The Euclidean Distance Degree of an Algebraic Variety

Bernd Sturmfels
UC Berkeley and MPI Bonn

joint work with
Jan Draisma, Emil Horobeț, Giorgio Ottaviani, and Rekha Thomas

Getting Close to Varieties

Many models in the sciences and engineering are the real solutions to systems of polynomial equations in several unknowns.

Such a set is an algebraic variety $X \subset \mathbb{R}^{n}$.
Given X, consider the following optimization problem: for any data point $u \in \mathbb{R}^{n}$, find $x \in X$ that minimizes the squared Euclidean distance $d_{u}(x)=\sum_{i=1}^{n}\left(u_{i}-x_{i}\right)^{2}$.

Getting Close to Varieties

Many models in the sciences and engineering are the real solutions to systems of polynomial equations in several unknowns.

Such a set is an algebraic variety $X \subset \mathbb{R}^{n}$.
Given X, consider the following optimization problem: for any data point $u \in \mathbb{R}^{n}$, find $x \in X$ that minimizes the squared Euclidean distance $d_{u}(x)=\sum_{i=1}^{n}\left(u_{i}-x_{i}\right)^{2}$.

What can be said about the algebraic function

$$
u \mapsto x(u)
$$

from the data to the optimal solution?
Its branches are given by the complex critical points for generic u.
Their number is the Euclidean distance degree, or short, the ED degree, of the variety X.

Logo

Plane Curves

Fix a polynomial $f(x, y)$ of degree d and consider the curve

$$
X=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}
$$

Given a data point (u, v) we wish to find (x, y) on X such that $(u-x, v-y)$ is parallel to the gradient of f.

Must solve two equations of degree d in two unknowns:

$$
f(x, y)=\operatorname{det}\left(\begin{array}{cc}
u-x & v-y \\
\partial f / \partial x & \partial f / \partial y
\end{array}\right)=0
$$

By Bézout's Theorem, we expect d^{2} complex solutions (x, y).

Proposition
A general plane curve X of degree d has EDdegree $(X)=d^{2}$.

The Cardioid

The cardioid is a special curve of degree 4. Its ED degree equals 3.

$$
X=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{2}+y^{2}+x\right)^{2}=x^{2}+y^{2}\right\} .
$$

The inner cardioid is the evolute or ED discriminant. It is given by $27 u^{4}+54 u^{2} v^{2}+27 v^{4}+54 u^{3}+54 u v^{2}+36 u^{2}+9 v^{2}+8 u=0$.

Linear Regression

If X is a linear subspace of \mathbb{R}^{n} then

$$
\operatorname{EDdegree}(X)=1
$$

Which non-linear varieties do arise in applications?

- Control Theory
- Geometric Modeling
- Computer Vision
- Tensor Decomposition
- Structured Low Rank Approximation
- \ldots.

In many cases, X is given by homogeneous polynomials, so X is a cone. View it as a projective variety in \mathbb{P}^{n-1}.

Ideals

Let $I_{X}=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of X and $J(f)$ its $s \times n$ Jacobian matrix. The singular locus $X_{\text {sing }}$ is defined by

$$
I_{X_{\text {sing }}}=I_{X}+\langle c \times c \text {-minors of } J(f)\rangle, \quad \text { where } c=\operatorname{codim}(X) .
$$

The critical ideal for $u \in \mathbb{R}^{n}$ is

$$
\left(I_{x}+\left\langle(c+1) \times(c+1) \text {-minors of }\binom{u-x}{J(f)}\right\rangle\right):\left(I_{X_{\text {sing }}}\right)^{\infty}
$$

Lemma

For generic $u \in \mathbb{R}^{n}$, the function d_{u} has finitely many critical points on the manifold $X \backslash X_{\text {sing }}$, namely the zeros of the critical ideal.

Ideals

Let $I_{X}=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of X and $J(f)$ its $s \times n$ Jacobian matrix. The singular locus $X_{\text {sing }}$ is defined by $I_{X_{\text {sing }}}=I_{X}+\langle c \times c$-minors of $J(f)\rangle, \quad$ where $c=\operatorname{codim}(X)$. The critical ideal for $u \in \mathbb{R}^{n}$ is

$$
\left(I_{X}+\left\langle(c+1) \times(c+1) \text {-minors of }\binom{u-x}{J(f)}\right\rangle\right):\left(I_{X_{\text {sing }}}\right)^{\infty}
$$

Lemma

For generic $u \in \mathbb{R}^{n}$, the function d_{u} has finitely many critical points on the manifold $X \backslash X_{\text {sing }}$, namely the zeros of the critical ideal.

If f_{1}, \ldots, f_{s} are homogeneous, so that $X \subset \mathbb{P}^{n-1}$, we use instead $\left(I_{X}+\left\langle(c+2) \times(c+2)\right.\right.$-minors of $\left.\left.\left(\begin{array}{c}u \\ x \\ J(f)\end{array}\right)\right\rangle\right):\left(I_{X_{\text {sing }}} \cdot\left\langle x_{1}^{2}+\cdots+x_{n}^{2}\right\rangle\right)^{\infty}$

Bounds

Proposition

Let $X \subset \mathbb{R}^{n}$ be defined by polynomials $f_{1}, f_{2}, \ldots, f_{c}, \ldots$ of degrees $d_{1} \geq d_{2} \geq \cdots \geq d_{c} \geq \cdots$. If $\operatorname{codim}(X)=c$ then

$$
\begin{aligned}
& \operatorname{EDdegree}(X) \leq \\
& d_{1} d_{2} \cdots d_{c} \cdot \sum_{\substack{i_{1}+i_{2}+\cdots+i_{c} \leq n-c}}\left(d_{1}-1\right)^{i_{1}}\left(d_{2}-1\right)^{i_{2}} \cdots\left(d_{c}-1\right)^{i_{c}} .
\end{aligned}
$$

Equality holds when $f_{1}, f_{2}, \ldots, f_{c}$ are generic.

Example

If X is cut out by c quadratic polynomials in \mathbb{R}^{n} then its ED degree is at most $2^{c}\binom{n}{c}$.

Similar bounds are available for projective varieties $X \subset \mathbb{P}^{n-1}$.

Singular Value Decomposition

Fix positive integers $r \leq s \leq t$ and $n=s t$. Given an arbitrary $s \times t$-matrix U, we seek a matrix of rank r that is closest to U. Here X is the determinantal variety of $s \times t$-matrices of rank $\leq r$.

Proposition

$$
\operatorname{EDdegree}(X)=\binom{s}{r}
$$

Proof. Compute the singular value decomposition

$$
U=T_{1} \cdot \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right) \cdot T_{2}
$$

with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{s}$. By the Eckart-Young Theorem,

$$
U^{*}=T_{1} \cdot \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \cdot T_{2}
$$

is closest rank r matrix to U. All critical points are given by r-element subsets of $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$.

Closest Symmetric Matrix

For symmetric $U=\left(U_{i j}\right)$, consider two unconstrained formulations:
$\operatorname{Min}_{t} \sum_{i=1}^{s} \sum_{j=1}^{s}\left(U_{i j}-\sum_{k=1}^{r} t_{i k} t_{k j}\right)^{2}$ or $\operatorname{Min}_{t} \sum_{1 \leq i \leq j \leq s}\left(U_{i j}-\sum_{k=1}^{r} t_{i k} t_{k j}\right)^{2}$.
Eckart-Young applies only in the first case:

$$
\text { EDdegree }(X)=\binom{s}{r} \quad \text { or } \quad \text { EDdegree }(X) \gg\binom{s}{r} .
$$

Here X is the variety of symmetric $s \times s$-matrices of rank $\leq r$.

Closest Symmetric Matrix

For symmetric $U=\left(U_{i j}\right)$, consider two unconstrained formulations:
$\operatorname{Min}_{t} \sum_{i=1}^{s} \sum_{j=1}^{s}\left(U_{i j}-\sum_{k=1}^{r} t_{i k} t_{k j}\right)^{2}$ or $\operatorname{Min}_{t} \sum_{1 \leq i \leq j \leq s}\left(U_{i j}-\sum_{k=1}^{r} t_{i k} t_{k j}\right)^{2}$.
Eckart-Young applies only in the first case:

$$
\text { EDdegree }(X)=\binom{s}{r} \quad \text { or } \quad \text { EDdegree }(X) \gg\binom{s}{r} .
$$

Here X is the variety of symmetric $s \times s$-matrices of rank $\leq r$.
For 3×3-matrices with $r=1,2$ we have

$$
\operatorname{EDdegree}(X)=3 \quad \text { or } \quad \operatorname{EDdegree}(X)=13
$$

Fixing the Euclidean metric on \mathbb{R}^{6}, put rank constraints on either

$$
\left(\begin{array}{ccc}
\sqrt{2} x_{11} & x_{12} & x_{13} \\
x_{12} & \sqrt{2} x_{22} & x_{23} \\
x_{13} & x_{23} & \sqrt{2} x_{33}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right)
$$

Critical Formations on the Line

d'après [Anderson-Helmke 2013]

Let X denote the variety in $\mathbb{R}\binom{p}{2}$ with parametric representation

$$
d_{i j}=\left(z_{i}-z_{j}\right)^{2} \quad \text { for } \quad 1 \leq i \leq j \leq p
$$

The points in X record the squared distances among p interacting agents with coordinates $z_{1}, z_{2}, \ldots, z_{p}$ on the real line. The ideal I_{X} is generated by the 2×2-minors of the Cayley-Menger matrix

$$
\left[\begin{array}{ccccc}
2 d_{1 p} & d_{1 p}+d_{2 p}-d_{12} & d_{1 p}+d_{3 p}-d_{13} & \cdots & d_{1 p}+d_{p-1, p}-d_{1, p-1} \\
d_{1 p}+d_{2 p}-d_{12} & 2 d_{2 p} & d_{2 p}+d_{3 p}-d_{23} & \cdots & d_{2 p}+d_{p-1, p}-d_{2, p-1} \\
d_{1 p}+d_{3 p}-d_{13} & d_{2 p}+d_{3 p}-d_{23} & 2 d_{3 p} & \cdots & d_{3 p}+d_{p-1, p}-d_{3, p-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
d_{1 p}+d_{p-1, p}-d_{1, p-1} & d_{2 p}+d_{p-1, p}-d_{2, p-1} & d_{3 p}+d_{p-1, p}-d_{3, p-1} & \cdots & 2 d_{p-1, p}
\end{array}\right]
$$

Theorem

The ED degree of the Cayley-Menger variety X equals

$$
\text { EMdegree }(X)= \begin{cases}\frac{3^{p-1}-1}{2} & \text { if } p \equiv 1,2 \bmod 3 \\ \frac{3^{p-1}-1}{2}-\frac{p!}{3((p / 3)!)^{3}} & \text { if } p \equiv 0 \bmod 3\end{cases}
$$

Hurwitz Stability

A univariate polynomial with real coefficients,

$$
x(t)=x_{0} t^{n}+x_{1} t^{n-1}+x_{2} t^{n-2}+\cdots+x_{n-1} t+x_{n}
$$

is stable if each of its n complex zeros has negative real part.
Can express this using Hurwitz determinants

$$
\bar{\Gamma}_{5}=\frac{1}{x_{5}} \cdot \operatorname{det}\left(\begin{array}{ccccc}
x_{1} & x_{3} & x_{5} & 0 & 0 \\
x_{0} & x_{2} & x_{4} & 0 & 0 \\
0 & x_{1} & x_{3} & x_{5} & 0 \\
0 & x_{0} & x_{2} & x_{4} & 0 \\
0 & 0 & x_{1} & x_{3} & x_{5}
\end{array}\right)
$$

Theorem
The ED degrees of the Hurwitz determinants are

	EDdegree $\left(\Gamma_{n}\right)$	EDdegree $\left(\bar{\Gamma}_{n}\right)$
$n=2 m+1$	$8 m-3$	$4 m-2$
$n=2 m$	$4 m-3$	$8 m-6$

Average ED Degree

Equip data space \mathbb{R}^{n} with a probability measure ω. Taking the standard Gaussian centered at 0 is natural when X is a cone:

$$
\omega=\frac{1}{(2 \pi)^{n / 2}} e^{-\|x\|^{2} / 2} d x_{1} \wedge \cdots \wedge d x_{n}
$$

The expected number of critical points of d_{u} is
$\operatorname{aEDdegree}(X, \omega):=\int_{\mathbb{R}^{n}} \#\left\{\right.$ real critical points of d_{u} on $\left.X\right\} \cdot|\omega|$.

Tables of Numbers

Hurwitz Determinants:

n	EDdegree $\left(\Gamma_{n}\right)$	EDdegree $\left(\bar{\Gamma}_{n}\right)$	aEDdegree $\left(\Gamma_{n}\right)$	$\operatorname{aEDdegree}\left(\bar{\Gamma}_{n}\right)$
3	5	2	$1.162 \ldots$	2
4	5	10	$1.883 \ldots$	$2.068 \ldots$
5	13	6	$2.142 \ldots$	$3.052 \ldots$
6	9	18	$2.416 \ldots$	$3.53 \ldots$
7	21	10	$2.66 \ldots$	$3.742 \ldots$

ED degree can go up or down when replacing an affine variety by its projective closure. Our theory explains this

Important Application: Tensors of Rank One

Format	aEDdegree	EDdegree
$2 \times 2 \times 2$	$4.2891 \ldots$	6
$2 \times 2 \times 2 \times 2$	$11.0647 \ldots$	24
$2 \times 2 \times n, n \geq 3$	$5.6038 \ldots$	8
$2 \times 3 \times 3$	$8.8402 \ldots$	15
$2 \times 3 \times n, n \geq 4$	$10.3725 \ldots$	18
$3 \times 3 \times 3$	$16.0196 \ldots$	37
$3 \times 3 \times 4$	$21.2651 \ldots$	55
$3 \times 3 \times n, n \geq 5$	$23.0552 \ldots$	61

Duality

Figure: Bijection between critical points on X and critical points on X^{*}.

Duality

If X is a cone in \mathbb{R}^{n} then its dual variety is

$$
X^{*}:=\overline{\left\{y \in \mathbb{R}^{n} \mid \exists x \in X \backslash X_{\text {sing }}: y \perp T_{x} X\right\}}
$$

Theorem
Fix generic data $u \in \mathbb{R}^{n}$. The map $x \mapsto u-x$ gives a bijection from critical points of d_{u} on X to critical points of d_{u} on X^{*}, so

$$
\operatorname{EDdegree}(X)=\operatorname{EDdegree}\left(X^{*}\right)
$$

The map is proximity-reversing: the closer a real critical point x is to the data u, the further $u-x$ is from u.

Punchline: Solve the equation $x+y=u$ on the conormal variety.
Corollary
EDdegree (X) is the sum of the polar classes of X, provided the conormal variety is disjoint from the diagonal in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$.

Duality

Symmetric Matrices

If $\quad X=\{$ symmetric $s \times s$-matrices x of rank $\leq r\}$ then $X^{*}=\{$ symmetric $s \times s$-matrices y of rank $\leq s-r\}$.

Their conormal variety is defined by minors of x and y and entries of the matrix product $x y$.

Must solve $x+y=u$.
The polar classes give the algebraic degree of semidefinite programming, studied by von Bothmer, Nie, Ranestad, St.

Use package Schubert2 in Macaulay2 to find these values for EDdegree (X) :

$$
\begin{array}{lrrrrrrr}
& s=2 & 3 & 4 & 5 & 6 & 7 \\
r=1 & & 4 & 13 & 40 & 121 & 364 & 1093 \\
r=2 & & 13 & 122 & 1042 & 8683 & 72271 \\
r=3 & & & 40 & 1042 & 23544 & 510835 \\
r=4 & & & & 121 & 8683 & 510835 \\
r=5 & & & & & 364 & 72271 \\
r=6 & & & & & & 1093
\end{array}
$$

Chern Class Formula

Theorem
Let X be a smooth irreducible variety of dimension m in \mathbb{P}^{n-1}. If X is transversal to the isotropic quadric $Q=V\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ then

$$
\operatorname{EDdegree}(X)=\sum_{i=0}^{m}(-1)^{i} \cdot\left(2^{m+1-i}-1\right) \cdot \operatorname{deg}\left(c_{i}(X)\right)
$$

Corollary

Here, if X is a curve of degree d and genus g then

$$
\operatorname{EDdegree}(X)=3 d+2 g-2
$$

Corollary Here, if X is toric and V_{j} is the sum of the normalized volumes of all j-faces of the simple polytope P associated with X, then

$$
\operatorname{EDdegree}(X)=\sum_{j=0}^{m}(-1)^{m-j} \cdot\left(2^{j+1}-1\right) \cdot V_{j}
$$

The ED Discriminant

is the variety in data space where two critical points come together. Studied by [Catanese-Trifogli 2000]
Example
The quadric $X=V\left(x_{0} x_{3}-2 x_{1} x_{2}\right) \subset \mathbb{P}^{3}$ has ED degree 6. Its ED discriminant Σ_{X} is a polynomial of degree 12 with 119 terms:

$$
\begin{gathered}
65536 u_{0}^{12}+835584 u_{0}^{10} u_{1}^{2}-835584 u_{0}^{10} u_{3}^{2}+9707520 u_{0}^{9} u_{1} u_{2} u_{3} \\
+3747840 u_{0}^{8} u_{1}^{4}-7294464 u_{0}^{8} u_{1}^{2} u_{2}^{2}+\cdots+83554 u_{2}^{2} u_{3}^{10}+65536 u_{3}^{12} .
\end{gathered}
$$

Theorem (Trifogli 1998)
If X is a general hypersurface of degree d in \mathbb{P}^{n} then

$$
\operatorname{degree}\left(\Sigma_{X}\right)=d(n-1)(d-1)^{n-1}+2 d(d-1) \frac{(d-1)^{n-1}-1}{d-2}
$$

Conclusion

Optimization and Algebraic Geometry can be Friends. All you need is an Ideal.

Epilogue

Chapter 1 in the 1932 Anschauliche Geometrie of Hilbert and Cohn-Vossen begins with: The Simplest Curves and Surfaces.

The first section, Plane curves, starts like this:

- The simplest plane curve is the line.
- Next comes the circle.
- Thereafter comes the parabola.
- And, finally, we get to the ellipse.

Why are these the simplest curves? And why in this order?

Epilogue

Chapter 1 in the 1932 Anschauliche Geometrie of Hilbert and Cohn-Vossen begins with: The Simplest Curves and Surfaces.

The first section, Plane curves, starts like this:

- The simplest plane curve is the line.
- Next comes the circle.
- Thereafter comes the parabola.
- And, finally, we get to the ellipse.

Why are these the simplest curves? And why in this order?

- The line has ED degree 1 .
- The circle has ED degree 2.
- The parabola has ED degree 3.
- The ellipse has ED degree 4.

