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Getting Close to Varieties
Many models in the sciences and engineering are the real solutions
to systems of polynomial equations in several unknowns.

Such a set is an algebraic variety X ⊂ Rn.

Given X , consider the following optimization problem:

for any data point u ∈ Rn, find x ∈ X that minimizes
the squared Euclidean distance du(x) =

∑n
i=1(ui − xi )

2.

What can be said about the algebraic function

u 7→ x(u)

from the data to the optimal solution?

Its branches are given by the complex critical points for generic u.

Their number is the Euclidean distance degree,
or short, the ED degree, of the variety X .
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Logo
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Plane Curves

Fix a polynomial f (x , y) of degree d and consider the curve

X =
{

(x , y) ∈ R2 : f (x , y) = 0
}
.

Given a data point (u, v) we wish to find (x , y) on X
such that (u − x , v − y) is parallel to the gradient of f .

Must solve two equations of degree d in two unknowns:

f (x , y) = det

(
u − x v − y

∂f /∂x ∂f /∂y

)
= 0

By Bézout’s Theorem, we expect d2 complex solutions (x , y).

Proposition

A general plane curve X of degree d has EDdegree(X ) = d2.
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The Cardioid
The cardioid is a special curve of degree 4. Its ED degree equals 3.

X =
{

(x , y) ∈ R2 : (x2 + y2 + x)2 = x2 + y2
}
.

The inner cardioid is the evolute or ED discriminant. It is given by

27u4 + 54u2v2 + 27v4 + 54u3 + 54uv2 + 36u2 + 9v2 + 8u = 0.
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Linear Regression

If X is a linear subspace of Rn then

EDdegree(X ) = 1.

Which non-linear varieties do arise in applications?

I Control Theory

I Geometric Modeling

I Computer Vision

I Tensor Decomposition

I Structured Low Rank Approximation

I .....

In many cases, X is given by homogeneous polynomials,
so X is a cone. View it as a projective variety in Pn−1.
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Ideals
Let IX = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xn] be the ideal of X and J(f ) its
s × n Jacobian matrix. The singular locus Xsing is defined by

IXsing
= IX +

〈
c × c-minors of J(f )

〉
, where c = codim(X ).

The critical ideal for u ∈ Rn is(
IX +

〈
(c+1)× (c+1)-minors of

(
u − x
J(f )

)〉)
:
(
IXsing

)∞
Lemma
For generic u ∈ Rn, the function du has finitely many critical points
on the manifold X\Xsing, namely the zeros of the critical ideal.

−→ EDdegree(X )

If f1, . . . , fs are homogeneous, so that X ⊂ Pn−1, we use instead(
IX+

〈
(c+2)× (c+2)-minors of

 u
x

J(f )

〉) :
(
IXsing
·〈x2

1+· · ·+x2
n 〉
)∞
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Bounds

Proposition

Let X ⊂ Rn be defined by polynomials f1, f2, . . . , fc , . . . of
degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · . If codim(X ) = c then

EDdegree(X ) ≤

d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c
(d1 − 1)i1(d2 − 1)i2 · · · (dc − 1)ic .

Equality holds when f1, f2, . . . , fc are generic.

Example

If X is cut out by c quadratic polynomials
in Rn then its ED degree is at most 2c

(n
c

)
.

Similar bounds are available for projective varieties X ⊂ Pn−1.
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Singular Value Decomposition
Fix positive integers r ≤ s ≤ t and n = st. Given an arbitrary
s×t-matrix U, we seek a matrix of rank r that is closest to U.
Here X is the determinantal variety of s×t-matrices of rank ≤ r .

Proposition

EDdegree(X ) =

(
s

r

)
.

Proof. Compute the singular value decomposition

U = T1 · diag(σ1, σ2, . . . , σs) · T2.

with σ1 ≥ σ2 ≥ · · · ≥ σs . By the Eckart-Young Theorem,

U∗ = T1 · diag(σ1, . . . , σr , 0, . . . , 0) · T2

is closest rank r matrix to U. All critical points
are given by r -element subsets of {σ1, . . . , σs}.
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Closest Symmetric Matrix
For symmetric U = (Uij), consider two unconstrained formulations:

Mint

s∑
i=1

s∑
j=1

(
Uij−

r∑
k=1

tiktkj
)2

or Mint
∑

1≤i≤j≤s

(
Uij−

r∑
k=1

tiktkj
)2
.

Eckart-Young applies only in the first case:

EDdegree(X ) =

(
s

r

)
or EDdegree(X )�

(
s

r

)
.

Here X is the variety of symmetric s × s-matrices of rank ≤ r .

For 3× 3-matrices with r = 1, 2 we have

EDdegree(X ) = 3 or EDdegree(X ) = 13.

Fixing the Euclidean metric on R6, put rank constraints on either
√

2x11 x12 x13
x12

√
2x22 x23

x13 x23
√

2x33

 or

x11 x12 x13
x12 x22 x23
x13 x23 x33
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Critical Formations on the Line
d’après [Anderson-Helmke 2013]

Let X denote the variety in R(p2) with parametric representation

dij = (zi − zj)
2 for 1 ≤ i ≤ j ≤ p.

The points in X record the squared distances among p interacting
agents with coordinates z1, z2, . . . , zp on the real line. The ideal IX
is generated by the 2× 2-minors of the Cayley-Menger matrix



2d1p d1p+d2p−d12 d1p+d3p−d13 · · · d1p+dp−1,p−d1,p−1
d1p+d2p−d12 2d2p d2p+d3p−d23 · · · d2p+dp−1,p−d2,p−1
d1p+d3p−d13 d2p+d3p−d23 2d3p · · · d3p+dp−1,p−d3,p−1

.

.

.

.

.

.

.

.

.
. . .

.

.

.
d1p+dp−1,p−d1,p−1 d2p+dp−1,p−d2,p−1 d3p+dp−1,p−d3,p−1 · · · 2dp−1,p



Theorem
The ED degree of the Cayley-Menger variety X equals

EMdegree(X ) =

{
3p−1−1

2 if p ≡ 1, 2 mod 3
3p−1−1

2 − p!
3((p/3)!)3

if p ≡ 0 mod 3
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Hurwitz Stability
A univariate polynomial with real coefficients,

x(t) = x0tn + x1tn−1 + x2tn−2 + · · ·+ xn−1t + xn,

is stable if each of its n complex zeros has negative real part.
Can express this using Hurwitz determinants

Γ̄5 =
1

x5
· det


x1 x3 x5 0 0
x0 x2 x4 0 0
0 x1 x3 x5 0
0 x0 x2 x4 0
0 0 x1 x3 x5

 .

Theorem
The ED degrees of the Hurwitz determinants are

EDdegree(Γn) EDdegree(Γ̄n)

n = 2m + 1 8m − 3 4m − 2
n = 2m 4m − 3 8m − 6

Here Γn = Γ̄n|x0=1 15 / 26



Average ED Degree

Rn

EX

π2

#π−1
2 (u)1 3 5 3 1

Equip data space Rn with a probability measure ω. Taking the
standard Gaussian centered at 0 is natural when X is a cone:

ω =
1

(2π)n/2
e−||x ||

2/2 dx1 ∧ · · · ∧ dxn.

The expected number of critical points of du is

aEDdegree(X , ω) :=

∫
Rn

#{real critical points of du on X} · |ω|.

Can compute this integral in some interesting cases. 16 / 26



Tables of Numbers
Hurwitz Determinants:

n EDdegree(Γn) EDdegree(Γ̄n) aEDdegree(Γn) aEDdegree(Γ̄n)
3 5 2 1.162... 2
4 5 10 1.883... 2.068...
5 13 6 2.142... 3.052...
6 9 18 2.416... 3.53...
7 21 10 2.66... 3.742...

ED degree can go up or down when replacing an affine variety
by its projective closure. Our theory explains this ....

Important Application: Tensors of Rank One
Format aEDdegree EDdegree
2× 2× 2 4.2891... 6
2×2×2×2 11.0647... 24
2× 2× n, n ≥ 3 5.6038... 8
2× 3× 3 8.8402... 15
2× 3× n, n ≥ 4 10.3725... 18
3× 3× 3 16.0196... 37
3× 3× 4 21.2651... 55
3× 3× n, n ≥ 5 23.0552... 61 17 / 26



Duality
X

X∗

u
x1

x2

u− x1

u− x2

Figure: Bijection between critical points on X and critical points on X ∗.
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Duality
If X is a cone in Rn then its dual variety is

X ∗ :=
{

y ∈ Rn | ∃x ∈ X\Xsing : y ⊥ TxX
}
.

Theorem
Fix generic data u ∈ Rn. The map x 7→ u − x gives a bijection
from critical points of du on X to critical points of du on X ∗, so

EDdegree(X ) = EDdegree(X ∗)

The map is proximity-reversing: the closer a real critical
point x is to the data u, the further u − x is from u.

Punchline: Solve the equation x + y = u on the conormal variety.

Corollary
EDdegree(X ) is the sum of the polar classes of X , provided

the conormal variety is disjoint from the diagonal in Pn−1 × Pn−1.
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Duality
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Symmetric Matrices
If X = { symmetric s × s-matrices x of rank ≤ r}
then X ∗ = { symmetric s × s-matrices y of rank ≤ s − r}.

Their conormal variety is defined by minors of x and y
and entries of the matrix product xy .

Must solve x + y = u.

The polar classes give the algebraic degree of semidefinite
programming, studied by von Bothmer, Nie, Ranestad, St.

Use package Schubert2 in Macaulay2

to find these values for EDdegree(X ):

s = 2 3 4 5 6 7
r = 1 4 13 40 121 364 1093
r = 2 13 122 1042 8683 72271
r = 3 40 1042 23544 510835
r = 4 121 8683 510835
r = 5 364 72271
r = 6 1093 21 / 26



Chern Class Formula

Theorem
Let X be a smooth irreducible variety of dimension m in Pn−1. If
X is transversal to the isotropic quadric Q = V (x2

1 + · · ·+ x2
n ) then

EDdegree(X ) =
m∑
i=0

(−1)i · (2m+1−i − 1) · deg(ci (X )).

Corollary

Here, if X is a curve of degree d and genus g then

EDdegree(X ) = 3d + 2g − 2.

Corollary

Here, if X is toric and Vj is the sum of the normalized volumes
of all j-faces of the simple polytope P associated with X , then

EDdegree(X ) =
m∑
j=0

(−1)m−j · (2j+1 − 1) · Vj .
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The ED Discriminant

Rn

EX

π2

#π−1
2 (u)1 3 5 3 1

is the variety in data space where two critical points come together.
Studied by [Catanese-Trifogli 2000]

Example

The quadric X = V (x0x3 − 2x1x2) ⊂ P3 has ED degree 6. Its
ED discriminant ΣX is a polynomial of degree 12 with 119 terms:

65536u12
0 + 835584u10

0 u2
1 − 835584u10

0 u2
3 + 9707520u9

0u1u2u3

+3747840u8
0u4

1 − 7294464u8
0u2

1u2
2 + · · · + 835584u2

2u10
3 + 65536u12

3 .

Theorem (Trifogli 1998)

If X is a general hypersurface of degree d in Pn then

degree(ΣX ) = d(n−1)(d−1)n−1 + 2d(d−1)
(d−1)n−1 − 1

d − 2
.
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Conclusion

Optimization and Algebraic Geometry can be Friends.
All you need is an Ideal.
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Epilogue
Chapter 1 in the 1932 Anschauliche Geometrie of Hilbert and
Cohn-Vossen begins with: The Simplest Curves and Surfaces.

The first section, Plane curves, starts like this:

I The simplest plane curve is the line.

I Next comes the circle.

I Thereafter comes the parabola.

I And, finally, we get to the ellipse.

Why are these the simplest curves? And why in this order?

I The line has ED degree 1.

I The circle has ED degree 2.

I The parabola has ED degree 3.

I The ellipse has ED degree 4.
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