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Abstract

Abstract

Ore localization, associated torsion and algorithms
Ore localization of rings and modules is a generalization of the classical notion of commutative
localization to the non-commutative case: given a left Ore set S in a (non-commutative) domain
R, we can construct the left Ore localization S−1R.
After recalling the theory of Ore localization of domains this work introduces the notion

of LSatT (M), the left T -closure of a subset M of a left R-module with respect to a quasi-
multiplicatively closed subset T of R. We present two immediate applications of this construc-
tion. The first one leads to the concept of S-closure of a submodule of a free module and gives
insight into the extension-contraction problem for localizations, while the second one results
in LSat(S) := LSatR(S) for a left Ore set S, which is a saturated superset of S that reveals
the structure of the localized ring and can be seen as the canonical form for S, since the lo-
calizations S−1R and LSat(S)−1R are isomorphic. Furthermore, LSat(S) gives us a complete
characterization of the units in S−1R.
Equipped with this notion, we explore the concept of Ore localized modules together with

the notions of local torsion and annihilators with a view towards the algebraic systems theory.
We also give an algorithm to compute the S-closure of an ideal in a special case which has

applications in the theory of D-modules.

Ore-Lokalisierung, assoziierte Torsion und Algorithmen
Ore-Lokalisierung von Ringen und Moduln ist eine Verallgemeinerung des klassischen Konzepts
der kommutativen Lokalisierung auf den nicht-kommutativen Fall: Aus einer gegebenen Links-
Ore-Menge S in einem (nicht-kommutativen) Bereich können wir die Links-Ore-Lokalisierung
S−1R konstruieren.
Nach einer Auffrischung der Theorie der Ore-Lokalisierung von Integritätsbereichen stellen

wir LSatT (M) vor, den Links-T -Abschluss einer Teilmenge M eines Links-R-Moduls bezüglich
einer quasi-multiplikativ abgeschlossenen Teilmenge T von R. Wir geben zwei direkte An-
wendungen dieser Konstruktion. Die Erste führt zum Konzept des S-Abschlusses eines Unter-
moduls eines freien Moduls und gibt Einblick in das Erweiterungs-Kontraktions-Problem für
Lokalisierungen. Die Zweite ergibt LSat(S) := LSatR(S) für eine Links-Ore-Menge S, eine
saturierte Obermenge von S die die Struktur des lokalisierten Ringes enthüllt und als eine
Standardform für S betrachtet werden kann, da die Lokalisierungen S−1R und LSat(S)−1R
isomorph sind. Weiterhin liefert uns LSat(S) eine vollständige Beschreibung der Einheiten in
LSat(S)−1R.
Mit diesen Werkzeugen ausgestattet widmen wir uns dem Konzept der Ore-lokalisierten Mod-

uln zusammen mit den Begriffen der lokalen Torsion sowie der Annihilatoren und geben einen
Ausblick zur algebraischen Systemtheorie.
Abschließend stellen wir einen Algorithmus vor, um den S-Abschluss eines Ideals in einem

Spezialfall zu berechnen, der Anwendungen in der D-Modul-Theorie hat.
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Introduction

Introduction

In the commutative world, localizing a domain R is straight-forward: take a subset S of R that
is multiplicatively closed (meaning 1 ∈ S and st ∈ S for all s, t ∈ S) and introduce a specific
equivalence relation on the tuples of S × R, then the localization S−1R is S × R modulo the
equivalence relation. If R is a non-commutative domain we can salvage this process to obtain
a left Ore localization by additionally requiring S to be a left Ore set, that is, for any pair
(s, r) ∈ S ×R there is a pair (s̃, r̃) ∈ S ×R such that s̃r = r̃s.
After recalling basic algebraic structures and ring-theoretic concepts in Chapter 1, in Chapter

2 we give an overview of construction and properties of Ore localized domains with digressions
to the commutative case as well as to graded localizations, rounded off with a view towards
special cases of localizations. Chapter 3 deals with the question under which assumptions
certain properties related to localization are preserved under ring homomorphisms.
The “reverse” property to multiplicative closedness is the concept of a saturated set, where

st ∈ S implies s ∈ S and t ∈ S. One of the starting points for this thesis was the following
problem: given a left Ore set S in a domain R, does there exist a saturated superset T of S
that is left Ore and satisfies S−1R ∼= T−1R? In Chapter 4 we give a positive answer to this
question by introducing the notion of LSat(S), the left saturation closure of S in R, which has
the desired properties and additionally gives us a complete characterization of the units in the
localization S−1R: a left fraction (s, r) is a unit in S−1R if and only if r ∈ LSat(S).
As it turns out, LSat(S) is just a special case of a more general construction that also

encompasses the notion of S-closure of a submodule which is related to the extension-contraction
problem: given a left ideal I in R, what is the preimage of (S−1R)I under the embedding
R→ S−1R, which maps r to (1, r)?
Analogously to the commutative case we can define Ore localized modules as the tensor

product S−1R⊗RM of the Ore localization S−1R with an R-module M over the base ring R.
In Chapter 5 we see that S−1R ⊗R · is an exact covariant functor which is compatible with
finite presentation.
Given a domain R and an R-module M let r ∈ R \ {0} and m ∈ M such that rm = 0.

Viewed from the moduleM this effect is called torsion. In this thesis, we consider local torsion,
that is torsion of M with respect to an arbitrary non-empty subset of R. In particular, torsion
with respect to left Ore sets enjoys many of the properties well-known from the classical notion
of torsion. While torsion occurs in modules, the same phenomenon viewed from R is called
annihilation, which gives rise to the concept of (pre-)annihilators. Here, our main focus is
the compatibility of localizing and taking annihilators. As an application we consider the Ore
localization of finitely presented modules from the viewpoint of algebraic systems theory.
Lastly, Chapter 6 recalls the basics of the theory of Gröbner bases in G-algebras, the induced

Gröbner basis theory in rational Ore localized G-algebras and the concept of central saturation.
With the help of these ingredients, we present an algorithm to compute the S-closure of an
ideal in a G-algebra A, where S∪{0} is a commutative polynomial ring contained in the center
of A, a setting that is of importance in the theory of D-modules.
To illustrate the discussed concepts we regularly turn to a main example in the first Weyl

algebra that accompanies most of this thesis.
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1. Basics and notation

1. Basics and notation

Definition 1.1. For i, j ∈ N, define the Kronecker delta

δi,j :=

{
1, if i = j,

0, otherwise.

1.1. Algebraic structures with one operation

Definition 1.2. A magma is a non-empty setM together with a binary operation ∗ : M×M →
M, (m1,m2)→ m1 ∗m2. We denote it as (M, ∗) or just by M . An element m ∈M is called

• left-cancellative (resp. right-cancellative), if m ∗ a = m ∗ b (resp. a ∗m = b ∗m) implies
a = b for all a, b ∈M .

• cancellative, if m is both left- and right-cancellative.

• a neutral element, if m ∗ a = a = a ∗m for all a ∈M .

The magma (M, ∗) (resp. its operation ∗) is called

• associative, if a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈M .

• commutative, if a ∗ b = b ∗ a holds for all a, b ∈M .

• left-cancellative/right-cancellative/cancellative, if the respective property holds for all el-
ements of M .

A non-empty subset N ⊆ M is called a submagma of M , if N is closed under ∗, that is, if
a ∗ b ∈ N for all a, b ∈ N .

Remark 1.3. A magma (M, ∗) has at most one neutral element. To see this, assume that
e1, e2 ∈M are neutral elements, then we have e1 = e1 ∗ e2 = e2.

Definition 1.4. A semigroup is an associative magma. A subsemigroup of a semigroup M is
a submagma of M .

Definition 1.5. A monoid is a semigroup (M, ∗) with a neutral element e ∈M . We sometimes
write (M, ∗, e) to highlight the neutral element. An element m ∈M is called

• invertible, if there exists n ∈M such that m ∗ n = e = n ∗m. We call n an inverse of m.

• absorbing, if m ∗ n = m = n ∗m holds for all n ∈M .

A submonoid of M is a subsemigroup of M that contains the neutral element of M .
The submonoid generated by N ⊆M is the smallest submonoid of M with respect to inclusion
that contains N (by convention, we set [∅] = {e}). We denote it by [N ].

Remark 1.6. Let (M, ∗, e) be a monoid.

• An element m in a monoid (M, ∗, e) has at most one inverse. To see this, assume that
a, b ∈M are inverse to m, then a = a ∗ e = a ∗ (m ∗ b) = (a ∗m) ∗ b = e ∗ b = b.

6



1. Basics and notation

• Similarly, M has at most one absorbing element: let a, b ∈ M be absorbing, then a =
a ∗ b = b.

• If N ⊆M is a subset, then

[N ] =
⋃
n∈N0

{s1 · · · sn | si ∈ N for all 1 ≤ i ≤ n} .

By convention, the empty product (n = 0) is equal to e.

• Let J be a non-empty index set such that Mj ⊆M for all j ∈ J . Then[⋃
j∈J

Mj

]
=

[⋃
j∈J

[Mj]

]
.

Definition 1.7. A group is a monoid in which every element is invertible. An Abelian group
is a commutative group. A subgroup of a group G is a submonoid of G that is closed under
taking inverses.

1.2. Algebraic structures with two operations

Definition 1.8. A ring is a non-empty set R together with two binary operations +, · : R×R→
R, such that

• (R,+) is an Abelian group with neutral element 0 ∈ R,

• (R, ·) is a monoid with neutral element 1 ∈ R, and

• the distributivity laws hold: for all a, b, c ∈ R we have a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.

We write (R,+, ·, 0, 1), (R,+, ·) or just R. If there is more than one ring in play, we sometimes
write +R, ·R, 0R and 1R to distinguish the operations respectively elements from those of other
rings.
A subring of a ring (R,+, ·, 0, 1) is a subset S ⊆ R such that (S,+, ·, 0, 1) is a ring.
Given two rings R and S, a ring homomorphism from R to S is a mapping ϕ : R → S such
that

• ϕ(1R) = 1S,

• ϕ(a+R b) = ϕ(a) +S ϕ(b) for all a, b ∈ R, and

• ϕ(a ·R b) = ϕ(a) ·S ϕ(b) for all a, b ∈ R.

A ring monomorphism/epimorphism/isomorphism is an injective/surjective/bijective ring ho-
momorphism.

Definition 1.9. Let (R,+, ·) be a ring. We call R

• commutative or a commutative ring, if (R, ·) is a commutative monoid.

7



1. Basics and notation

• a skew field or a division ring, if R 6= {0} and any element of the monoid (R, ·) except 0
is invertible.

• a (commutative) field, if R is both commutative and a skew field.

Convention 1.10. In the following, by “ring” we always mean a ring which is not the zero
ring.

1.3. General ring-theoretic concepts

Definition 1.11. Let R be a ring.

• An element u ∈ R is called invertible or a unit in R, if there exists v ∈ R such that
uv = 1 = vu. The set of all units of R is denoted by U(R).

• An element r ∈ R is called a zero-divisor if there exists a ∈ R such that ar = 0 or ra = 0.
We call r regular if r is not a zero-divisor.

Remark 1.12. For any ring R, the set U(R) is in fact a (possibly non-commutative) group,
as both the product of two units as well as the inverse of a unit is again a unit.

Definition 1.13. Let R be a ring. Then R is called

• Dedekind-finite if for all a, b ∈ R, ab = 1 implies ba = 1.

• a domain if ab = 0 implies a = 0 or b = 0 for all a, b ∈ R.

• left Noetherian (resp. right Noetherian) if every left ideal (resp. right ideal) of R is finitely
generated over R.

Lemma 1.14. Any domain R is Dedekind-finite.

Proof: Let a, b ∈ R such that ab = 1, then in particular, we have b 6= 0. Now

0 = b(ab− 1) = bab− b = (ba− 1)b,

and since b 6= 0 and R is a domain, we conclude ba− 1 = 0, that is, ba = 1.

Definition 1.15. Let R be a domain.

• An element r ∈ R \ {0} is called reducible, if it can be written as the product of two
non-units in R, that is, there exist p, q ∈ R\U(R) such that r = pq. We call r irreducible,
if r is not reducible.

• We call R a factorization ring or factorization domain, if every element of R \ {0} has at
least one factorization into finitely many irreducible elements.

Definition 1.16. Let R be a ring. The center of R is defined as

Z(R) := {r ∈ R | wr = rw for all w ∈ R} .

The elements of Z(R) are called central elements. A central unit of R is an element in U(R)∩
Z(R). We denote the set of all central units of R by UZ(R).

8



1. Basics and notation

Remark 1.17. The center of a ring R is a commutative subring of R.

Lemma 1.18. Let R be a ring. Then UZ(R) is a commutative subgroup of U(R).

Proof: Since 1 ∈ UZ(R), we have UZ(R) 6= ∅. Let u, v ∈ UZ(R), then for all r ∈ R we have
uvr = urv = ruv, thus uv ∈ UZ(R). Furthermore, u−1r = u−1ruu−1 = u−1uru−1 = ru−1

implies u−1 ∈ UZ(R). Therefore, UZ(R) is a subgroup of U(R). Lastly, since UZ(R) ⊆ Z(R),
UZ(R) is commutative.

1.4. Graded rings

Definition 1.19. Let (G, ·, e) be a monoid.

• A ring R is called G-graded if there exists a family {Rg}g∈G of Abelian subgroups of R
with respect to addition such that R =

⊕
g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G.

• An element r ∈ Rg is called homogeneous of degree g and we write deg(r) = g. The
set of all homogeneous elements of R is h(R) :=

⋃
g∈GRg ⊆ R. A set M ⊆ R is called

homogeneous if M ⊆ h(R).

• Any r ∈ R has a unique representation r =
∑

g∈G ag in its homogeneous parts, where
ag ∈ Rg. The homogeneous part of r corresponding to g ∈ G is denoted as rg := ag.
Furthermore, the graded length of r is gl(r) := |{g ∈ G | rg 6= 0}| ∈ N0 (note that rg = 0
for almost all g ∈ G).

Lemma 1.20. Let G be a monoid, R a G-graded domain, a ∈ h(R) \ {0} and r ∈ R.
(a) If G is right-cancellative and ra ∈ h(R), then r ∈ h(R).

(b) If G is left-cancellative and ar ∈ h(R), then r ∈ h(R).

Proof: Let h ∈ G such that a ∈ Rh and let r =
∑n

i=1 rgi , where rgi ∈ Rgi \ {0} and gi 6= gj for
all i 6= j. Then ra =

∑n
i=1 rgia. Since R is a domain we have rgia 6= 0 for all i. Furthermore,

since G is right-cancellative, gih = gjh implies gi = gj for all i and j, which by assumption
means i = j. Thus gl(r) = gl(ra) = 1 and therefore r ∈ h(R). The second result follows
analogously.

Definition 1.21. An ordered semigroup is a semigroup (G, ·) together with a total order ≤ on
G that is compatible with the semigroup operation: for all x, y, z ∈ G, x ≤ y implies x ·z ≤ y ·z
and z · x ≤ z · y. An ordered monoid is a monoid that is an ordered semigroup.

Example 1.22. The most common ordered monoids used for grading are Nn
0 and Zn with

n ∈ N.
Lemma 1.23. Let G be an ordered monoid with respect to � and R a G-graded domain. Then
h(R) \ {0} is saturated.

Proof: Let a, b ∈ R with ab ∈ Rd \ {0} for some d ∈ G. Write a =
∑n

i=1 axi and b =
∑m

j=1 byj ,
where xi, yj ∈ G, axi ∈ Rxi \ {0}, byj ∈ Ryj \ {0}, xi ≺ xi+1 and yj ≺ yj+1 for all i, j. Now
(ab)x1+y1 = ax1by1 6= 0 and (ab)xn+ym = axnbym 6= 0, thus x1 + y1 = d = xn + ym. This implies
n = m = 1, therefore a, b ∈ h(R) \ {0}.
Remark 1.24. Lemma 1.23 does not hold for arbitrary G-gradings: consider R = Z[x] and
G = Z/2Z, where R0 =

⊕
i∈N0

Zx2i and R1 =
⊕

i∈N0
Zx2i+1. Then (x+1)(x−1) = x2−1 ∈ R0,

but neither x+ 1 nor x− 1 is homogeneous.

9



1. Basics and notation

1.5. Multiplicatively closed subsets and saturated sets

Definition 1.25. Let R be a ring and S ⊆ R a subset. We call S

• quasi-multiplicatively closed if 1R ∈ S and for all s, t ∈ S we also have st ∈ S.

• multiplicatively closed if S is quasi-multiplicatively closed and 0R /∈ S.

• left saturated (resp. right saturated) if, for all s, t ∈ R, st ∈ S implies t ∈ S (resp. s ∈ S).

• saturated if S is both left and right saturated.

Some authors allow multiplicatively closed sets to contain 0R.

Remark 1.26. Let R be a ring. Since ab 6= 0 implies a 6= 0 6= b for all a, b ∈ R, we have that
R \ {0} is saturated. If R is a domain, then R \ {0} is also multiplicatively closed.

Remark 1.27. Let S be a multiplicatively closed saturated subset of a ring R and x, y ∈ R.
Then we have xy ∈ S if and only if x ∈ S and y ∈ S.

Lemma 1.28. Let S be a quasi-multiplicatively closed subset of a domain R. Then S \ {0} is
multiplicatively closed.

Proof: By assumption, we clearly have 1 ∈ S \ {0} and 0 /∈ S \ {0}. Let a, b ∈ S \ {0}. Then
ab ∈ S, since S is quasi-multiplicatively closed, and ab ∈ R \ {0}, since R is a domain. This
implies ab ∈ S ∩ (R \ {0}) = S \ {0}.

Lemma 1.29. Let R be a ring and {Sj}j∈J be a family of quasi-multiplicatively closed subsets of
R. Then T :=

⋂
j∈J Sj is a quasi-multiplicatively closed subset of R. If Sk is a multiplicatively

closed set for some k ∈ J , then T is multiplicatively closed as well.

Proof: We have 1 ∈ Sj for all j ∈ J , which implies 1 ∈ T . Now let a, b ∈ T , then a, b ∈ Sj
for all j ∈ J . Since Sj is multiplicatively closed we have ab ∈ Sj for all j ∈ J , which implies
ab ∈ T . Lastly, if 0 /∈ Sk for some k ∈ J , then 0 /∈ T .

Lemma 1.30. Let R be a ring. Then the following holds:

(a) U(R) is multiplicatively closed.

(b) If R is Dedekind-finite, then U(R) is saturated.

(c) Z(R) is quasi-multiplicatively closed, but not multiplicatively closed.

(d) If R is a domain, then Z(R) \ {0} is multiplicatively closed.

(e) UZ(R) is multiplicatively closed.

Proof: (a) Since R 6= {0}, we have 0 /∈ U(S−1R). Since U(R) is a group, it is closed under
multiplication and contains 1.

(b) Let a, b ∈ R with ab ∈ U(R). Then there exists u ∈ U(R) such that (ua)b = u(ab) = 1 =
(ab)u = a(bu). If R is Dedekind-finite, this implies a, b ∈ U(R).

(c) As a subring of R, Z(R) is closed under multiplication and contains 1 and 0.

10



1. Basics and notation

(d) If R is a domain, then Z(R) \ {0} is multiplicatively closed by Lemma 1.28.

(e) As the intersection of a multiplicatively closed set and a quasi-multiplicatively closed set,
UZ(R) is multiplicatively closed by Lemma 1.29.

Lemma 1.31. Let R be a domain and M a submonoid of R \ {0} with respect to the ring
multiplication. Then M is cancellative.

Proof: Let a, b, c ∈ M such that ac = bc, which is equivalent to (a − b)c = 0. Since R is a
domain and c 6= 0, we have a = b. Analogously, ca = cb implies a = b as well.

Proposition 1.32. Let R be a ring and S ⊆ R. The following are equivalent:

(1) S is a multiplicatively closed subset of R.

(2) S is a submonoid of R \ {0} with respect to the ring multiplication.

Proof: By definition, S is a multiplicatively closed subset of R if and only if 1 ∈ S, 0 /∈ S, and
S is closed under the ring multiplication, which in turn is equivalent to S being a submonoid
of R \ {0}.

1.6. G-algebras

The G-algebras are a class of non-commutative Noetherian domains that are “close enough”
to commutative polynomial rings in the sense that many concepts like monomials or Gröbner
bases can be salvaged.

Definition 1.33. Let K be a field and A a K-algebra generated by x1, . . . , xn. Then A has a
Poincaré-Birkhoff-Witt basis (or PBW basis for short), if the set of monomials

Mon(A) := {xα | α ∈ Nn
0} := {xα1

1 x
α2
2 · · ·xαnn | αi ∈ N0}

is a K-basis of A.

Definition 1.34 ([Lev05]). Let K be a field. Consider a K-algebra

A := K〈x1, . . . , xn | {xjxi = ci,j · xixj + di,j} for 1 ≤ i < j ≤ n〉,

where ci,j ∈ K \ {0} and di,j are polynomials in A whose terms do not contain expressions of
the form xkxl for l < k. We call A a G-algebra if the following two conditions are met:

Ordering condition: There exists a global monomial ordering < on K[x1, . . . , xn] such that

lm(di,j) < xixj for all 1 ≤ i < j ≤ n where di,j 6= 0.

Non-degeneracy condition: For all 1 ≤ i < j < k ≤ n we have

NDCi,j,k := ci,kcj,k · di,jxk − xkdi,j + cj,k · xjdi,k − ci,j · di,kxj + dj,kxi − ci,jci,k · xidj,k = 0.

Definition 1.35. Let A = K〈x1, . . . , xn | {xjxi = ci,j · xixj + di,j} for 1 ≤ i < j ≤ n〉 be a
G-algebra.
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1. Basics and notation

• If all di,j = 0, we call A quasi-commutative.

• If all ci,j = 1, we call A an algebra of Lie type.

Remark 1.36. A quasi-commutative G-algebra of Lie type in n variables over K is exactly
the commutative polynomial ring in n variables over K.

Theorem 1.37 (Theorem 4.7 in [Lev05]). Let A be a G-algebra.

(a) A has a PBW basis.

(b) A is (left and right) Noetherian.

(c) A is a domain.

A G-algebra in one variable is just a univariate (commutative) polynomial ring. If we admit
two variables, there are still only five possible variations, which all can be extended toG-algebras
in 2n variables in a straight-forward manner:

Theorem 1.38 (Theorem 1 in [LKM11]). Let K be a field, q ∈ K \ {0} and α, β, γ ∈ K.
Consider the K-algebra

A(q, α, β, γ) := K〈x, y | yx = qxy + αx+ βy + γ〉.

Up to isomorphism, A(q, α, β, γ) is exactly one of the so-called model algebras:

(1) The commutative algebra K[x, y] = K〈x, y | yx = xy〉.

(2) The first Weyl algebra K〈x, ∂ | ∂ · x = x · ∂ + 1〉.

(3) The first shift algebra K〈x, s | s · x = x · s+ s = (x+ 1) · s〉.

(4) The first q-shift algebra K〈x, s | s · x = q · x · s〉.

(5) The first q-Weyl algebra K〈x, ∂ | ∂ · x = q · x · ∂ + 1〉.

The Weyl algebras are perhaps the best-known G-algebras. They are used to model the
action of (partial) derivatives.

Definition 1.39. Let K be a field and n ∈ N. The n-th Weyl algebra over K is the K-algebra

Wn := K〈x1, . . . , xn, ∂1, . . . , ∂n | Q〉

with the set of relations

Q := {xjxi = xixj, ∂j∂i = ∂i∂j, ∂ixj = xj∂i + δi,j | 1 ≤ i, j ≤ n} .

12



1. Basics and notation

Main example, part 1

Convention 1.40. In the main example, we denote the first Weyl algebra W1 by D.
Remark 1.41. The first Weyl algebra can be Z-graded by assigning the degree −1 to x and 1
to ∂. For z ∈ Z we have

Dz =

 ∑
(a,b)∈N2

0

ca,bx
a∂b ∈ D | (b− a = z ∨ ca,b 6= 0) ∀(a, b) ∈ N2

0

 .

Definition 1.42. The element θ := x∂ ∈ D is called the Euler operator.

Lemma 1.43. Let z ∈ Z and m,n ∈ N. In D, we have (θ + z)mxn = xn(θ + z + n)m and
∂n(θ + z)m = (θ + z + n)m∂n.

Proof: We have

(θ + z)x = θx+ zx = x∂x+ zx = x(x∂ + 1) + xz = x(x∂ + z + 1) = x(θ + z + 1)

as well as

∂(θ + z) = ∂θ + ∂z = ∂x∂ + ∂z = (x∂ + 1)∂ + z∂ = (x∂ + z + 1)∂ = (θ + z + 1)∂.

The full statement follows by induction on n and m.

Corollary 1.44. Let f ∈ K[θ] ⊆ D and n ∈ N. Then f(θ)xn = xnf(θ + n) and ∂nf(θ) =
f(θ + n)∂n.

Proof: Let f =
∑k

i=0 fiθ
i with fi ∈ K, then by Lemma 1.43 we have

f(θ)xn =
k∑
i=0

fiθ
ixn =

k∑
i=0

fix
n(θ + n)i = xn

k∑
i=0

fi(θ + n)i = xnf(θ + n)

and

∂nf(θ) = ∂n
k∑
i=0

fiθ
i =

k∑
i=0

fi∂
nθi =

k∑
i=0

fi(θ + n)i∂n = f(θ + n)∂n.

Lemma 1.45. Let z, k ∈ Z and r ∈ Dz. Then (θ + z + k)r = r(θ + z).

Proof: Since r ∈ Dk, we have a representation r =
∑

(a,b)∈N2
0

b−a=k

ca,bx
a∂b. Then

(θ + z + k)r =
∑

(a,b)∈N2
0

b−a=k

ca,b(θ + z + k)xa∂b =
∑

(a,b)∈N2
0

b−a=k

ca,bx
a(θ + z + k + a)∂b

=
∑

(a,b)∈N2
0

b−a=k

ca,bx
a∂b(θ + z + k + a− b) =

∑
(a,b)∈N2

0
b−a=k

ca,bx
a∂b(θ + z) = r(θ + z).

Definition 1.46. In D, define the set Θ := [θ + Z] = [{θ + z | z ∈ Z}].
Remark 1.47. The multiplicatively closed set Θ is homogeneous, since it is generated as a
monoid by homogeneous elements of degree zero. In particular, (θ+z1)(θ+z2) = (θ+z2)(θ+z1)
for all z1, z2 ∈ Z by Lemma 1.45.
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2. Ore localization of domains

2. Ore localization of domains

Working in a non-commutative setting, one almost always has to distinguish between “left” and
“right” structures and properties. To avoid duplication we only state the “left” version of the
theory developed in the following. Nevertheless, the “right” analoga of the results hold as well.

2.1. Construction and basic properties

Most of the first part of this section is taken directly from our previous work in [Hof14], which
also includes the proofs omitted here for brevity. Other sources for details on the topic of Ore
localizations are [MR01] and [Š06].

Definition 2.1. Let S be a subset of a ring R. We say that S satisfies the left Ore condition
in R if for all s ∈ S and r ∈ R there exist s̃ ∈ S and r̃ ∈ R such that s̃r = r̃s.

Remark 2.2. By iteration, the left Ore condition on a set S also guarantees that any finite
selection of elements from S has a common left multiple in S.

Definition 2.3. Let S be a multiplicatively closed subset of a domain R. We call S a left Ore
set in R if it satisfies the left Ore condition in R.

Definition 2.4. Let S be a left Ore set in a domain R. A ring RS together with a monomor-
phism ϕ : R→ RS is called a left Ore localization of R at S if:

(1) For all s ∈ S, ϕ(s) is a unit in RS.

(2) For all x ∈ RS, we have x = ϕ(s)−1ϕ(r) for some s ∈ S and r ∈ R.

We mostly write S−1R instead of RS.

Theorem 2.5. Let S be a left Ore set in a domain R. The left Ore localization of R at S can
be constructed as follows: Let S−1R := S ×R/ ∼, where ∼ is the equivalence relation

(s1, r1) ∼ (s2, r2) ⇔ ∃ s̃ ∈ S,∃ r̃ ∈ R : s̃s2 = r̃s1 and s̃r2 = r̃r1.

Together with the operations

+ : S−1R× S−1R→ S−1R, (s1, r1) + (s2, r2) := (s̃s1, s̃r1 + r̃r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃s1 = r̃s2, and

· : S−1R× S−1R→ S−1R, (s1, r1) · (s2, r2) := (s̃s1, r̃r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃r1 = r̃s2, (S−1R,+, ·) becomes a ring.

Remark 2.6. For s ∈ S and r ∈ R, we denote the elements of S−1R by s−1r or, by abuse of
notation, by (s, r).

Remark 2.7. The construction in Theorem 2.5 works perfectly fine for quasi-multiplicatively
closed sets S. We restrict ourselves to multiplicatively closed sets in this work to avoid trivial
situations: if 0 ∈ S, then 0 becomes invertible in S−1R, thus S−1R = {0}.

14



2. Ore localization of domains

Remark 2.8. The left Ore condition guarantees that (at least formally) we can rewrite any
right fraction rs−1 into a left fraction s̃−1r̃ by taking denominators in the equation s̃r = r̃s, but
not necessarily the other way around: to this end, we additionally need the right Ore condition.

Remark 2.9. Let S be a multiplicatively closed subset of an arbitrary ring R (not necessarily
a domain). Even in this more general case we can define a left Ore localization of R at S by
imposing additional restraints on S. We still need S to satisfy the left Ore condition, but this
is not sufficient to deal with the presence of zero-divisors. For this, we require S to only consist
of regular elements. Furthermore, we need S to be left reversible: for all r ∈ R and s ∈ S such
that rs = 0 there exists t ∈ S such that tr = 0 (in a domain, every left Ore set is also left
reversible). A left reversible left Ore set of regular elements is also called a left denominator
set. Under this conditions the construction given in Theorem 2.5 yields the left Ore localization
of a ring at a left denominator set (see also [Š06] and [MR01] for details and proofs).

Definition 2.10. Let S be a left Ore set in a domain R. The structural homomorphism of
S−1R is the mapping ρS,R : R→ S−1R, r 7→ (1, r).

Theorem 2.11. Let S be a left Ore set in a domain R and (s, r) ∈ S−1R.

(a) We have (s, r) = 0 if and only if r = 0.

(b) We have (s, r) = 1 if and only if s = r.

(c) Let w ∈ R with ws ∈ S, then (s, r) = (ws,wr).

(d) The left Ore localization S−1R is a domain.

(e) The structural homomorphism ρS,R is a monomorphism of rings.

Remark 2.12. With the last result we can see now that S−1R together with ρS,R indeed meet
the requirements in Definition 2.4.

Definition 2.13. A domain R is called a left Ore domain if R \ {0} is a left Ore set in R. The
associated localization (R \ {0})−1R is called the left quotient (skew) field of R and is denoted
by Quot(R).

Lemma 2.14. Let R be a left Ore domain.

(a) The localization Quot(R) is a skew field.

(b) Let S be a left Ore set in R. Then S−1R is a left Ore domain.

Proof: (a) By construction, Quot(R) is already a domain. The inverse of an element (s, r) ∈
Quot(R) \ {0} is given by (r, s) ∈ Quot(R) \ {0}.

(b) Let (s1, r1) ∈ S−1R and (s2, r2) ∈ S−1R \ {0}, then r2 ∈ R \ {0}. Since R is a left
Ore domain there exist x′ ∈ R \ {0} and y′ ∈ R such that x′r1 = y′r2. Define x :=
(1, x′) · (1, s1) ∈ S−1R \ {0} and y := (1, y′) · (1, s2) ∈ S−1R, then

x(s1, r1) = (1, x′)(1, s1)(s1, r1) = (1, x′r1) = (1, y′, r2) = (1, y′)(1, s2)(s2, r2) = y(s2, r2).
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2. Ore localization of domains

Lemma 2.15. Let R be a domain and J a non-empty index set such that Sj ⊆ R is a left Ore
set in R for every j ∈ J . Then T := [

⋃
j∈J Sj] is a left Ore set in R.

Proof: The set T is quasi-multiplicatively closed by construction and 0 /∈ T follows from
the assumption that R is a domain. Any element in T can be written as a finite product of
elements from the sets Sj. Since the natural numbers are well-ordered, every element s ∈ T has
a representation with a minimal number of factors. Denoting this number by a(s), this gives
us the partition T =

⊎
n∈N Tn, where

Tn = {s ∈ T | a(s) = n} .

Now we show the left Ore property on T by induction on n: let r ∈ R and s ∈ T .

(IB) If s ∈ T1, then s ∈ Sj for some j ∈ J . By the left Ore property on Sj there exist
s̃ ∈ Sj ⊆ T and r̃ ∈ R such that s̃r = r̃s.

(IH) Assume that there is an n ∈ N with the following property: for all t ∈ T≤n :=
⋃n
i=1 Tn

there exist t̃ ∈ T and r̃ ∈ R such that t̃r = r̃t.

(IS) If s ∈ Tn+1, then there is a representation s =
∏n+1

i=1 si, where si ∈ Ski for some ki ∈ J .
Now define t :=

∏n+1
i=2 si, then we have s = s1t and t ∈ T≤n. By the induction hypothesis,

there exist t̃ ∈ T and r̃ ∈ R such that t̃r = r̃t. Furthermore, by the left Ore property on
Sk1 , there exist ŝ ∈ Sk1 and r̂ ∈ R such that ŝr̃ = r̂s1. Define t̊ := ŝt̃ ∈ T and r̊ := r̂ ∈ R,
then

t̊r = ŝt̃r = ŝr̃t = r̂s1t = r̂s = r̊s

concludes the proof.

Types of Ore localizations
The following classification has been introduced by V. Levandovskyy and describes the three
most common types of Ore localizations:

Definition 2.16. Let K be a field and R a K-algebra and a Noetherian domain.

• Let S ⊆ R be a left Ore set in R that is generated as a monoid by at most countably
many elements. Then S−1R is called a monoidal localization.

• Let K[x1, . . . , xn] ⊆ R and p ⊆ K[x1, . . . , xn] a prime ideal, then S := K[x1, . . . , xn] \ p
is multiplicatively closed. If S is a left Ore set in R, then S−1R is called a geometric
localization.

• If T ⊆ R is a sub-K-algebra and S := T \ {0} is a left Ore set in R, then S−1R is called
a (partial) rational localization.

In our previous work in [Hof14] we have developed an algorithmic framework for basic com-
putations in Ore localized G-algebras (or OLGAs for short) in special “computation-friendly”
cases (finitely generated monoidal localizations, geometric localization at maximal ideals, ra-
tional localizations where T is generated by a subset of the variables). There also exist a
proof-of-concept implementation of the algorithms in the computer algebra system Singular
([DGPS15]).
The algorithm developed in Chapter 6 applies to the following situation:
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Definition 2.17 (Rational localization of G-algebras). Let

R = K〈x1, . . . , xn | {xjxi = ci,j · xixj + di,j} for 1 ≤ i < j ≤ n〉

be a G-algebra and {x1, . . . , xn} = X]Y a partition of the variables such that di,j only contains
variables from X for all xi, xj ∈ X. Then B := K〈X | {xjxi = ci,j · xixj + di,j} for xi, xj ∈ X〉
is again a G-algebra. If S := B \ {0} is a left Ore set in R, then S−1R is called a rational
OLGA.

2.2. Commutative localization

Lemma 2.18. Let S be a multiplicatively closed subset of regular elements of a commutative
ring R. Then S is a left (and right) denominator set of R.

Proof: Given s ∈ S and r ∈ R, by commutativity we have rs = sr. For the same reason we
have rs = 0 if and only if sr = 0.

Lemma 2.19. Let S be a multiplicatively closed subset of regular elements of a commutative
ring R and consider the construction of S−1R in Theorem 2.5. Let (s1, r1), (s2, r2) ∈ S ×R.

(a) The equivalence relation ∼ simplifies to

(s1, r1) ∼ (s2, r2) ⇔ s(s1r2 − s2r1) = 0 for some s ∈ S.

(b) The addition rule simplifies to

(s1, r1) + (s2, r2) = (s1s2, s2r1 + s1r2).

(c) The multiplication rule simplifies to

(s1, r1) · (s2, r2) = (s1s2, r1r2).

Proof: (a) By Theorem 2.5, (s1, r1) ∼ (s2, r2) implies that there exist s̃ ∈ S and r̃ ∈ R such
that s̃s1 = r̃s2 and s̃r1 = r̃r2. But then

s̃s1r2 = r̃s2r2 = s2r̃r2 = s2s̃r1 = s̃s2r1,

which is equivalent to s̃(s1r2 − s2r1) = 0.
On the other hand, let s ∈ S such that s(s1r2 − s2r1) = 0. Define s̃ := ss2 ∈ S and
r̃ := ss1 ∈ R. Then s̃s1 = ss2s1 = ss1s2 = r̃s2 and s̃r1 = ss2r1 = ss1r2 = r̃r2, which
implies (s1, r1) ∼ (s2, r2).

(b) By definition, (s1, r1)+(s2, r2) = (s̃s1, s̃r1 + r̃r2), where s̃ ∈ S and r̃ ∈ R satisfy s̃s1 = r̃s2.
In the commutative setting, we can choose s̃ := s2 and r̃ := s1, since then s̃s1 = s2s1 =
s1s2 = r̃s2. But now

(s1, r1) + (s2, r2) = (s̃s1, s̃r1 + r̃r2) = (s2s1, s2r1 + s1r2) = (s1s2, s2r1 + s1r2).
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(c) By definition, (s1, r1) · (s2, r2) = (s̃s1, r̃r2), where s̃ ∈ S and r̃ ∈ R satisfy s̃r1 = r̃s2. In
the commutative setting, we can choose s̃ := s2 and r̃ := r1, since then s̃r1 = s2r1 =
r1s2 = r̃s2. But now

(s1, r1) · (s2, r2) = (s̃s1, r̃r2) = (s2s1, r1r2) = (s1s2, r1r2).

From Lemma 2.19 we can see that in the commutative case, Ore localization at regular
elements coincides with the classical notion of localizing a commutative ring at a multiplicatively
closed subset. Furthermore, the resulting ring S−1R is again commutative:

Corollary 2.20. Let S be a multiplicatively closed subset of regular elements of a commutative
ring R. Then S−1R is a commutative ring.

Proof: Let (s1, r1), (s2, r2) ∈ S−1R. With the simplified multiplication from Lemma 2.19, we
get

(s1, r1) · (s2, r2) = (s1s2, r1r2) = (s2s1, r2r1) = (s2, r2) · (s1, r1).

2.3. Induced graded localizations

Lemma 2.21. Let G be a monoid, R a G-graded domain and S a multiplicatively closed subset
of R contained in h(R). Then S is a left Ore set in R if for all s ∈ S and r ∈ h(R) there exist
s̃ ∈ S and r̃ ∈ h(R) such that s̃r = r̃s. If G is right-cancellative, the converse holds as well.

Proof: Let s ∈ S and r ∈ R. We use induction on the graded length n of r:

(IB) If n = 1, then r ∈ h(R). By assumption there exist s̃ ∈ S and r̃ ∈ h(R) such that s̃r = r̃s.

(IH) Assume that for any s ∈ S and any r ∈ R, where the graded length of r is less than n,
there exist s̃ ∈ S and r̃ ∈ R such that s̃r = r̃s.

(IS) Let r =
∑n

i=1 rgi , where rgi ∈ Rgi . By the induction hypothesis, there exist s̃ ∈ S and
r̃ ∈ R such that s̃

∑n−1
i=1 rgi = r̃s. By the induction base, there exist ŝ ∈ S and r̂ ∈ R

such that ŝrgn = r̂s. Again by the induction base, there exist s̄ ∈ S and r̄ ∈ R such that
s̄s̃ = r̄ŝ. Now define s̊ := s̄s̃ ∈ S and r̊ := s̄r̃ + r̄r̂ ∈ R. Then

s̊r = s̊

n−1∑
i=1

rgi + s̊rgn = s̄s̃

n−1∑
i=1

rgi + r̄ŝrgn = s̄r̃s+ r̄r̂s = (s̄r̃ + r̄r̂)s = r̊s.

Now assume that G is right-cancellative and let s ∈ S and r ∈ h(R). If S is a left Ore set in
R, then there exist s̃ ∈ S and r̃ ∈ R such that r̃s = s̃r ∈ h(R). Since G is right-cancellative,
this implies r̃ ∈ h(R) by Lemma 1.20.

Proposition 2.22. Let (G, ·, e) be a group, R a G-graded domain and S ⊆ h(R) a left Ore set
in R. Then S−1R is a G-graded ring with

(S−1R)g :=
{

(s, r) ∈ S−1R | r ∈ h(R) ∧ deg(s)−1 · deg(r) = g
}
.
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Proof: • Let g ∈ G and (s1, r1), (s2, r2) ∈ (S−1R)g, then

deg(s1)−1 deg(r1) = g = deg(s2)−1 deg(r2).

We have (s1, r1) + (s2, r2) = (ss1, sr1 + rr2), where s ∈ S and r ∈ R such that ss1 = rs2.
Now s, s1, s2 ∈ h(R) implies r ∈ h(R) and deg(s) deg(s1) = deg(r) deg(s2). Thus,

deg(s) deg(r1) = deg(s) deg(s1) deg(s1)−1 deg(r1)

= deg(r) deg(s2) deg(s2)−1 deg(r2)

= deg(r) deg(r2)

shows that sr1 + rr2 is homogeneous of degree deg(s) deg(r1). Finally,

deg(ss1)−1 deg(sr1 + rr2) = (deg(s) deg(s1))−1 deg(sr1)

= deg(s1)−1 deg(s)−1 deg(s) deg(r1)

= deg(s1)−1 deg(r1)

= g

implies that (S−1R)g is closed under addition and therefore an Abelian subgroup of S−1R
with respect to addition.

• Let g, h ∈ G, (sg, rg) ∈ (S−1R)g and (sh, rh) ∈ (S−1R)h. We have (sg, rg) · (sh, rh) =
(ssg, rrh), where s ∈ S and r ∈ h(R) such that srg = rsh. Then deg(s) deg(rg) =
deg(r) deg(sh) and thus

deg(ssg)
−1 deg(rrh) = deg(sg)

−1 deg(s)−1 deg(r) deg(rh)

= deg(sg)
−1 deg(s)−1 deg(r) deg(sh) deg(sh)

−1 deg(rh)

= deg(sg)
−1 deg(s)−1 deg(s) deg(rg) deg(sh)

−1 deg(rh)

= deg(sg)
−1 deg(rg) deg(sh)

−1 deg(rh)

= gh,

which shows (S−1R)g(S
−1R)h ⊆ (S−1R)gh.

• Let (s, r) ∈ S−1R and let r =
∑

g∈G rg, where rg ∈ Rg. Then

(s, r) = (s,
∑
g∈G

rg) =
∑
g∈G

(s, rg) ∈
∑
g∈G

(S−1R)deg(s)−1g ⊆
∑
g∈G

(S−1R)g.

Now let g, h ∈ G and 0 6= (s, r) ∈ (S−1R)g ∩ (S−1R)h, then g = deg(s)−1 deg(r) = h, thus
(S−1R)g ∩ (S−1R)h = {0}. Therefore, S−1R =

⊕
g∈G(S−1R)g.

2.4. Localization at specific Ore sets

As one would expect, localizing at a set of units is rather unspectacular:

Lemma 2.23. Let R be a domain and U a submonoid of U(R). Then U is a left Ore set in R
and R ∼= U−1R as rings.
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Proof: As a submonoid of U(R), U is clearly multiplicatively closed. Let r ∈ R and u ∈ U .
Then, since 1 ∈ U and ru−1 ∈ R, we have 1 ·r = r = ru−1 ·u, which shows the left Ore property.
Now consider the structural monomorphism ρU,R : R→ U−1R, r 7→ (1, r). It remains to show
surjectivity: let (u, r) ∈ S−1R, then

(u, r) = (u−1u, u−1r) = (1, u−1r) = ρU,R(u−1r) ∈ im(ρU,R)

Remark 2.24. Lemma 2.23 applies in particular to the cases U = U(R), U = {1} and
U = UZ(R).

Lemma 2.25. Let R be a domain and Z a submonoid of Z(R). Then Z is a left Ore set in R.

Proof: As a submonoid of Z(R), Z is clearly multiplicatively closed. Furthermore, since all
elements of Z are central, Z also satisfies the left Ore condition in R.

Remark 2.26. In the situation of Lemma 2.25, the same simplification steps as in Lemma 2.19
can be applied, as the proof only uses commutativity to permute elements of R with elements
of S.

Lemma 2.27. Let S ⊆ R be a left Ore set in a domain R. Then T := [S ∪ UZ(R)] is a left
Ore set in R and S−1R ∼= T−1R as rings.

Proof: As UZ(R) ⊆ Z(R), the central units commutate with all elements of R, in particular,
UZ(R) is a left Ore set. Then T is a left Ore set in R by Lemma 2.15. Since central units
commutate with all elements of R and in particular with all elements in S we have that T =
UZ(R)S, that is, every element t ∈ T has a representation t = us, where u ∈ UZ(T ) and
s ∈ S. By the forthcoming Lemma 3.1 the mapping ϕ : S−1R → T−1R, (s, r) 7→ (s, r) is a
ring monomorphism since S ⊆ T . To see surjectivity, let (t, r) ∈ T−1R, then t = us for some
u ∈ UZ(T ) and s ∈ S. But then

(t, r) = (us, r) = (u−1us, u−1r) = (s, u−1r) = ϕ(s, u−1r) ∈ im(ϕ).

Since enriching a left Ore set S with central units does not change the localization, for
theoretical purposes we might assume without loss of generality that S already contains UZ(R).
Furthermore, we will see in Chapter 4 that we actually can assume that all units are contained
in S.

Lemma 2.28. Let R be a factorization domain and a left Ore domain. Define M to be the
set of all irreducible elements of R. Then S := [M ] is a saturated left Ore set in R and
S−1R = Quot(R).

Proof: Since R is a factorization domain, any element of R \ {0} can be written as a product
of finitely many irreducible elements (note that units are irreducible by our definition) and is
thus contained in S, which implies S = R \ {0}. Since R is a left Ore domain, R \ {0} is a left
Ore set in R and saturated by Remark 1.26. Then Quot(R) = S−1R by definition.
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2. Ore localization of domains

Main example, part 2

Lemma 2.29. Let z ∈ Z and r ∈ D. Then there exist s̃ ∈ Θ = [θ + Z] and r̃ ∈ D such that
r̃(θ + z) = s̃r.

Proof: Consider again the Z-grading on D introduced in Remark 1.41. Let n := gl(r) and
r =

∑n
i=1 rki the decomposition of r into its homogeneous parts, where ki ∈ Z and rki ∈ Dki

for all i ∈ {1, . . . , n}. Define

s̃ :=
n∏
i=1

(θ + z + ki) ∈ Θ and r̃ :=
n∑
i=1

 n∏
j=1
j 6=i

(θ + z + kj)

 rki ∈ D.

Then by Lemma 1.45 we have

s̃r =
n∑
i=1

s̃rki

=
n∑
i=1

(
n∏
j=1

(θ + z + kj)

)
rki

=
n∑
i=1

 n∏
j=1
j 6=i

(θ + z + kj)

 (θ + z + ki)rki

=
n∑
i=1

 n∏
j=1
j 6=i

(θ + z + kj)

 rki(θ + z)

= r̃(θ + z).

Lemma 2.30. The set Θ = [θ + Z] is a left Ore set in D, but not saturated.

Proof: Let r ∈ D, z1, z2 ∈ Z and consider s := (θ + z1)(θ + z2) ∈ Θ. By Lemma 2.29, there
exist s2 ∈ Θ and r2 ∈ D such that s2r = r2(θ + z2). Again by Lemma 2.29, there exist s1 ∈ Θ
and r1 ∈ D such that s1r2 = r1(θ + z1). Define s̃ := s1s2 ∈ Θ and r̃ := r1 ∈ D, then

r̃s = r1(θ + z1)(θ + z2) = s1r2(θ + z2) = s1s2r = s̃r.

As every element of Θ has the form
∏n

i=1(θ + zi) for some n ∈ N0 and zi ∈ Z, the statement
follows by induction on n.
To see that Θ is not saturated, consider that θ = x∂ ∈ Θ, but x /∈ Θ as well as ∂ /∈ Θ.

Remark 2.31. The localization Θ−1D is a monoidal localization.
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3. Properties under homomorphisms

3. Properties under homomorphisms

3.1. Embedding of localizations

Lemma 3.1. Let S, T ⊆ R be Ore sets in R with S ⊆ T . Then the mapping

ϕ : S−1R→ T−1R, (s, r) 7→ (s, r),

is a ring monomorphism.

Proof: Let a := (s1, r1), b := (s2, r2) ∈ S−1R.

Well-definedness: Let a = b in S−1R, then there exist s̃ ∈ S and r̃ ∈ R such that s̃s1 = r̃s2

and s̃r1 = r̃r2. As S ⊆ T , this implies that ϕ(a) = (s1, r1) = (s2, r2) = ϕ(b) in T−1R.

Additivity: We have
ϕ(a) + ϕ(b) = (s1, r1) + (s2, r2) = (t̂s1, t̂r1 + r̂r2),

where t̂ ∈ T and r̂ ∈ R satisfy t̂s1 = r̂s2. On the other hand, we have

ϕ(a+ b) = ϕ(s̃s1, s̃r1 + r̃r2) = (s̃s1, s̃r1 + r̃r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃s1 = r̃s2. Now let t̊ ∈ T and r̊ ∈ R such that t̊t̂s1 = r̊s̃s1,
then, as s1 6= 0, we have t̊t̂ = r̊s̃. Furthermore, we have

(̊tr̂ − r̊r̃)s2 = t̊r̂s2 − r̊r̃s2 = t̊t̂s1 − r̊s̃s1 = (̊tt̂− r̊s̃)s1 = 0,

which implies t̊r̂ = r̊r̃ as s2 6= 0. But then

t̊(t̂r1 + r̂r2)− r̊(s̃r1 + r̃r2) = (̊tt̂− r̊s̃)r1 + (̊tr̂ − r̊r̃)r2 = 0

proves ϕ(a) + ϕ(b) = ϕ(a+ b) in T−1R.

Multiplicativity: We have

ϕ(a) · ϕ(b) = (s1, r1) · (s2, r2) = (t̂s1, r̂r2),

where t̂ ∈ T and r̂ ∈ R satisfy t̂r1 = r̂s2. On the other hand, we have

ϕ(a · b) = ϕ(s̃s1, r̃r2) = (s̃s1, r̃r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃r1 = r̃s2. Now let t̊ ∈ T and r̊ ∈ R such that t̊t̂s1 = r̊s̃s1,
then, as s1 6= 0, we have t̊t̂ = r̊s̃. Furthermore, we have

(̊tr̂ − r̊r̃)s2 = t̊r̂s2 − r̊r̃s2 = t̊t̂r1 − r̊s̃r1 = (̊tt̂− r̊s̃)r1 = 0,

which implies t̊r̂ = r̊r̃ as s2 6= 0. But then

t̊r̂r2 − r̊r̃r2 = (̊tr̂ − r̊r̃)r2 = 0

proves ϕ(a) · ϕ(b) = ϕ(a · b) in T−1R.

Injectivity: Let ϕ(s, r) = (s, r) = 0 in T−1R. Then we have r = 0, and thus (s, r) = (s, 0) = 0
in S−1R as well.

Remark 3.2. The structural homomorphism ρT,R is a special case of ϕ in Lemma 3.1, where
S = {1}.
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3. Properties under homomorphisms

3.2. Lifting of homomorphisms to localizations

Lemma 3.3. Let R1, R2 be domains, φ : R1 → R2 a homomorphism of rings and S ⊆ R1 a left
Ore set in R1 such that φ(S) ⊆ R2 is a left Ore set in R2. Consider

Φ : S−1R1 → φ(S)−1R2, (s, r) 7→ (φ(s), φ(r)).

(a) The map Φ is a homomorphism of rings.

(b) The map Φ is injective if and only if φ is injective.

(c) If φ is surjective, so is Φ.

Proof: (a) Let a := (s1, r1), b := (s2, r2) ∈ S−1R1.

Well-definedness: Let a = b in S−1R1, then there exist s̃ ∈ S and r̃ ∈ R1 such that
s̃s1 = r̃s2 and s̃r1 = r̃r2. Then we have

φ(s̃)φ(s1) = φ(s̃s1) = φ(r̃s2) = φ(r̃)φ(s2)

and
φ(s̃)φ(r1) = φ(s̃r1) = φ(r̃r2) = φ(r̃)φ(r2),

which implies Φ(a) = (φ(s1), φ(r1)) = (φ(s2), φ(r2)) = Φ(b) in φ(S)−1R2, since
φ(s̃) ∈ φ(S) and φ(r̃) ∈ R2.

Additivity: We have

Φ(a+ b) = Φ((ŝs1, ŝr1 + r̂r2)) = (φ(ŝs1), φ(ŝr1 + r̂r2)),

where ŝ ∈ S and r̂ ∈ R1 satisfy ŝs1 = r̂s2. On the other hand, we have

Φ(a) + Φ(b) = (φ(s1), φ(r1)) + (φ(s2), φ(r2)) = (φ(s̃s1), φ(s̃)φ(r1) + r̃φ(r2)),

where s̃ ∈ S and r̃ ∈ R2 satisfy φ(s̃)φ(s1) = r̃φ(s2). Now let s̊ ∈ S and r̊ ∈ R2 such
that

φ(̊sŝ)φ(s1) = φ(̊s)φ(ŝs1) = r̊φ(s̃s1) = r̊φ(s̃φ(s1)).

Since φ(s1) 6= 0 and R2 is a domain, we have φ(̊sŝ) = r̊φ(s̃). Furthermore, we have

(φ(̊s)φ(r̂)− r̊r̃)φ(s2) = φ(̊s)φ(r̂s2)− r̊r̃φ(s2)

= φ(̊s)φ(r̂s2)− r̊φ(s̃)φ(s1)

= φ(̊s)φ(ŝs1)− r̊φ(s̃)φ(s1)

= (φ(̊s)φ(ŝ)− r̊φ(s̃))φ(s1)

= 0,

which implies φ(̊s)φ(r̂) = r̊r̃, since φ(s1) 6= 0. But then

φ(̊s)φ(ŝr1 + r̂r2)− r̊(φ(s̃)φ(r1) + r̃φ(r2)) = (φ(̊sŝ)− r̊φ(s̃))φ(r1)

+ (φ(̊s)φ(r̂)− r̊r̃)φ(r2)

= 0 · φ(r1) + 0 · φ(r2) = 0

proves Φ(a+ b) = Φ(a) + Φ(b) in φ(S)−1R2.
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3. Properties under homomorphisms

Multiplicativity: We have

Φ(a · b) = Φ((s1, r1) · (s2, r2)) = Φ((ŝs1, r̂r2)) = (φ(ŝs1), φ(r̂r2)),

where ŝ ∈ S and r̂ ∈ R1 satisfy ŝr1 = r̂s2. On the other hand, we have

Φ(a) · Φ(b) = (φ(s1), φ(r1)) · (φ(s2), φ(r2)) = (φ(s̃)φ(s1), r̃φ(r2)) = (φ(s̃s1), r̃φ(r2)),

where s̃ ∈ S and r̃ ∈ R2 satisfy φ(s̃r1) = φ(s̃)φ(r1) = r̃φ(s2). Now let s̊ ∈ S and
r̊ ∈ R2 such that

φ(̊sŝ)φ(s1) = φ(̊s)φ(ŝs1) = r̊φ(s̃s1) = r̊φ(s̃)φ(s1).

Since φ(s1) 6= 0 and R2 is a domain, we have φ(̊sŝ) = r̊φ(s̃). Furthermore, we have

(φ(̊s)φ(r̂)− r̊r̃)φ(s2) = φ(̊s)φ(r̂)φ(s2)− r̊r̃φ(s2)

= φ(̊s)φ(r̂s2)− r̊φ(s̃r1)

= φ(̊s)φ(ŝr1)− r̊φ(s̃r1)

= (φ(̊s)φ(ŝ)− r̊φ(s̃))φ(r1)

= 0,

which implies φ(̊sr̂) = r̊r̃, since φ(s2) 6= 0. But then

φ(̊s)φ(r̂r2)− r̊r̃φ(r2) = (φ(̊sr̂)− r̊r̃)φ(r2) = 0

proves Φ(a · b) = Φ(a) · Φ(b) in φ(S)−1R2.

(b) First, let φ be injective and (s, r1) ∈ S−1R1 such that 0 = Φ((s, r1)) = (φ(s), φ(r1)). Then
φ(r1) = 0, which implies r1 = 0 by injectivity of φ. Now we have (s, r1) = 0 in S−1R1,
therefore Φ is injective.
Now, let Φ be injective and r1 ∈ R1 such that φ(r1) = 0, then Φ(1, r1) = (φ(1), φ(r1)) = 0
in φ(S)−1R2. By injectivity of Φ we have (1, r1) = 0 in S−1R1. This implies r1 = 0, thus
φ is injective.

(c) Let (φ(s), r2) ∈ φ(S)−1R2. By surjectivity of φ we have r2 = φ(r1) for some r1 ∈ R1. But
then (φ(s), r2) = (φ(s), φ(r1)) = Φ((s, r1)) ∈ im(Φ), hence Φ is surjective.

3.3. Multiplicative closedness

Lemma 3.4. Let ϕ : R1 → R2 be a homomorphism of rings.

(a) If S ⊆ R1 is multiplicatively closed, then ϕ(S) is quasi-multiplicatively closed. Further-
more, ϕ(S) is multiplicatively closed if and only if S ∩ ker(ϕ) = ∅.

(b) If S ⊆ R2 is multiplicatively closed, then ϕ−1(S) is multiplicatively closed.

Proof: (a) As 1 ∈ S, we have 1 = ϕ(1) ∈ ϕ(S). Now consider ϕ(s1), ϕ(s2) ∈ ϕ(S). Then
ϕ(s1) · ϕ(s2) = ϕ(s1s2) ∈ ϕ(S), as s1s2 ∈ S. Thus, ϕ(S) is quasi-multiplicatively closed.
If ϕ(S) is multiplicatively closed, then 0 /∈ ϕ(S), which implies S ∩ ker(ϕ) = ∅.
On the other hand, if S ∩ker(ϕ) = ∅, then there is no s ∈ S such that ϕ(s) = 0, therefore
0 /∈ ϕ(S) and thus ϕ(S) is multiplicatively closed.
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3. Properties under homomorphisms

(b) As ϕ(1) = 1 ∈ S, we have 1 ∈ ϕ−1(S). As ϕ(0) = 0 /∈ S, we have 0 /∈ ϕ−1(S). Now
consider a1, a2 ∈ ϕ−1(S), then there exist s1, s2 ∈ S such that ϕ(a1) = s1 and ϕ(a2) = s2.
But now ϕ(a1 · a2) = ϕ(a1) · ϕ(a2) = s1 · s2 ∈ S and therefore a1a2 ∈ ϕ−1(S). Thus,
ϕ−1(S) is multiplicatively closed.

Corollary 3.5. Let ϕ : R1 → R2 be a monomorphism of rings and S ⊆ R1 multiplicatively
closed. Then ϕ(S) is multiplicatively closed.
Proof: By assumption, 0R /∈ S. Therefore, we have S∩ker(ϕ) = S∩{0} = ∅, as ϕ is injective.
By Lemma 3.4, we have that ϕ(S) is multiplicatively closed.

3.4. Left Ore condition

In contrast to multiplicative closedness, the left Ore condition has strong requirements to be
preserved under homomorphisms.
Lemma 3.6. Let ϕ : R1 → R2 be a homomorphism of rings.
(a) If S ⊆ R1 satisfies the Ore condition in R1 and ϕ is surjective, then ϕ(S) satisfies the

Ore condition in R2.

(b) If S ⊆ R2 satisfies the Ore condition in R2 and ϕ is bijective, then ϕ−1(S) satisfies the
Ore condition in R1.

Proof: (a) Let ϕ(s) ∈ ϕ(S) and r2 ∈ R2. Since ϕ is surjective, there exists r1 ∈ R1 such
that ϕ(r1) = r2. By the Ore condition on S in R1, there exist s̃ ∈ S and r̃1 ∈ R1 such
that s̃r1 = r̃1s. Let r̃2 := ϕ(r̃1) ∈ R2. But then we have

ϕ(s̃)r2 = ϕ(s̃)ϕ(r1) = ϕ(s̃r1) = ϕ(r̃1s) = ϕ(r̃1)ϕ(s) = r̃2ϕ(s),

thus ϕ(S) satisfies the Ore condition in R2.

(b) Let a ∈ ϕ−1(S) and r1 ∈ R1. By the Ore condition on S in R2, there exist s ∈ S and
r2 ∈ R2 such that sϕ(r1) = r2ϕ(a). Since ϕ is surjective, there exist ã ∈ ϕ−1(s) ⊆ ϕ−1(S)
and r̃1 ∈ R1 such that ϕ(r̃1) = r2. Then we have

ϕ(ãr1) = ϕ(ã)ϕ(r1) = sϕ(r1) = r2ϕ(a) = ϕ(r̃1)ϕ(a) = ϕ(r̃1a)

and by injectivity of ϕ we get ãr1 = r̃1a. Thus ϕ−1(S) satisfies the Ore condition in R1.

Remark 3.7. In the second part of Lemma 3.6 we can weaken the requirements: instead of
ϕ being surjective, let ϕ(R1) be right saturated and S ⊆ ϕ(R1). Then, given a ∈ ϕ−1(S) and
r1 ∈ R1 and after acquiring s ∈ S and r2 ∈ R2 such that sϕ(r1) = r2ϕ(a), we can proceed as
follows:
Since S ⊆ ϕ(R1), there exists ã ∈ ϕ−1(s) ⊆ R1. Then r2ϕ(a) = sϕ(r1) = ϕ(ãr1) ∈ ϕ(R1).
Since ϕ(R1) is right saturated, we have r2 ∈ ϕ(R1) and thus there exists r̃1 ∈ R1 such that
ϕ(r̃1) = r2. From here on, the rest of the proof is identical.
Proposition 3.8. Let ϕ : R1 → R2 be an isomorphism of rings and S ⊆ R1. Then S is a left
Ore set in R1 if and only if ϕ(S) is a left Ore set in R2.
Proof: If S is an Ore set in R1, then ϕ(S) is an Ore set in R2 by Corollary 3.5 and Lemma 3.6.
If ϕ(S) is an Ore set in R2, then S = ϕ−1(ϕ(S)) is an Ore set in R1 by Lemma 3.4 and
Lemma 3.6.
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3. Properties under homomorphisms

3.5. Isomorphisms of tensor products of Ore localizations

Lemma 3.9. Let S1 and S2 be two left Ore sets in a domain R such that S1 ⊆ S2. Then

ψ : S−1
2 R⊗R S−1

1 R→ S−1
2 R, (s2, r2)⊗ (s1, r1) 7→ (s2, r2) · (s1, r1),

is a isomorphism of left (S−1
2 R)-modules (and thus in particular of left R-modules).

Proof: Let a := a2 ⊗ a1 := (s2, r2) ⊗ (s1, r1), b := (t2, q2) ⊗ (t1, q1) ∈ S−1
2 R ⊗R S−1

1 R and
λ ∈ S−1

2 R.

Additivity: Let s̃ ∈ S2 and r̃ ∈ R such that s̃s2 = r̃t2. Then we have

ψ(a+ b) = ψ(((s2, r2)⊗ (s1, r1)) + ((t2, q2)⊗ (t1, q1)))

= ψ(((s̃s2, s̃r2)⊗ (s1, r1)) + ((r̃t2, r̃q2)⊗ (t1, q1)))

= ψ(((s̃s2, 1)⊗ ((1, s̃r2) · (s1, r1))) + ((s̃s2, 1)⊗ ((1, r̃q2) · (t1, q1))))

= ψ((s̃s2, 1)⊗ ((1, s̃r2) · (s1, r1) + (1, r̃q2) · (t1, q1)))

= (s̃s2, 1) · ((1, s̃r2) · (s1, r1) + (1, r̃q2) · (t1, q1))

= (s̃s2, 1) · (1, s̃r2) · (s1, r1) + (r̃t2, 1) · (1, r̃q2) · (t1, q1)

= (s̃s2, s̃r2) · (s1, r1) + (r̃t2, r̃q2) · (t1, q1)

= (s2, r2) · (s1, r1) + (t2, q2) · (t1, q1)

= ψ((s2, r2)⊗ (s1, r1)) + ψ((t2, q2) · (t1, q1))

= ψ(a) + ψ(b).

Scalar multiplicativity: We have

ψ(λ · a) = ψ(λ · (a2 ⊗ a1)) = ψ((λ · a2)⊗ a1) = λ · a2 · a1 = λ · ψ(a2 ⊗ a1) = λ · ψ(a).

Surjectivity: Let x ∈ S−1
2 R, then x = x · 1 = ψ(x⊗ 1) ∈ im(ψ).

Injectivity: Let 0 = ψ(a) = ψ(a2 ⊗ a1) = a2 · a1. Since S−1
2 R is a domain we have a2 = 0 or

a1 = 0, but both cases imply a = a2 ⊗ a1 = 0.

Lemma 3.10. Let S1 and S2 be two left Ore sets in a domain R such that S1 ⊆ S2. Then

ψ : S−1
1 R⊗R S−1

2 R→ S−1
2 R, (s1, r1)⊗ (s2, r2) 7→ (s1, r1) · (s2, r2),

is a isomorphism of left (S−1
1 R)-modules (and thus in particular of left R-modules).

Proof: Analogously to Lemma 3.9.
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4. Saturation closure

4. Saturation closure

This chapter contains the main contribution of this thesis: LSatT (M), the notion of left T -
closure or left T -saturation of M . Here, T is a subset of a ring R and M is a subset of a left
R-module N .

4.1. The general construction

We start with the general case, where we only require non-emptiness of the parameters:

Definition 4.1. Let T ⊆ R be a non-empty subset of a ring R, N a left R-module and
∅ 6= M ⊆ N . Then

LSatT (M) := {m ∈ N | tm ∈M for some t ∈ T} .

Lemma 4.2. Let T ⊆ R be a non-empty subset of a ring R, N a left R-module and ∅ 6= M ⊆ N .

(a) If P ⊆M is non-empty, then LSatT (P ) ⊆ LSatT (M).

(b) If S ⊆ T is non-empty, then LSatS(M) ⊆ LSatT (M).

(c) If 1 ∈ T , then M ⊆ LSatT (M).

(d) We have 0 ∈M if and only if 0 ∈ LSatT (M).

(e) If 0 ∈ T , then the following are equivalent:

(1) LSatT (M) = N .

(2) 0 ∈ LSatT (M).

(3) 0 ∈M .

(f) If 0 /∈M , then LSatT (M) =

{
LSatT\{0}(M), if T 6= {0} ,
∅, if T = {0} .

Proof: (a) Let m ∈ LSatT (P ), then tm ∈ P ⊆M for some t ∈ T . Thus, m ∈ LSatT (M).

(b) Let m ∈ LSatS(M), then sm ∈M for some s ∈ S ⊆ T . Thus, m ∈ LSatT (M).

(c) Let 1 ∈ T and m ∈M , then 1 ·m = m ∈M . Thus, m ∈ LSatT (M).

(d) If 0 ∈M , then t · 0 = 0 ∈M for any t ∈ T , thus 0 ∈ LSatT (M).
If 0 ∈ LSatT (M), then 0 = t · 0 ∈M for some t ∈ T , thus 0 ∈M .

(e) The equivalence of (2) and (3) is stated above, the implication from (1) to (2) is obvious.
Let 0 ∈M , then for all m ∈ N we have 0 ·m = 0 ∈M since 0 ∈ T , thus m ∈ LSatT (M).

(f) If T = {0}, then LSatT (M) = LSat{0}(M) = {m ∈ N | 0 = 0 ·m ∈M} = ∅, since 0 /∈M .
If ∅ 6= T \ {0} ⊆ T , then we have LSatT\{0}(M) ⊆ LSatT (M). Let m ∈ LSatT (M), then
there exists t ∈ T such that tm ∈ M . In particular, tm 6= 0, which implies t 6= 0. Thus,
m ∈ LSatT\{0}(M) and LSatT (M) ⊆ LSatT\{0}(M).
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4.2. Restriction to quasi-multiplicatively closed T

Definition 4.3. Let T ⊆ R be a quasi-multiplicatively closed subset of a ring R, N a left
R-module and ∅ 6= M ⊆ N . We call M

• left T -closed if M = LSatT (M).

• left T -saturated if tm ∈M implies m ∈M for all t ∈ T and all m ∈ N .

Lemma 4.4. Let T ⊆ R be a quasi-multiplicatively closed subset of a ring R, N a left R-module
and ∅ 6= M ⊆ N . Then we have:

(a) M ⊆ LSatT (M).

(b) LSatT (M) is left T -saturated.

(c) M is left T -saturated if and only if M is T -closed.

(d) LSatT (M) is the smallest left T -saturated superset of M in the sense that if ∅ 6= P ⊆ N
is a left T -saturated set with M ⊆ P ⊆ LSatT (M), then P = LSatT (M).

Proof: (a) Follows from Lemma 4.2, since T is quasi-multiplicatively closed and thus 1 ∈ T .

(b) Let t ∈ T and m ∈ N such that tm ∈ LSatT (M). Then there exists t̃ ∈ T such that
t̃tm ∈M . Since t̃t ∈ T , we have m ∈ LSatT (M).

(c) LetM be left T -saturated and m ∈ LSatT (M), then there exists t ∈ T such that tm ∈M .
Since M is left T -saturated, we have m ∈M and therefore LSatT (M) = M .
Now let M be T -closed, then M = LSatT (M), which is left T -saturated.

(d) Let ∅ 6= P ⊆ N be a left T -saturated set with M ⊆ P ⊆ LSatT (M). Let m ∈ LSatT (M),
then there exists t ∈ T such that tm ∈ M ⊆ P . Since P is left T -saturated, we have
m ∈ P and therefore LSatT (M) = P .

Remark 4.5. Due to Lemma 4.4, we can interpret LSatT (M) for quasi-multiplicatively closed
T as the left T -saturation closure of M in N .

Corollary 4.6. Let T ⊆ R be a quasi-multiplicatively closed subset of a ring R and N a left
R-module. Furthermore, let M1,M2 ⊆ N be non-empty subsets of N such that M1 ⊆ M2 ⊆
LSatT (M1). Then LSatT (M2) = LSatT (M1).

Proof: Since M1 ⊆M2 we have LSatT (M1) ⊆ LSatT (M2). Now

M2 ⊆ LSatT (M1) ⊆ LSatT (M2)

implies that LSatT (M1) is a left T -saturated superset of M2 that is contained in LSatT (M2).
From Lemma 4.4 we get LSatT (M2) = LSatT (M1).

From here on, the theory diverges and we consider two cases.
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4. Saturation closure

4.3. S-closure of submodules

Definition 4.7. Let S ⊆ R be a left Ore set in a domain R and P ⊆ N a left submodule of a
left R-module N . The S-closure of P is defined as

P S := LSatS(P ) = {m ∈ N | sm ∈ P for some s ∈ S} ⊇ P.

Furthermore, P is called left S-closed if P = P S.

Lemma 4.8. Let S ⊆ R be a left Ore set in a domain R and P ⊆ N a left submodule of a left
R-module N . Then P S is a submodule of N .

Proof: Let p, p1, p2 ∈ P S and r ∈ R. Then there exist s, s1, s2 ∈ S such that sp, s1p1, s2p2 ∈ P .
• By the Ore condition on S there exist s̃ ∈ S and r̃ ∈ R such that x := s̃s1 = r̃s2 ∈ S.

Then x(p1 + p2) = xp1 + xp2 = s̃s1p1 + r̃s2p2 ∈ P , thus p1 + p2 ∈ P S.

• By the Ore condition on S there exist ŝ ∈ S and r̂ ∈ R such that ŝr = r̂s. Then
ŝrp = r̂sp ∈ P , thus rp ∈ P S.

Now we show the connection between S-closure and the extension-contraction problem:

Definition 4.9. Let ϕ : R→ T be a homomorphism of rings.

• Let I be a left ideal in R. The extension of I with respect to ϕ is the left ideal Ie := Tϕ(I)
in T .

• Let J be a left ideal in T . The contraction of J with respect to ϕ is the left ideal
J c := ϕ−1(J) in R.

Lemma 4.10. In the situation of Definition 4.9 we have I ⊆ (Ie)c and (J c)e ⊆ J .

Proof: We have
I ⊆ ϕ−1(ϕ(I)) ⊆ ϕ−1(Tϕ(I)) = ϕ−1(Ie) = (Ie)c

as well as
(J c)e = Tϕ(ϕ−1(J)) ⊆ TJ = J.

Lemma 4.11. Let S be a left Ore set in a domain R and J a left ideal in S−1R. We have
(J c)e = J with respect to ρ := ρS,R.

Proof: Let (s, r) ∈ J , then ρ(r) = (1, r) = (1, s) · (s, r) ∈ J , thus r ∈ J c. Now ρ(r) ∈ ρ(J c)
and therefore (s, r) = (s, 1) · (1, r) = (s, 1) · ρ(r) ∈ (J c)e.

Proposition 4.12. Let S be a left Ore set in a domain R and I a left ideal in R. Then
(Ie)c = LSatS(I) with respect to ρ := ρS,R.

Proof: Let r ∈ (Ie)c, then there exist s ∈ S and a ∈ I such that

r ∈ ρ−1((s, 1) · ρ(a)) = ρ−1((s, a))

which implies (1, r) = ρ(r) = (s, a). Then there exist s̃ ∈ S and r̃ ∈ R such that s̃ · 1 = r̃s and
s̃r = r̃a ∈ I, thus r ∈ LSatS(I).
On the other hand, let r ∈ LSatS(I), then there exists s ∈ S such that sr ∈ I. Now

r ∈ ρ−1((1, r)) = ρ−1((s, 1) · (1, sr)) = ρ−1((s, 1) · ρ(sr)) ⊆ ρ−1(S−1Rρ(I)) = (Ie)c.
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4.4. Left saturation with respect to R

If we set N = T = R, then “left R-saturated” simply means “left saturated”.

Definition 4.13. Let M ⊆ R be a non-empty subset of a ring R. The left saturation of M in
R is defined as

LSat(M) := LSatR(M) = {r ∈ R | wr ∈M for some w ∈ R} ⊇M.

Lemma 4.14. Let M ⊆ R be a non-empty subset of a ring R. Then we have:

(a) U(R) ⊆ LSat(M).

(b) The following are equivalent:

(1) LSat(M) = R.

(2) 0 ∈ LSat(M).

(3) 0 ∈M .

(c) If 0 /∈M , then LSat(M) = LSatR\{0}(M) = {r ∈ R | wr ∈M for some w ∈ R \ {0}}.

(d) LSat(M) is left saturated.

(e) M is left saturated if and only if M = LSat(M).

(f) LSat(M) is the smallest left saturated superset of M in the sense that if N ⊆ R is a left
saturated set with M ⊆ N ⊆ LSat(M), then N = LSat(M).

Proof: The only thing to show is (a): Let u ∈ U(R) and m ∈ M . Then m · u−1 · u = m ∈ M
and m · u−1 ∈ R, thus u ∈ LSat(M).
Parts (b) and (c) follow from Lemma 4.2, since 0 ∈ R and R 6= {0}. The remaining parts (d)
to (f) follow from Lemma 4.4.

Lemma 4.15. Let R be a Dedekind-finite ring. Then LSat({1}) = U(R). Furthermore,
LSat(U) = U(R) for any U ⊆ U(R) with 1 ∈ U .

Proof: By Lemma 4.14 we have U(R) ⊆ LSat({1}). Now let x ∈ LSat({1}), then there exists
w ∈ R \ {0} such that wx = 1. Since R is Dedekind-finite, this implies x ∈ U(R).
Furthermore, {1} ⊆ U ⊆ U(R) = LSat({1}) implies LSat(U) = U(R) by Corollary 4.6.

4.5. Characterization of units

Proposition 4.16. Let S ⊆ R be an Ore set in a domain R and (s, r) ∈ S−1R. The following
are equivalent:

(1) (s, r) ∈ U(S−1R).

(2) (1, r) ∈ U(S−1R).

(3) r ∈ LSat(S).

Proof: We always have (s, r) = (s, 1) · (1, r), where (s, 1) ∈ U(S−1R) with inverse (1, s).
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4. Saturation closure

(1)⇒(2): Let a ∈ S−1R be the inverse of (s, r). But then a · (s, 1) ∈ S−1R is the inverse of
(1, r), as

a · (s, 1) · (1, r) = a · (s, r) = 1.

(2)⇒(1): Let a ∈ S−1R be the inverse of (1, r). But then a · (1, s) ∈ S−1R is the inverse of
(s, r), as

(s, r) · a · (1, s) = (s, 1) · (1, r) · a · (1, s) = (s, 1) · (1, s) = 1.

(2)⇒(3): Let (1, r) ∈ U(S−1R). Then there exists (s, w) ∈ S−1R such that (1, 1) = (s, w) ·
(1, r) = (s, wr), which implies wr = s ∈ S and thus r ∈ LSat(S).

(3)⇒(2): Let r ∈ LSat(S) with w ∈ R such that wr ∈ S. Then (wr,w) ∈ S−1R satisfies
(wr,w) · (1, r) = (wr,wr) = (1, 1) and thus (1, r) ∈ U(S−1R).

Corollary 4.17. Let S ⊆ R be a left saturated Ore set in a domain R and (s, r) ∈ S−1R. Then
(s, r) ∈ U(S−1R) if and only if r ∈ S.

Proof: As S is left saturated, we have LSat(S) = S by Lemma 4.14. By Proposition 4.16, we
have (s, r) ∈ U(S−1R) if and only if r ∈ LSat(S) = S.

Given an arbitrary non-empty subset M of R, LSat(M) is not (right-)saturated in general,
which we will see later in the main example. But in the case where S is a left Ore set, we can
show that LSat(S) is indeed saturated via a little trick that involves the localization S−1R:

Proposition 4.18. Let S ⊆ R be a left Ore set in a domain R. Then LSat(S) is saturated.

Proof: Let p, q ∈ R such that r := pq ∈ LSat(S). By Proposition 4.16, we have that

(1, p) · (1, q) = (1, pq) = (1, r) ∈ U(S−1R).

Since U(S−1R) is saturated by Lemma 1.30, we have (1, p), (1, q) ∈ U(S−1R). But then p, q ∈
LSat(S) by Proposition 4.16.

As an application, this gives us a criterion to decide whether the extension of an ideal to a
localization is proper or not:

Lemma 4.19. Let S ⊆ R be a left Ore set in a domain R and L a left ideal in R. Then
S−1R = Le with respect to ρ := ρS,R if and only if L ∩ LSat(S) 6= ∅.

Proof: If x ∈ L ∩ LSat(S), then by Proposition 4.16 (1, x) = ρ(x) ∈ ρ(L) ⊆ Le is a unit in
S−1R that is contained in the left ideal Le, which implies Le = S−1R.
Now let Le = S−1R, then (1, 1) ∈ Le. Therefore there exist s ∈ S, r ∈ R and l ∈ L such that
(1, 1) = (s, r) · ρ(l) = (s, r) · (1, l). Since the unit group U(S−1R) is saturated by Lemma 1.30,
we have (1, l) ∈ U(S−1R) and thus l ∈ L ∩ LSat(S) by Proposition 4.16.
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4. Saturation closure

4.6. Localization at left saturation

We have already seen that for a left Ore set S, LSat(S) is saturated. It remains to show that
LSat(S) itself is a left Ore set and that the localizations S−1R and LSat(S)−1R are isomorphic.

Lemma 4.20. Let S be a left Ore set in a domain R. Then LSat(S) is a left Ore set in R.

Proof: • As 0 /∈ S, we have 0 /∈ LSat(S). Furthermore, we have 1 ∈ S ⊆ LSat(S).

• Let x, y ∈ LSat(S), then there exist a, b ∈ R \ {0} such that ax ∈ S and by ∈ S. By
the Ore condition on S, there exist s̃ ∈ S and r̃ ∈ R such that r̃ax = s̃b. Then we have
r̃axy = s̃by ∈ S and therefore xy ∈ LSat(S), thus LSat(S) is multiplicatively closed.

• Let x ∈ LSat(S) and r ∈ R, then there exists w ∈ R \ {0} such that wx ∈ S. By the
Ore condition on S, there exist s̃ ∈ S and r̃ ∈ R such that r̃wx = s̃r. As r̃w ∈ R and
s̃ ∈ S ⊆ LSat(S), we have that LSat(S) satisfies the Ore condition in R.

Thus, LSat(S) is a left Ore set in R.

Proposition 4.21. Let S ⊆ R be a left Ore set in a domain R. We have S−1R ∼= LSat(S)−1R
as rings.

Proof: As S ⊆ LSat(S) is an inclusion of left Ore sets in R, the mapping

ϕ : S−1R→ LSat(S)−1R, (s, r) 7→ (s, r),

is a ring monomorphism by Lemma 3.1. To see surjectivity, consider (x, r) ∈ LSat(S)−1R, then
there exists w ∈ R such that wx ∈ S. But now we have

(x, r) = (wx,wr) = ϕ(wx,wr) ∈ im(ϕ).

At this point we can see that, for every left Ore set S, LSat(S) gives us a saturated left Ore
set that describes essentially the same localization. For theoretical purposes, this allows us to
assume without loss of generality that any given left Ore set is already saturated.

Corollary 4.22. Let S1, S2 ⊆ R be left Ore sets in a domain R. If LSat(S1) = LSat(S2), then
S−1

1 R ∼= S−1
2 R as rings.

Proof: From Proposition 4.21 we get S−1
1 R ∼= LSat(S1)−1R = LSat(S2)−1R ∼= S−1

2 R.

Corollary 4.23. Let G be an ordered monoid with respect to �, R a G-graded domain and S
a left Ore set in R. If S ⊆ h(R), then LSat(S) ⊆ h(R) \ {0}.

Proof: Let x ∈ LSat(S), then x 6= 0 and there exists a w ∈ R \ {0} such that wx ∈ S ⊆
h(R) \ {0}. Since h(R) \ {0} is saturated by Lemma 1.23, we have x ∈ h(R) \ {0}.

Remark 4.24. Clearly, if S is not homogeneous, then LSat(S) is not homogeneous either since
it contains S. Thus, in the situation of Corollary 4.23, S is homogeneous if and only if LSat(S)
is homogeneous.

Proposition 4.25. Let S ⊆ R be an Ore set in a domain R, p, q ∈ R and r = pq. If (1, r) is
irreducible in S−1R, but not a unit, then |{p, q} ∩ LSat(S)| = 1.
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Proof: We always have the induced factorization (1, r) = (1, p) · (1, q) in S−1R.

• If |{p, q}∩LSat(S)| = 2, then (1, p), (1, q) ∈ U(S−1R) by Proposition 4.16. Thus, (1, r) ∈
U(S−1R) as a product of two units.

• If |{p, q} ∩ LSat(S)| = 0, then (1, p), (1, q) /∈ U(S−1R) by Proposition 4.16. But then
(1, r) is reducible.

Main example, part 3

Lemma 4.26. In D, T := LSat({x∂ + 1}) is not (right-)saturated.

Proof: Assume that T is saturated, then ∂ ∈ T since ∂x = x∂+1. Since T is the left saturation
of x∂ + 1 there exists a w ∈ D such that w∂ = x∂ + 1, or equivalently, (w − x)∂ = 1. This
implies that ∂ is a unit in D, which is a contradiction.

Lemma 4.27. In D (over the field K), we have

LSat(Θ) = [Θ ∪ {x, ∂} ∪ U(K)] = [(θ + Z) ∪ {x, ∂} ∪ (K \ {0})].

Proof: Let S := [(θ+Z)∪{x, ∂}∪U(K)]. Since θ = x∂ ∈ Θ, we clearly have {x, ∂} ⊆ LSat(Θ).
and therefore S ⊆ LSat(Θ) (note that U(K) = K \{0} = U(D) is always contained in LSat(Θ)
by Lemma 4.14).
To see the other inclusion, consider that by Lemma 1.43, every element s ∈ S can be written
in the form s = tyn, where y ∈ {x, ∂}, n ∈ N0 and t ∈ Θ. Then [HL16] implies that every
other non-trivial factorization of s can be derived by using the commutation rules given in
Lemma 1.43 and rewriting θ respectively θ+ 1 as x∂ respectively ∂x. But all occurring factors
are already contained in S, thus LSat(Θ) ⊆ S (the non-trivial factorizations correspond to
scattering units between the factors).

Remark 4.28. Consider the left Ore set S := [Θ ∪ {∂ − 1}] = [(θ + Z) ∪ {∂ − 1}]. Makar-
Limanov shows in [ML83] that the skew field of fractions of the first Weyl algebra, which is
the localization (D\{0})−1D, contains a free subalgebra generated by the elements (∂x, 1) and
(∂x, 1) · (1− ∂, 1). These two elements can also be found in the (smaller) localization S−1D.
In contrast to LSat(Θ), LSat(S) is inhomogeneous and thus much harder to describe, for
example, for all i ∈ Z, LSat(S) contains the (irreducible) element x∂2 − x∂ + (i + 2)∂ − i,
since

(x∂ + i+ 1)(x∂2 − x∂ + (i+ 2)∂ − i) = (∂ − 1)(x∂ + i)(x∂ + i+ 1) ∈ S.
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5. Ore localization of modules and local torsion

5.1. Ore localization of modules

We define the Ore localization of modules via a tensor product. Analogously to the commutative
case one can also use an elementary definition via an equivalence relation. Details can be found
in Section 7 of [Š06].

Definition 5.1. Let S be a left Ore set in a domain R and M a left R-module. The left Ore
localization of M is the left S−1R-module S−1M := S−1R⊗RM .

Formally, tensor products consist of finite sums of elementary tensors. The Ore condition
allows us to find a “common denominator”, which allows us to express all elements of the
localization as elementary tensors.

Lemma 5.2. Let S be a left Ore set in a domain R and M a left R-module. Every element of
S−1M can be presented in the form s−1m := (s, 1)⊗m for some s ∈ S and m ∈M .

Proof: Let
∑n

i=1(si, ri)⊗mi ∈ S−1M . We have (si, ri)⊗mi = ((si, 1) · ri)⊗mi = (si, 1)⊗ rimi

for all i, so we can assume ri = 1 without loss of generality. Now assume n ≥ 2. By the Ore
condition on S there exist s ∈ S and r ∈ R such that ss1 = rs2. Then

(s1, 1)⊗m1 + (s2, 1)⊗m2 = (ss1, s)⊗m1 + (rs2, r)⊗m2

= (ss1, 1)⊗ sm1 + (rs2, 1)⊗ rm2

= (ss1, 1)⊗ (sm1 + rm2).

The rest follows by induction on n.

Remark 5.3. Let S be a left Ore set in a domain R and L a left ideal of R. Let s−1l ∈ S−1L,
then s−1l = (s, 1)⊗l = (s, l)⊗1, which we can identify with (s, l) = (s, 1)·(1, l) ∈ S−1R(ρS,R(L)).
Thus

S−1L ∼= S−1R(ρS,R(L)) =
{

(s, l) ∈ S−1R | s ∈ S, l ∈ L
}

as left S−1R-modules.

Remark 5.4. Let S be a left Ore set in a domain R, M and N two left R-modules and
ϕ : M → N a morphism. Then S−1· becomes a covariant functor from R-mod to S−1R-mod
via S−1ϕ := id⊗ϕ : S−1M → S−1N , which is sometimes called the localization functor. From
the properties of tensor products we get that S−1· is right-exact.

Proposition 5.5. Let S be a left Ore set in a domain R. The functor S−1· = S−1R ⊗R · is
exact, in other words, S−1R is flat as a right R-module.

Proof: Let M1
f−→ M2

g−→ M3 be an exact sequence of R-modules. We have to show the
exactness of the sequence S−1M1

S−1f−→ S−1M2
S−1g−→ S−1M3, which is equivalent to im(S−1f) =

ker(S−1g).

• By assumption, we have g ◦f = 0, which implies (S−1g) · (S−1f) = S−1(g ◦f) = S−10 = 0
and thus im(S−1f) ⊆ ker(S−1g).
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• Let s−1m2 ∈ ker(S−1g) ⊆ S−1M2. We have 0 = (S−1g)(s−1m2) = s−1g(m2), then there
exists r ∈ R with rs ∈ S and g(rm2) = rg(m2) = 0. Now rm2 ∈ ker(g) = im(f), so
rm2 = f(m1) for some m1 ∈M1. Now we can conclude ker(S−1g) ⊆ im(S−1f) from

s−1m2 = (rs)−1rm2 = (rs)−1f(m1) = (S−1f)((rs)−1m1) ∈ im(S−1f).

Localization is also perfectly compatible with finite presentation:

Proposition 5.6. Let S be a left Ore set in a domain R and P ∈ Rm×n a presentation matrix
of the finitely presented R-Module M ∼= R1×n/R1×mP . Then we have

S−1M ∼= (S−1R)1×n/(S−1R)1×mP.

Proof: The sequence R1×m ·P−→ R1×n −→ M → 0 is exact. Exactness of S−1· induces the
exactness of

S−1R⊗R R1×m ·P−→ S−1R⊗R R1×n −→ S−1R⊗RM → 0.

By the homomorphism theorem we have

S−1M = S−1R⊗RM ∼= (S−1R⊗R R1×n)/(S−1R⊗R R1×m)P.

Now the proposition follows since S−1R⊗R1×k ∼= (S−1R)1×k for all k ∈ N.

5.2. Local torsion

Definition 5.7. Let Λ ⊆ R be a non-empty subset of a domain R and M a left R-module.

• An element m ∈M is called Λ-torsion element if λm = 0 for some λ ∈ Λ \ {0}.

• The set of all Λ-torsion elements tΛ(M) is called the Λ-torsion subset of M .

• An element m ∈M \ tΛ(M) is called Λ-regular.

• The module M is called Λ-torsion or Λ-torsion module if tΛ(M) = M .

• The module M is called Λ-torsion-free if tΛ(M) = {0}.

In the case Λ ∈ {R,R \ {0}} we omit Λ in the notation.

Remark 5.8. If Λ \ {0} is non-empty, we have tΛ(M) = tΛ\{0}(M). If Λ = {0}, then we set
tΛ(M) = {0}.

Corollary 5.9. Let R be a domain, S, T ⊆ R two non-empty subsets and M,N two left R-
modules such that S ⊆ T and M ⊆ N . Then the following holds:

(a) tS(M) ⊆M and tS(tS(M)) = tS(M).

(b) tS(M) ⊆ tT (M) and tS(M) ⊆ tS(N).

Local torsion with respect to S is also called S-torsion. In the situation where S is a left Ore
set we retain most of the properties of classical R-torsion:
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Lemma 5.10 (Structural theorem of local torsion). Let S be a left Ore set in a domain R and
M a left R-module. Consider the mapping

ε : M → S−1R⊗RM, m 7→ 1⊗m.

(a) The mapping ε is a homomorphism of R-modules.

(b) We have ker(ε) = tS(M). In particular, tS(M) is an R-submodule of M .

(c) We have tS(M/tS(M)) = {0}.

(d) We have S−1tS(M) = {0}.

(e) The induced mapping εt : M/tS(M)→ S−1R⊗R (M/tS(M)), m 7→ 1⊗m is injective.

(f) We have S−1M ∼= S−1(M/tS(M)).

Proof: (a) For m,n ∈M and r ∈ R we have ε(rm) = 1⊗rm = r⊗m = r ·(1⊗m) = r ·ε(m)
and ε(m+ n) = 1⊗ (m+ n) = (1⊗m) + (1⊗ n) = ε(m) + ε(n).

(b) For all m ∈ M and s ∈ S we have 1 ⊗m = (s, 1) · (1 ⊗ sm), therefore 1 ⊗m = 0 if and
only if there exists s ∈ S such that sm = 0. But then

ker(ε) = {m ∈M | 1⊗m = 0} = {m ∈M | sm = 0 for some s ∈ S} = tS(M).

(c) Let m ∈M and consider m+ tS(M) ∈ tS(M/tS(M)). There exists s ∈ S such that

0 = s(m+ tS(M)) = sm+ stS(M)

in M/tS(M). Now stS(M) ⊆ tS(M) implies sm ∈ tS(M). But then there exists s̃ ∈ S
such that (s̃s)m = s̃(sm) = 0. Since s̃s ∈ S we havem ∈ tS(M), thusm = 0 inM/tS(M).

(d) Let (s, 1)⊗m ∈ S−1tS(M). Then there exists s̃ ∈ S such that s̃m = 0. Now

(s, 1)⊗m = (s̃s, s̃)⊗m = ((s̃s, 1) · s̃)⊗m = (s̃s, 1)⊗ s̃m = (s̃s, 1)⊗ 0 = 0.

(e) Combining (b) and (c), we have ker(εt) = tS(M/tS(M)) = {0}, thus εt is injective.

(f) The canonical sequence 0→ tS(M)→ M → M/tS(M)→ 0 is exact. Since S−1· is exact
by Proposition 5.5, so is

0 = S−1tS(M)→ S−1M → S−1(M/tS(M))→ 0.

But then S−1M ∼= S−1(M/tS(M)).

Local torsion with respect to a left Ore set S is the same as LSat(S)-torsion:

Lemma 5.11. Let S ⊆ R be a left Ore set in a domain R and M a left R-module. Then
tS(M) = tLSat(S)(M).
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Proof: As S ⊆ LSat(S) it only remains to show that tLSat(S)(M) ⊆ tS(M). To this end, let
m ∈ tLSat(S)(M), then there exists x ∈ LSat(S) such that xm = 0. As x ∈ LSat(S), there also
exists r ∈ R\{0} such that rx ∈ S. But then (rx)m = r(xm) = r ·0 = 0, thus m ∈ tS(M).

Remark 5.12. Let S be a left Ore set in a domain R and M 6= {0} a left R-module. Then M
falls into exactly one of the following categories:

(i) M is an S-torsion module, which is equivalent to S−1M = {0}.

(ii) M is an S-torsion-free module.

(iii) M is “generic” in the sense that it is neither S-torsion nor S-free, thus {0} ( tS(M) (M .
Then we have the exact sequence 0 → tS(M) → M → M/tS(M) → 0, where tS(M) is
S-torsion and M/tS(M) is S-torsion-free.

Proposition 5.13. Let S be a left Ore set in a domain R. Then tS(·) is a covariant left-exact
functor from the category of R-modules to the category of S-torsion R-modules.

Proof: Let ϕ : M → N be a morphism of left R-modules. Then tS(·) becomes a covariant
functor via tS(ϕ) : tS(M) → tS(N), m 7→ ϕ(m), since for m ∈ tS(M) with sm = 0 for some
s ∈ S we have s · ϕ(m) = ϕ(sm) = ϕ(0) = 0, which shows im(tS(ϕ)) ⊆ tS(N).
Now let 0 → M1

f−→ M2
g−→ M3 be an exact sequence of left R-modules, we have to show

exactness of the induced sequence

0→ tS(M1)
tS(f)−→ tS(M2)

tS(g)−→ tS(M3),

which is equivalent to ker(tS(f)) = {0} and im(tS(f)) = ker(tS(g)).

• By construction, we have ker(tS(f)) = ker(f) = {0}.

• By assumption, we have g ◦ f = 0, which implies tS(g) ◦ tS(f) = tS(g ◦ f) = tS(0) = 0
and thus im(tS(f)) ⊆ ker(tS(g)).

• Let m2 ∈ ker(tS(g)) ⊆ tS(M2), so 0 = tS(g)(m2) = g(m2). Then m2 ∈ ker(g) = im(f),
thus m2 = f(m1) for some m1 ∈ M1. Since m2 ∈ tS(M2), there exists s ∈ S such that
sm2 = 0, which implies 0 = sm2 = s ·f(m1) = f(sm1). Then sm1 ∈ ker(f), by injectivity
of f we get sm1 = 0 and thus m1 ∈ tS(M1). Now we can conclude ker(tS(g)) ⊆ im(tS(f))
from

m2 = f(m1) = tS(f)(m1) ∈ tS(f)(tS(M1)) = im(tS(f)).

Corollary 5.14. Let S be a left Ore set over a domain R and 0 → L → M → N an exact
sequence of left R-modules. If M is S-torsion-free, so is L.

Proof: Since tS(·) is left-exact, we get the exact sequence 0→ tS(L)→ tS(M)→ tS(N). Now
tS(M) = {0} implies tS(L) = {0}.

Remark 5.15. The functor tS(·) is not right-exact in general: considerM = R = Z, n ∈ N\{1},
N = Z/nZ and the canonical surjection Z→ Z/nZ. With S = {ni | i ∈ N0} we get n ∈ S∩nZ.
But then tS(M) = tS(Z) = {0} and tS(N) = tS(Z/nZ) = Z/nZ, thus tS(M) → tS(N) is not
surjective.
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Lemma 5.16. Let S be a left Ore set in a domain R and M a left R-module. Then tS(M) ∼=
TorR1 (S−1R/R,M).

Proof: The sequence
0→ R→ S−1R→ S−1R/R→ 0

of right R-modules is exact. This induces the long exact sequence

TorR1 (S−1R,M)→ TorR1 (S−1R/R,M)→M → S−1M → (S−1R/R)⊗RM → 0,

by Corollary 6.30 in [Rot09]. By Proposition 5.5, S−1R is a flat right R-module, which implies
TorR1 (S−1R,M) = {0} by Theorem 7.2 in [Rot09]. Thus,

0→ TorR1 (S−1R/R,M)→M → S−1M

is exact, which implies TorR1 (S−1R/R,M) ∼= tS(M).

Lemma 5.17. Let S be a left Ore set in a domain R, L a left R-module and M,N ⊆ L two
submodules. Then the following holds:

(a) tS(M) ∩ tS(N) = tS(M ∩N).

(b) tS(M)⊕ tS(N) = tS(M ⊕N).

(c) tS(M) + tS(N) ⊆ tS(M +N).

Proof: (a) Let q ∈ tS(M ∩ N). Then q ∈ M ∩ N and there exists s ∈ S such that sq = 0,
which implies q ∈ tS(M) ∩ tS(N).
On the other hand, let q ∈ tS(M) ∩ tS(N). Then q ∈ M ∩N and there exist sm, sn ∈ S
such that smq = 0 = snq. By the left Ore condition on S there exists a common left
multiple ŝ ∈ S of sm and sn, which implies ŝq = 0 and thus tS(M ∩N).

(b) Let m ⊕ n ∈ tS(M ⊕ N), then there exists s ∈ S such that 0 = s(m ⊕ n) = sm ⊕ sn,
which is equivalent to sm = 0 = sn. Now m ∈ tS(M) and n ∈ tS(N) implies m ⊕ n ∈
tS(M)⊕ tS(N).
On the other hand, let m ⊕ n ∈ tS(M) ⊕ tS(N), then there exist sm, sn ∈ S such that
smm = 0 = snn. By the left Ore condition on S there exists a common left multiple ŝ ∈ S
of sm and sn. Now we have ŝ(m⊕ n) = ŝm⊕ ŝn = 0, which implies m⊕ n ∈ tS(M ⊕N).

(c) Let m + n ∈ tS(M) + tS(N), then there exist sm, sn ∈ S such that smm = 0 = snn. By
the left Ore condition on S there exists a common left multiple ŝ ∈ S of sm and sn. Now
we have ŝ(m+ n) = ŝm+ ŝn = 0, which implies m+ n ∈ tS(M ⊕N).

The next result shows some absorption properties of local torsion and Ore localization:

Proposition 5.18. Let S1 and S2 be two left Ore sets in a domain R such that S1 ⊆ S2. Then
the following holds:

(a) tS2(tS1(M)) = tS1(M) = tS1(tS2(M)).

(b) S−1
2 (S−1

1 M) ∼= S−1
2 M ∼= S−1

1 (S−1
2 M).
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Proof: (a) By Corollary 5.9 we have tS1(M) ⊆ tS2(M) ⊆M and thus

tS1(M) = tS1(tS1(M)) ⊆ tS2(tS1(M)) ⊆ tS1(M) = tS1(tS1(M)) ⊆ tS1(tS2(M)) ⊆ tS1(M).

(b) From the associativity of the tensor product as well as Lemma 3.9 we get

S−1
2 (S−1

1 M) = S−1
2 R⊗R (S−1

1 R⊗RM) = (S−1
2 R⊗R S−1

1 R)⊗RM
∼= S−1

2 R⊗RM = S−1
2 M,

the second statement follows analogously with Lemma 3.10.

Lemma 5.19. Let S be a quasi-multiplicatively closed subset of a domain R and I, J be left
ideals of R such that I ⊆ J and I is left S-closed. Then tS(J/I) = {0}.

Proof: Let m ∈ J and m + I ∈ tS(J/I). Then there exists s ∈ S such that s(m + I) ∈ I,
which implies sm ∈ I. Since I is left S-closed, we have m ∈ I and thus m+ I = 0 in J/I.

Lemma 5.20. Let S be a left Ore set of a domain R and ϕ : M → N a homomorphism of left
R-modules. If tS(N) = {0}, then tS(M) ∼= tS(ker(ϕ)).

Proof: Applying the left-exact functor tS(·) to the exact sequence 0 → ker(ϕ) ↪→ M
ϕ→

N we get the exact sequence 0 → tS(ker(ϕ)) → tS(M) → tS(N) = {0}. Thus, tS(M) ∼=
tS(ker(ϕ)).

5.3. Annihilators in Ore localizations

Definition 5.21. Let R be a ring, M a left R-module and m ∈M .

• The left annihilator of m is AnnMR (m) := {r ∈ R | rm = 0}.

• The annihilator of M is AnnR(M) := {r ∈ R | ∀m ∈M : rm = 0}.

• Let M be finitely presented via M = Rn/P for some left submodule P ⊆ Rn, then the
(left) pre-annihilator of M is

preAnnR(M) :=
n⋂
j=1

AnnmR (ej),

where e1, . . . , en denotes the image of the canonical standard basis of Rn in M .

Remark 5.22. For every m ∈ M , AnnMR (m) is a left ideal of R. Furthermore, AnnR(M) and
preAnnR(M) are left ideals as intersections of left ideals, since AnnR(M) =

⋂
m∈M AnnMR (m).

But AnnR(M) is even a two-sided ideal of R: let r ∈ R, a ∈ AnnR(M) and m ∈ M , then
(ar)m = a(rm) = 0, since rm ∈M .

Remark 5.23. While AnnR(M) is an invariant of M , preAnnR(M) does depend on the pre-
sentation of M . In the following, when talking about pre-annihilators we implicitly assume
that we have fixed a representation of M and consider preAnnR(M) with respect to this fixed
representation.
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Remark 5.24. If M is finitely presented, we always have

AnnR(M) =
⋂
m∈M

AnnMR (m) ⊆
n⋂
j=1

AnnMR (ej) = preAnnR(M).

If R is commutative, then AnnR(M) = preAnnR(M): let a ∈ preAnnR(M) and m =
∑n

j=1 cjej,
then

am = a

n∑
j=1

cjej =
n∑
j=1

acjej =
n∑
j=1

cjaej = 0,

thus a ∈ AnnR(M).

In a left Ore domain, any finite intersection of non-zero ideals is always non-zero:

Lemma 5.25. Let R be a left Ore domain and Ij 6= {0} a left ideal of R for j ∈ {1, . . . , n}.
Then

⋂n
j=1 Ij 6= {0}.

Proof: Let n ≥ 2 and fj ∈ Ij \ {0} for j ∈ {1, 2}. By assumption, S := R \ {0} is a left Ore
set in R. Since f1, f2 ∈ S we have Rf1 ∩ Sf2 6= ∅, which implies Rf1 ∩ Rf2 6= {0} and thus
{0} ( Rf1 ∩Rf2 ⊆ I1 ∩ I2. The claim now follows by induction on n.

A finitely generated module over a commutative domain is a torsion module if and only if its
annihilator is non-zero. Note that by Remark 5.24 we have AnnR(M) = preAnnR(M) in the
commutative case, thus we regain the classical result as a special case of the next lemma:

Lemma 5.26. Let R be a left Ore domain andM = Rn/P a finitely presented left R-module for
some left submodule P ⊆ Rn. Then M is a torsion module if and only if preAnnR(M) 6= {0}.

Proof: By Lemma 5.25 we have

{0} = preAnnR(M) =
n⋂
j=1

AnnMR (ej)

⇔ AnnMR (ek) = {0} for some k ∈ {1, . . . , n}
⇔ ek ∈M \ t(M) for some k ∈ {1, . . . , n}
⇔ M is not a torsion module,

where the last equivalence is due to the left Ore condition on R \ {0}.

Taking annihilators of module elements is compatible with Ore localization in an intuitive
way: we just localize every parameter.

Proposition 5.27. Let S be a left Ore set in a domain R, M a left R-module and m ∈ M .
Then

S−1RAnnMR (m) = AnnS
−1M

S−1R (1−1m)

and thus

AnnMR (m) ⊆ (AnnMR (m))S = ρ−1
S,R(S−1RAnnMR (m)) = ρ−1

S,R(AnnS
−1M

S−1R (1−1m)).
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Proof: First, let x ∈ S−1RAnnMR (m), then there exist s ∈ S, r ∈ R and q ∈ AnnMR (m) such
that x = (s, r) · q = (s, rq). Thus

x · (1−1m) = (s, rq) · (1⊗m) = (s, rq)⊗m = (s, r)⊗ qm = (s, r)⊗ 0 = 0

implies x ∈ AnnS
−1M

S−1R (1−1m).
On the other hand, let y = (s, r) ∈ AnnS

−1M
S−1R (1−1m), then

0 = y · (1−1m) = (s, r) · (1⊗m) = (s, r)⊗m = (s, 1)⊗ rm.

Multiplying with s we get 0 = 1 ⊗ rm, which implies s̃rm = 0 for some s̃ ∈ S. Now s̃r ∈
AnnMR (m) and thus

y = (s, q) = (s̃s, s̃q) = (s̃s, 1) · s̃q ∈ S−1RAnnMR (m).

A close examination of the second part of the proof of Proposition 5.27 gives us the following
result:

Corollary 5.28. Let S be a left Ore set in a domain R, M a left R-module and m ∈ M . If
1−1m is a torsion element in S−1M , then m is a torsion element in M .

In the commutative situation, the compatibility of localization with (direct) sums, Cartesian
products and other operations is a well-known fact from commutative algebra. The following
result shows the compatibility of intersection and Ore localization of ideals:

Lemma 5.29. Let S be a left Ore set in a domain R and Ij a left ideal of R for j ∈ {1, . . . , n}.
Then

S−1R
n⋂
j=1

Ij =
n⋂
j=1

S−1RIj.

Proof: Without loss of generality let Ij 6= {0} for all j, else both sides of the equation are {0}.
First, let x ∈ S−1R

⋂n
j=1 Ij, then x ∈ S−1RIj for all j, which implies x ∈

⋂n
j=1 S

−1RIj.
On the other hand, let x ∈ (

⋂n
j=1 S

−1RIj) \ {0}, then x = (sj, fj) for some sj ∈ S and fj ∈ Ij.
By the left Ore condition on S there exists a common left multiple of the sj, that is, there exist
s ∈ S and aj ∈ R such that s = ajsj for all j. Now

x = (sj, fj) = (ajsj, ajfj) = (s, ajfj)

for all j, which implies y := a1f1 = ajfj for all j, in particular, we have y ∈ (
⋂n
j=1 Ij) \ {0}.

Thus

x = (s, a1f1) = (s, y) ∈ S−1R
n⋂
j=1

Ij.

Now we can expand Proposition 5.27 to show that Ore localization is also compatible with
taking pre-annihilators in the same fashion:
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Proposition 5.30. Let S be a left Ore set in a domain R and M = Rn/P a finitely presented
left R-module for some left submodule P ⊆ Rn. Then

S−1R preAnnR(M) = preAnnS−1R(S−1M).

Proof: We have

S−1R preAnnR(M)
5.21
= S−1R

n⋂
j=1

AnnMR (ej)

5.29
=

n⋂
j=1

S−1RAnnMR (ej)

5.27
=

n⋂
j=1

AnnS
−1M

S−1R (1−1ej)

5.6
= preAnnS−1R(S−1M).

5.4. Application: Algebraic systems theory

Definition 5.31. Let D be a ring, A a left D-module and R ∈ Dg×q. We define

SolD(R,A) := {w ∈ Aq | Rw = 0} .

We recall the following essential result from algebraic systems theory, which can be found in
[Sei10]:

Theorem 5.32 (Noether-Malgrange isomorphism). Let D be a ring, A a left D-module, R ∈
Dg×q, M := D1×gR andM := D1×q/M . As groups, we have

SolD(R,A) ∼= HomD(M,A).

Proposition 5.33. Let S be a left Ore set in a domain D, M a left D-module and A a left
S−1D-module. Then

HomD(M,A) ∼= HomS−1D(S−1M,A).

Proof: We have

HomS−1D(S−1M,A) = HomS−1D(S−1D ⊗DM,A)
∼= HomD(M,HomS−1D(S−1D,A))
∼= HomD(M,A),

where the first isomorphism is the tensor-hom adjunction (see e.g. [Rot09] for details).

This shows that if we are looking for solutions of a D-module in a solution space A, which
is not only a D- but also a S−1D-module, then these solutions come from M/tS(M), i.e. the
S-torsion-free part ofM (since S−1M ∼= S−1(M/tS(M) as before).

Lemma 5.34. Let D be a domain and A a left D-module.
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(a) Let ϕ : M1 →M2 be a homomorphism of left D-modules. Then

HomD(M2/ϕ(M1),A)→ HomD(M2,A)

is injective. If ϕ is a surjection, then HomD(M2,A)→ HomD(M1,A) is also injective.

(b) Let I and J be proper ideals in D and I ( J . Then HomD(D/J,A)→ HomD(D/I,A) is
injective.

Proof: (a) Follows by applying the left-exact functor HomD(·,A) to the exact sequences

M1
ϕ−→M2 −→M2/ϕ(M1)→ 0 and ker(ϕ) −→M1

ϕ−→M2 → 0.

(b) The canonical mapping ϕ : D/I → D/J, p + I 7→ p + J is a well-defined surjection. The
statement now follows from applying HomD(·,A) to the exact sequence

ker(ϕ) −→ D/I ϕ−→ D/J → 0.

Corollary 5.35. Let S be a left Ore set in a domain D and M a left D-module. Then

HomD(M/tS(M),A)→ HomD(M,A)

is injective.
Proof: Follows from Lemma 5.34 with the canonical surjection M →M/tS(M).

Main example, part 4

Remark 5.36. Consider the matrix A :=

[
x 0 0
0 ∂ 0

]
∈ D2×3 and let S = K[x] \ {0}. The

system module associated to A is

M = D1×3/D1×2A ∼= (D/Dx)e1 ⊕ (D/D∂)e2 ⊕De3,

where e1, e2, e3 is the canonical standard basis of D1×3. We have
tS(M) = {[m] ∈M | ∃s ∈ S : s[m] = 0} =

{
[m] ∈M | ∃s ∈ S : sm ∈ D1×2A

}
= {[(m1,m2,m3)] ∈M | ∃s ∈ S, a1, a2 ∈ D : sm1 = a1x ∧ sm2 = a2∂ ∧ sm3 = 0} .

Since D is a domain and s 6= 0, we have sm3 = 0 if and only if m3 = 0. Furthermore,
sm2 = a2∂ with s ∈ K[x] \ {0} can only hold if m2 ∈ D∂. Lastly, given x and m1 ∈ D, the left
Ore condition on S provides us with s ∈ S and a1 ∈ D such that sm1 = a1x holds. With this
information, we get

tS(M) = {[(m1,m2∂, 0)] ∈M | m1,m2 ∈ D} ∼= D1×3e1/D1×2A ∼= (D/Dx)e1

and thusM/tS(M) ∼= (D/D∂)e2 ⊕De3. Rewriting the exact sequence

0→ tS(M)→M→M/tS(M)→ 0

with concrete data, we obtain

0→ (D/Dx)e1 → (D/Dx)e1 ⊕ (D/D∂)e2 ⊕De3 → (D/D∂)e2 ⊕De3 → 0.

Analogously, we get t(M) ∼= (D/Dx)e1 ⊕ (D/D∂)e2 andM/t(M) ∼= De3, which gives us

0→ (D/Dx)e1 ⊕ (D/D∂)e2 → (D/Dx)e1 ⊕ (D/D∂)e2 ⊕De3 → De3 → 0.

As we can see, this gives us a finer description of the torsion submodule ofM via S-torsion.
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6. Algorithms

Convention 6.1. In this chapter, let n,m ∈ N.

6.1. Orderings and monoideals in Nn
0

Definition 6.2. The (partial) ordering ≤cw on Nn
0 , defined by

α ≤cw β :⇔ αi ≤ βi for all i ∈ {1, . . . , n}

for α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn
0 , is called the component-wise ordering. Equiva-

lently, we have α ≤cw β if and only if β ∈ α + Nn
0 .

Definition 6.3. A total order ≤ on Nn
0 with least element 0 is called admissible, if α ≤ β

implies α + γ ≤ β + γ for all α, β, γ ∈ Nn
0 .

Lemma 6.4. Any admissible order ≤ on Nn
0 is a refinement of the component-wise ordering,

that is, α ≤cw β implies α ≤ β for all α, β ∈ Nn
0 .

Proof: Let α ≤cw β, then β − α ∈ Nn
0 . We have α = α + 0 ≤ α + β − α = β, since ≤ is

admissible.

Definition 6.5. Let ≤ be an admissible ordering on Nn+m
0
∼= Nn

0×Nm
0 . We call ≤ an elimination

ordering for the last m components, if for all α, β ∈ Nn+m
0 , β ∈ Nn

0 × {0} and α ≤ β imply
α ∈ Nn

0 × {0}.

Definition 6.6. Let ≤n resp. �m be an admissible order on Nn
0 resp. Nm

0 . The ordering
≤ = (≤n,�m) on Nn+m

0
∼= Nn

0 × Nm
0 , defined by

(α, β) ≤ (γ, δ) :⇔ β ≺m δ ∨ (β = δ ∧ α ≤n γ)

for α, γ ∈ Nn
0 and β, δ ∈ Nm

0 , is called (n,m)-antiblock ordering.

Lemma 6.7. Let ≤ = (≤n,�m) be a (n,m)-antiblock ordering. Then ≤ is an elimination
ordering for the last m components.

Proof: Let β = (β1, 0) ∈ Nn
0 × {0} and α = (α1, α2) ∈ Nn+m

0 such that α ≤ β. Then α2 �m 0,
which implies α2 = 0 and thus α ∈ Nn

0 × {0}.

Definition 6.8 ([BGTV03]). A non-empty subset E ⊆ Nn
0 is called a Nn

0 -monoideal if E+Nn
0 =

E. The Nn
0 -monoideal generated by E is E + Nn

0 .

6.2. Gröbner bases in G-algebras

Let us recall the basics of the theory of Gröbner bases in G-algebras. For the proofs omitted
here as well as a more exhaustive treatment of the subject we refer to [Lev05].

Convention 6.9. In this section, let A be a G-algebra generated by x = {x1, . . . , xn} over a
field K and ≤ and admissible ordering on Nn

0 satisfying the order condition for G-algebras from
Definition 1.34.
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Definition 6.10. Let f ∈ A \ {0}, then f =
∑

α∈Nn0
cαx

α for some cα ∈ K, where cα = 0 for
almost all α ∈ Nm

0 , but cα 6= 0 for at least one α ∈ Nn
0 . Now we define

• N≤(f) := {α ∈ Nn
0 | cα 6= 0} ⊆ Nn

0 , the Newton diagram of f ,

• le≤(f) := max≤(N (f)) ∈ Nn
0 , the leading exponent of f ,

• lc≤(f) := cle≤(f) ∈ K, the leading coefficient of f ,

• lm≤(f) := xle≤(f) ∈ Mon(A), the leading monomial of f .

Let further S ⊆ A \ {0} and define

• L≤(S) := Exp≤(S) := {α ∈ Nn
0 | ∃s ∈ S : le≤(s) = α}+Nn

0 ⊆ Nn
0 , themonoideal of leading

exponents of S,

• L≤(S) :=
K
〈xα | α ∈ Exp≤(S)〉 ⊆ A, the span of leading monomials of S.

If the ordering is clear from the context, we sometimes omit the index ≤.

Remark 6.11. In general, the product of two monomials of A is a polynomial. Nevertheless,
for all α, β ∈ Nn

0 we have lm(xα · xβ) = xα+β due to the restrictions imposed on the relations
between the variables. Thus, for all f, g ∈ A \ {0} we get the property le(f · g) = le(f) + le(g).
Furthermore, if A is of Lie type we have lc(f · g) = lc(f) · lc(g).

Definition 6.12. Given xα, xβ ∈ Mon(A), we say that xα divides xβ (written xα | xβ) if
α ≤cw β.

Lemma 6.13. Let A be a G-algebra generated by two blocks of variables x = {x1, . . . , xn} and
y = {y1, . . . , ym} and ≤ be an admissible ordering on Nn+m

0 . Then the following are equivalent:

(1) The ordering ≤ is an elimination ordering for the last m components.

(2) For any f ∈ A \ {0}, le(f) ∈ Nn
0 × {0} ⊆ Nn+m

0 implies that no monomial of f contains
any variable from y.

Proof: (1)⇒(2): Let f ∈ A \ {0} such that β := le(f) ∈ Nn
0 ×{0}. Take a term t := cαx

α1yα2

appearing in f with α = (α1, α2) ∈ Nn+m
0 , then α ≤ β. Now (1) implies α ∈ Nn

0 × {0},
therefore no variable from y occurs in t, and by iteration in f .

(2)⇒(1): Let α = (α1, α2) ∈ Nn+m
0 and β = (β1, 0) ∈ Nn

0 × {0} such that α ≤ β. Then
f := xβ1y0 + xα1yα2 ∈ A \ {0} and le(f) = β ∈ Nn

0 × {0}. By (2) f does not contain any
variable from y, thus α2 = 0, which implies α ∈ Nn

0 × {0}.

Definition 6.14. Let L ⊆ A be a left ideal and G ⊆ L \ {0} a finite subset. We call G a
left Gröbner basis of L with respect to ≤ if for all f ∈ L \ {0} there exists a g ∈ G such that
lm(g) | lm(f).

Theorem 6.15. Let L ⊆ A be a left ideal and G ⊆ L \ {0} a finite subset. Then the following
are equivalent:

(1) G is a left Gröbner basis of L with respect to ≤.
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(2) L≤(G) = L≤(I) as vector spaces.

(3) Exp≤(G) = Exp≤(L) as Nn
0 -monoideals.

Definition 6.16. Denote by G the set of all finite ordered subsets of A.

(1) A map NF : A × G → A, (f,G) 7→ NF(f |G), is called a left normal form on A if for all
f ∈ A and G ∈ G
(i) NF(0|G) = 0,

(ii) NF(f |G) 6= 0 implies lm(NF(f |G)) /∈ L(G),

(iii) f − NF(f |G) ∈ A〈G〉.

(2) Let G = {g1, . . . , gs} ∈ G. A representation of f ∈ A〈G〉, f =
∑s

i=1 aigi where ai ∈ A,
satisfying le≤(aigi) ≤ le≤(f) if aigi 6= 0 for all i ∈ {1, . . . , s}, is called a standard left
representation of f with respect to G.

Lemma 6.17. Let I ⊆ A be a left ideal, G ⊆ I a left Gröbner basis of I with respect to ≤ and
NF(·|G) a left normal form on A with respect to G.

(a) For any f ∈ A we have f ∈ I if and only if NF(f |G) = 0.

(b) Let J ⊆ A be a left ideal. Then L(I) = L(J) implies I = J . In particular, I = A〈G〉.

Algorithm 6.18 (LeftNF).
Input: f ∈ A, G ∈ G.
Output: h ∈ A, a left normal form of f with respect to G and ≤.

1 begin
2 h := f ;
3 while h 6= 0 and Gh := {g ∈ G : lm(g) | lm(h)} 6= ∅ do
4 choose any g ∈ Gh;
5 α := le(h);
6 β := le(g);
7 h := LeftSpoly(h, g) := h− lc(h)

lc(xα−βg)
xα−βg;

8 end
9 return h;

10 end

Theorem 6.19. Let I ⊆ A be a left ideal, G = {g1, . . . , gs} ⊆ I. Let LeftNF(·|G) be a left
normal form on A with respect to G. Equivalent are:

(1) G is a left Gröbner basis of I.

(2) LeftNF(f |G) = 0 for all f ∈ I.

(3) Each f ∈ I has a standard left representation with respect to G.

Definition 6.20. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn
0 . Define µ(α, β) ∈ Nn

0 via
µ(α, β)i := max {αi, βi}.
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Algorithm 6.21 (LeftGröbnerBasis).
Input: F ∈ G.
Output: A left Gröbner basis G ∈ G of I := A〈F 〉 with respect to ≤.

1 begin
2 G := F ;
3 P := {(f, g) ∈ G×G | f 6= g};
4 while P 6= ∅ do
5 choose any (f, g) ∈ P ;
6 P := P \ {(f, g)};
7 α := le(f);
8 β := le(g);
9 γ := µ(α, β);

10 t := xγ−αf − lc(xγ−αf)
lc(xγ−βg)

xγ−βg;
11 h := LeftNF(t|G);
12 if h 6= 0 then
13 P := P ∪ {(h, f) | f ∈ G};
14 G := G ∪ {h};
15 end
16 end
17 return G;
18 end

6.3. Gröbner bases in rational OLGAs

Convention 6.22. In this section, let A be a G-algebra generated by two blocks of variables
x = {x1, . . . , xn} and y = {y1, . . . , ym} such that x generates a sub-G-algebra B of A. Assume
further that S := B \ {0} is a left Ore set in A and L ⊆ A is left ideal.

Definition 6.23. The set of monomials in S−1A is Mon(S−1A) :=
{
yα | α ∈ Nm

0

}
. Let α, β ∈

Nm
0 . Then yα divides yβ (written yα | yβ), if α ≤cw β.

Definition 6.24. Let ≤ be an admissible order on Nm
0 and f ∈ S−1A \ {0}, then f =∑

α∈Nm0
cαy

α for some cα ∈ K(x), where cα = 0 for almost all α ∈ Nm
0 . Now we define

• N≤(f) := {α ∈ Nm
0 | cα 6= 0} ⊆ Nm

0 , the Newton diagram of f ,

• le≤(f) := max≤(N (f)) ∈ Nm
0 , the leading exponent of f ,

• lc≤(f) := cle(f) ∈ K(x), the leading coefficient of f ,

• lm≤(f) := yle(f) ∈ Mon(S−1A), the leading monomial of f .

Definition 6.25. Let G ⊆ L \ {0} be a finite subset and ≤ an admissible order on Nm
0 . We

call G a left Gröbner basis of L with respect to ≤ if for every f ∈ L \ {0} there exists a g ∈ G
such that lm≤(g) | lm≤(f).

The main result of this section is the fact that with respect to an antiblock ordering, Gröbner
bases of ideal in A induce Gröbner bases of the extension of the ideal in the rational Ore
localization of A:
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Proposition 6.26 (cf. Lemma 1.5.9 in [Lev15]). Let ≤ = (≤n,�m) be a (n,m)-antiblock
ordering and G a left Gröbner basis of L with respect to ≤. Then ρS,A(G) is a left Gröbner
basis of J := S−1L with respect to �m.

Proof: Let f ∈ J \ {0}, then f = (s, l) for some s ∈ S and l ∈ L. Then there exists g ∈ G
such that lm≤(g) | lm≤(l). Let α := (α1, α2) := le≤(g) and β := (β1, β2) := le≤(l). Then
α ≤cw β, which implies α2 ≤cw β2. But then le�m(ρS,A(g)) = α2 ≤cw β2 = le�m(f) and
therefore lm�m(ρS,A(g)) | lm�m(f). Thus, ρS,A(G) is a left Gröbner basis of J with respect to
�m.

6.4. Central saturation

Definition 6.27. Let R be a left Noetherian ring, I ⊆ R a left ideal and q ∈ Z(R).

• The quotient of I by q is the left ideal I : q := {r ∈ R | qr ∈ I} = {r ∈ R | rq ∈ I}.

• Since R is left Noetherian, the left ideal chain I ⊆ I : q ⊆ I : q2 ⊆ . . . becomes stationary.
Thus, there exists a k ∈ N minimal with the property that I : qk =

⋃
i∈N(I : qi). Then

I : q∞ := I : qk is called the central saturation of I by q and k is called the (central)
saturation index of I by q, denoted by Satindex(I, q). Note that even in an arbitrary ring
the saturation index of I by q may exist.

Computational Remark 6.28. In the situation of Definition 6.27, consider the left R-module
homomorphism φ : R→ R/I, r 7→ rq. We have

ker(φ) = {r ∈ R | φ(r) = 0 in R/I} = {r ∈ R | rq = φ(r) ∈ I} = I : q.

Thus, if we can compute kernels of left R-module homomorphisms, we can also compute central
quotients.
Furthermore, if we can decide equality of left ideals in R, then we can also compute the central
saturation index by iteratively computing I : qk+1 and comparing it to I : qk.
In G-algebras, which are left Noetherian by Theorem 1.37, both can be done using Gröbner-
driven algorithms (cf. [Lev05]).

As an application of central saturation we give a generalization of a classical ideal decompo-
sition that is well-known in the commutative setting (cf. Lemma 8.95 of [BW93]).

Lemma 6.29. Let R be a ring, I ⊆ R a left ideal and q ∈ Z(R). Further, let k ∈ N be the
saturation index of I by q. Then I = R〈I, qk〉 ∩ (I : qk).

Proof: Let J := R〈I, qk〉 ∩ (I : qk). Since I ⊆ R〈I, qk〉 and I ⊆ (I : qk), we clearly have I ⊆ J .
Now let a ∈ J , then qka ∈ I (since a ∈ (I : qk)), and a = b + rqk for some b ∈ I and r ∈ R
(since a ∈ R〈I, qk〉). Then

q2kr = qkrqk = qk(b− a) = qkb− qka ∈ I,

thus r ∈ (I : q2k) = (I : qk), which implies rqk = qkr ∈ I. But then a = b+ rqk ∈ I.

As a direct consequence we get another generalization of a well-known statement from com-
mutative algebra:

Corollary 6.30. Let I be a left ideal in a domain R, q ∈ Z(R), k := Satindex(I, q) and
S := [q] = {qn | n ∈ N0}. Then IS = I : qk.
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6.5. S-closure algorithm

In this section we give a Gröbner-based algorithm to compute the S-closure of an ideal in a
situation that is of interest in the theory of D-modules.

Convention 6.31. In this section, let A be a G-algebra generated by two blocks of variables
x = {x1, . . . , xn} and y = {y1, . . . , ym} over a field K such that x generates a sub-G-algebra
B ⊆ Z(A) of A. Let ≤= (≤n,�m) be a (n,m)-antiblock ordering and S := B \ {0}.

Remark 6.32.

• Since B ⊆ Z(A), we can identify B with the commutative polynomial ring K[x].

• By Lemma 2.25, S is a left Ore set in B as well as in A. Furthermore, S−1B ∼= K(x).

• We can view S−1A as a G-algebra over the field K(x), since S−1A ∼= K(x)〈y | Q〉, where
Q is the set of relations inherited from A.

Algorithm 6.33 (S-Closure).
Input: A left ideal I ⊆ A.
Output: A Gröbner basis G ⊆ A of IS with respect to ≤.

1 begin
2 H := LeftGröbnerBasis(I,≤);
3 h := lcm({lc�m(ρS,A(g)) | g ∈ H}) ∈ K[x];
4 m := Satindex(I, h);
5 G := LeftGröbnerBasis(I : hm,≤);
6 return G;
7 end

Proposition 6.34. Algorithm 6.33 terminates and is correct.

Proof: Termination follows directly from the fact that both the computation of left Gröbner
bases and the computation of saturation indices are algorithmic in G-algebras (see also Al-
gorithm 6.21 and Computational Remark 6.28). To prove correctness, we have to show that
IS = I : hm = I : h∞:

(i) Let ρ := ρS,A, then we have

ρ−1(S−1I) =
{
r ∈ A | ρ(r) ∈ S−1I

}
= {r ∈ A | ∃s ∈ S : sr ∈ I} = IS.

Furthermore, we have h ∈ K[x] \ {0} and lc�m(ρ(g)) | h for all g ∈ H.

(ii) Let f ∈ I : hm, then hmf ∈ I and ρ(f) = (1, f) = (hm, hmf) ∈ S−1I. Thus we have
f ∈ ρ−1(S−1I) = IS, which implies I : hm ⊆ IS.

(iii) Let f ∈ IS, then ρ(f) ∈ S−1I. By Proposition 6.26, ρ(H) is a left Gröbner basis of S−1I.
By Theorem 6.19 we have LeftNF(ρ(f)|ρ(H)) = 0. We now prove f ∈ I : hm by an
induction on the minimal number n of steps necessary in Algorithm 6.18 to reduce ρ(f)
to zero with respect to ρ(H):

(IB) If n = 0, then ρ(f) = 0 and thus f = 0, which trivially implies f ∈ I : hm.

49



6. Algorithms

(IH) Assume that for any f ∈ IS, such that ρ(f) can be reduced to zero with respect to
ρ(H) in n− 1 steps, we have f ∈ I : hm.

(IS) Let f ∈ IS such that Algorithm 6.18 needs at least n steps to reduce ρ(f) to zero
with respect to ρ(H). Then there exists g ∈ H such that lm�m(ρ(g)) | lm�m(ρ(f))
and

f1 := ρ(f)− lc�m(ρ(f))

lc�m(yα−βg)
yα−βρ(g) ∈ S−1A,

where α := le�m(ρ(f)) and β := le�m(ρ(g)), can be reduced to zero in n − 1 steps
with respect to ρ(H). Since the relations between the variables in S−1A have the
form yjyi = ci,jyiyj + di,j for some ci,j ∈ K \ {0} = U(K) and a di,j ∈ A which is of
lower order than yiyj, we have

lc�m(yα−βg) = u · lc�m(yα−β) · lc�m(g) = u · 1 · lc�m(g) = u · lc�m(g)

for some u ∈ K \ {0}, which is just the product of all ci,j that occur while bringing
yα−βg in standard monomial form, and thus

f1 = ρ(f)− lc�m(ρ(f))

u lc�m(g)
yα−βρ(g). (1)

Since lc�m(g) divides h we have c := h
u lc�m (g)

∈ K[x] \ {0} and therefore

t := hf − c lc�m(ρ(f))yα−βg ∈ IS,

as f, g ∈ IS. Multiplying both sides of equation (1) with h ∈ S yields

hf1 = hρ(f)− h

u lc�m(g)
lc�m(ρ(f))yα−βρ(g) = ρ(hf − c lc�m(ρ(f))yα−βg) = ρ(t).

Since ρ(IS) = ρ(ρ−1(S−1I)) ⊆ S−1I, we get hf1 = ρ(t) ∈ S−1I and thus t ∈ IS.
Now we can apply the induction hypothesis: we have t ∈ IS such that ρ(t) = hf1

can be reduced to zero in n− 1 steps with respect to ρ(H), since h ∈ S is invertible
in S−1A and thus does not change the reducibility of f1. This gives us t ∈ I : hm or
hmt ∈ I. Now

hm+1f = hmt+ hmc lc�m(ρ(f))yα−βg ∈ I

implies f ∈ I : hm+1 = I : hm, which shows IS ⊆ I : hm.

Remark 6.35. The theory of Gröbner bases in G-algebras can be extended to submodules of
the free module Ak via monomial module orderings like position over term. Similarly, central
saturation of a submodule I of Ak by q ∈ Z(A) can be defined via

I : q :=
{
r ∈ Ak | qr ∈ I

}
.

Therefore Algorithm 6.33 should be extendable to this setting as well; a question we will further
investigate in future works.
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6.6. Application: D-module theory

Let K be a field and R := K[x1, . . . , xn] a commutative polynomial ring.
Given a set of non-zero polynomials f1, . . . , fm ∈ R, define f := f1 · . . . · fm and consider

the free R[s, 1
f
] = R[s1, . . . , sm,

1
f1·...·fm ]-module of rank one generated by the formal symbol

f s := f s11 · . . . · f smm , that is M = R[s, 1
f
] · f s. Let D be the n-th Weyl algebra containing R as

a subring, then M naturally becomes a left D[s]-module via

g(s, x) • f s = g(s, x) · f s and ∂i • f s =

(
m∑
j=1

sj
∂fj
∂xi

1

fj

)
· f s ∈M.

Let AnnD[s](f
s) be the left ideal of elements from D[s] that annihilate f s, then M ∼=

D[s]/AnnD[s](f
s) as D[s]-module. Since D[s] is Noetherian, there exists a finite generating

set for AnnD[s](f
s). Moreover, AnnD[s](f

s) ∩K[x, s] = {0} and for f = f1 · . . . · fm we define

Bf (s) = (AnnD[s](f
s) +D[s]f) ∩K[s]

to be the Bernstein-Sato ideal of (f1, . . . , fm), which is known to be non-zero (e.g. [Lev15]).
From the action of D[s] onM above, we conclude that D[s]/AnnD[s](f

s) has no R[s]-torsion.
Now, the order of an operator P ∈ D[s] \ {0} is defined to be the total degree of P with

respect to variables ∂1, . . . , ∂n (equivalently, one sets weighted degrees deg(xi) = deg(sj) = 0
and deg(∂i) = 1). The set A1 of operators of order 1 that annihilate f s is non-empty, since
from the action above we can see that(

f · ∂i −

(
m∑
j=1

sj
∂fj
∂xi

∏
k 6=j

fk

))
• f s = 0

in M .
Let us define the logarithmic annihilator of f s, Ann

(1)
D[s](f

s) to be the left ideal of D[s],
generated by A1. Then Ann

(1)
D[s](f

s) ⊆ AnnD[s](f
s) and one of the questions is how to detect

the equality without determining AnnD[s](f
s).

Though AnnD[s](f
s) is K[x, s] \ {0}-saturated ([Lev15]), Ann

(1)
D[s](f

s) is, in general, neither
K[s]\{0}- nor K[x]\{0}-saturated. On the other hand, the K[x, s]\{0}-closure of Ann

(1)
D[s](f

s)

is precisely AnnD[s](f
s) ([Lev15]).

By applying Algorithm 6.33 we can compute the K[s] \ {0}-closure of Ann
(1)
D[s](f

s). If it
strictly contains Ann

(1)
D[s](f

s), we conclude that Ann
(1)
D[s](f

s) is strictly contained in AnnD[s](f
s).

Otherwise theK[x, s]\{0}-closure of Ann
(1)
D[s](f

s) contains theK[x]\{0}-closure of theK[s]\{0}-
closure of Ann

(1)
D[s](f

s). If Ann
(1)
D[s](f

s) is K[s] \ {0}-closed, we can treat both modules faithfully
over the localization at K[s] \ {0}. Since the latter is central in D[s], we can view D(s) as the
Weyl algebra over the fieldK(s). Now, since D(s)/AnnD(s)(f

s) is a module of holonomic rank 1

([Lev15]), we can apply Weyl closure ([Tsa00]) to Ann
(1)
D(s)(f

s) to compute its K[x]\{0}-closure.
As above, if the result strictly contains Ann

(1)
D[s](f

s), then Ann
(1)
D[s](f

s) is strictly contained in
AnnD[s](f

s)
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Conclusion and future work

Since the definition of LSat is inherently unconstructive there is no obvious way to formulate
an algorithm, i.e. a terminating procedure for its computation in general. While in a special
case of S-closure of an ideal I we have presented an algorithm that uses central saturation to
compute IS = LSatS(I), as of yet there is no viable strategy to automatically compute the left
saturation of left Ore sets and represent them in a finitely parametrized form.
Furthermore, we see potential in further analyzing the interplay between local torsion and

algebraic systems theory, where the study of chains of left Ore sets and subsequently chains of
local torsion modules might give more insight into the structure of autonomous systems.
Lastly, we are working to generalize the S-closure algorithm to submodules of free modules.

To the best knowledge of the author, this is the first work to consider the notion of LSat
as described in Chapter 4 not only as a general concept that encompasses many problems, but
specifically as a way to describe the units in Ore localized domains and to regard any Ore
localization as a localization where the set of denominators is saturated.
The algorithm to compute S-closure in a special case given in Chapter 6 is also a new

contribution. There are already efforts to implement the algorithm in the computer algebra
Singular in the context of the already extensive collection of libraries concerning themselves
with D-module theory.
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