Invariants and time-reversibility in polynomial systems of ODEs

- The theory of invariants of ordinary differential equations has been developed by K.S. Sibirski and his coworkers in 1960-70th:
K. S. Sibirsky. Introduction to the Algebraic Theory of Invariants of Differential Equations. Nonlinear Science:
Theory and Applications. Manchester: Manchester University Press, 1988.
- Generalization to complex systems:

Chapter 5 of V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhüser, Boston, 2009.

Definition

Let k be a field, G be a group of $n \times n$ matrices with elements in $k, A \in G$ and $\mathbf{x} \in k^{n}$. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is invariant under G if $f(\mathbf{x})=f(A \cdot \mathbf{x})$ for every $A \in G$. An invariant is irreducible if it does not factor as a product of polynomials that are themselves invariants.

Example. Let $B=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and let I_{2} denote the 2×2 identity matrix. The set $C_{4}=\left\{I_{2}, B, B^{2}, B^{3}\right\}$ is a group under multiplication, and for the polynomial $f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ we have $f(\mathbf{x})=f(B \cdot \mathbf{x})$, $f(\mathbf{x})=f\left(B^{2} \cdot \mathbf{x}\right)$, and $f(\mathbf{x})=f\left(B^{3} \cdot \mathbf{x}\right)$. Thus, f is an invariant of the group C_{4}. When $k=\mathbb{R}, B$ is simply the group of rotations by multiples of $\frac{\pi}{2}$ radians $(\bmod 2 \pi)$ about the origin in \mathbb{R}^{2}, and f is an invariant because its level sets are circles centered at the origin, which are unchanged by such rotations.

Consider the system $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$:

$$
\begin{align*}
& \dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2} \tag{1}\\
& \dot{x}_{2}=a_{21} x_{1}+a_{22} x_{2}
\end{align*}
$$

Let $Q=G L_{2}(\mathbb{R})$ be the group of all linear invertible transformations of \mathbb{R}^{2} :

$$
\mathbf{y}=C \mathbf{x}
$$

where

$$
C=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \operatorname{det} C \neq 0 .
$$

Then,

$$
\frac{d \mathbf{y}}{d t}=B \mathbf{y}, \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=C A C^{-1}=\frac{1}{\operatorname{det} C}\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right),
$$

where
$d_{11}=a d a_{11}+b d a_{21}-a c a_{12}-b c a_{22}$
$d_{12}=a b a_{11}-b^{2} a_{21}+a^{2} a_{12}+a b a_{22}$,
$d_{21}=c d a_{11}+d^{2} a_{21}-c^{2} a_{12}-c d a_{22}$,
$d_{22}=-b c a_{11}-b d a_{21}+a c a_{12}+a d a_{22}$. Therefore,
$b_{11}=\frac{1}{\operatorname{det} C} d_{11}, \quad b_{12}=\frac{1}{\operatorname{det} C} d_{12}, \quad b_{21}=\frac{1}{\operatorname{det} C} d_{21}, \quad b_{22}=\frac{1}{\operatorname{det} C} d_{22}$.

We look for a homogeneous invariant of degree one:

$$
I(\mathbf{a})=k_{1} a_{11}+k_{2} a_{12}+k_{3} a_{21}+k_{4} a_{22} .
$$

It should be $I(\mathbf{b})=I(\mathbf{a})$, that is,

$$
k_{1} b_{11}+k_{2} b_{12}+k_{3} b_{21}+k_{4} b_{22}=k_{1} a_{11}+k_{2} a_{12}+k_{3} a_{21}+k_{4} a_{22} .
$$

Hence,

$$
k_{1} a d-k_{2} a b+k_{3} c d-k_{4} b c=k_{1}(a d-b c) .
$$

Thus, $k_{2}=k_{3}=0$ and $k_{4}=k_{1}$ and up to a constant multiplier $I_{1}(\mathbf{a})=a_{11}+a_{22}=\operatorname{tr} A$.
Similarly we can show that each invariant of degree 2 must be of the form:
$I(\mathbf{a})=k_{1}\left(a_{11}^{2}+a_{22}^{2}+2 a_{11} a_{22}\right)+k_{2}\left(a_{11} a_{22}-a_{12} a_{21}\right)=k_{1} \operatorname{tr}^{2} A^{2}+k_{2} \operatorname{det} A$.
It yields that the homogeneous invariant of degree two is

$$
I_{2}=\operatorname{det} A=\left(a_{11} a_{22}-a_{12} a_{21}\right) .
$$

Any invariant of degree 3 and higher is a polynomial of $\operatorname{tr} A$ and $\operatorname{det} A$.

Invariants of the rotation group

Consider polynomial systems on \mathbb{C}^{2} in the form

$$
\begin{align*}
& \dot{x}=-\sum_{(p, q) \in \tilde{S}} a_{p q} x^{p+1} y^{q}=P(x, y), \\
& \dot{y}=\sum_{(p, q) \in \tilde{S}} b_{q p} x^{q} y^{p+1}=Q(x, y), \tag{2}
\end{align*}
$$

where the index set $\widetilde{S} \subset \mathbb{N}_{-1} \times \mathbb{N}_{0}$ is a finite set and each of its elements (p, q) satisfies $p+q \geq 0$. If ℓ is the cardinality of the set \widetilde{S}, we use the abbreviated notation
$(a, b)=\left(a_{p_{1}, q_{1}}, a_{p_{2}, q_{2}}, \ldots, a_{p_{\ell}, q_{\ell}}, b_{q_{\ell}, p_{\ell}}, \ldots, b_{q_{2}, p_{2}}, b_{q_{1}, p_{1}}\right)$ for the ordered vector of coefficients of system (2), let $E(a, b)=\mathbb{C}^{2 \ell}$ denote the parameter space of (2), and let $\mathbb{C}[a, b]$ denote the polynomial ring in the variables $a_{p q}$ and $b_{q p}$.

Consider the group of rotations

$$
\begin{equation*}
x^{\prime}=e^{-i \varphi} x, \quad y^{\prime}=e^{i \varphi} y \tag{3}
\end{equation*}
$$

of the phase space \mathbb{C}^{2} of (2). $\operatorname{In}\left(x^{\prime}, y^{\prime}\right)$ coordinates

$$
\dot{x}^{\prime}=-\sum_{(p, q) \in \tilde{S}} a(\varphi)_{p q} x^{\prime p+1} y^{\prime q}, \quad \dot{y}^{\prime}=\sum_{(p, q) \in \tilde{S}} b(\varphi)_{q p} x^{\prime q} y^{\prime p+1},
$$

where the coefficients of the transformed system are

$$
\begin{equation*}
a(\varphi)_{p_{j} q_{j}}=a_{p_{j} q_{j}} e^{i\left(p_{j}-q_{j}\right) \varphi}, \quad b(\varphi)_{q_{j} p_{j}}=b_{q_{j} p_{j}} e^{i\left(q_{j}-p_{j}\right) \varphi} \tag{4}
\end{equation*}
$$

for $j=1, \ldots, \ell$. For any fixed angle φ the equations in (4) determine an invertible linear mapping U_{φ} of the space $E(a, b)$ of parameters of (2) onto itself, which we will represent as the block diagonal $2 \ell \times 2 \ell$ matrix

$$
U_{\varphi}=\left(\begin{array}{cc}
U_{\varphi}^{(a)} & 0 \\
0 & U_{\varphi}^{(b)}
\end{array}\right)
$$

where $U_{\varphi}^{(a)}$ and $U_{\varphi}^{(b)}$ are diagonal matrices that act on the coordinates a and b respectively.

Example. For the family of systems

$$
\begin{equation*}
\dot{x}=-a_{00} x-a_{-11} y-a_{20} x^{3}, \quad \dot{y}=b_{1,-1} x+b_{00} y+b_{02} y^{3} \tag{5}
\end{equation*}
$$

\widetilde{S} is the ordered set $\{(0,0),(-1,1),(2,0)\}$, and equation (4) gives the collection of $2 \ell=6$ equations

$$
\begin{array}{lll}
a(\varphi)_{00}=a_{00} e^{i(0-0) \varphi} & a(\varphi)_{-11}=a_{-11} e^{i(-1-1) \varphi} & a(\varphi)_{20}=a_{20} e^{i(2-0) \varphi} \\
b(\varphi)_{00}=b_{00} e^{i(0-0) \varphi} & b(\varphi)_{1,-1}=b_{1,-1} e^{i(1-(-1)) \varphi} & b(\varphi)_{02}=b_{02} e^{i(0-2) \varphi}
\end{array}
$$

so that

$$
\begin{aligned}
& U_{\varphi} \cdot(a, b)=\left(\begin{array}{ccc}
U_{\varphi}^{(a)} & 0 \\
0 & U_{\varphi}^{(b)}
\end{array}\right) \cdot(a, b)^{T}= \\
& \quad\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & e^{-i 2 \varphi} & 0 & 0 & 0 & 0 \\
0 & 0 & e^{i 2 \varphi} & 0 & 0 & 0 \\
0 & 0 & 0 & e^{-i 2 \varphi} & 0 & 0 \\
0 & 0 & 0 & 0 & e^{i 2 \varphi} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
a_{00} \\
a_{-11} \\
a_{20} \\
b_{02} \\
b_{1,-1} \\
b_{00}
\end{array}\right)=\left(\begin{array}{c}
a_{00} \\
a_{-11} e^{-i 2 \varphi} \\
a_{20} e^{i 2 \varphi} \\
b_{02} e^{-i 2 \varphi} \\
b_{1,-1} e^{i 2 \varphi} \\
b_{00}
\end{array}\right) .
\end{aligned}
$$

Thus here

$$
U_{\varphi}^{(a)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-i 2 \varphi} & 0 \\
0 & 0 & e^{i 2 \varphi}
\end{array}\right) \quad \text { and } \quad U_{\varphi}^{(b)}=\left(\begin{array}{ccc}
e^{-i 2 \varphi} & 0 & 0 \\
0 & e^{i 2 \varphi} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We write in the short form

$$
(a(\varphi), b(\varphi))=U_{\varphi} \cdot(a, b)=\left(U_{\varphi}^{(a)} \cdot a, U_{\varphi}^{(b)} \cdot b\right)
$$

The set $U=\left\{U_{\varphi}: \varphi \in \mathbb{R}\right\}$ is a group, a subgroup of the group of invertible $2 \ell \times 2 \ell$ matrices with entries in k. In the context of U the group operation corresponds to following one rotation with another.

Definition

The group $U=\left\{U_{\varphi}: \varphi \in \mathbb{R}\right\}$ is called the rotation group of family (2). A polynomial invariant of the group U is termed an invariant of the rotation group, or more simply an invariant.

We wish to identify all polynomial invariants of this group action.
The polynomials in question are elements of $\mathbb{C}[a, b]$. They identify polynomial expressions in the coefficients of elements of the family (2) that are unchanged under a rotation of coordinates. A polynomial $f \in \mathbb{C}[a, b]$ is an invariant of the group U if and only if each of its terms is an invariant, so it suffices to find the invariant monomials. Since

$$
a(\varphi)_{p_{j} q_{j}}=a_{p_{j} q_{j}} e^{i\left(p_{j}-q_{j}\right) \varphi}, \quad b(\varphi)_{q_{j} p_{j}}=b_{q_{j} p_{j}} e^{i\left(q_{j}-p_{j}\right) \varphi}
$$

for $\nu \in \mathbb{N}_{0}^{2 \ell}$ the image of the corresponding monomial

$$
[\nu]=a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} \in \mathbb{C}[a, b]
$$

under U_{φ} is the monomial

$$
\begin{align*}
& a(\varphi)_{p_{1} q_{1}}^{\nu_{1}} \cdots a(\varphi)_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b(\varphi)_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b(\varphi)_{q_{1} p_{1}}^{\nu_{2 \ell}} \cdots a_{p_{1}}^{l_{1}} \\
&=a_{p_{1} q_{1}}^{\nu_{1}} e^{i \varphi \nu_{1}\left(p_{1}-q_{1}\right)} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} e^{i \varphi \nu_{\ell}\left(p_{\ell}-q_{\ell}\right)} \\
& b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} e^{i \varphi \nu_{\ell+1}\left(q_{\ell}-p_{\ell}\right)} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} e^{i \varphi \nu_{2 \ell}\left(q_{1}-p_{1}\right)} \tag{6}
\end{align*}
$$

$$
\begin{gathered}
=e^{i \varphi\left[\nu_{1}\left(p_{1}-q_{1}\right)+\cdots+\nu_{\ell}\left(p_{\ell}-q_{\ell}\right)+\nu_{\ell+1}\left(q_{\ell}-p_{\ell}\right)+\cdots+\nu_{2 \ell}\left(q_{1}-p_{1}\right)\right]} \\
a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}}
\end{gathered}
$$

The quantity in square brackets is $L_{1}(\nu)-L_{2}(\nu)$, where $L(\nu)=\binom{\left(L_{1}(\nu)\right.}{L_{2}(\nu)}$ is the linear operator on $\mathbb{N}_{0}^{2 \ell}$ defined by

$$
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\cdots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\cdots+\binom{q_{1}}{p_{1}} \nu_{2 \ell} .
$$

Thus, the monomial $[\nu]$ is an invariant if and only if $L_{1}(\nu)=L_{2}(\nu)$. We define the set \mathcal{M} by

$$
\begin{equation*}
\mathcal{M}=\left\{\nu \in \mathbb{N}_{0}^{2 \ell}: L(\nu)=\binom{k}{k} \text { for some } k \in \mathbb{N}_{0}\right\} \tag{7}
\end{equation*}
$$

We have established that the monomial $[\nu]$ is invariant under the rotation group U of (2) if and only if $L_{1}(\nu)=L_{2}(\nu)$, that is, if and only if $\nu \in \mathcal{M}$.
For

$$
[\nu]=a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} \ell_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} \in \mathbb{C}[a, b]
$$

its conjugate is defined by

$$
[\hat{\nu}]=a_{p_{1} q_{1}}^{\nu_{2}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}+1} b_{q_{\ell} p_{\ell}}^{\nu_{\ell}} \cdots b_{q_{1} p_{1}}^{\nu_{1}} \in \mathbb{C}[a, b]
$$

Since, for any $\nu \in \mathbb{N}_{0}^{2 \ell}, L_{1}(\nu)-L_{2}(\nu)=-\left(L_{1}(\hat{\nu})-L_{2}(\hat{\nu})\right)$, the monomial $[\nu]$ is invariant under U if and only if its conjugate $[\hat{\nu}]$ is.

Proposition

The monoid \mathcal{M} consists of all ν such that

$$
\begin{array}{r}
L_{1}(\nu)-L_{2}(\nu)=\left(p_{1}-q_{1}\right) \nu_{1}+\left(p_{2}-q_{2}\right) \nu_{2}+\cdots+\left(p_{\ell}-q_{\ell}\right) \nu_{\ell} \\
+\left(q_{\ell}-p_{\ell}\right) \nu_{\ell+1}+\cdots+\left(q_{1}-p_{1}\right) \nu_{2 \ell}=0 \tag{8}
\end{array}
$$

Proof. Obviously every solution of (7) is also a solution of (8).
Conversely, let ν be a solution of (8) and let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the i th basis vector of $\mathbb{C}^{2 \ell}$. Then

$$
\begin{equation*}
L^{1}(\nu)=L^{2}(\nu)=k \tag{9}
\end{equation*}
$$

yielding

$$
\begin{equation*}
L^{1}(\nu)+L^{2}(\nu)=2 k \tag{10}
\end{equation*}
$$

Note that

$$
\begin{equation*}
L^{1}\left(e_{i}\right)+L^{2}\left(e_{i}\right)=L^{1}\left(e_{2 \ell-i}\right)+L^{2}\left(e_{2 \ell-i}\right)=p_{i}+q_{i} \geq 0 \tag{11}
\end{equation*}
$$

for $i=1, \ldots, \ell$. Taking into account the fact that $L(\nu)$ is a linear operator, we conclude from (10) and (11) that the number k on the right-hand side of (9) is non-negative. \square

Example. We will find all the monomials of degree at most three that are invariant under the rotation group U for the family of systems

$$
\dot{x}=-a_{00} x-a_{-11} y-a_{20} x^{3}, \quad \dot{y}=b_{1,-1} x+b_{00} y+b_{02} y^{3} .
$$

Since $\widetilde{S}=\{(0,0),(-1,1),(2,0)\}$, for $\nu \in \mathbb{N}_{0}^{6}$

$$
\begin{aligned}
L(\nu) & =\nu_{1}(0,0)+\nu_{2}(-1,1)+\nu_{3}(2,0)+\nu_{4}(0,2)+\nu_{5}(1,-1)+\nu_{6}(0,0) \\
& =\left(-\nu_{2}+2 \nu_{3}+\nu_{5}, \nu_{2}+2 \nu_{4}-\nu_{5}\right)
\end{aligned}
$$

so that equation (8) reads

$$
\begin{equation*}
-2 \nu_{2}+2 \nu_{3}-2 \nu_{4}+2 \nu_{5}=0 . \tag{12}
\end{equation*}
$$

$\operatorname{deg}([\nu])=0$. The monomial 1 , corresponding to $\nu=0 \in \mathbb{N}_{0}^{6}$, is of course always an invariant.
$\operatorname{deg}([\nu])=1$. In this case $\nu=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{N}_{0}^{6}$ for some j. Clearly (12) holds if and only if $\nu=e_{1}$ or $\nu=e_{6}$, yielding $a_{00}^{1} a_{-11}^{0} a_{20}^{0} b_{02}^{0} b_{1,-1}^{0} b_{00}^{0}=a_{00}$ and to $a_{00}^{0} a_{-11}^{0} a_{20}^{0} b_{02}^{0} b_{1,-1}^{0} b_{00}^{1}=b_{00}$ respectively. $\operatorname{deg}([\nu])=2$. If $\nu=2 e_{j}$ and satisfies (12) then $j=1$ or $j=6$, yielding a_{00}^{2} and b_{00}^{2}, respectively. If $\nu=e_{j}+e_{k}$ for $j<k$, then (12) holds if and only if either $(j, k)=(1,6)$ or one of j and k corresponds to a term in (12) with a plus sign and the other to a term with a minus sign, hence $(j, k) \in P:=\{(2,3),(2,5),(3,4),(4,5)\}$. The former case gives $a_{00} b_{00}$; the latter case gives
$\nu=(0,1,1,0,0,0) \quad$ yielding $\quad a_{00}^{0} a_{-11}^{1} a_{20}^{1} b_{02}^{0} b_{1,-1}^{0} b_{00}^{0}=a_{-11} a_{20}$
$\nu=(0,1,0,0,1,0) \quad$ yielding $\quad a_{00}^{0} a_{-11}^{1} a_{20}^{0} b_{02}^{0} b_{1,-1}^{1} b_{00}^{0}=a_{-11} b_{1,-1}$

The full set of monomial invariants of degree at most three for family

$$
\dot{x}=-a_{00} x-a_{-11} y-a_{20} x^{3}, \quad \dot{y}=b_{1,-1} x+b_{00} y+b_{02} y^{3}
$$

is
degree 0: 1
degree 1: a_{00}, b_{00}
degree 2: $a_{00}^{2}, b_{00}^{2}, a_{00} b_{00}, a_{-11} a_{20}, a_{-11} b_{1,-1}, a_{20} b_{02}, b_{02} b_{1,-1}$
degree 3: $a_{00}^{3}, b_{00}^{3}, a_{00}^{2} b_{00}, a_{00} b_{00}^{2}, a_{00} a_{-11} a_{20}, a_{00} a_{-11} b_{1,-1}, a_{00} a_{20} b_{0}$ $a_{00} b_{02} b_{1,-1}, b_{00} a_{-11} a_{20}, b_{00} a_{-11} b_{1,-1}, b_{00} a_{20} b_{02}, b_{00} b_{02} b$

An algorithm for computing a generating set of invariants

 (A. Jarrah, R. Laubenbacher, V.R. JSC, 2003)$$
\begin{aligned}
& \dot{x}=-\sum_{(p, q) \in \tilde{S}} a_{p q} x^{p+1} y^{q}=P(x, y), \\
& \dot{y}=\sum_{(p, q) \in \tilde{S}} b_{q p} x^{q} y^{p+1}=Q(x, y),
\end{aligned}
$$

$$
\begin{gathered}
L(\nu)=\binom{L^{1}(\nu)}{L^{2}(\nu)}=\binom{p_{1}}{q_{1}} \nu_{1}+\cdots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\cdots+\binom{q_{1}}{p_{1}} \nu_{2 \ell} . \\
\mathcal{M}=\left\{\nu \in \mathbb{N}_{0}^{2 \ell}: L(\nu)=\binom{i}{j} \text { for some } j \in \mathbb{N}_{0}\right\} .
\end{gathered}
$$

Input: Two sequences of integers $p_{1}, \ldots, p_{\ell}\left(p_{i} \geq-1\right)$ and $q_{1}, \ldots, q_{\ell}\left(q_{i} \geq 0\right)$. (These are the coefficient labels for our system.)
Output: A finite set of generators for subalgebra of the invariant (equivalently, the Hilbert basis of \mathcal{M}).

1. Compute a reduced Gröbner basis G for the ideal

$$
\begin{gathered}
\mathcal{J}=\left\langle a_{p_{i} q_{i}}-y_{i} t_{1}^{p_{i}} t_{2}^{q_{i}}, b_{q_{i} p_{i}}-y_{\ell-i+1} t_{1}^{q_{\ell-i+1}} t_{2}^{p_{\ell-i+1}} \mid i=1, \ldots, \ell\right\rangle \\
\subset \mathbb{C}\left[a, b, y_{1}, \ldots, y_{\ell}, t_{1}, t_{2}\right]
\end{gathered}
$$

with respect to any elimination ordering for which

$$
\left\{t_{1}, t_{2}\right\}>\left\{y_{1}, \ldots, y_{d}\right\}>\left\{a_{p_{1} q_{1}}, \ldots, b_{q_{1} p_{1}}\right\} .
$$

2. $I_{S}=\langle G \cap \mathbb{C}[a, b]\rangle$.
3. The basis is formed by the monomials of I_{S} and monomials of the form $a_{i k} b_{k i}$

Time-reversible systems

$$
\begin{equation*}
\frac{d \mathbf{z}}{d t}=F(\mathbf{z}) \quad(\mathbf{z} \in \Omega) \tag{13}
\end{equation*}
$$

$F: \Omega \mapsto T \Omega$ is a vector field and Ω is a manifold.

Definition

A time-reversible symmetry of (13) is an invertible map $R: \Omega \mapsto \Omega$, such that

$$
\begin{equation*}
\frac{d(R \mathbf{z})}{d t}=-F(R \mathbf{z}) \tag{14}
\end{equation*}
$$

Example

$$
\begin{equation*}
\dot{u}=v+v f\left(u, v^{2}\right), \quad \dot{v}=-u+g\left(u, v^{2}\right), \tag{15}
\end{equation*}
$$

The transformation $u \rightarrow u, v \rightarrow-v, t \rightarrow-t$ leaves the system unchanged \Rightarrow the u-axis is a line of symmetry for the orbits \Rightarrow no trajectory in a neighborhood of $(0,0)$ can be a spiral \Rightarrow the origin is a center.
Here

$$
\begin{equation*}
R: u \mapsto u, v \mapsto-v . \tag{16}
\end{equation*}
$$

$$
\begin{align*}
\dot{i}=V(u, v) & x=u+i v \quad \dot{x}=P(x, \bar{x}) \\
\dot{v}=V(u, v) & (P=U+i \dot{v}) \\
u & \rightarrow u, v \rightarrow-v \\
x & \rightarrow \bar{x}, \bar{x} \rightarrow x \tag{A}
\end{align*}
$$

Time - reversibility Reversibility

$$
U(u, v)=-U(u,-v)
$$

$$
V(u, v)=V(u,-v)
$$

Note that,

$$
\begin{aligned}
& P(\bar{x}, x)=U(u,-v)+i v(u,-v)= \\
& =-\frac{U(u, v)+i v(u, v)=}{P-\frac{1}{P(x, \bar{x})}}
\end{aligned}
$$

$$
\begin{aligned}
& V(u, v)=V(u,-v) \\
& V(u, v)=V(u,-v)
\end{aligned}
$$

$$
P(\bar{x}, x)=\bar{v}(u,-\nu)+
$$

$$
+\dot{V}(u s-v)=+V\left(u, v_{1}\right)
$$

$$
-i v(u, v)=\overline{P(y, \bar{x})}
$$

(A) yields $\dot{x}=\overline{P(x, \bar{x})}$. Therefore

$$
\dot{x}=-P(\bar{x}, x)
$$

Complexification

$$
\begin{align*}
& \dot{u}=U(u, v), \quad \dot{v}=V(u, v) \quad x=u+i v \\
& \dot{x}=\dot{u}+i \dot{v}=U+i V=P(x, \bar{x}) \tag{17}
\end{align*}
$$

We add to (17) its complex conjugate to obtain the system

$$
\begin{equation*}
\dot{x}=P(x, \bar{x}), \dot{\bar{x}}=\overline{P(x, \bar{x})} \tag{18}
\end{equation*}
$$

The condition of time-reversibility with respect to $O u=\operatorname{Im} x$: $P(\bar{x}, x)=-\overline{P(x, \bar{x})}$.

Time-reversibility with respect to $y=\tan \varphi x$:

$$
\begin{equation*}
\left.e^{2 i \varphi} \overline{P(x, \bar{x}}\right)=-P\left(e^{2 i \varphi} \bar{x}, e^{-2 i \varphi} x\right) \tag{19}
\end{equation*}
$$

Consider \bar{x} as a new variable y and allow the parameters of the second equation of (18) to be arbitrary. The complex system $\dot{x}=P(x, y), \quad \dot{y}=Q(x, y)$. which is is time-reversible with respect to a transformation

$$
R: x \mapsto \gamma y, y \mapsto \gamma^{-1} x
$$

if and only if for some γ

$$
\begin{equation*}
\gamma Q(\gamma y, x / \gamma)=-P(x, y), \quad \gamma Q(x, y)=-P(\gamma y, x / \gamma) . \tag{20}
\end{equation*}
$$

In the particular case when $\gamma=e^{2 i \varphi}, y=\bar{x}$, and $Q=\bar{P}$ the equality (20) is equivalent to the reflection with respect a line and the reversion of time.

Systems of our interest are of the form

$$
\begin{align*}
& \dot{x}=x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}=P(x, y), \\
& \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}=Q(x, y), \tag{21}
\end{align*}
$$

where S is the set
$S=\left\{\left(p_{j}, q_{j}\right) \mid p_{j}+q_{j} \geq 0, j=1, \ldots, \ell\right\} \subset\left(\{-1\} \cup \mathbb{N}_{0}\right) \times \mathbb{N}_{0}$, and
\mathbb{N}_{0} denotes the set of nonnegative integers. We will assume that the parameters $a_{p_{j} q_{j}}, b_{q_{j} p_{j}}(j=1, \ldots, \ell)$ are from \mathbb{C} or \mathbb{R}. Denote by $(a, b)=\left(a_{p_{1} q_{1}}, \ldots, a_{p_{\ell} q_{\ell}}, b_{q_{\ell} p_{\ell}} \ldots, b_{q_{1} p_{1}}\right)$ the ordered vector of coefficients of system (21), by $E(a, b)$ the parameter space of (21) (e.g. $E(a, b)$ is $\mathbb{C}^{2 \ell}$ or $\mathbb{R}^{2 \ell}$), and by $k[a, b]$ the polynomial ring in the variables $a_{p q}, b_{q p}$ over the field k.

The condition of time-reversibility

$$
\gamma Q(\gamma y, x / \gamma)=-P(x, y), \quad \gamma Q(x, y)=-P(\gamma y, x / \gamma) .
$$

yields that system (21) is time-reversible if and only if

$$
\begin{equation*}
b_{q p}=\gamma^{p-q} a_{p q}, \quad a_{p q}=b_{q p} \gamma^{q-p} \tag{22}
\end{equation*}
$$

We rewrite (22) in the form

$$
\begin{equation*}
a_{p_{k} q_{k}}=t_{k}, \quad b_{q_{k} p_{k}}=\gamma^{p_{k}-q_{k}} t_{k} \tag{23}
\end{equation*}
$$

for $k=1, \ldots, \ell$. (23) define a surface in the affine space $\mathbb{C}^{3 \ell+1}=\left(a_{p_{1} q_{1}}, \ldots, a_{p_{\ell} q_{\ell}}, b_{q_{\ell} p_{\ell}}, \ldots, b_{q_{1} p_{1}}, t_{1}, \ldots, t_{\ell}, \gamma\right)$. Thus, the set of all time-reversible systems is the projection of this surface onto $\mathbb{C}^{2 \ell}=E(a, b)$.

Theorem (e.g. Cox D, Little J and O'Shea D 1992 Ideals, Varieties, and Algorithms)

Let k be an infinite field, f_{1}, \ldots, f_{n} be elements of $k\left[t_{1}, \ldots, t_{m}\right]$,

$$
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

and let $F: k^{m} \rightarrow k^{n}$, be the function defined by

$$
F\left(t_{1}, \ldots, t_{m}\right)=\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)
$$

Let $J=\left\langle f_{1}-x_{1}, \ldots, f_{n}-x_{n}\right\rangle \subset k\left[y, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]$, and let $J_{m+1}=J \cap k\left[x_{1}, \ldots, x_{n}\right]$. Then $\mathbf{V}\left(J_{m+1}\right)$ is the smallest variety in k^{n} containing $F\left(k^{m}\right)$.

Let

$$
\begin{equation*}
H=\left\langle a_{p_{k} q_{k}}-t_{k}, b_{q_{k} p_{k}}-\gamma^{p_{k}-q_{k}} t_{k} \mid k=1, \ldots, \ell\right\rangle, \tag{24}
\end{equation*}
$$

Let \mathcal{R} be the set of all time-reversible systems in the family (21). From the previous theorem we obtain

Theorem

$\overline{\mathcal{R}}=\mathbf{V}(\mathcal{I})$ where $\mathcal{I}=k[a, b] \cap H$, that is, the Zariski closure of the set \mathcal{R} of all time-reversible systems is the variety of the ideal \mathcal{I}.

Computation of $\mathcal{I}=k[a, b] \cap H$

Elimination Theorem

Fix the lexicographic term order on the ring $k\left[x_{1}, \ldots, x_{n}\right]$ with $x_{1}>x_{2}>\cdots>x_{n}$ and let G be a Groebner basis for an ideal I of $k\left[x_{1}, \ldots, x_{n}\right]$ with respect to this order. Then for every ℓ, $0 \leq \ell \leq n-1$, the set $G_{\ell}:=G \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]$ is a Groebner basis for the ideal $I_{\ell}=I \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]$ (the ℓ-th elimination ideal of I).

By the theorem, to find a generating set for the ideal \mathcal{I} it is sufficient to compute a Groebner basis for H with respect to a term order with $\left\{w, \gamma, t_{k}\right\}>\left\{a_{p_{k} q_{k}}, b_{q_{k} p_{k}}\right\}$ and take from the output list those polynomials, which depend only on $a_{p_{k} q_{k}}, b_{q_{k} p_{k}}(k=1, \ldots, \ell)$.

An algorithm for computing the set of all time-reversible systems

Let

$$
H=\left\langle a_{p_{k} q_{k}}-t_{k}, b_{q_{k} p_{k}}-\gamma^{p_{k}-q_{k}} t_{k} \mid k=1, \ldots, \ell\right\rangle .
$$

- Compute a Groebner basis G_{H} for H with respect to any elimination order with $\left\{w, \gamma, t_{k}\right\}>\left\{a_{p_{k} q_{k}}, b_{q_{k} p_{k}} \mid k=1, \ldots, \ell\right\} ;$
- the set $B=G_{H} \cap k[a, b]$ is a set of binomials; $\mathbf{V}(\langle B\rangle)$ is the Zariski closure of set of all time-reversible systems.

Another description of the ideal \mathcal{I}

Let \mathcal{M} be the monoid of all solutions $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{21}\right)$ with non-negative components of the equation

$$
\begin{equation*}
\zeta_{1} \nu_{1}+\zeta_{2} \nu_{2}+\cdots+\zeta_{\ell} \nu_{\ell}+\zeta_{\ell+1} \nu_{\ell+1}+\cdots+\zeta_{2 \ell} \nu_{2 \ell}=0,(\zeta \cdot \nu=0) \tag{25}
\end{equation*}
$$

where $\zeta_{j}=p_{j}-q_{j}$ for $j=1, \ldots, \ell, \zeta_{j}=q_{2 \ell-j+1}-p_{2 \ell-j+1}$ for $j=\ell+1, \ldots, 2 \ell$, that is,

$$
\zeta=\left(p_{1}-q_{1}, p_{2}-q_{2}, \ldots, p_{\ell}-q_{\ell}, q_{\ell}-p_{\ell}, \ldots, q_{1}-p_{1}\right)
$$

($\left(p_{j}, q_{j}\right)$ are from the set S defining system (2)).
For $\nu=\left(\nu_{1}, \ldots, \nu_{2 \ell}\right) \in \mathcal{M}$ we denote by $[\nu]$ the monomial

$$
\begin{equation*}
a_{p_{1} q_{1}}^{\nu_{1}} a_{p_{2} q_{2}}^{\nu_{2}} \cdots a_{p_{\ell} q_{\ell} \ell}^{\nu_{\ell}} b_{q \ell p_{\ell}}^{\nu_{\ell+1}+} b_{q_{\ell-1}+2}^{\nu_{\ell-1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} \tag{26}
\end{equation*}
$$

and by $\hat{\nu}$ the involution of the vector $\nu, \hat{\nu}=\left(\nu_{2 \ell}, \nu_{2 \ell-1}, \ldots, \nu_{1}\right)$. The monomials $[\nu]$ and $[\hat{\nu}]$ are invariants of the rotation group U_{φ}. We will denote by $\mathbb{C}[\mathcal{M}]$ the monoid ring of \mathcal{M} (the subalgebra generated by $\{[\nu] \mid \nu \in \mathcal{M}\})$.

For system (2) one can always find a function $\Psi(x, y)=x y+$ h.o.t. such that
$\frac{\partial \Psi}{\partial x} P(x, y)+\frac{\partial \Psi}{\partial y} Q(x, y)=g_{11} \cdot(x y)^{2}+g_{22} \cdot(x y)^{3}+g_{33} \cdot(x y)^{4}+\cdots$,
where the $g_{i i}$ are polynomials in the coefficients of (2) called focus quantities. System (2) is integrable if and only if $g_{s s}=0$ for all $s=1,2, \ldots$.

Theorem

$g_{s s}(a, b) \in \mathbb{C}[\mathcal{M}]$ and have the form

$$
\begin{equation*}
g_{s s}=\sum_{\nu \in \mathcal{M}} g^{(\nu)}([\nu]-[\hat{\nu}]) \tag{28}
\end{equation*}
$$

Consider the ideal

$$
I_{S}=\langle[\nu]-[\hat{\nu}] \mid \nu \in \mathcal{M}\rangle \subset k[a, b] \quad(k \text { is } \mathbb{C} \text { or } \mathbb{R})
$$

We call I_{S} the Sibirsky ideal of system (2).

In the case that (2) is time-reversible, using (22) and (25) we see that for $\nu \in \mathcal{M}$

$$
\begin{equation*}
[\hat{\nu}]=\gamma^{\zeta \cdot \nu}[\nu]=[\nu], \tag{29}
\end{equation*}
$$

where $\zeta \cdot \nu$ is the scalar product of ζ and ν, that is the left-hand side of (25). Thus, using (28), we obtain that every time-reversible system is integrable.
By (29) every time-reversible system $(a, b) \in E(a, b)$ belongs to $\mathbf{V}\left(I_{S}\right)$. The converse is false.

Theorem 1

Let $\mathcal{R} \subset E(a, b)$ be the set of all time-reversible systems in the family (2), then
(a) $\mathcal{R} \subset \mathbf{V}\left(I_{S}\right)$;
(b) $\mathbf{V}\left(I_{S}\right) \backslash \mathcal{R}=\left\{(a, b) \mid \exists(p, q) \in S\right.$ such that $a_{p q} b_{q p}=$

0 but $\left.a_{p q}+b_{q p} \neq 0\right\}$.
(b) means that if in a time-reversible system (2) $a_{p q} \neq 0$ then $b_{q p} \neq 0$ as well. (b) \Longrightarrow the inclusion in (a) is strict, that is $\mathcal{R} \varsubsetneqq \mathbf{V}\left(I_{S}\right)$.

Theorem 2

$I_{S}=\mathcal{I}$ and both ideals are prime.
From Theorems 1 and 2 it follows

Theorem 3

The variety of the Sibirsky ideal I_{S} is the Zariski closure of the set \mathcal{R} of all time-reversible systems in the family (2).

Suppose we are given the system

$$
\begin{equation*}
x_{1}=\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \ldots, x_{n}=\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)} \tag{30}
\end{equation*}
$$

where $f_{j}, g_{j} \in k\left[t_{1}, \ldots, t_{m}\right]$ for $j=1, \ldots, n$. Let $k\left(t_{1}, \ldots, t_{m}\right)$ denote the ring of rational functions in m variable with coefficients in $k(k$ is \mathbb{C} or $\mathbb{R})$, and consider the ring homomorphism

$$
\tilde{\psi}: k\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m}, w\right] \rightarrow k\left(t_{1}, \ldots, t_{m}\right)
$$

defined by
$t_{i} \rightarrow t_{i}, \quad x_{j} \rightarrow f_{j}\left(t_{1}, \ldots, t_{m}\right) / g_{j}\left(t_{1}, \ldots, t_{m}\right), w \rightarrow 1 / g\left(t_{1}, \ldots, t_{m}\right)$,
$i=1, \ldots, m, j=1, \ldots, n$ and $g=g_{1} g_{2} \cdots g_{n}$. Let
$\tilde{H}=\left\langle 1-w g, x_{1} g_{1}\left(t_{1}, \ldots, t_{m}\right)-f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, x_{n} g_{n}\left(t_{1}, \ldots, t_{m}\right)-f_{n}\left(t_{1}\right.\right.$,

$$
\begin{equation*}
\tilde{H}=\operatorname{ker}(\tilde{\psi}) \tag{31}
\end{equation*}
$$

Since $k\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m}, w\right]$ is a domain (31) yields that \tilde{H} is a prime ideal.

Proof of Theorem 2.

$H=\left\langle a_{p_{k} q_{k}}-t_{k}, b_{q_{k} p_{k}}-\gamma^{p_{k}-q_{k}} t_{k} \mid k=1, \ldots, \ell\right\rangle, \quad \mathcal{I}=H \cap k[a, b]$.
Let $f \in I_{S} \subset \mathbb{C}[a, b]$, so that f is a finite linear combination, with coefficients in $\mathbb{C}[a, b]$, of binomials of the form $[\nu]-[\hat{\nu}]$, where $\nu \in \mathcal{M} . f \in \mathcal{I}$ if any such binomial is in \mathcal{I}. By definition of ψ

$$
\begin{align*}
\psi([\nu]-[\hat{\nu}]) & =t_{1}^{\nu_{1}} \cdots t_{\ell}^{\nu_{\ell}}\left(\gamma^{p_{\ell}-q_{\ell}} t_{\ell}\right)^{\nu_{\ell+1}} \cdots\left(\gamma^{p_{1}-q_{1}} t_{1}\right)^{\nu_{2 \ell}} \\
& -t_{1}^{\nu_{2 \ell}} \cdots t_{\ell}^{\nu_{\ell+1}}\left(\gamma^{p_{\ell}-q_{\ell}} t_{\ell}\right)^{\nu_{\ell}} \cdots\left(\gamma^{p_{1}-q_{1}} t_{1}\right)^{\nu_{1}} \\
& =t_{1}^{\nu_{1}} \cdots t_{\ell}^{\nu_{\ell}} t_{1}^{\nu_{2 \ell}} \cdots t_{\ell}^{\nu_{\ell+1}}\left(\gamma^{\nu_{1} \zeta_{1}+\cdots+\nu_{\ell} \zeta_{\ell}}-\gamma^{\nu_{2 \ell} \zeta_{1}+\cdots+\nu_{\ell+1} \zeta_{\ell}}\right) . \tag{32}
\end{align*}
$$

Since $\nu \in \mathcal{M}, \zeta_{1} \nu_{1}+\cdots+\zeta_{2 \ell} \nu_{2 \ell}=\zeta \cdot \nu=0$. But $\zeta_{j}=-\zeta_{2 \ell-j+1}$ for $1 \leq j \leq 2 \ell$ so
$\zeta_{1} \nu_{1}+\cdots+\zeta_{\ell} \nu_{\ell}=-\zeta_{\ell+1} \nu_{\ell+1}-\cdots-\zeta_{2 \ell} \nu_{2 \ell}=\zeta_{\ell} \nu_{\ell+1}+\cdots+\zeta_{1} \nu_{2 \ell}$
and the exponents on γ in (32) are the same. Thus $[\nu]-[\hat{\nu}] \in \operatorname{ker}(\psi)=H$, hence $[\nu]-[\hat{\nu}] \in H \cap \mathbb{C}[a, b]=\mathcal{I}$, i.e. $I_{S} \subset \mathcal{I}$.

By (31) the ideal H defined by (24) is the kernel of the ring homomorphism

$$
\psi: k\left[a, b, t_{1}, \ldots, t_{\ell}, \gamma, w\right] \longrightarrow k\left(\gamma, t_{1}, \ldots, t_{\ell}\right)
$$

defined by $a_{p_{k} q_{k}} \mapsto t_{k}, b_{q_{k} p_{k}} \mapsto \gamma^{p_{k}-q_{k}} t_{k}, w \mapsto 1 /\left(\tilde{\gamma}_{1} \cdots \tilde{\gamma}_{\ell}\right)$ for $k=1, \ldots, \ell$. We obtain a reduced Groebner basis G of $k[a, b] \cap H$ by computing a reduced Groebner basis of H using an elimination ordering with $\left\{a_{p_{j} q_{j}}, b_{q_{j} p_{j}}\right\}<\left\{w, \gamma, t_{j}\right\}$ for all $j=1, \ldots, \ell$, and then intersecting it with $k[a, b]$. Since H is binomial, any reduced Groebner basis G of H also consists of binomials. This shows that \mathcal{I} is a binomial ideal.

Now suppose $f \in \mathcal{I}=H \cap \mathbb{C}[a, b] \subset \mathbb{C}[a, b]$. Since \mathcal{I} has a basis consisting wholly of binomials, it is enough to restrict to the case that f is binomial, $f=a_{\alpha}[\alpha]+a_{\beta}[\beta]$. Using the definition of ψ and collecting terms

$$
\begin{array}{r}
\psi\left(a_{\alpha}[\alpha]+a_{\beta}[\beta]\right)=a_{\alpha} t_{1}^{\alpha_{1}+\alpha_{2 \ell}} \cdots t_{\ell}^{\alpha_{\ell}+\alpha_{\ell+1}} \gamma^{\zeta_{\ell} \alpha_{\ell+1}+\cdots+\zeta_{1} \alpha_{2 \ell}+} \\
a_{\beta} t_{1}^{\beta_{1}+\beta_{2 \ell}} \cdots t_{\ell}^{\beta_{\ell}+\beta_{\ell+1}} \gamma^{\zeta_{\ell} \beta_{\ell+1}+\cdots+\zeta_{1} \beta_{2 \ell}}
\end{array}
$$

Since $\boldsymbol{H}=\operatorname{ker}(\psi)$ this is the zero polynomial, so

$$
\begin{gather*}
a_{\beta}=-a_{\alpha} \tag{33a}\\
\alpha_{j}+\alpha_{2 \ell-j+1}=\beta_{j}+\beta_{2 \ell-j+1} \quad \text { for } j=1, \ldots, \ell \tag{33b}\\
\zeta_{\ell} \alpha_{\ell+1}+\cdots+\zeta_{1} \alpha_{2 \ell}=\zeta_{\ell} \beta_{\ell+1}+\cdots+\zeta_{1} \beta_{2 \ell} \tag{33c}
\end{gather*}
$$

For $\nu \in \mathbb{N}_{0}^{2 \ell}$ let $R(\nu)$ denote the set of indices j for which $\nu_{j} \neq 0$. First suppose that $R(\alpha) \cap R(\beta)=\varnothing$. It is easy to check that condition (33b) forces $\beta_{j}=\alpha_{2 \ell-j+1}$ for $j=1, \ldots, 2 \ell$, so that $\beta=\hat{\alpha}$. But then because $\zeta_{j}=-\zeta_{2 \ell-j+1}$ for $1 \leq j \leq 2 \ell$ condition (33c) reads

$$
-\zeta_{\ell+1} \alpha_{\ell+1}-\cdots-\zeta_{2 \ell} \alpha_{2 \ell}=\zeta_{\ell} \alpha_{\ell}+\cdots+\zeta_{1} \alpha_{1}
$$

or $\zeta_{1} \alpha_{1}+\cdots+\zeta_{2 \ell} \alpha_{2 \ell}=0$, so $\alpha \in \mathcal{M}$. Thus $f=a_{\alpha}([\alpha]-[\hat{\alpha}])$ and $\alpha \in \mathcal{M}$, so $f \in I_{s}$.
If $R(\alpha) \cap R(\beta) \neq \varnothing$, then $[\alpha]$ and $[\beta]$ contain common factors, corresponding to the common indices of some of their nonzero coefficients. Factoring out the common terms, which form a monomial $[\mu]$, we obtain $f=[\mu]\left(a_{\alpha}\left[\alpha^{\prime}\right]+a_{\beta}\left[\beta^{\prime}\right]\right)$, where $R\left(\alpha^{\prime}\right) \cap R\left(\beta^{\prime}\right)=\varnothing$. Since the ideal \mathcal{I} is prime and contains no monomial we conclude that $a_{\alpha}\left[\alpha^{\prime}\right]+a_{\beta}\left[\beta^{\prime}\right] \in \mathcal{I}$, hence by the first case that $a_{\alpha}\left[\alpha^{\prime}\right]+a_{\beta}\left[\beta^{\prime}\right] \in I_{S}$, hence that $f \in I_{S} . \square$

Algorithm for computing $\mathcal{I}\left(=I_{S}\right)$

- Compute a Groebner basis G_{H} for
$H=\left\langle a_{p_{k} q_{k}}-t_{k}, b_{q_{k} p_{k}}-\gamma^{p_{k}-q_{k}} t_{k} \mid k=1, \ldots, \ell\right\rangle$ with respect to any elimination order
$\left\{w, \gamma, t_{k}\right\}>\left\{a_{p_{k} q_{k}}, b_{q_{k} p_{k}} \mid k=1, \ldots, \ell\right\} ;$
- the set $G_{H} \cap k[a, b]$ is a generating set for \mathcal{I} and I_{S}.

Theorem

Let G be a reduced Gröbner basis of \mathcal{I}.

1. Every element of G has the form $[\nu]-[\hat{\nu}]$, where $\nu \in \mathcal{M}$ and [ν] and [$\hat{\nu}$] have no common factors.
2. The set

$$
\begin{gathered}
\mathcal{H}=\{\mu, \hat{\mu}:[\mu]-[\hat{\mu}] \in G\} \cup\left\{\mathbf{e}_{j}+\mathbf{e}_{2 \ell-j+1}: j=1, \ldots, \ell\right. \\
\text { and } \left. \pm\left(\left[\mathbf{e}_{j}\right]-\left[\mathbf{e}_{2 \ell-j+1}\right]\right) \notin G\right\}
\end{gathered}
$$

where $\mathbf{e}_{j}=(0, \ldots, 0, \stackrel{j}{1}, 0, \ldots, 0)$, is a Hilbert basis of \mathcal{M}.

As an example consider the system

$$
\begin{align*}
& \dot{x}=x-a_{10} x^{2}-a_{01} x y-a_{-12} y^{2}, \\
& \dot{y}=-y+b_{10} x y+b_{01} y^{2}+b_{2,-1} x^{2} \tag{34}
\end{align*}
$$

Computing a Groebner basis of the ideal
$\mathcal{J}=\left\langle 1-w \gamma^{4}, a_{10}-t_{1}, b_{01}-\gamma t_{1}, a_{01}-t_{2}, \gamma b_{10}-t_{2}, a_{-12}-t_{3}, \gamma^{3} b_{2,-1}-t_{3}\right\rangle$
with respect to the lexicographic order with $w>\gamma>t_{1}>t_{2}>t_{3}>a_{10}>a_{01}>a_{-12}>b_{10}>b_{01}>b_{2,-1}$ we obtain a list of polynomials.
|n(i) 0$]=$ GroebnerBasis[\{a10- $\mathrm{t} 1, \mathrm{b01}-\gamma \mathrm{t} 1, \mathrm{a01}-\mathrm{t} 2, \gamma \mathrm{~b} 10-\mathrm{t} 2, \mathrm{a} 12-\mathrm{t} 3, \gamma^{\wedge} 3 \mathrm{~b} 21-\mathrm{t} 3$,
$\left.\left.1-w \gamma^{\wedge} 4\right\},\{w, \gamma, t 1, t 2, t 3, b 10, b 01, a 10, a 01, a 12, b 21\}\right]$
Out $\left[10=\left\{-\mathrm{a} 10^{8} \mathrm{a} 12+\mathrm{b} 01^{2} \mathrm{~b} 21, \mathrm{a} 10^{2} \mathrm{a} 12 \mathrm{~b} 10-\mathrm{a} 01 \mathrm{~b} 01^{2} \mathrm{~b} 21,-\mathrm{a} 01 \mathrm{a} 10+\mathrm{b} 01 \mathrm{~b} 10\right.\right.$, $a 10 \mathrm{a} 12 \mathrm{~b} 10^{2}-\mathrm{a} 01^{2} \mathrm{~b} 01 \mathrm{~b} 21, \mathrm{a} 12 \mathrm{~b} 10^{2}-\mathrm{a} 01^{2} \mathrm{~b} 21,-\mathrm{a} 12+\mathrm{t} 3,-\mathrm{a} 01+\mathrm{t} 2,-\mathrm{a} 10+\mathrm{t} 1$, $-a 12 b 10^{2}+a 0^{2} b 21 \gamma_{1}-b 01+a 10 \gamma_{1}-a 10 a 12 b 10+a 01 b 01 b 21 \gamma_{1}-a 10^{2} a 12+b 01^{2} b 21 \gamma_{1}$ $-a 01+b 10 \gamma_{1}-a 12 b 10+a 01 b 21 \gamma^{2},-a 10 a 12+b 01 b 21 \gamma^{2},-a 12+b 21 \gamma^{3}, a 12^{2} w-b 21^{2} \gamma^{2}$, $-b 10 b 21+a 01 \mathrm{a} 12 w_{1}-b 10^{4}+a 01^{4} w_{1}-a 10 b 21+a 12 b 01 w_{1}-a 10 b 10^{8}+a 01^{2} b 01 w_{1}$ $-a 10^{2} b 10^{2}+a 01^{2} b 01^{2} w_{1}-a 10^{2} b 10+a 01 b 01^{2} w_{1}-a 10^{4}+b 01^{4} w_{1}-b 21+a 12 w \gamma_{1}-b 10^{2}+a 01^{2} w \gamma_{1}$ $-a 10 b 10^{2}+a 01^{2} b 01 w \gamma_{1}-a 10^{2} b 10+a 01 b 01^{2} w \gamma_{1}-a 10^{2}+b 01^{2} w \gamma_{1}-b 10^{2}+a 01^{2} w \gamma^{2}$, $\left.-\mathrm{a} 10 \mathrm{~b} 10+\mathrm{a} 01 \mathrm{b01} w \gamma^{2},-\mathrm{a} 10^{2}+\mathrm{b} 01^{2} w \gamma^{2},-b 10+\mathrm{a} 01 w \gamma^{2},-\mathrm{a} 10+\mathrm{b} 01 \gamma^{2},-1+w \gamma^{4}\right\}$

According to step 2 of the algorithm we pick up the polynomials that do not depend on $w, \gamma, t_{1}, t_{2}, t_{3}$:
$f_{1}=a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}, \quad f_{2}=a_{10} a_{01}-b_{01} b_{10}$,
$f_{3}=a_{10}^{3} a_{-12}-b_{2,-1} b_{01}^{3}, f_{4}=a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}$,
$f_{5}=a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}$. Thus, for system (34)

$$
I_{S}=\mathcal{I}=\left\langle f_{1}, \ldots, f_{5}\right\rangle
$$

- $\mathbf{V}\left(\left\langle f_{1}, \ldots, f_{5}\right\rangle\right)$ is the Zariski closure of the set of all time-reversible systems inside of (34)
- The monomials of f_{i} together with $a_{10} b_{01}, a_{01} b_{10}, a_{-12} b_{2,-1}$ generate the subalgebra $\mathbb{C}[\mathcal{M}]$ for invariants of U_{φ} and the exponents of the monomials form the Hilbert basis of the monoid \mathcal{M}.
- Focus quantities $g_{i i}$ of (34) belong to $\mathbb{C}[\mathcal{M}]$.

We now show a further interconnection of time-reversibility and invariants of a group of transformations of the phase space of

$$
\begin{align*}
& \dot{x}=-\sum_{(p, q) \in \tilde{S}} a_{p q} x^{p+1} y^{q}=P(x, y), \\
& \dot{y}=\sum_{(p, q) \in \tilde{S}} b_{q p} x^{q} y^{p+1}=Q(x, y), \tag{35}
\end{align*}
$$

Consider the transformations of the phase space of (35)

$$
\begin{equation*}
x^{\prime}=\eta x, \quad y^{\prime}=\eta^{-1} y \quad(x, y, \eta \in \mathbb{C}, \eta \neq 0) \tag{36}
\end{equation*}
$$

In (x^{\prime}, y^{\prime}) coordinates (35) has the form

$$
\dot{x}^{\prime}=\sum_{(p, q) \in S} a(\eta)_{(p, q)} x^{\prime p+1} y^{\prime q}, \dot{y}^{\prime}=\sum_{(p, q) \in S} b(\eta)_{(q, p)} x^{\prime q} y^{\prime p+1}
$$

and the coefficients of the transformed system are

$$
\begin{equation*}
a(\eta)_{p_{k} q_{k}}=a_{p_{k} q_{k}} \eta^{q_{k}-p_{k}}, \quad b(\eta)_{q_{k} p_{k}}=b_{q_{k} p_{k}} \eta^{p_{k}-q_{k}} \tag{37}
\end{equation*}
$$

where $k=1, \ldots, \ell$. Let U_{η} denote the transformation (37). We write (37) as $(a(\eta), b(\eta))=U_{\eta}(a, b)$.

The action of U_{η} on the coefficients $a_{i j}, b_{j i}$ of the system of differential equations (35) yields the following transformation of the monomial [ν] defined by (26):

$$
\begin{array}{r}
U_{\eta}[\nu]=a(\eta)_{p_{1} q_{1}}^{\nu_{1}} \cdots a(\eta)_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b(\eta)_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b(\eta)_{q_{1} p_{1}}^{\nu_{2 \ell}}= \tag{38}\\
\eta^{\zeta \cdot \nu} a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}}=\eta^{\zeta \cdot \nu}[\nu] .
\end{array}
$$

Thus we see that the monomial $[\nu]$ is invariant under the action of U_{η} if and only if $\zeta \cdot \nu=0$, i.e., if and only if $\nu \in \mathcal{M}$.

Denote by $\widehat{(a, b)}$ the involution of (a, b),

$$
\begin{equation*}
\widehat{(a, b)}=\left(b_{q_{1} p_{1}}, \ldots, b_{q_{1} p_{l}}, a_{p_{\mid} q_{l}}, \ldots, a_{p_{1} q_{1}}\right) \tag{39}
\end{equation*}
$$

The orbit \mathcal{O} of the group U_{η} is invariant under the involution (39) if for any $(a, b) \in \mathcal{O}$ the system $\widehat{(b, a)}$ also belongs to \mathcal{O}.

Theorem

(a) The set of the orbits of U_{η} is divided into two not intersecting subsets: one consists of all time-reversible systems and only time-reversible systems, and there are no time-reversible systems in the other subset.
(b) The variety $\mathbf{V}\left(I_{S}\right)$ is the Zariski closure of all orbits of the group U_{η} invariant under the involution (39).

Conclusions

- The theory of invariants of ODEs is almost untouched field for applications of methods and algorithms of computational algebra
- Two interesting problems for studying:
- generalization of the presented methods to higher dimensional systems of ODEs
- studying invariants of another groups of transformations of the phase space

