
ALGEBRAIC FOUNDATIONS FOR FINITE

DIFFERENCE SCHEMES
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Abstract. In this paper we present a very general way to gener-
ate finite difference schemes of arbitrary partial differential equa-
tions analytically. This approach uses the concept of polynomial
rings and Gröbner bases. A criterion for the existence of a scheme
for a partial differential equation with some arbitrary approxima-
tion rules is given.

1. Introduction

It is well known that in general one cannot solve an arbitrary partial
differential equation symbolically. In this case numerical schemes are
used. Instead of the function - in the sense of a clearly defined map -
one receives approximations of finitely many function values in a certain
interval (more details in [2],[4]). For instance, let us take a look at the
well known advection equation as example for a Cauchy problem of an
unknown real-valued function u = u (x, t) in two real arguments x and
t:

ut + aux = 0

with the initial boundary condition

u (x, 0) = u0 (x)

for some function u0. The Cauchy-Kowalewska theorem guarantees
that in a neighborhood of the boundary there exists exactly one ana-
lytic function that solves the problem above.
With (h, k) = (∆x,∆t) ∈ R+ × R+ introduce the notation

uj
i = u (ih, jk)

to approximate the unknown values of the function u in the several
points (ih, jk) ∈ R× R+ for all (i, j) ∈ Z× N by those uj

i .
Figure 1 illustrates this idea of discretization by means of a rectangular
and uniform mesh.
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Figure 1. Rectangular and uniform mesh in (x, t)-plane

Then the substitution of the occurring derivatives ut and ux by suitable
difference quotients in the specific point (ih, jk) via

(ut)
j

i =
uj+1
i − 1

2

(

uj
i+1 + uj

i−1

)

k
respectively

(ux)
j

i =
uj
i+1 − uj

i−1

2h
leads to

uj+1
i − 1

2

(

uj
i+1 + uj

i−1

)

k
+ a

uj
i+1 − uj

i−1

2h
= 0

or equivalently we can derive a recurrent formula to compute uj+1
i from

uj
i+1 and uj

i−1:

uj+1
i =

1

2

(

uj
i+1 + uj

i−1

)

−
ak

2h

(

uj
i+1 − uj

i−1

)

Figure 2 shows the stencil of the grid points, i.e. the formal relation
visualized in the mesh.

Recent approaches as in [3] propose a formulation of such schemes
completely in terms of partial difference operators Tx, Tt with

Tx ◦ u (x, t) = u (x+ h, t)
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Figure 2. Stencil of Lax-Friedrich-scheme

respectively
Tt ◦ u (x, t) = u (x, t + k)

Then the above scheme can be abbreviated as
(

TtTx −

(

1

2

(

T 2
x + 1

)

−
ak

2h

(

T 2
x − 1

)

))

◦ u (x, t) = 0

This Lax-Friedrich-scheme is known to be numerically stable when find-
ing the values uj

i iteratively (cf. [4]).

2. Setting

Continuous world. The problem of generating difference schemes re-
quires the partial differential equation and the corresponding approxi-
mations on the input. Let u be an unknown function and consider the
set

S =







∑

γ∈Γα



cαγ ·
∏

β∈Bγ

uxβ



 |α ∈ Ψ







which is any finite set of partial differential equations involving u. For
further explanation we introduce the notation

uxβ :=
∂β

∂xβ
u :=

∂|β|

∂β1
x1 ...∂

βl
xl

u

and assume all cαγ to be invertible. We allow in this case even the
occurrence of non-linear terms with respect to the uxβ .
First consider one equation, i.e. |S| = 1, since in the case of several
differential equations one has to generate the several schemes indepen-
dently from each other and in this paper we shall restrict ourselves to
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case of one partial differential equation if not indicated otherwise.
The occurring derivatives uxβ of u in the set S will be collected in the
set

Λ = {uxα1 , ..., uxαl} =
⋃

α∈Ψ

⋃

γ∈Γα

⋃

β∈Bγ

{uxβ}

Now we define the suitable ring in which we will work and formulate
some requirements that show the desired properties of this ring.
Consider a numerical field F of transcendence degree zero over the
field of rational numbers Q, i.e. the field extension F/Q is purely
algebraic over Q. This ensures that all occuring objects are computable
in practice. We allow the ”coefficients” cαγ in S to be functions, e.g.
cαγ ∈ C1, where C1 = C∞ is possible.
The occurring derivatives shall be the variables in the ring to be defined
below

Λ = {uxα1 , ..., uxαl} =: {z1, ..., zl}

The final ring, called D0, associated to S is defined as

D0 = F⊗F C1 [Λ] = F⊗F C1 [uxα1 , ..., uxαl ]

This notation is set up for a suitable frame of the continuous world. It
assures that all the occurring parameters are invertible and no prob-
lems arise when performing term operations. Remember in this context
that no discretization or approximation was needed so far.

Remark 2.1. D0 is not neccesarily a differential ring but indeed a sub-
ring of a differential ring and it is a finitely generated F-agebra (differ-
ential rings in general are not finitely generated).
In this special case C1 = C∞ (F,F) of all invertible infinitely differen-
tiable functions F −→ F one sees that (C1, (∂xi

)i) is a differential field
since it is closed under the action of the operators ∂xi

for all i.

Discrete world. We now formulate the specific notions for the dis-
crete aspects in an analogous manner to the issues in the continuous
world.
As in 1 the discretization is described by means of a finite difference
scheme, focuses on approximations of the values of a function and is
the basis for recurrent solution formulas. Often for a function

u : Fn+1 −→ F

(x1, ..., xn, t) 7−→ u (x1, ..., xn, t)

an uniform grid (i.e. ∆xi and ∆t are constant) in the space of the
function arguments (x1, ..., xn, t) is used. To make this point we for-
mally describe the set of all grid points that can occur in the process of
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discretization for a given set {uxθ |θ ∈ Θ} of arbitrary partial derivatives

D1 = F
[{

(uxθ)δ |θ ∈ Θ, δ ∈ Zn+1
}]

Clearly, D1 is an infinite set.
We want to model an arbitrary shifting process on the i-th argument
xi of a function u in the point (x1, ..., xi, ..., xn, t) with a shift operator

Txi
◦ u (x1, ..., xi, ..., xn, t) = u (x1, ..., xi +∆xi, ..., xn)

by considering and allowing only those points that are on the un-
bounded and infinite grid

Ω := (Z∆x1 × ...× Z∆xn × Z∆t) ∩ Rn+1

In general the arguments of the considered functions u are in the R-
space Rn+1 that is obviously no finitely generated Z-module. So the
definition of Ω provides that it is naturally isomorphic as a Z-module:

Zn+1 ∼= Ω

and hence the shifted points are again in the grid and it makes sense
to work with the shift operators Ti on Zn+1 (rather than with the Txi

on Rn+1):

Ti : xδi 7→ xδi+1

with δ ∈ Zn+1 and xδi = δi∆xi and tδn+1
= δn+1∆t.

The philosophy of this setting can obviously been seen if we introduce
the notation

(

∂α

∂xα
u

)

(

xδ1 , ..., xδn , tδn+1

) approx

≈ (uxα)δ

for the approximated values of a function uxα.

This convention and notation provides some advantages with respect
to the infinitely many grid points and gives the possibility to calculate
on a sufficiently large grid, such that the boundary conditions can be
ignored when dealing with an arbitrarily chosen generic point and its
neighbored points.
With this in mind one can define shift operators in each direction
(forward and backward) T1, ..., Tn, Tn+1 on D1. Let γ ∈ Zn+1 and
T γ = T γ1

1 · ... · T γn
n · T

γn+1

n+1 then define the action

T γ ◦ (uxα)δ = (uxα)δ+γ

Note that negative shifts are indeed possible. This allows us to pick one
representative generic point δ ∈ Zn+1 and get all points just by shifting
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it via these operators. By definition, the operators are multiplicative,
that is:

T γ ◦
(

(uxα)δ1 · (uxβ)δ2
)

= T γ ◦
(

(uxα)δ1
)

· T γ ◦
(

(uxβ)δ2
)

Figure 3 shows an example of how the shift operators work in the (x, t)-
plane.

Figure 3. Action of the shift operator (TtT
−2
x ) ◦

(

uj−1
i+1

)

= uj
i−1

For convenience we will drop ◦ when dealing with the Ti’s henceforth.

From this point it is necessary to incorporate the approximations into
the framework for the discrete setting. Assume, that to a set

S =

{

∑

γ∈Γα

(

cαγ ·
∏

β∈Bγ

uxβ

)

|α ∈ Ψ

}

⊂ D0

of partial differential equations with

Λ = {uxα1 , ..., uxαl}

there are certain approximations

Aδ =
{

(uxλ)δ −
∑

ω∈Ωλ

(

cω ·
∏

ν∈Nω

T γν (uxν)δ
)

|λ ∈ Φ
}
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Note here, that nonlinearity in the trailing terms of the sum is possible.
With these approximations in mind we define the set

M δ =
{

(uxβ1 )
δ , ..., (uxβm )

δ
}

=
⋃

λ∈Φ

⋃

ω∈Ωα

⋃

ν∈Nω

{

(uxν)δ
}

∪
{

(uxλ)δ
}

of all terms oft the type (uxς )δ that occur in Aδ.
Besides we want to denote the set of all terms that are being approxi-
mated by other terms, i.e. all the terms on the left hand side in Aδ:

Lδ =
⋃

λ∈Φ

{

(uxλ)δ
}

Before giving the final definition of the ring in which we will work while
being in the discrete world, we shall take a look at the map ϕ that takes
objects to their discrete analogs.

Recall the ring we defined before

D0 = F⊗F C1 [Λ]

where C1 describes the coefficients in S. These can be split up into
coefficients c′ ∈ Cc

1 that are constant and those c′′ ∈ Cd
1 that depend

on x1, ..., xn, t. These coefficients are neglected with respect to the
action of differentiation. The constants form a subring Cc

1 ⊆ C1 with
the property

∂α ◦ c = 0 ∀c ∈ Cc
1 ∀α ∈ N \ {0}

and accordingly the dependent coefficients Cd
1 form a F-algebra.

Example 2.2. Let us consider the term 2 · sin + 3 · cos. Then for Cd
1

and for Cc
1 we define for the dependent functions

Cd
1 = F (cos, sin)

and for the constants

Cc
1 = F (a)

[b]

〈b2 + 1〉

and thus

2⊗ sin + 3⊗ cos ∈ Cc
1 ⊗F C

d
1

Since different behavior of approximation and, hence, of shift operators
on both, constants and non-constants, occurs when discretization takes
place, we need to distinguish between them. A discussion about this
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will proceed later in this chapter (confer 2.9). This gives rise to the
map

ϕ : C1 = Cc
1 ⊗F C

d
1 −→

{

φ | φ : Zn+1 → R
}

(c′, c′′) 7−→ (c′, δ′ (c′′))

with δ′ (c′′) = c′′ (δ) being the value of c′′ at the generic point δ ∈ Zn+1.
Note that this map is well-defined since the coefficients are well-known
and remark that the domain of the image function has changed. Let
Λδ = ϕ (Λ) denote the image of ϕ at a symbolic point δ.

With the above setting and the convention that C2 labels the discrete
coefficients in the approximations the ring D2 can be defined as

D2 = F⊗F C
δ
1 ⊗F C2 (T1, ..., Tn, Tn+1)

[

Λδ ∪M δ
]

or, in a short notation

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]

The philosophy here is to enlarge the ring by means of the shift op-
erators T in both directions, hence it suffices to focus on one generic
symbolic point δ ∈ Zn+1 because modulo the action of these operators
all points can be identified.

Remark 2.3. Note here that according to this definition for any element
in the ring D2 the Ti can occur in fractions but one can avoid this
situation by cancelling out all denominators during computations via
multiplication with the least common multiple of the denominators.
Thus, we regard only elements of the D2 with no Ti occurring in the
denominator of them.
But the formal allowance of fractions gives us the desirable case of

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]

= K
[

Λδ ∪M δ
]

with K being a field. This fact will be exploited later.

Orderings for schemes. We now formulate an important condition
for the existence and uniqueness of numerical schemes and therefore
we use the concept of monomial orderings.

Definition 2.4. A monomial ordering < in a polynomial ring A is a
total ordering on the set MonA of all monomials in A with the property

m1 < m2 ⇒ m1 ·m3 < m2 ·m3 ∀m1, m2, m3 ∈ MonA
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We will restrict ourselves in the following to global orderings, that is
we assume

m > 1 ∀m ∈ MonA

Confer [1] for details.

Finding some ordering with a special property is crucial for our ap-
proach. Hereafter the ring to be considered shall be D2 and as mono-
mials we look upon the set

MonD2
= Λδ ∪M δ

The shift operators are ignored with respect to an ordering.

Definition 2.5. The set Aδ is called sufficient for scheme generation
if there exists a (global) ordering > on MonD2

such that

(uxλ)δ >
∏

ν∈Nω

(uxν)δ ∀λ ∈ Φ ∀ω ∈ Ωλ

Likewise we call such an ordering < sufficient for scheme generation
with respect to a set Aδ.

An immediate consequence of 2.5 is:

Corollary 2.6. If the ordering < is sufficient for scheme generation,
then

|Lδ| < |M δ|

Thus, there is the necessary condition |M δ \ Lδ| ≥ 1.

Proof. Since Lδ ⊆ M δ we have to prove the strictness of this relation. If
Lδ = M δ was true this would imply a contradiction to the transitivity
property of the monomial ordering <. �

An easy example shows the reasoning of 2.6.

Example 2.7. For a partial differential equation

Sδ = {utt + a · uxx}

and some approximations

Aδ =
{

utt − (ux + ut) , ut −
(

u+ u2
)

, uxx − (ux + u) , ux −
(

u+ u3
)

, u− (ut + ux)
}

we see that

Lδ = {utt, ut, uxx, ux, u} = M δ
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However, the second and the last element in Aδ must hold the order

ut > u > ut

to fulfill the condition in 2.5. This is a contradiction to the transitivity
of <.

Because of the same arguments as above the converse implication in 2.6
is not generally true, as the following example illustrates:

Example 2.8. Let
Sδ = {ut + a · ux}

and the formal approximations

Aδ =
{

ut − (ux + ux · u) , ux −
(

ut + u2
)}

Then we clearly have

Lδ = {ut, ux} $ {ut, ux, u} = M δ.

For 2.5 we need the existence of a monomial ordering < with

ut > ux and ux > ut

which, of course, is an obvious contradiction.

Remark 2.9. Note that in the case of non-constant coefficients that
depend on the variables x1, ..., xn, t in the F-algebra Cc

1 ⊗F C
d
1 the ap-

proximation of those c ∈ Cd
1 has to be conducted though these func-

tions are well-known. Recall, that the shift operators are defined to be
multiplicative, that is

T ◦ (u1 · u2) = T ◦ u1 · T ◦ u2

for any two elements u1, u2 in the ring D2.
Consider the case of u1 = xk being the identity for the k-th spatial
variable, u2 = uxk

and T = Tk. Then there is a natural discretization
for the non-constant function xk in any point a = (i1, ..., in+1) of the
grid Ω with xk (a) = ik for the k-th argument and hence omitting the
operator notation ◦ by limiting to multiplication · in the ring D2 we
have in the continuous case generally

T · (x · ux) = (T · x) · (T · ux) = (x+∆x) · T · ux

and likewise in the discrete case the operator Tk is not commutative
with the approximation of xk

Tk · (ik · uxk
) = (Tk · ik) · (Tk · uxk

) = (ik + 1) · Tk · uxk
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and thus
Tk · ik = (ik + 1) · Tk

for all k ∈ {1, ..., n+ 1}. This reasoning takes place when dealing with
arbitrary non-constant functions.

Concerning the above remark and, consequently, the lacking property
of commutativity in the case of occurring non-constant functions we
assume for future discussions from now on that coefficients are con-
stant and therefore C1 = Cc

1.

Next we describe the procedure to generate and define a finite dif-
ference scheme:

Definition 2.10. Let Sδ, Aδ and the sets M δ, Lδ be as above and let
< be a monomial ordering on the difference ring

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]

Moreover, assume that the sufficiency for scheme generation is pro-
vided. Then D, defined via

D :=
(

〈Sδ〉D2
+ 〈Aδ〉D2

)

∩ F⊗F C
δ
1 ⊗F C2 (T )

[(

Λδ ∪M δ
)

\ Lδ
]

is called a finite difference scheme ideal.

Remark 2.11. Note, that we do not require the ideals 〈Sδ〉D2
and 〈Aδ〉D2

to be difference ideals in the definition above, so we can make several
observations due to 2.10:
Clearly D is an ideal in the ring D2. That is

a1 + a2 ∈ D ∧ m · a1 ∈ D2 ∀a1, a2 ∈ D ∀m ∈ D2

But D ED2 is not necessarily a difference ideal, i.e. an ideal with the
property

∆i ◦ f ∈ D ∀f ∈ D ∀∆i

where the ∆i are the occurring difference operators.

The ideal in 2.10 gives rise to work with Gröbner bases and the un-
derlying theory, since all the objects defined so far are computable by
means of computer algebra and its corresponding algorithms.

Since F⊗FC
δ
1 ⊗FC2 (T ) = K is a field, we can answer the question why

the ideal
D E K

[(

Λδ ∪M δ
)

\ Lδ
]

is called a finite difference scheme by stating the following lemma:
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Lemma 2.12. In the case of

|
(

Λδ ∪M δ
)

\ Lδ| = 1

the ideal D is a principal ideal, that is

D = 〈d〉D2

and d is unique up to multiplication with constants.

Proof. As the ground ring is a field, the above statement is elementary
commutative algebra (confer [1]). �

In this case one can speak of the finite scheme like in the classical case
and one can identify the ideal D with its unique generator d.
If

|
(

Λδ ∪M δ
)

\ Lδ| ≥ 2

then D is not an ideal in a principal ideal domain and in general cannot
be generated by exactly one element. This case would lead to a situa-
tion in which we deal with a system of equations in the corresponding
ring.

Remark 2.13. Philosophy of 2.10: In a scheme we want all variables
that are being approximated by others to be eliminated. Only those
variables that do not have a given approximation remain in the final
scheme.

We give an example of 2.10 and how to use Singular [6] in this context:

Example 2.14. Take a look at the well known Cauchy problem

ut + a · ux = 0

Here we can choose C1 = F (a) = Cc
1 and want to approximate the

derivatives ut, ux by simple difference quotients and with k = ∆t, h =
∆x:

ut =
u (x, t + k)− u (x, t)

k
=

Tt ◦ u− u

k
respectively

ux =
u (x+ 2h, t)− u (x, t)

2h
=

T 2
x ◦ u− u

2h
In our terminology we can express this as follows:

Sδ = {ut + aux}
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and

Aδ =
{

k · ut − (Tt − 1) u, 2h · ux −
(

T 2
x − 1

)

u
}

Note, that we do not distinguish between · and ◦ here and allow invert-
ible coefficients h, k for ux and ut. So we have

Lδ = {ut, ux} $ {ut, ux, u} = M δ

To compute the scheme according to 2.10 in Singular we need the suit-
able ring A = Q (a, h, k) [ut, ux, u] and an ordering < due to 2.5. In
Singular we proceed by introducing additional variables Tt and Tx (shift
operators) coming together with a block-ordering that makes them sub-
ordinate to ut, ux, u:

> ring A=(0,a,h,k),(Ut,Ux,U,Tt,Tx),(lp(3),lp);

then initialize the ideals:

> ideal S=Ut+a*Ux;

> ideal L=Ut-(Tt-1)/k*U,Ux-(Tx^2-1)/(2*h)*U;

> ideal I=S+L; //this is the union of S and L

Next we compute the scheme
(

〈Sδ〉D2
+ 〈Aδ〉D2

)

∩ F⊗ Cδ
1 ⊗ C2 (T )

[(

Λδ ∪M δ
)

\ Lδ
]

i.e. we eliminate the first two variables ut and ux from the ideal:

> eliminate(I,intvec(1,2));

_[1]=(2*h)*U*Tt+(a*k)*U*Tx^2+(-a*k-2*h)*U

Depending on the taste of the user one could have computed the reduc-
tion of the generator of Sδ by the generators of Aδ to receive the same
polynomial modulo multiplication with 2hk:

> reduce(S,std(L));

_[1]=1/(k)*U*Tt+(a)/(2*h)*U*Tx^2+(-a*k-2*h)/(2*h*k)*U

The equality test

> reduce(S,L)[1]*2hk==eliminate(I,intvec(1,2))[1];

1

confirms our statement above. Finally we get the scheme
(

Tt − 1 +
ak

2h

(

T 2
x − 1

)

)

◦ u

or equivalently

Tt ◦ u = u−
ak

2h
·
(

T 2
x ◦ u− u

)

respectively

uj+1
i = uj

i −
ak

2h
·
(

uj
i+2 − uj

i

)
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in the nodal form. The stencil of this scheme is shown in figure 4.
For details of computation, see example 4.1.

Figure 4. Stencil of the scheme in example 2.14

Below we shall illustrate the computation of the Lax-Wendroff-scheme
within a Singular session:

Example 2.15. Consider the Cauchy problem

Sδ = {ut + a · ux}

as above with the forward approximation for the time

(ut)
j
i =

uj+1
i − uj

i

k

and a weighted mixture of upwind and downwind approximations for
the space direction

(ux)
j
i = θ

uj
i − uj

i−1

h
+ (1− θ)

uj
i+1 − uj

i

h

along with the weights

θ =
1 + ak

h

2
(1− θ) =

1− ak
h

2
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So we have

Aδ =

{

ut −
(Tt − 1)

k
u, ux −

(

1 + ak
h

)

2

(1− T−1
x )

h
u−

(

1− ak
h

)

2

(Tx − 1)

h
u

}

Note that we use shift operators both in positive and negative direction,
since they occur in the approximations. Accordingly we define the ring

> ring A=(0,a,h,k),(Ut,Ux,U,Ttp,Ttm,Txp,Txm),(lp(3),lp);

and assure that the interaction of shift operators works correctly with
the ideal

> ideal C=Ttp*Ttm-1,Txp*Txm-1;

Then declare Sδ and Aδ:

> ideal S=Ut+a*Ux;

> ideal L=Ut-(Ttp-1)*1/k*U,Ux-1/2*(1+k/h*a)*(1-Txm)/h*U

-1/2*(1-k/h*a)*(Txp-1)/h*U;

and eliminate the first two variables ut and ux from the ideal

〈Sδ〉D2
+ 〈Aδ〉D2

in the basering:

> ideal I=reduce(S+L,std(C));

> intvec v=1,2;

> reduce(eliminate(I,v),std(C));

_[1]=(-2*h^2)*U*Ttp+(a^2*k^2-a*h*k)*U*Txp+(a^2*k^2+a*h*k)*U*Txm

+(-2*a^2*k^2+2*h^2)*U

As mentioned above one can calculate the same result with the aid of
reducing Sδ by Aδ

> reduce(reduce(S,std(L)),std(C));

_[1]=1/(k)*U*Ttp+(-a^2*k+a*h)/(2*h^2)*U*Txp

+(-a^2*k-a*h)/(2*h^2)*U*Txm+(a^2*k^2-h^2)/(h^2*k)*U

Both results differ from each other only up to the constant (−2h2k):

> reduce(reduce(S,std(L)),std(C))[1]*-2*h^2*k

==reduce(eliminate(I,v),std(C))[1];

1

So finally we obtain with c = ak
h

the scheme

Ttut = Txu
(c2 − c)

2
+ u

(

1− c2
)

+ T−1
x u

(c2 + c)

2

or in traditional form:

uj+1
i = uj

i+1

(c2 − c)

2
+ uj

i

(

1− c2
)

+ uj
i−1

(c2 + c)

2
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Figure 5 displays the relation of the grid points.
For details on computation, see 4.2.

Figure 5. Stencil of the Lax-Wendroff-scheme in exam-
ple 2.15

3. Discussion

In this section we want to give some hints how to understand the
proposed notations. Our reasoning will be based upon computer alge-
braic concepts.
For that reason we will give the relevant definitions in order to remind
the reader of Gröbner bases. For more detailed explanations and ex-
amples confer [1].

Remark 3.1. Let f ∈ K [x1, ..., xn] be an arbitrary polynomial and < a
monomial ordering. Then f can uniquely be written as

f = aα · xα + aβ · x
β + .. + aγ · x

γ

with aα, aβ , aγ 6= 0 and

xα > xβ > .. > xγ

The (with respect to <) biggest term xα is called the leading term of
f or simply lt (f).
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An easy example for two different orderings shall be demonstrated
with the polynomial f = x3 − 3x2y5 + xy7 ∈ K [x, y]. Note that
MonK[x,y] = N2, x = (1, 0) and y = (0, 1) respectively.

(1) <=<lp with

(α1, α2) >lp (β1, β2) :⇐⇒ ∃1 ≤ i ≤ 2 :

α1 = β1, ..., αi−1 = βi−1, αi > βi

then

lt (f) = x3 and tail (f) = −3x2y5 + xy7

(2) <=<Dp
with

(α1, α2) >Dp
(β1, β2) :⇔

∑

i

αi >
∑

i

βi

or (
∑

i

αi =
∑

i

βi and ∃1 ≤ i ≤ 2 :

α1 = β1, ..., αi−1 = βi−1, αi > βi)

lt (f) = xy7 and tail (f) = −3x2y5 + x3

Definition 3.2. Let M ⊆ K [x1, ..xn] be any subset. The ideal

L (G) := 〈lm (g) |g ∈ G \ {0}〉K[x1,..,xn]

is called the leading ideal of G.

Example 3.3. Let G = {x2 − y, xy − y2} be a finite set and an order-
ing <=<lp with y < x. Then we have

L (G) = 〈x2, xy〉K[x,y] =
{

f · x2 + g · xy|f, g ∈ K [x, y]
}

Definition 3.4. Let I E A = K [x1, ..xn] be an ideal, G ⊆ A a finite
subset. Then G is called a Gröbner basis of I for a global ordering ¡
(i.e. well-ordering) if

G ⊂ I ∧ L (I) = L (G)
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the last condition means that

∀f ∈ I ∃g ∈ G lm (g) | lm (f)

We want to stress the fact that a Gröbner basis exists and is a finite
set in the ring A.

Definition 3.5. A monomial ordering < on a polynomial ring A =
K [x1, .., xk, xk+1, ..., xn] is called an elimination ordering for x1, ..., xk,
if it has the elimination property for the first k variables, that is

lm (g) ∈ K [xk+1, ..., xn] =⇒ g ∈ K [xk+1, ..., xn]

for any polynomial g ∈ A.

Elimination property assures that the non-occurrence of a suitable sub-
set of variables in the leading monomial of a polynomial is sufficient
for the membership of this polynomial in a subring not involving these
variables anymore. A very prominent representant of these eliminition
orderings is <lp as defined above.
We next give a lemma that describes the interplay of eliminition order-
ings and Gröbner bases and omit the proof (confer [1]):

Lemma 3.6.

Let < be an eliminition ordering in the ring K [x1, ..., xk, xk+1, ..., xn]
for the variables x1, ..., xk. Consider the Gröbner basis G of the ideal
I ≤ K [x1, ..., xn]. Then the set

G̃ := {g ∈ G | lm (g) ∈ K [xk+1, ..., xn]} ⊂ K [xk+1, ..., xn]

is a Gröbner basis of

Ĩ := I ∩K [xk+1, ..., xn]

�

The concept of a normal form is essential for our further discussion:

Definition 3.7. Let G = {G | G = {g1, ..., gs} ⊂ A is finite}. A nor-
mal form NF is a map

NF : A× G −→ A (f,G) 7−→ NF (f |G)

with the following characteristics: ∀f ∈ A and ∀G ∈ G

1. NF (0|G) = 0
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2. NF (f |G) 6= 0 ⇒ lm (NF (f |G)) /∈ L (G)

3. f−NF (f |G) has standard representation with respect toNF (...|G)
i.e.

f −NF (f |G) =

s
∑

k=1

akgk

with ak ∈ A and s ≥ 0, such that

lm (
∑s

k=1 akgk) ≥ lm (akgk) ∀k with akgk 6= 0
NF is called a reduced, if NF (f |G) is reduced with respect to G for
any polynomial f ∈ A. That means, no monomial of the power series
expansion of NF (f |G) is an element of L (G). Confer [1] for further
details.

Again without proof (see [1]) we state conditions for an extremely useful
property of a normal form:

Theorem 3.8. Let NF (...|G) a reduced normal form and G ⊆ A a
standard basis of 〈G〉A. Then NF is unique. �

Definition 3.9. Let a, b ∈ K [x1, ..., xn] be polynomials with

lt (a) = lc (a) lm (a) = lc (a) xα lt (b) = lc (b) lm (b) = lc (b) xβ

and let

γ := lcm (lm (α) , lm (β)) := (max (α1, β1) , ...,max (αn, βn))

be the least common multiple of the leading monomials, then define
the spoly via

spoly (a, b) := xγ−αa−
lt (a)

lt (b)
· xγ−βb

Remember the set Aδ, the set of formal approximations for the equation
in Sδ. If the monomial ordering < is sufficient for scheme generation,
we can state some interesting property of Aδ:

Lemma 3.10. Aδ is a Gröbner basis with respect to the ordering <

Proof. Since all leading monomials uxβ are pairwise distinct variables
in the ring

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]
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we see on account of the product criterion ( 3.11) that Aδ is a Gröbner
basis with respect to the ordering <. �

The reasoning of 3.10 can bee seen via the following lemma:

Lemma 3.11. Let a and b be two polynomials with the property

lm (a) · lm (b) = lcm (lm (a) , lm (b))

then

NF (spoly (a, b) | {a, b}) = 0

where NF (...| {a, b}) denotes a normal form.

Proof. This is a simple consequence and follows by looking at the re-
duction process and the construction of the spoly (see [1]). �

We can state an obvious consequence of the above lemma as follows:

Corollary 3.12. In particular, 3.11 means that {a, b} is a Gröbner
basis of the ideal 〈a, b〉.

3.10 and 3.8 give rise to a very crucial observation:

Theorem 3.13. Let Sδ = {h} any partial differential equation in an
unknown function u and let Aδ be a set of approximations that is suf-
ficient for scheme generation with a suitable ordering < on the mono-
mials of the ring

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]

= K (T )
[

Λδ ∪M δ
]

as defined in 2.5 and the ordering < with the elimination property ( 3.5)
for the set Lδ. Let as before Lδ be the set of the occurring derivatives
on the left hand side in Aδ, M δ denote the set of all derivatives in Aδ

and finally Λδ consist in all derivatives of h. And these sets shall have
the property

|
(

Λδ ∪M δ
)

\ Lδ| = 1

Then there are two equivalent ways to compute the finite difference
scheme from the given set:

(1) h
reduce
−−−→= NF

(

h|Aδ
)

= a1 ∈ D2

(2)
(

〈Sδ〉D2
+ 〈Aδ〉D2

)

∩K (T )
[(

Λδ ∪M δ
)

\ Lδ
]

= 〈a2〉D2
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With equivalent we mean the identity of a1 and a2 up to multiplication
with constants:

a1 = c · a2

Proof. Let without loss of generality Λδ ∪ M δ = {um, ..., u1, u} and
(

Λδ ∪M δ
)

\ Lδ = {u} holding the order um > ... > u1 > u. As a
reduced normal form the reduced Buchberger Algorithm with tail re-
duction shall be chosen as a reduced normal form ([1] for details). The
main iterative reduction step is performed by computing the appropri-
ate spoly

spoly (h,m) = h−
lc (h)

lc (m)
· uα−βm

for an element m ∈ Aδ, with lm (m) = uα | uβ = lm (h) being provided
by the set of approximations Aδ. Then clearly

lm (spoly (h,m)) < lm (h)

and during the reduction process one receives a sequence of leading
monomials that becomes stationary:

lm (h) > lm (h1) > ... > lm (hs)

Claim: hs = u. This is obvious, since the approximations in Aδ give
adequate substitutions for each occurring derivative and these are the
ring variables. The assumption in the theorem statement assures that
the claim holds true and consequently

h ∈ K (T ) [u]

Besides, a normal form has standard representation and hence

h ∈
(

〈Sδ〉D2
+ 〈Aδ〉D2

)

Here it is important that the normal form is reduced so the property of
uniqueness is guaranteed (by 3.8), since furthermore the fact that Aδ

is a Gröbner basis on account of 3.10 can be exploited in this context.
After reduction the set Aδ ∪{h} is a Gröbner basis of 〈Aδ∪{h}〉D2

due
to the Buchberger criterion (confer [1]) and with the reasoning above
we see, that

(

Aδ ∪ {h}
)

∩K (T ) [u] = {h}

and is moreover a Gröbner basis for
(

〈Sδ〉D2
+ 〈Aδ〉

)

∩K (T ) [u].
Since the ring D2 is a principal ideal domain we observe that every
ideal has one unique generator up to multiplication with constants and
hence the proof is done. �
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Suitable examples that show the computation in these two proposed
ways of 3.13 are given in 4.1 and 4.2. The equality can be seen there
easily.

Remark 3.14. Note, that we do not assume additional properties to our
definition of schemes except the existence of an ordering that suffices
for scheme generation. We do not exclude non-linear partial differen-
tial equations from our treatment, quite the contrary they are allowed
explicitly. This is a fundamental difference between our attempt and,
for instance, the Janet bases approach of V. Gerdt in [5] or the module
approach of V. Levandovskyy in [3].

But for one linear partial differential equation with the characteristic
of constant coefficients these three strategies are indeed equivalent ac-
cording to a theorem in [3].

Remark 3.15. The generation of a scheme with an underlying partial
differential equation of two or more unknown functions u, v, w etc. in-
stead of the case with one single unknown function u is possible.
Warning: the condition 2.5 is imposed to be valid for each function
separately. I.e. we have to work in a ring

A = R [Mu,Mv, ...,Mw]

with a suitable block ordering.

Remark 3.16. If |Sδ| > 1, i.e. the case of several partial differential
equations in the same unknown function, the problem of scheme gen-
eration can be reduced to the case of one equation by treating these
separately i.e.

Sδ =
{

sδ1, ..., s
δ
m

}

=
{

sδ1
}

∪ ... ∪
{

sδm
}

= Sδ
1 ∪ ... ∪ Sδ

m

and receiving distinct schemes for each Sδ
j . For the several Sδ

j certain

approximations Aδ
j have to be used that must be compatible to each

other. Confer [5] for more material.

The following theorem describes two ways of computing difference
schemes for a system of partial differential equations in several un-
known functions if one single set of approximations is valid for the



ALGEBRAIC FOUNDATIONS FOR FINITE DIFFERENCE SCHEMES 23

occurring derivatives in all equations.

Theorem 3.17. Let Sδ =
{

sδ1, ..., s
δ
N

}

be the set of N distinct partial
differential equations of M unkown functions U = {u1, ..., uM} with
the common approximations Aδ = {a1, ..., ak} and let, moreover, the
sufficiency of scheme generation be imposed on Aδ for each equation
sδj. Let as before Λδ be the set of derivatives in Sδ, M δ denote all

derivatives in Aδ and finally Lδ be all derivatives on the left hand side
in the approximations such that

(

Λδ ∪M δ
)

\ Lδ = U

and recall the ring D2 as in 3.13

D2 = F⊗F C
δ
1 ⊗F C2 (T )

[

Λδ ∪M δ
]

= K (T )
[

Λδ ∪M δ
]

Consider the following definitions for the ideals I1 and I2:

(1)

I1 = (〈G〉D2
) ∩K (T ) [U ]

where G is a Gröbner basis of Sδ ∪Aδ with respect to an elimi-
nition ordering

(2)

I2 =
(

〈h1, ..., hN〉D2
+ 〈Aδ〉D2

)

∩K (T ) [U ]

where hj = NF
(

sδj |A
δ
)

for all j

Claim:

I1 = I2

Proof. The proof is obvious and follows simple reasoning in ideal theory.
�

Remark 3.18. Note that in K (T ) [U ] there do not occur any derivatives,
since they are cancelled out by the approximations with the property
of scheme sufficiency and on account of

(

Λδ ∪M δ
)

\ Lδ = U .
It is clear that hj ∈ K (T ) [U ] for these reasons and hence hj ∈ I2 ∀j.
Moreover, {hj} ∪ Aδ is a Gröbner basis, but the set {h1, ..., hN} ∪ Aδ

is in general not necessarily a Gröbner basis of 〈h1, ..., hN〉D2
+ 〈Aδ〉D2

.

These two methods differ from a principal and from a practical point
of view: the first ideal I1 is computed by Gröbner basis computation of
the whole union Sδ ∪Aδ with all equations being involved, whereas the
ideal I2 is computed by calculating the several Gröbner bases {hj}∪Aδ

independently from each other. The complexity of the first approach
may be significantly higher than of the second one. The advantage
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may be that certain hidden constraints between the objects are de-
tected which may become lost in the second case that ist known to be
the classical one.

Remark 3.19. Note, that this paper does not focus on the convergence
theory of numerical schemes. Algebraically this aspect is subordinate
(though of high relevance in practice) and our intention is to give a
general way of numerical scheme generation. For more details see [4]
and [2].

4. Examples with SINGULAR

In this section we calculate the concrete examples with SINGULAR
([6]).

Example 4.1. This example computes 2.14 in SINGULAR.

> ring A=(0,a,h,k),(Ut,Ux,U,Tt,Tx),(lp(3),lp);

> ideal S=Ut+a*Ux;

> ideal L=Ut-(Tt-1)/k*U,Ux-(Tx^2-1)/(2*h)*U;

> ideal I=S+L;

> eliminate(I,intvec(1,2));

_[1]=(2*h)*U*Tt+(a*k)*U*Tx^2+(-a*k-2*h)*U

> reduce(S,std(L));

_[1]=1/(k)*U*Tt+(a)/(2*h)*U*Tx^2+(-a*k-2*h)/(2*h*k)*U

> reduce(S,L)[1]*2hk==eliminate(I,intvec(1,2))[1];

1

Example 4.2. This example computes 2.15 in SINGULAR.

> ring A=(0,a,h,k),(Ut,Ux,U,Ttp,Ttm,Txp,Txm),(lp(3),lp);

> ideal C=Ttp*Ttm-1,Txp*Txm-1;

> ideal S=Ut+a*Ux;

> ideal L=Ut-(Ttp-1)*1/k*U,Ux-1/2*(1+k/h*a)*(1-Txm)/h*U

-1/2*(1-k/h*a)*(Txp-1)/h*U;

> ideal I=reduce(S+L,std(C));

> intvec v=1,2;

> reduce(eliminate(I,v),std(C));

_[1]=(-2*h^2)*U*Ttp+(a^2*k^2-a*h*k)*U*Txp+(a^2*k^2+a*h*k)*U*Txm
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+(-2*a^2*k^2+2*h^2)*U

> reduce(reduce(S,std(L)),std(C));

_[1]=1/(k)*U*Ttp+(-a^2*k+a*h)/(2*h^2)*U*Txp

+(-a^2*k-a*h)/(2*h^2)*U*Txm+(a^2*k^2-h^2)/(h^2*k)*U

> reduce(reduce(S,std(L)),std(C))[1]*-2*h^2*k

==reduce(eliminate(I,v),std(C))[1];

1
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