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The theory of invariants of ordinary differential equations has
been developed by K.S. Sibirski and his coworkers in
1960-70th:
K. S. Sibirsky. Introduction to the Algebraic Theory of
Invariants of Differential Equations. Nonlinear Science:
Theory and Applications. Manchester: Manchester University
Press, 1988.

Generalization to complex systems:
Chapter 5 of V. G. Romanovski and D. S. Shafer, The Center
and Cyclicity Problems: A Computational Algebra Approach,
Birkhüser, Boston, 2009.

Invariants and time-reversibility in polynomial systems of ODEs



Definition

Let k be a field, G be a group of n × n matrices with elements in
k , A ∈ G and x ∈ kn. A polynomial f ∈ k[x1, . . . , xn] is invariant
under G if f (x) = f (A · x) for every A ∈ G . An invariant is
irreducible if it does not factor as a product of polynomials that are
themselves invariants.

Example. Let B =
(

0 −1
1 0

)
and let I2 denote the 2× 2 identity

matrix. The set C4 = {I2,B,B2,B3} is a group under
multiplication, and for the polynomial
f (x) = f (x1, x2) = 1

2(x2
1 + x2

2 ) we have f (x) = f (B · x),
f (x) = f (B2 · x), and f (x) = f (B3 · x). Thus, f is an invariant of
the group C4. When k = R, B is simply the group of rotations by
multiples of π

2 radians (mod 2π) about the origin in R2, and f is
an invariant because its level sets are circles centered at the origin,
which are unchanged by such rotations.
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Consider the system dx
dt = Ax:

ẋ1 =a11x1 + a12x2

ẋ2 =a21x1 + a22x2

(1)

Let Q = GL2(R) be the group of all linear invertible transformations of
R2:

y = Cx,

where

C =

(
a b
c d

)
, det C 6= 0.

Then,

dy

dt
= By, B =

(
b11 b12

b21 b22

)
= CAC−1 =

1

det C

(
d11 d12

d21 d22

)
,

where
d11 = ada11 + bda21 − aca12 − bca22

d12 = aba11 − b2a21 + a2a12 + aba22,
d21 = cda11 + d2a21 − c2a12 − cda22,
d22 = −bca11 − bda21 + aca12 + ada22. Therefore,

b11 =
1

det C
d11, b12 =

1

det C
d12, b21 =

1

det C
d21, b22 =

1

det C
d22.
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We look for a homogeneous invariant of degree one:

I (a) = k1a11 + k2a12 + k3a21 + k4a22.

It should be I (b) = I (a), that is,

k1b11 + k2b12 + k3b21 + k4b22 = k1a11 + k2a12 + k3a21 + k4a22.

Hence,
k1ad − k2ab + k3cd − k4bc = k1(ad − bc).

Thus, k2 = k3 = 0 and k4 = k1 and up to a constant multiplier
I1(a) = a11 + a22 = trA.
Similarly we can show that each invariant of degree 2 must be of
the form:

I (a) = k1(a2
11+a2

22+2a11a22)+k2(a11a22−a12a21) = k1tr2A2+k2 det A.

It yields that the homogeneous invariant of degree two is

I2 = det A = (a11a22 − a12a21).

Any invariant of degree 3 and higher is a polynomial of tr A and
det A.
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Invariants of the rotation group

Consider polynomial systems on C2 in the form

ẋ = −
∑

(p,q)∈S̃

apqxp+1yq = P(x , y),

ẏ =
∑

(p,q)∈S̃

bqpxqyp+1 = Q(x , y),
(2)

where the index set S̃ ⊂ N−1 × N0 is a finite set and each of its
elements (p, q) satisfies p + q ≥ 0. If ` is the cardinality of the set
S̃ , we use the abbreviated notation
(a, b) = (ap1,q1 , ap2,q2 , . . . , ap`,q`

, bq`,p`
, . . . , bq2,p2 , bq1,p1) for the

ordered vector of coefficients of system (2), let E (a, b) = C2`

denote the parameter space of (2), and let C[a, b] denote the
polynomial ring in the variables apq and bqp.
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Consider the group of rotations

x ′ = e−iϕx , y ′ = e iϕy (3)

of the phase space C2 of (2). In (x ′, y ′) coordinates

ẋ ′ = −
∑

(p,q)∈S̃

a(ϕ)pqx ′p+1y ′
q
, ẏ ′ =

∑
(p,q)∈S̃

b(ϕ)qpx ′qy ′
p+1

,

where the coefficients of the transformed system are

a(ϕ)pjqj = apjqj e
i(pj−qj )ϕ, b(ϕ)qjpj = bqjpj e

i(qj−pj )ϕ, (4)

for j = 1, . . . , `. For any fixed angle ϕ the equations in (4)
determine an invertible linear mapping Uϕ of the space E (a, b) of
parameters of (2) onto itself, which we will represent as the block
diagonal 2`× 2` matrix

Uϕ =

(
U

(a)
ϕ 0

0 U
(b)
ϕ

)
,

where U
(a)
ϕ and U

(b)
ϕ are diagonal matrices that act on the

coordinates a and b respectively.
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Example. For the family of systems

ẋ = −a00x − a−11y − a20x3, ẏ = b1,−1x + b00y + b02y3 (5)

S̃ is the ordered set {(0, 0), (−1, 1), (2, 0)}, and equation (4) gives the
collection of 2` = 6 equations

a(ϕ)00 = a00e i(0−0)ϕ

b(ϕ)00 = b00e i(0−0)ϕ

a(ϕ)−11 = a−11e i(−1−1)ϕ

b(ϕ)1,−1 = b1,−1e i(1−(−1))ϕ

a(ϕ)20 = a20e i(2−0)ϕ

b(ϕ)02 = b02e i(0−2)ϕ

so that

Uϕ · (a, b) =

(
U

(a)
ϕ 0

0 U
(b)
ϕ

)
· (a, b)T =

1 0 0 0 0 0
0 e−i2ϕ 0 0 0 0
0 0 e i2ϕ 0 0 0
0 0 0 e−i2ϕ 0 0
0 0 0 0 e i2ϕ 0
0 0 0 0 0 1

 ·


a00

a−11

a20

b02

b1,−1

b00

 =


a00

a−11e−i2ϕ

a20e i2ϕ

b02e−i2ϕ

b1,−1e i2ϕ

b00

 .
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Thus here

U(a)
ϕ =

1 0 0
0 e−i2ϕ 0
0 0 e i2ϕ

 and U(b)
ϕ =

e−i2ϕ 0 0
0 e i2ϕ 0
0 0 1

 .

We write in the short form

(a(ϕ), b(ϕ)) = Uϕ · (a, b) = (U(a)
ϕ · a,U(b)

ϕ · b).

The set U = {Uϕ : ϕ ∈ R} is a group, a subgroup of the group of
invertible 2`× 2` matrices with entries in k . In the context of U
the group operation corresponds to following one rotation with
another.

Definition

The group U = {Uϕ : ϕ ∈ R} is called the rotation group of family
(2). A polynomial invariant of the group U is termed an invariant
of the rotation group, or more simply an invariant.
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We wish to identify all polynomial invariants of this group action.
The polynomials in question are elements of C[a, b]. They identify
polynomial expressions in the coefficients of elements of the family
(2) that are unchanged under a rotation of coordinates. A
polynomial f ∈ C[a, b] is an invariant of the group U if and only if
each of its terms is an invariant, so it suffices to find the invariant
monomials. Since

a(ϕ)pjqj = apjqj e
i(pj−qj )ϕ, b(ϕ)qjpj = bqjpj e

i(qj−pj )ϕ,

for ν ∈ N2`
0 the image of the corresponding monomial

[ν] = aν1
p1q1
· · · aν`

p`q`
b
ν`+1
q`p` · · · bν2`

q1p1
∈ C[a, b]

under Uϕ is the monomial

a(ϕ)ν1
p1q1
· · · a(ϕ)ν`

p`q`
b(ϕ)

ν`+1
q`p` · · · b(ϕ)ν2`

q1p1

= aν1
p1q1

e iϕν1(p1−q1) · · · aν`
p`q`

e iϕν`(p`−q`)

b
ν`+1
q`p` e iϕν`+1(q`−p`) · · · bν2`

q1p1
e iϕν2`(q1−p1)

(6)
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= e iϕ[ν1(p1−q1)+···+ν`(p`−q`)+ν`+1(q`−p`)+···+ν2`(q1−p1)]

aν1
p1q1
· · · aν`

p`q`
b
ν`+1
q`p` · · · bν2`

q1p1
.

The quantity in square brackets is L1(ν)− L2(ν), where

L(ν) =
((L1(ν)

L2(ν)

)
is the linear operator on N2`

0 defined by

L(ν) =

(
p1

q1

)
ν1 + · · ·+

(
p`
q`

)
ν` +

(
q`
p`

)
ν`+1 + · · ·+

(
q1

p1

)
ν2`.

Thus, the monomial [ν] is an invariant if and only if
L1(ν) = L2(ν). We define the set M by

M = {ν ∈ N2`
0 : L(ν) =

(
k

k

)
for some k ∈ N0}. (7)
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We have established that the monomial [ν] is invariant under the
rotation group U of (2) if and only if L1(ν) = L2(ν), that is, if and
only if ν ∈M.
For

[ν] = aν1
p1q1
· · · aν`

p`q`
b
ν`+1
q`p` · · · bν2`

q1p1
∈ C[a, b]

its conjugate is defined by

[ν̂] = aν2`
p1q1
· · · aν`+1

p`q`
bν`
q`p`
· · · bν1

q1p1
∈ C[a, b]

Since, for any ν ∈ N2`
0 , L1(ν)− L2(ν) = −(L1(ν̂)− L2(ν̂)), the

monomial [ν] is invariant under U if and only if its conjugate [ν̂] is.
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Proposition

The monoid M consists of all ν such that

L1(ν)− L2(ν) = (p1 − q1)ν1 + (p2 − q2)ν2 + · · ·+ (p` − q`)ν`

+ (q` − p`)ν`+1 + · · ·+ (q1 − p1)ν2` = 0.
(8)
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Proof. Obviously every solution of (7) is also a solution of (8).
Conversely, let ν be a solution of (8) and let
ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of C2`. Then

L1(ν) = L2(ν) = k , (9)

yielding
L1(ν) + L2(ν) = 2k . (10)

Note that

L1(ei ) + L2(ei ) = L1(e2`−i ) + L2(e2`−i ) = pi + qi ≥ 0 (11)

for i = 1, . . . , `. Taking into account the fact that L(ν) is a linear
operator, we conclude from (10) and (11) that the number k on
the right–hand side of (9) is non–negative. �
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Example. We will find all the monomials of degree at most three
that are invariant under the rotation group U for the family of
systems

ẋ = −a00x − a−11y − a20x3, ẏ = b1,−1x + b00y + b02y3.

Since S̃ = {(0, 0), (−1, 1), (2, 0)}, for ν ∈ N6
0

L(ν) = ν1 (0, 0) + ν2 (−1, 1) + ν3 (2, 0) + ν4 (0, 2) + ν5 (1,−1) + ν6 (0, 0)

= (−ν2 + 2ν3 + ν5, ν2 + 2ν4 − ν5)

so that equation (8) reads
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− 2ν2 + 2ν3 − 2ν4 + 2ν5 = 0. (12)

deg([ν]) = 0. The monomial 1, corresponding to ν = 0 ∈ N6
0, is of

course always an invariant.
deg([ν]) = 1. In this case ν = (0, . . . , 0,

j
1, 0, . . . , 0) ∈ N6

0 for some
j . Clearly (12) holds if and only if ν = e1 or ν = e6, yielding
a1
00 a0
−11 a0

20 b0
02 b0

1,−1 b0
00 = a00 and to

a0
00 a0
−11 a0

20 b0
02 b0

1,−1 b1
00 = b00 respectively.

deg([ν]) = 2. If ν = 2ej and satisfies (12) then j = 1 or j = 6,
yielding a2

00 and b2
00, respectively. If ν = ej + ek for j < k, then

(12) holds if and only if either (j , k) = (1, 6) or one of j and k
corresponds to a term in (12) with a plus sign and the other to a
term with a minus sign, hence
(j , k) ∈ P := {(2, 3), (2, 5), (3, 4), (4, 5)}. The former case gives
a00 b00; the latter case gives

ν = (0, 1, 1, 0, 0, 0) yielding a0
00 a1
−11 a1

20 b0
02 b0

1,−1 b0
00 = a−11 a20

ν = (0, 1, 0, 0, 1, 0) yielding a0
00 a1
−11 a0

20 b0
02 b1

1,−1 b0
00 = a−11 b1,−1

ν = (0, 0, 1, 1, 0, 0) yielding a0
00 a0
−11 a1

20 b1
02 b0

1,−1 b0
00 = a20 b02

ν = (0, 0, 0, 1, 1, 0) yielding a0
00 a0
−11 a0

20 b1
02 b1

1,−1 b0
00 = b02 b1,−1,
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The full set of monomial invariants of degree at most three for
family

ẋ = −a00x − a−11y − a20x3, ẏ = b1,−1x + b00y + b02y3

is

degree 0: 1

degree 1: a00, b00

degree 2: a2
00, b2

00, a00 b00, a−11 a20, a−11 b1,−1, a20 b02, b02 b1,−1

degree 3: a3
00, b3

00, a
2
00 b00, a00 b2

00, a00 a−11 a20, a00 a−11 b1,−1, a00 a20 b02,

a00 b02 b1,−1, b00 a−11 a20, b00 a−11 b1,−1, b00 a20 b02, b00 b02 b1,−1.
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An algorithm for computing a generating set of invariants
(A. Jarrah, R. Laubenbacher, V.R. JSC, 2003)

ẋ = −
∑

(p,q)∈S̃

apqxp+1yq = P(x , y),

ẏ =
∑

(p,q)∈S̃

bqpxqyp+1 = Q(x , y),

L(ν) =

(
L1(ν)

L2(ν)

)
=

(
p1

q1

)
ν1+· · ·+

(
p`
q`

)
ν`+

(
q`
p`

)
ν`+1+· · ·+

(
q1

p1

)
ν2`.

M = {ν ∈ N2`
0 : L(ν) =

(
i

j

)
for some j ∈ N0}.
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Input: Two sequences of integers p1, . . . , p` (pi ≥ −1) and
q1, . . . , q` (qi ≥ 0). (These are the coefficient labels for our
system.)
Output: A finite set of generators for subalgebra of the invariant
(equivalently, the Hilbert basis of M).

1. Compute a reduced Gröbner basis G for the ideal

J = 〈apiqi−yi t
pi
1 tqi

2 , bqipi−y`−i+1t
q`−i+1

1 t
p`−i+1

2 | i = 1, . . . , `〉
⊂ C[a, b, y1, . . . , y`, t1, t2]

with respect to any elimination ordering for which

{t1, t2} > {y1, . . . , yd} > {ap1q1 , . . . , bq1p1}.

2. IS = 〈G ∩ C[a, b]〉.
3. The basis is formed by the monomials of IS and monomials of

the form aikbki
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Time-reversible systems

dz

dt
= F (z) (z ∈ Ω), (13)

F : Ω 7→ T Ω is a vector field and Ω is a manifold.

Definition

A time-reversible symmetry of (13) is an invertible map
R : Ω 7→ Ω, such that

d(Rz)

dt
= −F (Rz). (14)
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Example

u̇ = v + vf (u, v2), v̇ = −u + g(u, v2), (15)

The transformation u → u, v → −v , t → −t leaves the system
unchanged ⇒ the u–axis is a line of symmetry for the orbits ⇒ no
trajectory in a neighborhood of (0, 0) can be a spiral ⇒ the origin
is a center.
Here

R : u 7→ u, v 7→ −v . (16)
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Complexification

u̇ = U(u, v), v̇ = V (u, v) x = u + iv

ẋ = u̇ + i v̇ = U + iV = P(x , x̄) (17)

We add to (17) its complex conjugate to obtain the system

ẋ = P(x , x̄), ˙̄x = P(x , x̄). (18)

The condition of time-reversibility with respect to Ou = Im x :
P(x̄ , x) = −P(x , x̄).
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Time-reversibility with respect to y = tanϕ x :

e2iϕP(x , x̄) = −P(e2iϕx̄ , e−2iϕx). (19)

Consider x̄ as a new variable y and allow the parameters of the
second equation of (18) to be arbitrary. The complex system
ẋ = P(x , y), ẏ = Q(x , y). which is is time–reversible with
respect to a transformation

R : x 7→ γy , y 7→ γ−1x

if and only if for some γ

γQ(γy , x/γ) = −P(x , y), γQ(x , y) = −P(γy , x/γ) . (20)

In the particular case when γ = e2iϕ, y = x̄ , and Q = P̄ the
equality (20) is equivalent to the reflection with respect a line and
the reversion of time.
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Systems of our interest are of the form

ẋ = x −
∑

(p,q)∈S apqxp+1yq = P(x , y),

ẏ = −y +
∑

(p,q)∈S bqpxqyp+1 = Q(x , y),
(21)

where S is the set
S = {(pj , qj) |pj + qj ≥ 0, j = 1, . . . , `} ⊂ ({−1} ∪ N0)× N0, and
N0 denotes the set of nonnegative integers. We will assume that
the parameters apjqj , bqjpj (j = 1, . . . , `) are from C or R. Denote
by (a, b) = (ap1q1 , . . . , ap`q`

, bq`p`
. . . , bq1p1) the ordered vector of

coefficients of system (21), by E (a, b) the parameter space of (21)
(e.g. E (a, b) is C2` or R2`), and by k[a, b] the polynomial ring in
the variables apq, bqp over the field k .
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The condition of time-reversibility

γQ(γy , x/γ) = −P(x , y), γQ(x , y) = −P(γy , x/γ) .

yields that system (21) is time–reversible if and only if

bqp = γp−qapq, apq = bqpγ
q−p. (22)

We rewrite (22) in the form

apkqk
= tk , bqkpk

= γpk−qk tk (23)

for k = 1, . . . , `. (23) define a surface in the affine space
C3`+1 = (ap1q1 , . . . , ap`q`

, bq`p`
, . . . , bq1p1 , t1, . . . , t`, γ). Thus, the

set of all time-reversible systems is the projection of this surface
onto C2` = E (a, b).
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Theorem (e.g. Cox D, Little J and O’Shea D 1992 Ideals,
Varieties, and Algorithms)

Let k be an infinite field, f1, . . . , fn be elements of k[t1, . . . , tm],

x1 = f1(t1, . . . , tm), . . . xn = fn(t1, . . . , tm),

and let F : km → kn, be the function defined by

F (t1, . . . , tm) = (f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Let J = 〈f1 − x1, . . . , fn − xn〉 ⊂ k[y , t1, . . . , tm, x1, . . . , xn], and let
Jm+1 = J ∩ k[x1, . . . , xn]. Then V(Jm+1) is the smallest variety in
kn containing F (km).
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Let
H = 〈apkqk

− tk , bqkpk
− γpk−qk tk | k = 1, . . . , `〉, (24)

Let R be the set of all time-reversible systems in the family (21).
From the previous theorem we obtain

Theorem

R = V(I) where I = k[a, b] ∩ H, that is, the Zariski closure of
the set R of all time-reversible systems is the variety of the ideal I.
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Computation of I = k[a, b] ∩ H

Elimination Theorem

Fix the lexicographic term order on the ring k[x1, . . . , xn] with
x1 > x2 > · · · > xn and let G be a Groebner basis for an ideal I of
k[x1, . . . , xn] with respect to this order. Then for every `,
0 ≤ ` ≤ n − 1, the set G` := G ∩ k[x`+1, . . . , xn] is a Groebner
basis for the ideal I` = I ∩ k[x`+1, . . . , xn] (the `–th elimination
ideal of I ).

By the theorem, to find a generating set for the ideal I it is
sufficient to compute a Groebner basis for H with respect to a
term order with {w , γ, tk} > {apkqk

, bqkpk
} and take from the

output list those polynomials, which depend only on
apkqk

, bqkpk
(k = 1, . . . , `).
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An algorithm for computing the set of all time-reversible systems

Let
H = 〈apkqk

− tk , bqkpk
− γpk−qk tk | k = 1, . . . , `〉.

Compute a Groebner basis GH for H with respect to any
elimination order with
{w , γ, tk} > {apkqk

, bqkpk
| k = 1, . . . , `};

the set B = GH ∩ k[a, b] is a set of binomials; V(〈B〉) is the
Zariski closure of set of all time-reversible systems.
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Another description of the ideal I
Let M be the monoid of all solutions ν = (ν1, ν2, . . . , ν2l) with
non–negative components of the equation

ζ1ν1+ζ2ν2+· · ·+ζ`ν`+ζ`+1ν`+1+· · ·+ζ2`ν2` = 0, (ζ ·ν = 0) (25)

where ζj = pj − qj for j = 1, . . . , `, ζj = q2`−j+1 − p2`−j+1 for
j = `+ 1, . . . , 2`, that is,

ζ = (p1 − q1, p2 − q2, . . . , p` − q`, q` − p`, . . . , q1 − p1)

((pj , qj) are from the set S defining system (2)).
For ν = (ν1, . . . , ν2`) ∈M we denote by [ν] the monomial

aν1
p1q1

aν2
p2q2
· · · aν`

p`q`
b
ν`+1
q`p` b

ν`+2
q`−1p`−1 · · · bν2`

q1p1
(26)

and by ν̂ the involution of the vector ν, ν̂ = (ν2`, ν2`−1, . . . , ν1).
The monomials [ν] and [ν̂] are invariants of the rotation group Uϕ.
We will denote by C[M] the monoid ring of M (the subalgebra
generated by {[ν]|ν ∈M}).
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For system (2) one can always find a function
Ψ(x , y) = xy + h.o.t. such that

∂Ψ

∂x
P(x , y)+

∂Ψ

∂y
Q(x , y) = g11 ·(xy)2+g22 ·(xy)3+g33 ·(xy)4+· · · ,

(27)
where the gii are polynomials in the coefficients of (2) called focus
quantities. System (2) is integrable if and only if gss = 0 for all
s = 1, 2, . . . .

Theorem

gss(a, b) ∈ C[M] and have the form

gss =
∑
ν∈M

g (ν)([ν]− [ν̂]). (28)

Consider the ideal

IS = 〈[ν]− [ν̂] | ν ∈M〉 ⊂ k[a, b] (k is C or R).

We call IS the Sibirsky ideal of system (2).
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In the case that (2) is time-reversible, using (22) and (25) we see
that for ν ∈M

[ν̂] = γζ·ν [ν] = [ν], (29)

where ζ · ν is the scalar product of ζ and ν, that is the left-hand
side of (25). Thus, using (28), we obtain that every time-reversible
system is integrable.
By (29) every time–reversible system (a, b) ∈ E (a, b) belongs to
V(IS). The converse is false.

Theorem 1

Let R ⊂ E (a, b) be the set of all time–reversible systems in the
family (2), then
(a) R ⊂ V(IS);
(b) V(IS) \ R = {(a, b) | ∃(p, q) ∈ S such that apqbqp =
0 but apq + bqp 6= 0}.

(b) means that if in a time-reversible system (2) apq 6= 0 then
bqp 6= 0 as well. (b) =⇒ the inclusion in (a) is strict, that is
R $ V(IS).
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Theorem 2

IS = I and both ideals are prime.

From Theorems 1 and 2 it follows

Theorem 3

The variety of the Sibirsky ideal IS is the Zariski closure of the set
R of all time-reversible systems in the family (2).
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Suppose we are given the system

x1 =
f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . , xn =

fn(t1, . . . , tm)

gn(t1, . . . , tm)
, (30)

where fj , gj ∈ k[t1, . . . , tm] for j = 1, . . . , n. Let k(t1, . . . , tm)
denote the ring of rational functions in m variable with coefficients
in k (k is C or R), and consider the ring homomorphism

ψ̃ : k[x1, . . . , xn, t1, . . . , tm,w ]→ k(t1, . . . , tm)

defined by
ti → ti , xj → fj(t1, . . . , tm)/gj(t1, . . . , tm),w → 1/g(t1, . . . , tm),
i = 1, . . . ,m, j = 1, . . . , n and g = g1g2 · · · gn. Let

H̃ = 〈1−wg , x1g1(t1, . . . , tm)−f1(t1, . . . , tm), . . . , xngn(t1, . . . , tm)−fn(t1, . . . , tm)〉.

H̃ = ker(ψ̃). (31)

Since k[x1, . . . , xn, t1, . . . , tm,w ] is a domain (31) yields that H̃ is
a prime ideal.
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Proof of Theorem 2.

H = 〈apkqk
− tk , bqkpk

−γpk−qk tk | k = 1, . . . , `〉, I = H ∩k[a, b].

Let f ∈ IS ⊂ C[a, b], so that f is a finite linear combination, with
coefficients in C[a, b], of binomials of the form [ν]− [ν̂], where
ν ∈M. f ∈ I if any such binomial is in I. By definition of ψ

ψ([ν]− [ν̂]) = tν1
1 · · · t

ν`
` (γp`−q`t`)

ν`+1 · · · (γp1−q1t1)ν2`

− tν2`
1 · · · t

ν`+1

` (γp`−q`t`)
ν` · · · (γp1−q1t1)ν1

= tν1
1 · · · t

ν`
` tν2`

1 · · · t
ν`+1

` (γν1ζ1+···+ν`ζ` − γν2`ζ1+···+ν`+1ζ`).
(32)

Since ν ∈M, ζ1ν1 + · · ·+ ζ2`ν2` = ζ · ν = 0. But ζj = −ζ2`−j+1

for 1 ≤ j ≤ 2` so

ζ1ν1 + · · ·+ ζ`ν` = −ζ`+1ν`+1− · · · − ζ2`ν2` = ζ`ν`+1 + · · ·+ ζ1ν2`

and the exponents on γ in (32) are the same. Thus
[ν]− [ν̂] ∈ ker(ψ) = H, hence [ν]− [ν̂] ∈ H ∩ C[a, b] = I, i.e.
IS ⊂ I.
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By (31) the ideal H defined by (24) is the kernel of the ring
homomorphism

ψ : k[a, b, t1, . . . , t`, γ,w ] −→ k(γ, t1, . . . , t`)

defined by apkqk
7→ tk , bqkpk

7→ γpk−qk tk , w 7→ 1/(γ̃1 · · · γ̃`) for
k = 1, . . . , `. We obtain a reduced Groebner basis G of k[a, b] ∩ H
by computing a reduced Groebner basis of H using an elimination
ordering with {apjqj , bqjpj} < {w , γ, tj} for all j = 1, . . . , `, and
then intersecting it with k[a, b]. Since H is binomial, any reduced
Groebner basis G of H also consists of binomials. This shows that
I is a binomial ideal.
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Now suppose f ∈ I = H ∩ C[a, b] ⊂ C[a, b]. Since I has a basis
consisting wholly of binomials, it is enough to restrict to the case
that f is binomial, f = aα[α] + aβ[β]. Using the definition of ψ
and collecting terms

ψ(aα[α] + aβ[β]) = aαtα1+α2`
1 · · · tα`+α`+1

` γζ`α`+1+···+ζ1α2`+

aβtβ1+β2`
1 · · · tβ`+β`+1

` γζ`β`+1+···+ζ1β2` .

Since H = ker(ψ) this is the zero polynomial, so

aβ = −aα (33a)

αj + α2`−j+1 = βj + β2`−j+1 for j = 1, . . . , ` (33b)

ζ`α`+1 + · · ·+ ζ1α2` = ζ`β`+1 + · · ·+ ζ1β2` (33c)
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For ν ∈ N2`
0 let R(ν) denote the set of indices j for which νj 6= 0.

First suppose that R(α) ∩ R(β) = ∅. It is easy to check that
condition (33b) forces βj = α2`−j+1 for j = 1, . . . , 2`, so that
β = α̂. But then because ζj = −ζ2`−j+1 for 1 ≤ j ≤ 2` condition
(33c) reads

−ζ`+1α`+1 − · · · − ζ2`α2` = ζ`α` + · · ·+ ζ1α1

or ζ1α1 + · · ·+ ζ2`α2` = 0, so α ∈M. Thus f = aα([α]− [α̂]) and
α ∈M, so f ∈ IS .
If R(α) ∩ R(β) 6= ∅, then [α] and [β] contain common factors,
corresponding to the common indices of some of their nonzero
coefficients. Factoring out the common terms, which form a
monomial [µ], we obtain f = [µ](aα[α′] + aβ[β′]), where
R(α′) ∩ R(β′) = ∅. Since the ideal I is prime and contains no
monomial we conclude that aα[α′] + aβ[β′] ∈ I, hence by the first
case that aα[α′] + aβ[β′] ∈ IS , hence that f ∈ IS . �
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Algorithm for computing I(= IS)

Compute a Groebner basis GH for
H = 〈apkqk

− tk , bqkpk
− γpk−qk tk | k = 1, . . . , `〉 with respect

to any elimination order
{w , γ, tk} > {apkqk

, bqkpk
| k = 1, . . . , `};

the set GH ∩ k[a, b] is a generating set for I and IS .

Theorem

Let G be a reduced Gröbner basis of I.
1. Every element of G has the form [ν]− [ν̂], where ν ∈M and

[ν] and [ν̂] have no common factors.
2. The set

H = {µ, µ̂ : [µ]− [µ̂] ∈ G} ∪ {ej + e2`−j+1 : j = 1, . . . , `

and ± ([ej ]− [e2`−j+1]) 6∈ G},

where ej = (0, . . . , 0,
j
1, 0, . . . , 0), is a Hilbert basis of M.

Invariants and time-reversibility in polynomial systems of ODEs



As an example consider the system

ẋ = x − a10x2 − a01xy − a−12y2,
ẏ = −y + b10xy + b01y2 + b2,−1x2.

(34)

Computing a Groebner basis of the ideal

J = 〈1−wγ4, a10−t1, b01−γt1, a01−t2, γb10−t2, a−12−t3, γ
3b2,−1−t3〉

with respect to the lexicographic order with
w > γ > t1 > t2 > t3 > a10 > a01 > a−12 > b10 > b01 > b2,−1 we
obtain a list of polynomials.
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According to step 2 of the algorithm we pick up the polynomials
that do not depend on w , γ, t1, t2, t3:
f1 = a3

01b2,−1 − a−12b3
10, f2 = a10a01 − b01b10,

f3 = a3
10a−12 − b2,−1b3

01, f4 = a10a−12b2
10 − a2

01b2,−1b01,
f5 = a2

10a−12b10 − a01b2,−1b2
01. Thus, for system (34)

IS = I = 〈f1, . . . , f5〉.

V(〈f1, . . . , f5〉) is the Zariski closure of the set of all
time-reversible systems inside of (34)

The monomials of fi together with a10b01, a01b10, a−12b2,−1

generate the subalgebra C[M] for invariants of Uϕ and the
exponents of the monomials form the Hilbert basis of the
monoid M.

Focus quantities gii of (34) belong to C[M].
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We now show a further interconnection of time-reversibility and
invariants of a group of transformations of the phase space of

ẋ = −
∑

(p,q)∈S̃

apqxp+1yq = P(x , y),

ẏ =
∑

(p,q)∈S̃

bqpxqyp+1 = Q(x , y),
(35)

Consider the transformations of the phase space of (35)

x ′ = ηx , y ′ = η−1y (x , y , η ∈ C, η 6= 0). (36)

In (x ′, y ′) coordinates (35) has the form

ẋ ′ =
∑

(p,q)∈S

a(η)(p,q)x
′p+1y ′

q
, ẏ ′ =

∑
(p,q)∈S

b(η)(q,p)x
′qy ′

p+1

and the coefficients of the transformed system are

a(η)pkqk
= apkqk

ηqk−pk , b(η)qkpk
= bqkpk

ηpk−qk , (37)

where k = 1, . . . , `. Let Uη denote the transformation (37). We
write (37) as (a(η), b(η)) = Uη(a, b).
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The action of Uη on the coefficients aij , bji of the system of
differential equations (35) yields the following transformation of
the monomial [ν] defined by (26):

Uη[ν] = a(η)ν1
p1q1
· · · a(η)ν`

p`q`
b(η)ν`+1

q`p`
· · · b(η)ν2`

q1p1
= (38)

ηζ·νaν1
p1q1
· · · aν`

p`q`
b
ν`+1
q`p` · · · bν2`

q1p1
= ηζ·ν [ν].

Thus we see that the monomial [ν] is invariant under the action of
Uη if and only if ζ · ν = 0, i.e., if and only if ν ∈M.
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Denote by (̂a, b) the involution of (a, b),

(̂a, b) = (bq1p1 , . . . , bqlpl
, aplql

, . . . , ap1q1). (39)

The orbit O of the group Uη is invariant under the involution (39)

if for any (a, b) ∈ O the system (̂b, a) also belongs to O.

Theorem

(a) The set of the orbits of Uη is divided into two not intersecting
subsets: one consists of all time-reversible systems and only
time-reversible systems, and there are no time-reversible systems in
the other subset.
(b) The variety V(IS) is the Zariski closure of all orbits of the
group Uη invariant under the involution (39).
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Conclusions

The theory of invariants of ODEs is almost untouched field for
applications of methods and algorithms of computational
algebra

Two interesting problems for studying:
- generalization of the presented methods to higher
dimensional systems of ODEs
- studying invariants of another groups of transformations of
the phase space
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