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ẋ = Ax + X(x) (1)

where x ∈ Cn, A is a possibly complex n × n matrix, and each
component Xk(x) of X, 1 ≤ k ≤ n, is a formal or convergent
power series, possibly with complex coefficients, that contains no
constant or linear terms.
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For α = (α1, . . . , αn) ∈ Nn
0, xα denotes xα1

1 · · · xαn
n and

|α| = α1 + · · ·+ αn,
Hs denotes the vector space of functions from Rn to Rn (Cn to
Cn) each of whose components is a homogeneous polynomial of
degree s; elements of Hs will be termed vector homogeneous
functions. If {e1, . . . , en} is the standard basis of Rn,

ej = (0, . . . , 0,
j
1, 0, . . . , 0)T , then a basis for Hs is the collection of

vector homogeneous functions

vj ,α = xαej (2)

for all j such that 1 ≤ j ≤ n and all α such that |α| = s. For
example, a basis for H2 in the case
X(x) = (X1(x1, x2),X2(x1, x2))T is{(

x2
1

0

)
,

(
x1x2

0

)
,

(
x2
2

0

)
,

(
0

x2
1

)
,

(
0

x1x2

)
,

(
0

x2
2

)}
.
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For α = (α1, . . . , αn) ∈ Nn
0 and κ = (κ1, . . . , κn) ∈ Cn we will let

(α, κ) denote the scalar product (α, κ) =
∑n

j=1 αjκj .

Lemma

Let A be an n × n matrix with eigenvalues κ1, . . . , κn, and let L be
the corresponding homological operator on Hs , that is, the linear
operator on Hs defined by

Lh(y) = dh(y)Ay − Ah(y) . (3)

Let κ = (κ1, . . . , κn). Then the eigenvalues λj , i = j , . . . ,N, of L
are

λj = (α, κ)− κm,

where m ranges over {1, . . . , n} ⊂ N and α ranges over
{β ∈ Nn

0 : |β| = s}. (N = nC (s + n − 1, s)).
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We say that

ẋ = Ax + X(x) X =
∑
|α|>2

Xαx
α (4)

is formally equivalent to

ẏ = Ay + Y(y) (5)

if there is a change of variables

x = H(y) = y + h(y) (6)

that transforms (4) into (5), where Y and h, Yj and hj ,
j = 1, . . . , n, are formal power series.
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Theorem

Let κ1, . . . , κn be the eigenvalues of the n × n matrix A, set
κ = (κ1, . . . , κn), and suppose that

(α, κ)− κm 6= 0 (7)

for all m ∈ {1, . . . , n} and for all α ∈ Nn
0 for which |α| ≥ 2. Then

systems (4) and (5) are formally equivalent for all X and Y, and
the equivalence transformation (6) is uniquely determined by X
and Y.
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Proof. Differentiating (6) with respect to t yields the condition

dh(y)Ay − Ah(y) = X(y + h(y))− dh(y)Y(y)− Y(y) , (8)

that h must satisfy. That is,

Lh(y) = X(y + h(y))− dh(y)Y(y)− Y(y) .
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Decomposing X, Y, and h as the sum of their homogeneous parts,

X =
∞∑

s=2

X(s) Y =
∞∑

s=2

Y(s) h =
∞∑

s=2

h(s) (9)

where X(s),Y(s),h(s) ∈ Hs , (8) decomposes into the infinite
sequence of equations

L(h(s)) = g(s)(h(2), . . . ,h(s−1),Y(2), . . . ,Y(s−1),X(2), . . . ,X(s))−Y(s),
(10)

for s = 2, 3, . . ., where g(s) denotes the function that is obtained
after the substitution into X(y + h(y))− dh(y)Y(y) of the
expression y +

∑s
i=1 h(i) in the place of y + h(y) and the

expression
∑s

i=1 Y(i)(y) in the place of Y(y), and maintaining only
terms that are of order s.
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For s = 2 the right-hand side of (10) is

X(2)(y)− Y(2)(y),

which is known. For s > 2 the right-hand side of (10) is known if
h(2), . . . ,h(s−1) have already been computed. By the Lemma the
operator L is invertible. Thus for any s ≥ 2 there is a unique
solution h(s) to (10). Therefore a unique solution h(y) of (8) is
determined recursively.

Corollary

If condition (7) holds then system (1) is formally equivalent to its
linear approximation ẏ = Ay. The (possibly formal) coordinate
transformation that transforms (1) into ẏ = Ay is unique.
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Definition

Let κ1, . . . , κn be the eigenvalues of the matrix A and let
κ = (κ1, . . . , κn). Suppose m ∈ {1, . . . , n} and α ∈ Nn

0,
|α| = α1 + · · ·+ αn ≥ 2, are such that

(α, κ)− κm = 0 .

Then m and α are called a resonant pair, the corresponding

coefficient X
(α)
m of the monomial xα in the mth component of X is

called a resonant coefficient, and the corresponding term is called a
resonant term of X.
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∃ a non-singular n × n matrix S such that SAS−1 = J is the
Jordan normal form J of A.

y = S x, (11)

then in the new coordinates

ẏ = Jy + Y(y). (12)

A “normal form” for system (1) should be one that is as simple as
possible. The first step in the simplification process is to apply
(11) to change the linear part A in (1) into its Jordan normal form.
We begin with (1) in the form

ẋ = Jx + X(x), (13)

where J is a lower triangular Jordan matrix.
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Definition

A normal form for system (1) is a system (13) in which every
non-resonant coefficient is equal to zero. A normalizing
transformation for system (1) is any (possibly formal) change of
variables (6) transforms (1) to a normal form.
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Theorem

Any system
ẋ = Jx + X(x),

is formally equivalent to a normal form.

Proof.
ẋ = Jx + X(y)

x = H(y) = y + h(y)

ẏ = Jy + Y(y)

L(h(s)) = g(s)(h(2), . . . ,h(s−1),Y(2), . . . ,Y(s−1),X(2), . . . ,X(s))−Y(s),

for s = 2, 3, . . ..

Normal forms



Normal Forms
The center problem

We look for x = y + h(y) that transforms the system into
ẏ = Jy + Y(y). By Lemma the matrix of the operator L is lower
triangular with the eigenvalues (α, κ)− κm on the main diagonal.

Therefore any coefficient h
(α)
m of h(s) is determined by the equation

[(α, κ)− κm]h
(α)
m = g

(α)
m − Y

(α)
m , (14)

where g
(α)
m is a known expression depending on the coefficients of

h(i) satisfying j < s. Suppose that for i = 2, . . . s − 1 the
homogeneous terms h(j) and Y (j) have been determined. Then for
any m ∈ {1, . . . , n}, α with |α| = s, if the pair m and α is
non-resonant, that is, if (α, κ)− κm 6= 0, then we choose Y α

m = 0

so that Y will be a normal form, and choose h
(α)
m as uniquely

determined by equation (14). If (α, κ)− κm = 0, then we may

choose h
(α)
m arbitrarily (h

(α)
m = 0), but the resonant coefficient Y

(α)
m

must be chosen to be g
(α)
m , Y

(α)
m = g

(α)
m . The process can be

started because for s = 2 X
(α)
m − Y

(α)
m .
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Another description of the normalizing process

For k ≥ 2 let Hk denote the vector space of functions from Cn to
Cn all of whose components are homogeneous polynomial
functions of degree k, let

Lh(y) = dh(y)Jy − Jh(y),

and let Kk be any complement to Image(L) in Hk , so that
Hk = Image(L)⊕Kk . Then there is a formal change of coordinates
x = H(y) = y + h(y) such that in the new coordinates system is

ẏ = Jy + f(2)(y) + · · ·+ f(r)(y) + . . . ,

where for k ≥ 2, f(k) ∈ Kk .
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Convergence Theorem

Let κ1, . . . , κn be the eigenvalues of the matrix J in (13) and set
κ = (κ1, . . . , κn). Suppose X is analytic, that is, that each
component Xm is given by a convergent power series, and that for

each resonant coefficient Y
(α)
j in the normal form Y of X, α ∈ Nn

(that is, every entry in the multi-index α is positive). Suppose
further that there exist positive constants d and ε such that the
following conditions hold:
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(a) for all α ∈ Nn
0 and all m ∈ {1, . . . , n} such that

(α, κ)− κm 6= 0,
|(α, κ)− κm| ≥ ε ; (15)

(b) for all α and β in Nn
0 for which 2 ≤ |β| ≤ |α| − 1,

α− β + em ∈ Nn
0 for all m ∈ {1, . . . , n}, and

(α− β, κ) = 0, (16)

the following inequality holds:∣∣∣∣∣∣
n∑

j=1

βjY
(α−β+ej )
j

∣∣∣∣∣∣ ≤ d |(β, κ)|
n∑

j=1

∣∣∣Y (α−β+ej )
j

∣∣∣ . (17)

Then the normalizing transformation x = H(y) is analytic, that is,
each component hm(y) of h is given by a convergent power series,
so that system (13) is analytically equivalent to its normal form.
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ẋ1 = 2x1 + ax2
1 + bx1x2 + cx2

2 + · · ·
ẋ2 = x2 + a′x2

1 + b′x1x2 + c ′x2
2 + · · · .

The normal form is

ẏ1 = 2y1 + Y
(0,2)
1 y2

2

ẏ2 = y2 .

For |α| = 2, g
(α)
m = X

(α)
m (y), so Y

(0,2)
1 = c . Thus, the system is

equivalent to
ẏ1 = 2y1 + cy2

2

ẏ2 = y2 .
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ẋ1 = 2x1 + ax2
1 + bx1x2 + cx2

2 + · · ·
ẋ2 = x2 + a′x2

1 + b′x1x2 + c ′x2
2 + · · · .

The normal form is

ẏ1 = 2y1 + Y
(0,2)
1 y2

2

ẏ2 = y2 .

For |α| = 2, g
(α)
m = X

(α)
m (y), so Y

(0,2)
1 = c . Thus, the system is

equivalent to
ẏ1 = 2y1 + cy2

2

ẏ2 = y2 .
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ẋ1 = 2x1 + ax2
1 + bx1x2 + cx2

2 + · · ·
ẋ2 = x2 + a′x2

1 + b′x1x2 + c ′x2
2 + · · · .

The normal form is

ẏ1 = 2y1 + Y
(0,2)
1 y2

2

ẏ2 = y2 .

For |α| = 2, g
(α)
m = X

(α)
m (y), so Y

(0,2)
1 = c . Thus, the system is

equivalent to
ẏ1 = 2y1 + cy2

2

ẏ2 = y2 .
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ẋ1 = x1 + ax2
1 + bx1x2 + cx2

2

ẋ2 = −x2 + a′x2
1 + b′x1x2 + c ′x2

2 .

The normal form is

ẏ1 = y1 + y1

∞∑
k=1

Y
(k+1,k)
1 (y1y2)k ,

ẏ2 = −y2 + y2

∞∑
k=1

Y
(k,k+1)
2 (y1y2)k .
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ẋ1 = x1 + ax2
1 + bx1x2 + cx2

2

ẋ2 = −x2 + a′x2
1 + b′x1x2 + c ′x2

2 .

The normal form is

ẏ1 = y1 + y1

∞∑
k=1

Y
(k+1,k)
1 (y1y2)k ,

ẏ2 = −y2 + y2

∞∑
k=1

Y
(k,k+1)
2 (y1y2)k .
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For any system of our interest

ẋ1 = x1 +
∑

k+m≥2

Xkmxk
1 xm

2 , ẋ2 = −x2 +
∑

k+m≥2

Xkmxk
1 xm

2

The normal form is

ẏ1 = y1 + y1

∞∑
k=1

Y
(k+1,k)
1 (y1y2)k ,

ẏ2 = −y2 + y2

∞∑
k=1

Y
(k,k+1)
2 (y1y2)k .
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The center problem

The linear approximation does not necessarily determine the
geometric behavior of the trajectories of the nonlinear system in a
neighborhood of the origin.

u̇ = −v − u(u2 + v2) v̇ = u − v(u2 + v2) . (18)

In polar coordinates system (18) is ṙ = −r3, ϕ̇ = 1 . Thus
whereas the origin is a center for the corresponding linear system,
every trajectory of (18) spirals towards the origin, which is thus a
stable focus. On the other hand, one can just as easily construct
examples in which the addition of higher order terms does not
destroy the center.
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u̇ = αu − βv + P(u, v)

v̇ = βu + αv + Q(u, v) ,
(19)

where P(u, v) =
∑∞

k=2 P(k)(u, v) and Q(u, v) =
∑∞

k=2 Q(k)(u, v),
and P(k)(u, v) and Q(k)(u, v) (if nonzero) are homogeneous
polynomials of degree k.
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In polar coordinates x = r cosϕ, y = r sinϕ the system becomes

ṙ = αr + P(r cosϕ, r sinϕ) cosϕ+ Q(r cosϕ, r sinϕ) sinϕ

= αr + r2
[
P(2)(cosϕ, sinϕ) cosϕ+ Q(2)(cosϕ, sinϕ) sinϕ+ · · ·

]
ϕ̇ = β − r−1[P(r cosϕ, r sinϕ) sinϕ− Q(r cosϕ, r sinϕ) cosϕ]

= β − r
[
P(2)(cosϕ, sinϕ) sinϕ− Q(2)(cosϕ, sinϕ) cosϕ+ · · ·

]
.

(20)
For |r | sufficiently small, if β > 0 then the polar angle ϕ increases
as t increases, while if β < 0 then the angle decreases as t
increases.
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The equation of its trajectories

dr

dϕ
=
αr + r2F (r , sinϕ, cosϕ)

β + rG (r , sinϕ, cosϕ)
= R(r , ϕ) . (21)

The function R(r , ϕ) is a 2π-periodic function of ϕ and is analytic
for all ϕ and for |r | < r∗, for some sufficiently small r∗. The fact
that the origin is an singularity for (19) corresponds to the fact
that R(0, ϕ) ≡ 0, so that r = 0 is a solution of (21). We can
expand R(r , ϕ) in a power series in r ,

dr

dϕ
= R(r , ϕ) = rR1(ϕ) + r2R2(ϕ) + · · · =

α

β
r + · · · (22)

where Rk(ϕ) are 2π-periodic functions of ϕ. The series is
convergent for all ϕ and for all sufficiently small r .
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Denote by r = f (ϕ,ϕ0, r0) the solution of system (22) with initial
conditions r = r0 and ϕ = ϕ0. The function f (ϕ,ϕ0, r0) is an
analytic function of all three variables ϕ, ϕ0, and r0, and has the
property that

f (ϕ,ϕ0, 0) ≡ 0 (23)

(because r = 0 is a solution of (22)). Equation (23) and
continuous dependence of solutions on parameters yield the
following proposition.

Normal forms



Normal Forms
The center problem

Proposition

Every trajectory of system (19) in a sufficiently small neighborhood
of the origin crosses every ray ϕ = c , 0 ≤ c < 2π.

The proposition implies that in order to investigate all trajectories
in a sufficiently small neighborhood of the origin it is sufficient to
consider all trajectories passing through a segment
Σ = {(u, v) : v = 0, 0 ≤ u ≤ r∗} for r∗ sufficiently small, that is,
all solutions r = f (ϕ, 0, r0). We can expand f (ϕ, 0, r0) in a power
series in r0,

r = f (ϕ, 0, r0) = w1(ϕ)r0 + w2(ϕ)r2
0 + · · · , (24)

which is convergent for all 0 ≤ ϕ ≤ 2π and for |r0| < r∗.
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This function is a solution of (22), hence

w ′1r0 + w ′2r2
0 + · · · ≡

R1(ϕ)(w1(ϕ)r0+w2(ϕ)r2
0 +· · · )+R2(ϕ)(w1(ϕ)r0+w2(ϕ)r2

0 +· · · )2+· · ·

where the primes denote differentiation with respect to ϕ.
Equating the coefficients of like powers of r0 in this identity we
obtain recurrence differential equations for the functions wj(ϕ):

w ′1 = R1(ϕ)w1 ,

w ′2 = R1(ϕ)w2 + R2(ϕ)w2
1 ,

w ′3 = R1(ϕ)w3 + 2R2(ϕ)w1w2 + R3(ϕ)w3
1 ,

...

(25)
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The initial condition r = f (0, 0, r0) = r0 yields

w1(0) = 1, wj(0) = 0 for j > 1. (26)

Using these conditions we can consequently find the functions
wj(ϕ) by integrating the equations (25). In particular,

w1(ϕ) = e
α
β
ϕ
. (27)

Setting ϕ = 2π in the solution r = f (ϕ, 0, r0) we obtain the value
r = f (2π, 0, r0), corresponding to the point of Σ where the
trajectory r = f (ϕ, 0, r0) first intersects Σ again.
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Definition

Fix a system of the form (19).

The function

R(r0) = f (2π, 0, r0) = η̃1r0 + η2r2
0 + η3r3

0 + · · · (28)

(defined for |r0| < r∗), where η̃1 = w1(2π) and ηj = wj(2π)
for j ≥ 2, is called the Poincaré first return map or just the
return map.

The function

P(r0) = R(r0)− r0 = η1r0 + η2r2
0 + η3r3

0 + · · · (29)

is called the difference function.

The coefficient ηj , j ∈ N, is called the j-th Lyapunov number.
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The first Lyapunov number η1 is η1 = η̃1 − 1 = e2πα/β − 1. Zeros
of the difference function correspond to cycles (closed orbits, that
is, orbits that are ovals) of system (19); isolated zeros correspond
to limit cycles (isolated closed orbits).
System (19) has a center at the origin if and only if all the
Lyapunov numbers are zero. Moreover if η1 6= 0, or if for some
k ∈ N

η1 = η2 = · · · = η2k = 0, η2k+1 6= 0, (30)

then all trajectories in a neighborhood of the origin are spirals and
the origin is a focus, which is stable if η1 < 0 or (30) holds with
η2k+1 < 0 and is unstable if η1 > 0 or (30) holds with η2k+1 > 0.
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