holds, which implies again that he(o® - fe) is
completely eliminated. U

By use of the last definitions and the last lemma, the next proposition realizes the
transfer of the membership problem.

(5.20) Proposition
Let I be a X-invariant ideal with a finite X-basis F' in P and fix any f € P. Then,

fel < TF(f)EI/.

Proof

79 : 7

Let f be an arbitrary element of I. We can write f = 3°; a;h;(o? - f;) with a; € k\ {0},
h; € mon(P) and o' - f; € ¥- F. Then, we obtain, by considering Lemma 5.19:

TF(f) = yf,F Zaihi(ai . fl) = Zaiy(lwz;y(ﬁf' fi))hiy(lwv(ai . fz))((fZ . fz)

Since we have already proven that 7 commutes with (X,%'), we can conclude that
y(wo(o' - fi)(o" - f) = 7(0" - fi) = (o) - 7(fi) = (") - fi

holds. Hereby, f/ is in 7(F) and (o?)" € ¥’ is chosen such that (¢*)’ |, = o holds. This

implies, by renaming g; := aihim e P,

(f) =3 gi((o") - f])

which is obviously in I'.
79 C 7
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Denote F’ = 7(F) and recall that 7 is a ring homomorphism, which commutes with

(X,%"). Assume now 7x(f) € I', this implies the existence of h; € P’ and (o) - f! €
/. F' fulfilling 70(f) = 3 hi((0%) - f]). We immediately obtain

f=a(rp(f) =3 m(hi)(o" - ).
which implies f € I. O
(5.21) Remark

This proposition is wrong if we substitute 77 with 7:
We endow IN? with the graded lexicographic order and consider the ideal I C R[{z} x

1 2 1
IN?] with the X-basis {f} = {x <2> } Then, the element g = x <1> x <2> is contained

e ()= 6)-C)

is a X-basis of I’. Since

and
/ 1 2 / /
oy Fy forall o' € &
2 1
we see that 7(g) € I'.

However, the implication 7(g) € I' = g € I is correct.

So, if you want to determine, if an element ¢ is contained in a X-invariant ideal of P
with finite X-basis F', we have just proven that you can instead determine if 7p(g) is
contained in its homogeneous analogue. Since I’ is w’-graded, you can use the results of
the last sections to solve this problem.

We obtain a weaker results if F' is not finite. However, it will still prove beneficial in
this section. From now on, we will no longer assume that the order on IN™ satisfies the
condition that any v € IN"™ only has finitely many predecessors.

(5.22) Proposition
Let I be an ideal in P with X-basis I’ and I’ its homogeneous analogue with respect to
F. Then, for any f € I there is an m in mon (k[{y} x IN™]) such that mf € I'.
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Proof
If f €I, there are h; € P such that f =3, h; <0i . fl) with o - f; € X+ F holds. Since

this sum is finite, we can define m = [[; y (lwv (O'i . fz>> We will now continue similarly
to the proof of the finite version of this proposition. Note that
m

mf =m3 hiot-fi) =3 gy hiv(ee(e” - f) (0" )

holds. Since we have already proven that 7 commutes with (X,%'), we can conclude
that

y(lwo(o' - fi) (o' ) = 1(a"- fi) = (") - 7(fi) = (o")' - f;
holds. Hereby, f/ is in 7(F) and (o?)" € ¥’ is chosen such that (¢*)’ |, = o holds. This

implies, by renaming g; := h’m e P,

mf =3 g((a") f)
7
which is obviously in I’. H

We will now see that we can also transfer Grobner bases from I’ to I.

For this purpose, we assume that there is a monomial ordering on P. We extend this
ordering in a way similar to the definition of the lexicographic order.

(5.23) Definition
Let < be a monomial order on P and consider the monomial order <, defined by

y(v) <y y(vl) <~ U <gradle:r UI

on the set of all monomials in k[{y} x IN™] (cf. Example 2.16).
We can now define a monomial order on P’ via

m=<n < w(m)<m(n)or (ﬁ(m) = 7(n) and

m(m) = w<nn>>

for all m,n € mon(P'). We call < the extension order of <.

From now on, we assume that P’ is endowed with an extension order. This allows us to
prove the next lemma.

(5.24) Lemma
Let < be a monomial order on P and denote < the extension order. Then, we can
conclude that

Im(f) == (Im(mf))
holds for any f € P and m € mon (k[{y} x N™]).

5
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Proof

Let f,m be arbitrary elements of P and mon (k[{y} x IN™|) respectively. It is obviously
sufficient to show that im(mf) = m-Iim(f) holds. By considering the definition of
the extension order it is clear that n; < ng for n; € mon(P) implies mn; < mna.
Consequently, Im(mf) = m-Im(f) holds as well. O

We are now finally able to prove that we can transfer Grobner X-bases from P’ to P.

(5.25) Proposition
Let I be a X-invariant ideal in P with X-basis F'. If G’ C P’ is a Grobner X/-basis of I,
then 7(G") is a Grobner X-basis of 1.

Proof

Let f be an arbitrary element in I. We have to prove that im(f) is contained in the
ideal LM (X -7 (G")). We have already proven in Proposition 5.22 that there is f' € I’
with 7(f') = f and f' = mf for some m € k[{y} x N™]. Thus, f’ has a Grobner
representation with respect to X+ G’. This means that we can write

fr= Zhi(si‘gz‘)

with h; € P! and s' - ¢; € G'. This implies

f = w(mf) = =(f) = Sn(h)(s' - m(50))
and in addition im(f") > Im(h;(s' - g;)) implies Im(f) > Im(w(h;)(s' - 7(g;))): Re-
calling Lemma 5.24 yields 7w(Im(f")) = Im(f) and it is easy to see that 7w(Im(g)) >
Im(7(g)) holds in general. O
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§ 6 Multi-Letterplace and Difference Equations

In this section we will show an application of the Multi-Letterplace ring. We will start
with a system of difference equations with possibly more than one function f; : N™ — k
involved. Note that the analysis of these systems is very important when solving PDE
numerically. Hence, these systems not only play an important role in mathematics, but
also in physics, chemistry and natural sciences in general. Consider, for instance, the
system (without any inital values or boundary conditions)

= fi(n,m)fa(n,m) — fi(n+1,m)
= fo(n+1,m)fa(n,m+2)+ fi(n+1,m+ 2).

filn+vi,m—+uv) = ((2))

- el
o= ) )

Then, the X-invariant ideal, corresponding to the initial system of difference equations,

for all (n,m) € IN2.

The identification

yields

is 2-generated by

P00 ) = ) = ) oo ()

whereby 2 is the monoid freely generated by the shifts o; and 9.

More generally, we start with a system of p equations with ¢ algebraically independent
functions f; : IN"* — k. We only consider systems of difference equations with constant
coefficients and we do not consider initial values and boundary conditions. Every equa-
tion is a finite sum of finite products of f;(a) with constant coefficients. Thus, for any
1 <1 < q, there are [; € IN multi-places

n1 + v1

Nm, + Um,

7
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such that f;(«) occurs in the system of difference equations. In our previous example,
the set of multi-places corresponding to f; would be

n n+1 n+1

m)’\ m ) \m+2/["
We will now collect the different function/multi-place combinations in the ordered set
M:

M = {filear),..., fileay)

folag), - .. 7fq(aqlq)}-

We write M; to denote the i-th element of the set and denote ¢ = #M There are now p
polynomials G1,...,G)p € k[y1, ..., y:] such that the system of difference equations has
the form

0=G;(My,....,M) V1<j<p.
By use of the identification

filni +v1,...,nm + o) =

Um

we obtain the set M’ C P = k[{x1,...,24} x IN™] which results from the set M under
the identification above. We can now interpret G;(Mj,..., M{) as an element of P,
which yields the ideal

1= (S {G;(M],.... M) | 1 < j < p}).

This constructions immediately yields the next proposition.

(6.1) Proposition
Every finite system of difference equations with constant coefficients corresponds to an
ideal I C P with a finite 2-basis.

Unfortunately, we can not expect I to be w-graded for an arbitrary multi-weight func-
tion. Of course, we always have the possibility to homogenize I as shown in the last
section. But, we have also obtained some interesting results concerning the existence of
a suitable multi-weight function in section four.
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(6.2) Definition

Let A, B be two systems of difference equations with constant coefficients. We say that
the difference equation q is a consequence of A if every solution of A is also a solution
of q.

We say that A and B are equivalent if every consequence of A is also a consequence of
B and vice versa.

This definition now yields an interesting implication.

(6.3) Proposition
Let A, B be two systems of difference equations with constant coefficients. Then, A and
B are equivalent if the corresponding ideals /4 and Ig are equal.

Proof

According to the construction of 4, we can conclude that g € I4 if ¢ = 0 is a conse-
quence of A (by interpreting z;(v) = fi(n 4 v) with n € IN™). Since 14 = I implies
that the X-basis of I 4 is contained in B, this means that the original difference equations
of A are consequences of B and vice versa. Thus, A and B are equivalent. ]

(6.4) Remark
The other implication does not hold. Consider system A

0= f(n) YneN

and system B
0= f(n)f(n) ¥n € N.

which are obivously equivalent. However,

Ia = {o-{2(0)}}) 2 {o-{z(0)z(0)}}) = I

holds.

We will now see that the results of section four become very handy when the system of
difference equations is linear.
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6.1 Linear Systems

We will now investigate when P can be equipped with a multi-weight function such
that the ideal I C P, corresponding to a system of linear difference equations, is w-
graded. For this purpose, we try to find a multi-weight function w which makes F;
w-homogeneous.

Note that our F; can be written as

F, = a1, (U1) + ...t anzj, (Un)

with a; € k\ {0} and v; € N™.
Assume now that p = 1 holds. Then, Proposition 4.9 immediately yields that there is a
multi-weight function w so that Fj is w-homogeneous if and only if

=gy o= v =y

holds for all I,1" € {1,..,n}.

When p is greater than one, we have to apply Proposition 4.18 and the following remark.
Note that in the linear case Xp, \ ¢r, = 0 holds for any ¢r, € Comp,. Hence, we do not
have to worry about the inequation. Instead, we can conclude that we find a suitable w
for Iy, .., F} if and only if there are ¢p, which are pairwise compatible.

(6.5) Remark

Linear difference equations very often occur in numerical analysis. Especially when
solving differential equations numerically, the discretization process often results in dif-
ference quotients which yield difference equations. However, these equations mostly
contain terms like u(n 4+ 1,m) — u(n, m) which correspond to

-+()-()

which is obviously never w-homogeneous. However, one can still use homogenization to
obtain a w-graded ideal.

(6.6) Example
Consider the system

0 = filn+1,m)—fa(n+2,m+1)+ f3(n+1,m+1)
0 = _fl(n+2>m)+f2(n+3>m+1)+f4<n>m)

which corresponds to the ideal
I=(X% = Ly _ x 2 +x ! = - 2 + 3 +x 0
= g1 =21 0 2|4 3(4 g2 ‘= I 214 an
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We start to determine a Grobner basis by searching the first overlap. Note that there
is a multi-weight function w such that both ¢; are w-homogeneous. In addition, we
endow IN? with the graded lexicographic order and put x1 > 23 > z3 in order to endow
the Multi-Letterplace ring with the "letter over place" ordering. The first s-polynomial

yields:
o1-g1+g2 == +

Hence, we can conclude fy(n,m) = —f3(n +2,m + 1) for all (n,m) € IN2. Therefore,
we consider the ideal

= (foren ) ) oo )+ () ()

and obtain
g3 = —01-"g1

i.e. the original system of equations can be replaced by

0= filn+1,m)— fo(n+2,m+1)+ fas(n+1,m+1).

6.2 A Non-Linear Example

In the nonlinear case, we can not simplify the conditions of Propositions 4.9 and 4.18.
Consider the system

—fa(n) fi(n+1) + f3(n) fr(n +1)

= filn)fa(n+1) = fz(n)f3(n +1)
corresponding to the w-homogeneous system (we choose X = {z := z1,y := 22,2 :=
3})

0 = —y(0)z(1) +2(0)z(1) =: ¢

0 = z(0)y(1) - 2(0)z(1) =: g2
in the Letterplace ring R[X x IN]. We will now start the computation of a Grobner basis
of I = ({£-{g1,92}}). We will endow the Letterplace ring with the graded lexicographic

ordering with
z(1) > y(1l) > 2(3) > x(2) > y(2) > ...

Note that this ordering is compatible with X = (o) whereby o denotes the shift. Our X-
basis is w-homogeneous (hereby w denotes the standard weight-function) and we have

Im(g1) = y(0)z(1) Im(g2) = z(0)y(1).
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We will now compute the first two s-polynomials. We obtain

spoly( - g2,91) = y(0)(0 - g2) +y(2)g1 = 2(0)x(1)y(2) — y(0)2(1)2(2) =: g

which can be reduced by substracting z(1)(o - g2):

g =~ (gh— 2(0)(0 - g2)) = y(0)2(1)2(2) — 2(0)=(1)=(2).

Note that g3 can not be further reduced. We continue with

spoly(g2,0-91) = x(2)g2 +x(0) (0 - g1) = x(0)2(1)z(2) — 2(0)2(1)x(2) =: g4,

which is already reduced. The next s-polynomial is also already reduced:

spoly(ga, 0 - g3) = 2(2)2(3)g2 — 2(0) (0 - g3)
=2(0)2(1)2(2)2(3) — 2(0)2(1)2(2)2(3) =: gs.

We complete our computation with two s-polynomials: After the reduction, spoly(o -
g4, 91) and spoly(gq, 02 - g2) yield

96 = 2(0)x(1)2(2)x(3) — 2(0)2(1)2(2)x(3), g7 = —2(0)2(1)z(2)y(3) 4 2(0)2(1)2(2)2(3).

We reinterpret g3 and g5 as difference equations and obtain

= (fa(n) = f3(n)) fz(n+1) f3(n+2)
= (fi(n) = f3(n)) f3(n+ 1) f3(n+2) f3(n +3)

for all n € IN. Consequently, we see that if f3(n) # 0 for all n € IN holds, f and fo are
determined by f3. Hence, if f3 is given and f3(n) # 0, there is a solution if and only
it f1, fo, f3 with f1(n) = fa(n) = f3(n) satisfy the inital equations. In this case, the
solution is unique.

§ 7 Conclusions and Future Directions

We have seen in this thesis that many results already proven for the Letterplace ring
still hold true for the Multi-Letterplace ring. In the second and third section, the results
were more generally obtained for a polynomial ring in combination with a monoid of
endomorphisms. While this theory was mainly designed for the Multi-Letterplace ring
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and the monoid generated by the shifts, it might still prove beneficial in a different
context.

But, there is still more space for generalizations. In this thesis, we have assumed that the
monoid X is finitely, freely generated and that it is commutative. The assumption that
2. is finitely generated does not play an important role for most of the theoretical results
obtained in sections two and three. Hence, it is possible to prove most results of the
theory without this assumption. However, it is very important in terms of the feasibility
of the presented algorithms. If it is not freely generated, say o1 = o303 or 0103 =
0204 , then S is not isomorphic to P’ := P[s1;01]...[Sm; 0m] since the kernel is not
trivial. However, we obtain, for example, S = P'/(s) — s3s3) or S = P'/(s153 — 5254).
Consequently, many proofs do not work analogously, but one can still expect useful
results. The last assumption is by far the most important one. Basically every result
in section two strongly benefits from the fact that X is commutative. Hence, I do not
expect that a similar approach will lead to significant results without this assumption.
However, it may still be possible to obtain similar results from a different approach.

In the fourth section, we have constructed multi-weight functions w which allow us to
treat an ideal as w-graded. But, we have also seen that many ideals are not w-graded for
any multi-weight function. If the Multi-Letterplace ring will be supported in a computer
algebra system, the algorithms presented in this section could be easily implemented and
tested for feasibility. I have implemented a rudimentary version in Singular, but, since
Singular does not directly support the Multi-Letterplace ring at the moment, its input
method is rather inconvenient. In addition, one can still develop an algorithm based on
Proposition 4.18.

In section five, we have discussed a w-homogenization which allows us to use some results
of section two and three even if the original ideal itself is not w-graded. Contrary to the
classical homogenization, the homogenization function multiplies the original element
with one common factor. The function 7 which transfers the membership problem
works similarly. Hence, one could try to improve Grobner basis computation for these
elements by taking advantage of this special structure.

Since this thesis focused on the theoretical background of the Multi-Letterplace ring,
its application is unfortunately underrepresented. Nevertheless, the last section gives
an idea of the possibilities. Furthermore, we have seen a very interesting application
in [LSLO9] and [LSL13]. It might also be possible to combine the Multi-Letterplace
approach with the concept of difference rings to improve the insight. In addition, one
could find new applications. Whenever a certain monoid of endomorphisms plays an
important role, an embedding into the Multi-Letterplace ring might prove useful.
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