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16th Hilbert’s problem (the second part)

ẋ = Pn(x , y), ẏ = Qn(x , y), (A)

Pn(x , y), Qn(x , y), are polynomials of degree n.
Let h(Pn,Qn) be the number of limit cycles of system (A) and let
H(n) = sup h(Pn,Qn) .
The question of the second part of the 16th Hilbert’s problem:

find a bound for H(n) as a function of n.
(The problem is still unresolved even for n = 2.)
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The cyclicity problem

The cyclicity problem

Find an upper bound for the number of limit cycles in a
neighborhood of elementary singular point. This problem is called
the cyclicity problem or the local Hilbert’s 16th problem.
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The center problem

u̇ = λu − v +
∑

j+l=2

αjlu
jv l , v̇ = u + λv +

∑
j+l=2

βjlu
jv l (1)

Trajectories are either ovals (solutions are periodic) or spirals
(solutions are not periodic).
In the first case the origin is a center, in the second case it is a
focus.

The Poincaré center problem

• Find all systems with a center at the origin within the family (1).
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Poincaré (return) map

u̇ = λu − v +
∑

j+l=2

αjlu
jv l , v̇ = u + λv +

∑
j+l=2

βjlu
jv l

Poincare map

P(ρ) = e2πλρ+ η2(α, β, αij , βij)ρ
2 + η3(α, β, αij , βij)ρ

3 + . . . .

Limit cycles ←→ isolated fixed points of P(ρ).
α changes the sign − > Hopf bifurcation
W.l.o.g. we assume that α = 0, β = 1. Then ηk(αij , βij) are
polynomials.
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u̇ = λu − v +
m∑

j+l=2

αjlu
jv l , v̇ = u + λv +

m∑
j+l=2

βjlu
jv l (2)

A = (α20, β20, . . . , β0m).

Definition

For parameters (λ,A) let n(λ,A),ε denote the number of limit cycles
of the corresponding system (2) that lie wholly within an
ε-neighborhood of the origin. The singularity at the origin for
system (2) with fixed coefficients (λ∗,A∗) ∈ E (λ,A) has cyclicity c
with respect to the space E (λ,A) if there exist positive constants
δ0 and ε0 such that for every pair ε and δ satisfying 0 < ε < ε0 and
0 < δ < δ0

max{n(λ,A),ε : |(λ,A)− (λ∗,A∗)| < δ} = c .
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To study limit cycles in a system

u̇ = −v +
∑

j+l=2

αjlu
jv l , v̇ = u +

∑
j+l=2

βjlu
jv l (3)

we compute the Poincare map:

P(ρ) = ρ+ η2(αij , βij)ρ
2 + η3(αij , βij)ρ

3 + · · ·+ ηk(αij , βij)ρ
k + .̇

Let B = 〈η3, η4, . . .〉 ⊂ R[αij , βij ] be the ideal generated by all
focus quantities ηi .
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B = 〈ηu1 , ηu2 , . . . , ηuk
〉

and u1 < · · · < uk .
Then for any s

ηs = ηu1θ
(s)
1 + ηu2θ

(s)
2 + · · ·+ ηuk

θ
(k)
k ,

P(ρ)− ρ = ηu1(1 + µ1ρ+ . . . )ρu1 + · · ·+ ηuk
(1 + µkρ+ . . . )ρuk .

Bautin’s Theorem

If B = 〈ηu1 , ηu2 , . . . , ηuk
〉 then the cyclicity of system (3) (i.e. the

maximal number of limit cycles which appear from the origin after
small perturbations) is less or equal to k .
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P(ρ) = ρ+ η3(αij , βij)ρ
3 + η4(αij , βij)ρ

4 + . . . .

Center: η3 = η4 = η5 = · · · = 0.

Poincaré center problem

Find all systems with a center at the origin within a given
polynomial family

Algebraic counterpart

Find the variety of the Bautin ideal B = 〈η3, η4, η5 . . .〉. (This
variety is called the center variety.)
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The cyclicity problem

Find an upper bound for the maximal number of limit cycles in a
neighborhood of a center or a focus

By Bautin’s theorem:

Algebraic counterpart

Find a basis for the Bautin ideal 〈η3, η4, η5, . . .〉 generated by all
coefficients of the Poincaré map
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Complexification

ẋ = i(x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −i(y −

n−1∑
p+q=1

bqpx
qyp+1) (4)

The change of time dτ = idt transforms (4) to the system

ẋ = (x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −(y −

n−1∑
p+q=1

bqpx
qyp+1). (5)
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Poincaré-Lyapunov Theorem

The system

du

dt
= −v +

n∑
i+j=2

αiju
iv j ,

dv

dt
= u +

n∑
i+j=2

βiju
iv j (6)

has a center at the origin (equivalently, all coefficients of the
Poincaré map are equal to zero) if and only if it admits a first
integral of the form

Φ = u2 + v2 +
∑

k+l≥2

φklu
kv l .
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Definition of a center for complex systems

System

ẋ = (x−
n−1∑

p+q=1

apqx
p+1yq) = P, ẏ = −(y−

n−1∑
p+q=1

bqpx
qyp+1) = Q,

(7)
has a center at the origin if it admits a first integral of the form

Φ(x , y ; a10, b10, . . .) = xy +
∞∑

s=3

s∑
j=0

vj ,s−jx
jy s−j
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For the complex system

ẋ = (x−
n−1∑

p+q=1

apqx
p+1yq) = P, ẏ = −(y−

n−1∑
p+q=1

bqpx
qyp+1) = Q,

one looks for a function of the form
Φ(x , y ; a10, b10, . . .) = xy +

∑∞
s=3

∑s
j=0 vj ,s−jx

jy s−j such that

∂Φ

∂x
P +

∂Φ

∂y
Q = g11(xy)2 + g22(xy)3 + · · · , (8)

and g11, g22, . . . are polynomials in apq, bqp. These polynomials are
called focus quantities.

The Bautin ideal

The ideal B = 〈g11, g22, . . . 〉 generated by the focus quantities is
called the Bautin ideal.
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The center problem

Find the variety V(B) of the Bautin ideal B = 〈g11, g22, g33 . . .〉.
V(B) is called the center variety of the system.
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The cyclicity of the quadratic system

Generalized Bautin’s theorem

If the ideal B of all focus quantities of system

ẋ = (x −
n−1∑

p+q=1

apqx
p+1yq), ẏ = −(y −

n−1∑
p+q=1

bqpx
qyp+1)

is generated by the m first f. q., B = 〈g11, g22, . . . , gmm〉, then at
most m limit cycles bifurcate from the origin of the corresponding
real system

u̇ = λu − v +
n∑

j+l=2

αjlu
jv l , v̇ = u + λv +

n∑
j+l=2

βjlu
jv l ,

that is the cyclicity of the system is less or equal to m.
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The center variety of the quadratic system

ẋ = x−a10x
2−a01xy−a−12y

2, ẏ = −(y−b10xy−b01y
2−b2,−1x

2).
(9)

Theorem (H. Dulac 1908, C. Christopher & C. Rouseeau, 2001)

The variety of the Bautin ideal of system (9) coincides with the
variety of the ideal B3 = 〈g11, g22, g33〉 and consists of four
irreducible components:
1) V(J1), where J1 = 〈2a10 − b10, 2b01 − a01〉,
2) V(J2), where J2 = 〈a01, b10〉,
3) V(J3), where J3 = 〈2a01 + b01, a10 + 2b10, a01b10 − a−12b2,−1〉,
4) V(J4) = 〈f1, f2, f3, f4, f5〉, where
f1 = a3

01b2,−1 − a−12b
3
10, f2 = a10a01 − b01b10,

f3 = a3
10a−12 − b2,−1b

3
01,

f4 = a10a−12b
2
10 − a2

01b2,−1b01, f5 = a2
10a−12b10 − a01b2,−1b

2
01.
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Proof. Computing the first three focus quantities we have
g11 = a10a01 − b10b01,
g22 = a10a−12b

2
10 − a2

01b01b2,−1 − 2
3 (a−12b

3
10 − a3

01b2,−1) −
2
3 (a01b

2
01b2,−1 − a2

10a−12b10),

g33 = − 5
8 (−a01 a−12b

4
10+2 a−12b01b

4
10+ a4

01b10 b2,−1−2 a3
01 b01 b10 b2,−1−

2 a10 a2
−12 b2

10 b2,−1 +a2
−12 b3

10 b2,−1−a3
01 a−12 b2

2,−1 +2 a2
01 a−12 b01 b2

2,−1).
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Using the radical membership test we see that

g22 6∈
√
〈g11〉, g33 6∈

√
〈g11, g22〉, g44, g55, g66 ∈

√
〈g11, g22, g33〉,

i.e., V(B1) ⊃ V(B3) ⊃ V(B3) = V(B4) = V(B5). We expect that

V(B3) = V(B). (10)

The inclusion V(B) ⊆ V(B3) is obvious, therefore in order to check
that (16) indeed holds we only have to prove that

V(B3) ⊆ V(B). (11)

To do so, we first look for a decomposition of the variety V(B3).
To verify that (11) holds there remains to show that every system
(9) with coefficients from one of the sets
V(J1),V(J2),V(J3),V(J4) has a center at the origin, that is, there
is a first integral Ψ(x , y) = xy + h.o.t.
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The problem has been solved for:

The quadratic system ( ẋ = Pn, ẏ = Qn, n = 2) - Bautin
(1952) (Żola̧dek (1994), Yakovenko (1995), Françoise and
Yomdin (1997), Han, Zhang & Zhang (2007)).

The system with homogeneous cubic nonlinearities - Sibirsky
(1965) (Żo la̧dek (1994))

In both cases the analysis is relatively simple because the Bautin
ideal is a radical ideal.

Bautin’s theorem for the quadratic system

The cyclicity of the origin of system

u̇ = λu−v+α20u
2+α11uv+α02v

2, v̇ = u+λv+β20u
2+β11uv+β02v

2

equals three.
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Proof. We have for all k

gkk |V(B3) ≡ 0 (12)

where B3 = 〈g11, g22, g33〉.
Hence, if B3 is a radical ideal then (12) and Hilbert Nullstellensatz
yield that gkk ∈ B3. Thus, to prove that an upper bound for the
cyclicity is equal to three it is sufficient to show that B3 is a radical
ideal.
With help of Singular we check that

std(radical(B3)) = std(B3). (13)

Hence, B3 = B. This completes the proof.

The Cyclicity Problem for Polynomial Systems of ODEs



Good news:
Using algorithms of computational algebra the cyclicity of a
polynomial system can be easily investigated in the case when
the Bautin ideal is a radical ideal (provided we know its
variety)

Bad news:
It happens very seldom that the Bautin ideal is a radical ideal
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Cyclicity of systems with non-radical Bautin ideal

ẋ = λx + i(x − a−12x̄
2 − a20x

3 − a02xx̄2) (14)

ẋ = (x−a−12y
2−a20x

3−a02xy
2) ẏ = −(y−b2,−1x

2−b20x
2y−b02y

3)
(15)

Lemma

The variety of the Bautin ideal of system (15) coincides with the
variety of the ideal B6 = 〈g11, g22, . . . , g66〉.

By the Hilbert Basis Theorem V(B) = V(Bk) for some k . Using
the Radical Membership Test one can easily verify that

g66 6∈
√
〈g11, . . . , g55〉 but g77, g88, g99 ∈

√
〈g11, g22, . . . , g66〉,

which leads us to expect that

V(B6) = V(B). (16)

It was shown by Y. R. Liu (1990) that (11) holds.
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We use the specific structure of the focus quantities.

ẋ = (x−a−12y
2−a20x

3−a02xy
2), ẏ = −(y−b2,−1x

2−b20x
2y−b02y

3)

We write down the ideal

〈apkqk
− tk , bqkpk

− γpk−qk tk〉.

J = 〈1−wγ, a−12−t1, γ
3b2,−1−t1, a20−t2, b02−γ2t2, a02−t3, γ

2b20−t3〉

Computing the Gröbner basis with respect to the lexicographic
order with
w > γ > t1 > t2 > t3 > a−12 > a20 > a02 > b20 > b02 > b2,−1 we
obtain a list of polynomials and pick up the polynomials that do
not depend on w , γ, t1, t2, t3 :
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a20a02 − b20b02, a2
−12a20b

2
20 − a2

02b
2
2,−1b02, a2

−12a
2
20b20 −

a02b
2
2,−1b

2
02, −a3

02b
2
2,−1 − a2

−12b
3
20, a2

−12a
3
20 − b2

2,−1b
3
02, The

monomials of the binomials form a basis of the subalgebra:
c1 = a20a02, c2 = b20b02, c3 = a3

02b
2
2,−1, c4a

2
02b

2
2,−1b02, c5 =

a02b
2
2,−1b

2
02, . . .

The focus quantities of system (15) belong to the subalgebra
C[c1, . . . , c15] that is,

gkk = gkk(c1, . . . , c13) (17)

We prove that although the ideal of focus quantities is not radical
ideal in C[a, b], it is a radical ideal in C[c1, . . . , c15] and use this to
resolve the cyclicity problem for system (14).
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More precisely, consider the ideal
J =
〈c1−a−12b2,−1, c2−a20b02, c3−a02b20, c4−b20b02, c5−a3

02b
2
2,−1, c6−

a2
02b

2
2,−1b02, c7 − a02b

2
2,−1b

2
02, c8 − b2

2,−1b
3
02, c9 − a20a02, c10 −

a2
−12b

3
20, c11 − a2

−12a20b
2
20, c−1,2 − a2

−12a
2
20b20, c13 − a2

−12a
3
20〉 and

the corresponding map

F : E (a, b) = A6
C = C6 −→ A13

C = C13,

that is,
F (a, b) = (a−12b2,−1, a20b02, a02b20, b20b02, a

3
02b

2
2,−1, . . . , a

2
−12a

3
20).

Let W be the image of E (a, b) under F and
C[c] := C[c1, . . . , c13]. F induces the C–algebra homomorphism

F ∗ : C[c] −→ C[a, b].
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Let ≺(a,b) be an elimination monomial ordering for (a, b) in the
algebra C[a, b]⊗C C[c] = C[a, b, c]. Computing the Gröbner basis
JG of J with respect to ≺(a,b), we find that J ∩C[c] is the ideal R,
generated by
c11c13−c2

12, c10c13−c11c12, c10c12−c2
11, c6c8−c2

7 , c5c8−c6c7, c5c7−
c2
6 , c4c7c13− c8c9c12, c4c7c12− c8c9c11, c4c7c11− c8c9c10, c4c6c13−

c7c9c12, c4c6c12 − c7c9c11, c4c6c11 − c7c9c10, c4c5c13 −
c6c9c12, c4c5c12 − c6c9c11, c4c5c11 − c6c9c10, c3c13 − c9c12, c3c12 −
c9c11, c3c11 − c9c10, c3c8 − c4c7, c3c7 − c4c6, c3c6 − c4c5, c2c12 −
c4c13, c2c11 − c4c12, c2c10 − c4c11, c2c7 − c8c9, c2c6 − c7c9, c2c5 −
c6c9, c2c3−c4c9, c

2
1c3

9−c5c13, c
2
1c4c

2
9−c6c12, c

2
1c2

4c9−c7c11, c
2
1c3

4−
c8c10, c

2
1c3c

2
9 − c5c12, c

2
1c3c4c9 − c6c11, c

2
1c3c

2
4 − c7c10, c

2
1c2

3c9 −
c5c11, c

2
1c2

3c4 − c6c10, c
2
1c3

3 − c5c10, c
2
1c2c

2
9 − c6c13, c

2
1c2c4c9 −

c7c12, c
2
1c2c

2
4 − c8c11, c

2
1c2

2c9 − c7c13, c
2
1c2

2c4 − c8c12, c
2
1c3

2 − c8c13.
R is the kernel of F ∗ (can be computed with the routine preimage
of SINGULAR).
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Let C be the subalgebra of C[a, b], generated by the monomials,
corresponding to the components of the map F (that is, by
a−12b2,−1, a20b02, a02b20 etc.). For a polynomial
f (a, b) ∈ C[c1(a, b), . . . , c13(a, b)] ⊂ C[a, b] we denote by
f F ∈ C[c] the preimage of f (a, b) under F ∗. Then,
f F ∈ C[c1(a, b), . . . , c13(a, b)] can be computed via the normal
form, that is f F =NF(f , JG ), where JG is a Gröbner basis of J with
respect to an elimination ordering ≺(a,b).
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g22 =− i(3a20a02 − 3b20b02),

g44 =− i(2160a3
20a

2
12 + 5760a2

20b20a
2
12 + 2160a20b

2
20a

2
12 − 1440b3

20a
2
12

+ 1440a3
02b

2
21 − 2160a2

02b02b
2
21 − 5760a02b

2
02b

2
21 − 2160b3

02b
2
21)

g55 =− i(−340200a2
20b20a

3
12b21 − 226800a20b

2
20a

3
12b21 + 113400b3

20a
3
12b21 − 113400a3

02a12b
3
21

+ 226800a2
02b02a12b

3
21 + 340200a02b

2
02a12b

3
21)

g66 =− i(102060000a2
20b

2
20b02a

2
12 + 68040000a20b

3
20b02a

2
12 − 34020000b4

20b02a
2
12

+ 34020000a3
02b20b02b

2
21 − 68040000a2

02b20b
2
02b

2
21 − 102060000a02b20b

3
02b

2
21)

gF
11 = 0, gF

22 = c9 − c4, g
F
33 = 0,

gF
44 = 2

3c5 − c6 − 8
3c7 − c8 − 2

3c10 + c11 + 8
3c12 + c13 ,

gF
55 = − 7

24c1c5 + 7
12c1c6 + 7

8c1c7 + 7
24c1c10 − 7

12c1c11 − 7
8c1c12,

gF
66 = −5

3c3c5 + 5
3c3c10 + 10

3 c4c5 + 5c4c6 − 10
3 c4c10 − 5c4c11.
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Let W denote the image of C6 under F , W its Zariski closure, and
C[W ] the ring of polynomial mappings from W to C, which is
isomorphic to C[c]/I(W ). Then, W = V(R).
Denote by V the variety V(B) and by Vc the image of V under F ,
Vc = F (V ). Vc is a subset of W and its Zariski closure V c is a
subvariety of W . Let U be the subvariety U = V(〈gF

kk : k ∈ N〉) of
W and let U6 = V(G6) for G6 := 〈gF

11, g
F
22, . . . , g

F
66〉 ⊂ C[c]. We

claim that
U6 = U = V c . (18)

It is clear that gkk ∈ I(V ) implies that gF
kk ∈ I(Vc), which in turn

implies that gF
kk ∈ I(V c), so that

V c ⊂ U ⊂ U6. (19)
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Applying the ideas in §1.8.3 of (Greuel, G.-M. and Pfister, G. A
SINGULAR Introduction to Commutative Algebra, 2002) if we
form the ideal N = 〈JG ∩ C[c],B6, J〉 = 〈R,B6, J〉 in C[a, b, c] and
compute H = N ∩ C[c], then V c = V(H). We also checked that
the ideals H and G6 are the same ideal in C[c], so that
V c = V(G6) = U6. Together with (19) this yields

U6 = U = V c .

Let G̃6 denote the ideal 〈gF
11, . . . , g

F
66〉 in C[W ]. By the natural

isomorphism of C[W ] with C[c]/R this ideal is radical if and only
if the ideal 〈gF

11 + R, . . . , gF
66 + R〉 in C[c]/R is radical. Letting rj ,

1 ≤ j ≤ 44, denote the generators of R as listed above, it is easy
to check that this is true if the ideal H = 〈gF

11, . . . , g
F
66, r1, . . . , r44〉

is a radical ideal in C[c]. Computing the radical of H with
Singular we find that it is. Thus G̃6 is radical in C[W ].
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The equality U = U6 tells us that for every k ∈ N
gF
kk ∈ I(U6) = I(V(G6)). But then viewed as a polynomial mapping

on W , i.e., as an element of C[W ], we have that

gF
kk ∈ IW (VW (G̃6)). This means that gF

kk ∈
√

G̃6 = G̃6 in C[W ].

Thus there exist polynomials fj ,k such that for c ∈W

gF
kk(c) = gF

11(c)f1,k(c) + · · ·+ gF
66(c)f6,k(c).

Applying F ∗ and that by the Generalized Bautin Theorem the
cyclicity of a center at the origin is at most four (since
g11 = g33 = 0.).
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ẋ = λx + i(x − a−12x̄
2 − a20x

3 − a11x
2x̄ − a02xx̄2). (20)

With system (20) we associate the complex system

ẋ = i(x − a−12y
2 − a20x

3 − a11x
2y − a02xy

2)

ẏ = −i(y − b2,−1x
2 − b20x

2y − b11xy
2 − b02y

3)
(21)

The first seven focus quantities define the variety of the Bautin
ideal of (21), that is, V(B) = V(B7), where B7 = 〈g11, . . . , g77〉
(Y.-R. Liu, 1990).
B7 is not a radical ideal.
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Computations show that the ideals B7, B8,B9 of system (20) are
nonradical ideals also in C[M].
Nevertheless, B9 has a relatively simple primary decomposition in
C[M] and it allows to obtain a bound for cyclicity of system (20)
for ”almost all” values of parameters akj .
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The cyclicity of the system

Theorem

The center at the origin of system (20) with all parameters akj

different from zero has cyclicity at most eight.

To prove the theorem it is sufficient to show that for any (a∗, b∗)
with all coordinates different from zero and bjk = ākj , and k > 9

gkk = g11f1 + g22f2 + g44f4 + g55f4 + · · ·+ g99f9 (22)

in G(a∗,b∗), where G(a∗,b∗) is the ring of germs of complex analytic
functions at (a∗, b∗).
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Primary Decomposition of B6 in C[c1, . . . , c15]

Output produced by primdecSY (Shimoyama and Yokoyama
algorithm) of Singular

[1]:
[1]:

_[1]=c14-c15 _[2]=c12-3*c13 _[3]=c11-9*c13
_[4]=c10-27*c13 _[5]=c7-3*c8 _[6]=c6-9*c8
_[7]=c5-27*c8 _[8]=c4-c9 _[9]=c3-3*c9
_[10]=3*c2-c9 _[11]=c1^2*c9^3-27*c8*c13

[2]:
_[1]=c14-c15 _[2]=c12-3*c13 _[3]=c11-9*c13
_[4]=c10-27*c13 _[5]=c7-3*c8 _[6]=c6-9*c8
_[7]=c5-27*c8 _[8]=c4-c9 _[9]=c3-3*c9

_[10]=3*c2-c9 _[11]=c1^2*c9^3-27*c8*c13
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Primary Decomposition of B6 in C[c1, . . . , c15]

[2]:
[1]:

_[1]=c15 _[2]=c14 _[3]=c12+c13
_[4]=c11-c13 _[5]=c10+c13 _[6]=c7+c8
_[7]=c6-c8 _[8]=c5+c8 _[9]=c4-c9
_[10]=c3+c9 _[11]=c2+c9 _[12]=c1^2*c9^3+c8*c13

[2]:
_[1]=c15 _[2]=c14 _[3]=c12+c13
_[4]=c11-c13 _[5]=c10+c13 _[6]=c7+c8
_[7]=c6-c8 _[8]=c5+c8 _[9]=c4-c9
_[10]=c3+c9 _[11]=c2+c9 _[12]=c1^2*c9^3+c8*c13

and so on.
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Primary Decomposition of B6 in C[c1, . . . , c15]

[6]:
[1]:

_[1]=c14-c15
_[2]=2*c5-3*c6-8*c7-3*c8-2*c10+3*c11+8*c12+3*c13
................................................
_[158]=3*c2^4*c9^8*c13^2-6*c2^3*c9^9*c13^2+5*c2^2*c9^10*c13^2
_[159]=27*c2^6*c9^7*c13-54*c2^5*c9^8*c13+45*c2^4*c9^9*c13-20*c2^3*c9^10*c13
_[160]=c3^8*c9^6
_[161]=27*c2^8*c9^6-54*c2^7*c9^7+45*c2^6*c9^8-20*c2^5*c9^9+5*c2^4*c9^10
_[162]=c2^3*c9^10*c13^2
_[163]=c2^5*c9^9*c13-2*c2^4*c9^10*c13
_[164]=3*c2^7*c9^8-6*c2^6*c9^9+5*c2^5*c9^10
_[165]=c2^6*c9^10
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Primary Decomposition of B6 in C[c1, . . . , c15]

[2]:
_[1]=c15
_[2]=c14
_[3]=c13
_[4]=c12
_[5]=c11
_[6]=c10
_[7]=c9
_[8]=c8
_[9]=c7
_[10]=c6
_[11]=c5
_[12]=c4
_[13]=c3 _[14]=c2 _[15]=c1
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Proposition

Let I = 〈g1, . . . , gt〉 be an ideal in C[x1, . . . , xn] such that the
primary decomposition of I is given as

I = P1 ∩ · · · ∩ Pk ∩ Q,

where Ps is prime for s = 1, . . . , k , and Q 6=
√

Q = 〈x1, . . . , xn〉.
Let g be a polynomial vanishing on V(I ) and let x∗ = (x∗1 , . . . , x

∗
n )

be an arbitrary point of V (I ) different from the origin (0, . . . , 0).
Then in a small neighborhood of x∗

g = g1f1 + · · ·+ gt ft ,

where f1, . . . , ft are power series convergent at x∗.
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The ideal 〈gF
11, . . . , g

F
99〉 ⊂ C[c1, . . . , c15] has the structure as in

the Proposition.
Therefore, by the proposition, there exist rational functions fj ,k
such that for

gF
kk(c) = gF

11(c)f1,k(c) + gF
22(c)f2,k(c) + gF

44(c)f4,k(c) + . . .

+ gF
99(c)f9,k(c) +

44∑
j=1

rj(c)sj ,k(c), (23)

and fj ,k (resp. sj ,k(c)) are of the form fj ,k(c) = f̂j ,k/c
j
l (resp.

sj ,k(c) = ŝj ,k/c
j
l ), with f̂j ,k , ŝj ,k being polynomials.

After some technical work it can be proved that the cyclicity of a
center at the origin of the corresponding system of ODEs is at
most eight.
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