The Cyclicity Problem for Polynomial Systems of ODEs

16th Hilbert's problem (the second part)

$$
\begin{equation*}
\dot{x}=P_{n}(x, y), \quad \dot{y}=Q_{n}(x, y), \tag{A}
\end{equation*}
$$

$P_{n}(x, y), Q_{n}(x, y)$, are polynomials of degree n.
Let $h\left(P_{n}, Q_{n}\right)$ be the number of limit cycles of system (A) and let $H(n)=\sup h\left(P_{n}, Q_{n}\right)$.
The question of the second part of the 16th Hilbert's problem:

- find a bound for $H(n)$ as a function of n.
(The problem is still unresolved even for $n=2$.)

The cyclicity problem

Find an upper bound for the number of limit cycles in a neighborhood of elementary singular point. This problem is called the cyclicity problem or the local Hilbert's 16th problem.

$$
\begin{equation*}
\dot{u}=\lambda u-v+\sum_{j+l=2} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2} \beta_{j} u^{j} v^{\prime} \tag{1}
\end{equation*}
$$

Trajectories are either ovals (solutions are periodic) or spirals (solutions are not periodic).
In the first case the origin is a center, in the second case it is a focus.

$$
\begin{equation*}
\dot{u}=\lambda u-v+\sum_{j+l=2} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2} \beta_{j} u^{j} v^{\prime} \tag{1}
\end{equation*}
$$

Trajectories are either ovals (solutions are periodic) or spirals (solutions are not periodic).
In the first case the origin is a center, in the second case it is a focus.

The Poincaré center problem

- Find all systems with a center at the origin within the family (1).

Poincaré (return) map

$$
\dot{u}=\lambda u-v+\sum_{j+l=2} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2} \beta_{j l} u^{j} v^{\prime}
$$

Poincare map

$$
\mathcal{P}(\rho)=e^{2 \pi \lambda} \rho+\eta_{2}\left(\alpha, \beta, \alpha_{i j}, \beta_{i j}\right) \rho^{2}+\eta_{3}\left(\alpha, \beta, \alpha_{i j}, \beta_{i j}\right) \rho^{3}+\ldots
$$

Limit cycles \longleftrightarrow isolated fixed points of $\mathcal{P}(\rho)$.
α changes the sign $->$ Hopf bifurcation
W.I.o.g. we assume that $\alpha=0, \beta=1$. Then $\eta_{k}\left(\alpha_{i j}, \beta_{i j}\right)$ are polynomials.

$$
\begin{gathered}
\dot{u}=\lambda u-v+\sum_{j+l=2}^{m} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2}^{m} \beta_{j l} u^{j} v^{\prime} \\
A=\left(\alpha_{20}, \beta_{20}, \ldots, \beta_{0 m}\right) .
\end{gathered}
$$

Definition

For parameters (λ, A) let $n_{(\lambda, A), \epsilon}$ denote the number of limit cycles of the corresponding system (2) that lie wholly within an ϵ-neighborhood of the origin. The singularity at the origin for system (2) with fixed coefficients $\left(\lambda^{*}, A^{*}\right) \in E(\lambda, A)$ has cyclicity c with respect to the space $E(\lambda, A)$ if there exist positive constants δ_{0} and ϵ_{0} such that for every pair ϵ and δ satisfying $0<\epsilon<\epsilon_{0}$ and $0<\delta<\delta_{0}$

$$
\max \left\{n_{(\lambda, A), \epsilon}:\left|(\lambda, A)-\left(\lambda^{*}, A^{*}\right)\right|<\delta\right\}=c .
$$

To study limit cycles in a system

$$
\begin{equation*}
\dot{u}=-v+\sum_{j+l=2} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\sum_{j+l=2} \beta_{j l} u^{j} v^{\prime} \tag{3}
\end{equation*}
$$

we compute the Poincare map:

$$
\mathcal{P}(\rho)=\rho+\eta_{2}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{2}+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\cdots+\eta_{k}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{k}+:
$$

Let $\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \ldots\right\rangle \subset \mathbb{R}\left[\alpha_{i j}, \beta_{i j}\right]$ be the ideal generated by all focus quantities η_{i}.

$$
\mathcal{B}=\left\langle\eta_{u_{1}}, \eta_{u_{2}}, \ldots, \eta_{u_{k}}\right\rangle
$$

and $u_{1}<\cdots<u_{k}$.
Then for any s

$$
\begin{gathered}
\eta_{s}=\eta_{u_{1}} \theta_{1}^{(s)}+\eta_{u_{2}} \theta_{2}^{(s)}+\cdots+\eta_{u_{k}} \theta_{k}^{(k)} \\
\mathcal{P}(\rho)-\rho=\eta_{u_{1}}\left(1+\mu_{1} \rho+\ldots\right) \rho^{u_{1}}+\cdots+\eta_{u_{k}}\left(1+\mu_{k} \rho+\ldots\right) \rho^{u_{k}}
\end{gathered}
$$

Bautin's Theorem

If $\mathcal{B}=\left\langle\eta_{u_{1}}, \eta_{u_{2}}, \ldots, \eta_{u_{k}}\right\rangle$ then the cyclicity of system (3) (i.e. the maximal number of limit cycles which appear from the origin after small perturbations) is less or equal to k.

$$
\mathcal{P}(\rho)=\rho+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{4}+\ldots .
$$

Center: $\eta_{3}=\eta_{4}=\eta_{5}=\cdots=0$.

Poincaré center problem

Find all systems with a center at the origin within a given polynomial family

$$
\mathcal{P}(\rho)=\rho+\eta_{3}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{3}+\eta_{4}\left(\alpha_{i j}, \beta_{i j}\right) \rho^{4}+\ldots .
$$

Center: $\eta_{3}=\eta_{4}=\eta_{5}=\cdots=0$.

Poincaré center problem

Find all systems with a center at the origin within a given polynomial family

Algebraic counterpart

Find the variety of the Bautin ideal $\mathcal{B}=\left\langle\eta_{3}, \eta_{4}, \eta_{5} \ldots\right\rangle$. (This variety is called the center variety.)

The cyclicity problem

Find an upper bound for the maximal number of limit cycles in a neighborhood of a center or a focus

The cyclicity problem

Find an upper bound for the maximal number of limit cycles in a neighborhood of a center or a focus

By Bautin's theorem:
Algebraic counterpart
Find a basis for the Bautin ideal $\left\langle\eta_{3}, \eta_{4}, \eta_{5}, \ldots\right\rangle$ generated by all coefficients of the Poincaré map

Complexification

$$
\begin{gather*}
\text { Complexification: } x=u+i v \quad(\bar{x}=u-i v) \\
\dot{x}=i\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} \bar{x}^{q}\right) \\
\dot{\bar{x}}=-i\left(\bar{x}-\sum_{p+q=1}^{n-1} \bar{a}_{p q} \bar{x}^{p+1} x^{q}\right) \\
\dot{x}=i\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \quad \dot{y}=-i\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right) \tag{4}
\end{gather*}
$$

The change of time $d \tau=i d t$ transforms (4) to the system

$$
\begin{equation*}
\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right) \tag{5}
\end{equation*}
$$

Poincaré-Lyapunov Theorem

The system

$$
\begin{equation*}
\frac{d u}{d t}=-v+\sum_{i+j=2}^{n} \alpha_{i j} u^{i} v^{j}, \quad \frac{d v}{d t}=u+\sum_{i+j=2}^{n} \beta_{i j} u^{i} v^{j} \tag{6}
\end{equation*}
$$

has a center at the origin (equivalently, all coefficients of the Poincaré map are equal to zero) if and only if it admits a first integral of the form

$$
\Phi=u^{2}+v^{2}+\sum_{k+l \geq 2} \phi_{k l} u^{k} v^{\prime}
$$

Definition of a center for complex systems

System
$\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right)=P, \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right)=Q$, (7)
has a center at the origin if it admits a first integral of the form

$$
\Phi\left(x, y ; a_{10}, b_{10}, \ldots\right)=x y+\sum_{s=3}^{\infty} \sum_{j=0}^{s} v_{j, s-j} x^{j} y^{s-j}
$$

For the complex system
$\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right)=P, \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right)=Q$,
one looks for a function of the form
$\Phi\left(x, y ; a_{10}, b_{10}, \ldots\right)=x y+\sum_{s=3}^{\infty} \sum_{j=0}^{s} v_{j, s-j x^{j}} y^{s-j}$ such that

$$
\begin{equation*}
\frac{\partial \Phi}{\partial x} P+\frac{\partial \Phi}{\partial y} Q=g_{11}(x y)^{2}+g_{22}(x y)^{3}+\cdots \tag{8}
\end{equation*}
$$

and g_{11}, g_{22}, \ldots are polynomials in $a_{p q}, b_{q p}$. These polynomials are called focus quantities.

The Bautin ideal

The ideal $\mathcal{B}=\left\langle g_{11}, g_{22}, \ldots\right\rangle$ generated by the focus quantities is called the Bautin ideal.

The center problem

Find the variety $\mathbf{V}(\mathcal{B})$ of the Bautin ideal $\mathcal{B}=\left\langle g_{11}, g_{22}, g_{33} \ldots\right\rangle$. $\mathbf{V}(\mathcal{B})$ is called the center variety of the system.

The cyclicity of the quadratic system

Generalized Bautin's theorem

If the ideal \mathcal{B} of all focus quantities of system

$$
\dot{x}=\left(x-\sum_{p+q=1}^{n-1} a_{p q} x^{p+1} y^{q}\right), \quad \dot{y}=-\left(y-\sum_{p+q=1}^{n-1} b_{q p} x^{q} y^{p+1}\right)
$$

is generated by the m first f. q., $\mathcal{B}=\left\langle g_{11}, g_{22}, \ldots, g_{m m}\right\rangle$, then at most m limit cycles bifurcate from the origin of the corresponding real system

$$
\dot{u}=\lambda u-v+\sum_{j+l=2}^{n} \alpha_{j l} u^{j} v^{\prime}, \quad \dot{v}=u+\lambda v+\sum_{j+l=2}^{n} \beta_{j l} u^{j} v^{\prime},
$$

that is the cyclicity of the system is less or equal to m.

The center variety of the quadratic system

$$
\dot{x}=x-a_{10} x^{2}-a_{01} x y-a_{-12} y^{2}, \dot{y}=-\left(y-b_{10} x y-b_{01} y^{2}-b_{2,-1} x^{2}\right) .
$$

(9)

Theorem (H. Dulac 1908, C. Christopher \& C. Rouseeau, 2001)

The variety of the Bautin ideal of system (9) coincides with the variety of the ideal $\mathcal{B}_{3}=\left\langle g_{11}, g_{22}, g_{33}\right\rangle$ and consists of four irreducible components:

1) $\mathbf{V}\left(J_{1}\right)$, where $J_{1}=\left\langle 2 a_{10}-b_{10}, 2 b_{01}-a_{01}\right\rangle$,
2) $\mathbf{V}\left(J_{2}\right)$, where $J_{2}=\left\langle a_{01}, b_{10}\right\rangle$,
3) $\mathbf{V}\left(J_{3}\right)$, where $J_{3}=\left\langle 2 a_{01}+b_{01}, a_{10}+2 b_{10}, a_{01} b_{10}-a_{-12} b_{2,-1}\right\rangle$,
4) $\mathbf{V}\left(J_{4}\right)=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle$, where
$f_{1}=a_{01}^{3} b_{2,-1}-a_{-12} b_{10}^{3}, f_{2}=a_{10} a_{01}-b_{01} b_{10}$,
$f_{3}=a_{10}^{3} a_{-12}-b_{2,-1} b_{01}^{3}$,
$f_{4}=a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{2,-1} b_{01}, f_{5}=a_{10}^{2} a_{-12} b_{10}-a_{01} b_{2,-1} b_{01}^{2}$.

Proof. Computing the first three focus quantities we have $g_{11}=a_{10} a_{01}-b_{10} b_{01}$,
$g_{22}=a_{10} a_{-12} b_{10}^{2}-a_{01}^{2} b_{01} b_{2,-1}-\frac{2}{3}\left(a_{-12} b_{10}^{3}-a_{01}^{3} b_{2,-1}\right)-$ $\frac{2}{3}\left(a_{01} b_{01}^{2} b_{2,-1}-a_{10}^{2} a_{-12} b_{10}\right)$,
$g_{33}=-\frac{5}{8}\left(-a_{01} a_{-12} b_{10}^{4}+2 a_{-12} b_{01} b_{10}^{4}+a_{01}^{4} b_{10} b_{2,-1}-2 a_{01}^{3} b_{01} b_{10} b_{2,-1}-\right.$ $\left.2 a_{10} a_{-12}^{2} b_{10}^{2} b_{2,-1}+a_{-12}^{2} b_{10}^{3} b_{2,-1}-a_{01}^{3} a_{-12} b_{2,-1}^{2}+2 a_{01}^{2} a_{-12} b_{01} b_{2,-1}^{2}\right)$.

Using the radical membership test we see that
$g_{22} \notin \sqrt{\left\langle g_{11}\right\rangle}, \quad g_{33} \notin \sqrt{\left\langle g_{11}, g_{22}\right\rangle}, g_{44}, g_{55}, g_{66} \in \sqrt{\left\langle g_{11}, g_{22}, g_{33}\right\rangle}$,
i.e., $\mathbf{V}\left(\mathcal{B}_{1}\right) \supset \mathbf{V}\left(\mathcal{B}_{3}\right) \supset \mathbf{V}\left(\mathcal{B}_{3}\right)=\mathbf{V}\left(\mathcal{B}_{4}\right)=\mathbf{V}\left(\mathcal{B}_{5}\right)$. We expect that

$$
\begin{equation*}
\mathbf{V}\left(\mathcal{B}_{3}\right)=\mathbf{V}(\mathcal{B}) \tag{10}
\end{equation*}
$$

The inclusion $\mathbf{V}(\mathcal{B}) \subseteq \mathbf{V}\left(\mathcal{B}_{3}\right)$ is obvious, therefore in order to check that (16) indeed holds we only have to prove that

$$
\begin{equation*}
\mathbf{V}\left(\mathcal{B}_{3}\right) \subseteq \mathbf{V}(\mathcal{B}) \tag{11}
\end{equation*}
$$

To do so, we first look for a decomposition of the variety $\mathbf{V}\left(\mathcal{B}_{3}\right)$. To verify that (11) holds there remains to show that every system (9) with coefficients from one of the sets $\mathbf{V}\left(J_{1}\right), \mathbf{V}\left(J_{2}\right), \mathbf{V}\left(J_{3}\right), \mathbf{V}\left(J_{4}\right)$ has a center at the origin, that is, there is a first integral $\Psi(x, y)=x y+$ h.o.t.

The problem has been solved for:

- The quadratic system ($\dot{x}=P_{n}, \dot{y}=Q_{n}, n=2$) - Bautin (1952) (Żolądek (1994), Yakovenko (1995), Françoise and Yomdin (1997), Han, Zhang \& Zhang (2007)).
- The system with homogeneous cubic nonlinearities - Sibirsky (1965) (Żołạdek (1994))

In both cases the analysis is relatively simple because the Bautin ideal is a radical ideal.

Bautin's theorem for the quadratic system

The cyclicity of the origin of system
$\dot{u}=\lambda u-v+\alpha_{20} u^{2}+\alpha_{11} u v+\alpha_{02} v^{2}, \quad \dot{v}=u+\lambda v+\beta_{20} u^{2}+\beta_{11} u v+\beta_{02} v^{2}$
equals three.

Proof. We have for all k

$$
\begin{equation*}
g_{k k} \mid \mathbf{v}\left(\mathcal{B}_{3}\right) \equiv 0 \tag{12}
\end{equation*}
$$

where $\mathcal{B}_{3}=\left\langle g_{11}, g_{22}, g_{33}\right\rangle$.
Hence, if \mathcal{B}_{3} is a radical ideal then (12) and Hilbert Nullstellensatz yield that $g_{k k} \in \mathcal{B}_{3}$. Thus, to prove that an upper bound for the cyclicity is equal to three it is sufficient to show that \mathcal{B}_{3} is a radical ideal.
With help of Singular we check that

$$
\begin{equation*}
\operatorname{std}\left(\operatorname{radical}\left(\mathcal{B}_{3}\right)\right)=\operatorname{std}\left(\mathcal{B}_{3}\right) . \tag{13}
\end{equation*}
$$

Hence, $\mathcal{B}_{3}=\mathcal{B}$. This completes the proof.

- Good news:
- Good news:

Using algorithms of computational algebra the cyclicity of a polynomial system can be easily investigated in the case when the Bautin ideal is a radical ideal (provided we know its variety)

- Bad news:
- Good news:

Using algorithms of computational algebra the cyclicity of a polynomial system can be easily investigated in the case when the Bautin ideal is a radical ideal (provided we know its variety)

- Bad news:

It happens very seldom that the Bautin ideal is a radical ideal

Cyclicity of systems with non-radical Bautin ideal

$$
\begin{gather*}
\dot{x}=\lambda x+i\left(x-a_{-12} \bar{x}^{2}-a_{20} x^{3}-a_{02} x \bar{x}^{2}\right) \tag{14}\\
\dot{x}=\left(x-a_{-12} y^{2}-a_{20} x^{3}-a_{02} x y^{2}\right) \dot{y}=-\left(y-b_{2,-1} x^{2}-b_{20} x^{2} y-b_{02} y^{3}\right) \tag{15}
\end{gather*}
$$

Lemma

The variety of the Bautin ideal of system (15) coincides with the variety of the ideal $\mathcal{B}_{6}=\left\langle g_{11}, g_{22}, \ldots, g_{66}\right\rangle$.

By the Hilbert Basis Theorem $\mathbf{V}(\mathcal{B})=\mathbf{V}\left(\mathcal{B}_{k}\right)$ for some k. Using the Radical Membership Test one can easily verify that

$$
g_{66} \notin \sqrt{\left\langle g_{11}, \ldots, g_{55}\right\rangle} \quad \text { but } \quad g_{77}, g_{88}, g_{99} \in \sqrt{\left\langle g_{11}, g_{22}, \ldots, g_{66}\right\rangle},
$$ which leads us to expect that

$$
\begin{equation*}
\mathbf{V}\left(\mathcal{B}_{6}\right)=\mathbf{V}(\mathcal{B}) \tag{16}
\end{equation*}
$$

It was shown by Y. R. Liu (1990) that (11) holds.

We use the specific structure of the focus quantities.
$\dot{x}=\left(x-a_{-12} y^{2}-a_{20} x^{3}-a_{02} x y^{2}\right), \dot{y}=-\left(y-b_{2,-1} x^{2}-b_{20} x^{2} y-b_{02} y^{3}\right)$
We write down the ideal

$$
\left\langle a_{p_{k} q_{k}}-t_{k}, \quad b_{q_{k} p_{k}}-\gamma^{p_{k}-q_{k}} t_{k}\right\rangle .
$$

$\mathcal{J}=\left\langle 1-w \gamma, a_{-12}-t_{1}, \gamma^{3} b_{2,-1}-t_{1}, a_{20}-t_{2}, b_{02}-\gamma^{2} t_{2}, a_{02}-t_{3}, \gamma^{2} b_{20}-t_{3}\right\rangle$
Computing the Gröbner basis with respect to the lexicographic order with $w>\gamma>t_{1}>t_{2}>t_{3}>a_{-12}>a_{20}>a_{02}>b_{20}>b_{02}>b_{2,-1}$ we obtain a list of polynomials and pick up the polynomials that do not depend on $w, \gamma, t_{1}, t_{2}, t_{3}$:
$a_{20} a_{02}-b_{20} b_{02}, a_{-12}^{2} a_{20} b_{20}^{2}-a_{02}^{2} b_{2,-1}^{2} b_{02}, a_{-12}^{2} a_{20}^{2} b_{20}-$ $a_{02} b_{2,-1}^{2} b_{02}^{2},-a_{02}^{3} b_{2,-1}^{2}-a_{-12}^{2} b_{20}^{3}, a_{-12}^{2} a_{20}^{3}-b_{2,-1}^{2} b_{02}^{3}$, The monomials of the binomials form a basis of the subalgebra:
$c_{1}=a_{20} a_{02}, c_{2}=b_{20} b_{02}, c_{3}=a_{02}^{3} b_{2,-1}^{2}, c_{4} a_{02}^{2} b_{2,-1}^{2} b_{02}, c_{5}=$ $a_{02} b_{2,-1}^{2} b_{02}^{2}, \ldots$
The focus quantities of system (15) belong to the subalgebra $\mathbb{C}\left[c_{1}, \ldots, c_{15}\right]$ that is,

$$
\begin{equation*}
g_{k k}=g_{k k}\left(c_{1}, \ldots, c_{13}\right) \tag{17}
\end{equation*}
$$

We prove that although the ideal of focus quantities is not radical ideal in $\mathbb{C}[a, b]$, it is a radical ideal in $\mathbb{C}\left[c_{1}, \ldots, c_{15}\right]$ and use this to resolve the cyclicity problem for system (14).

More precisely, consider the ideal
$J=$
$\left\langle c_{1}-a_{-12} b_{2,-1}, c_{2}-a_{20} b_{02}, c_{3}-a_{02} b_{20}, c_{4}-b_{20} b_{02}, c_{5}-a_{02}^{3} b_{2,-1}^{2}, c_{6}-\right.$ $a_{02}^{2} b_{2,-1}^{2} b_{02}, c_{7}-a_{02} b_{2,-1}^{2} b_{02}^{2}, c_{8}-b_{2,-1}^{2} b_{02}^{3}, c_{9}-a_{20} a_{02}, c_{10}-$ $\left.a_{-12}^{2} b_{20}^{3}, c_{11}-a_{-12}^{2} a_{20} b_{20}^{2}, c_{-1,2}-a_{-12}^{2} a_{20}^{2} b_{20}, c_{13}-a_{-12}^{2} a_{20}^{3}\right\rangle$ and the corresponding map

$$
F: E(a, b)=\mathbb{A}_{\mathbb{C}}^{6}=\mathbb{C}^{6} \longrightarrow \mathbb{A}_{\mathbb{C}}^{13}=\mathbb{C}^{13}
$$

that is,
$F(a, b)=\left(a_{-12} b_{2,-1}, a_{20} b_{02}, a_{02} b_{20}, b_{20} b_{02}, a_{02}^{3} b_{2,-1}^{2}, \ldots, a_{-12}^{2} a_{20}^{3}\right)$.
Let W be the image of $E(a, b)$ under F and
$\mathbb{C}[c]:=\mathbb{C}\left[c_{1}, \ldots, c_{13}\right] . F$ induces the \mathbb{C}-algebra homomorphism

$$
F^{*}: \mathbb{C}[c] \longrightarrow \mathbb{C}[a, b]
$$

Let $\prec_{(a, b)}$ be an elimination monomial ordering for (a, b) in the algebra $\mathbb{C}[a, b] \otimes_{\mathbb{C}} \mathbb{C}[c]=\mathbb{C}[a, b, c]$. Computing the Gröbner basis J_{G} of J with respect to $\prec_{(a, b)}$, we find that $J \cap \mathbb{C}[c]$ is the ideal R, generated by
$c_{11} c_{13}-c_{12}^{2}, c_{10} c_{13}-c_{11} c_{12}, c_{10} c_{12}-c_{11}^{2}, c_{6} c_{8}-c_{7}^{2}, c_{5} c_{8}-c_{6} c_{7}, c_{5} c_{7}-$ $c_{6}^{2}, c_{4} c_{7} c_{13}-c_{8} c_{9} c_{12}, c_{4} c_{7} c_{12}-c_{8} c_{9} c_{11}, c_{4} c_{7} c_{11}-c_{8} c_{9} c_{10}, c_{4} c_{6} c_{13}-$ $c_{7} c_{9} c_{12}, c_{4} c_{6} c_{12}-c_{7} c_{9} c_{11}, c_{4} c_{6} c_{11}-c_{7} c_{9} c_{10}, c_{4} c_{5} c_{13}-$
$c_{6} c_{9} c_{12}, c_{4} c_{5} c_{12}-c_{6} c_{9} c_{11}, c_{4} c_{5} c_{11}-c_{6} c_{9} c_{10}, c_{3} c_{13}-c_{9} c_{12}, c_{3} c_{12}-$ $c_{9} c_{11}, c_{3} c_{11}-c_{9} c_{10}, c_{3} c_{8}-c_{4} c_{7}, c_{3} c_{7}-c_{4} c_{6}, c_{3} c_{6}-c_{4} c_{5}, c_{2} c_{12}-$
$c_{4} c_{13}, c_{2} c_{11}-c_{4} c_{12}, c_{2} c_{10}-c_{4} c_{11}, c_{2} c_{7}-c_{8} c_{9}, c_{2} c_{6}-c_{7} c_{9}, c_{2} c_{5}-$ $c_{6} c_{9}, c_{2} c_{3}-c_{4} c_{9}, c_{1}^{2} c_{9}^{3}-c_{5} c_{13}, c_{1}^{2} c_{4} c_{9}^{2}-c_{6} c_{12}, c_{1}^{2} c_{4}^{2} c_{9}-c_{7} c_{11}, c_{1}^{2} c_{4}^{3}-$ $c_{8} c_{10}, c_{1}^{2} c_{3} c_{9}^{2}-c_{5} c_{12}, c_{1}^{2} c_{3} c_{4} c_{9}-c_{6} c_{11}, c_{1}^{2} c_{3} c_{4}^{2}-c_{7} c_{10}, c_{1}^{2} c_{3}^{2} c_{9}-$ $c_{5} c_{11}, c_{1}^{2} c_{3}^{2} c_{4}-c_{6} c_{10}, c_{1}^{2} c_{3}^{3}-c_{5} c_{10}, c_{1}^{2} c_{2} c_{9}^{2}-c_{6} c_{13}, c_{1}^{2} c_{2} c_{4} c_{9}-$ $c_{7} c_{12}, c_{1}^{2} c_{2} c_{4}^{2}-c_{8} c_{11}, c_{1}^{2} c_{2}^{2} c_{9}-c_{7} c_{13}, c_{1}^{2} c_{2}^{2} c_{4}-c_{8} c_{12}, c_{1}^{2} c_{2}^{3}-c_{8} c_{13}$. R is the kernel of F^{*} (can be computed with the routine preimage of SINGULAR).

Let C be the subalgebra of $\mathbb{C}[a, b]$, generated by the monomials, corresponding to the components of the map F (that is, by $a_{-12} b_{2,-1}, a_{20} b_{02}, a_{02} b_{20}$ etc.). For a polynomial $f(a, b) \in \mathbb{C}\left[c_{1}(a, b), \ldots, c_{13}(a, b)\right] \subset \mathbb{C}[a, b]$ we denote by $f^{F} \in \mathbb{C}[c]$ the preimage of $f(a, b)$ under F^{*}. Then, $f^{F} \in \mathbb{C}\left[c_{1}(a, b), \ldots, c_{13}(a, b)\right]$ can be computed via the normal form, that is $f^{F}=\operatorname{NF}\left(f, J_{G}\right)$, where J_{G} is a Gröbner basis of J with respect to an elimination ordering $\prec_{(a, b)}$.

$$
\begin{aligned}
g_{22}= & -i\left(3 a_{20} a_{02}-3 b_{20} b_{02}\right), \\
g_{44}= & -i\left(2160 a_{20}^{3} a_{12}^{2}+5760 a_{20}^{2} b_{20} a_{12}^{2}+2160 a_{20} b_{20}^{2} a_{12}^{2}-1440 b_{20}^{3} a_{12}^{2}\right. \\
& \left.+1440 a_{02}^{3} b_{21}^{2}-2160 a_{02}^{2} b_{02} b_{21}^{2}-5760 a_{02} b_{02}^{2} b_{21}^{2}-2160 b_{02}^{3} b_{21}^{2}\right) \\
g_{55}= & -i\left(-340200 a_{20}^{2} b_{20} a_{12}^{3} b_{21}-226800 a_{20} b_{20}^{2} a_{12}^{3} b_{21}+113400 b_{20}^{3} a_{12}^{3} b_{2}\right. \\
& \left.+226800 a_{02}^{2} b_{02} a_{12} b_{21}^{3}+340200 a_{02} b_{02}^{2} a_{12} b_{21}^{3}\right) \\
g_{66}= & -i\left(102060000 a_{20}^{2} b_{20}^{2} b_{02} a_{12}^{2}+68040000 a_{20} b_{20}^{3} b_{02} a_{12}^{2}-34020000 b_{2}^{4}\right. \\
& +34020000 a_{02}^{3} b_{20} b_{02} b_{21}^{2}-68040000 a_{02}^{2} b_{20} b_{02}^{2} b_{21}^{2}-102060000 a_{02} \\
& \\
g_{11}^{F}= & 0, g_{22}^{F}=c_{9}-c_{4}, g_{33}^{F}=0, \\
g_{44}^{F}= & \frac{2}{3} c_{5}-c_{6}-\frac{8}{3} c_{7}-c_{8}-\frac{2}{3} c_{10}+c_{11}+\frac{8}{3} c_{12}+c_{13}, \\
g_{55}^{F}= & -\frac{7}{24} c_{1} c_{5}+\frac{7}{12} c_{1} c_{6}+\frac{7}{8} c_{1} c_{7}+\frac{7}{24} c_{1} c_{10}-\frac{7}{12} c_{1} c_{11}-\frac{7}{8} c_{1} c_{12}, \\
g_{66}^{F}= & -\frac{5}{3} c_{3} c_{5}+\frac{5}{3} c_{3} c_{10}+\frac{10}{3} c_{4} c_{5}+5 c_{4} c_{6}-\frac{10}{3} c_{4} c_{10}-5 c_{4} c_{11} .
\end{aligned}
$$

Let W denote the image of \mathbb{C}^{6} under F, \bar{W} its Zariski closure, and $\mathbb{C}[\bar{W}]$ the ring of polynomial mappings from \bar{W} to \mathbb{C}, which is isomorphic to $\mathbb{C}[c] / \mathbf{I}(\bar{W})$. Then, $\bar{W}=\mathbf{V}(R)$.
Denote by V the variety $\mathbf{V}(\mathcal{B})$ and by V_{c} the image of V under F, $V_{c}=F(V) . V_{c}$ is a subset of W and its Zariski closure \bar{V}_{c} is a subvariety of \bar{W}. Let U be the subvariety $U=\mathbf{V}\left(\left\langle g_{k k}^{F}: k \in \mathbb{N}\right\rangle\right)$ of \bar{W} and let $U_{6}=\mathbf{V}\left(G_{6}\right)$ for $G_{6}:=\left\langle g_{11}^{F}, g_{22}^{F}, \ldots, g_{66}^{F}\right\rangle \subset \mathbb{C}[c]$. We claim that

$$
\begin{equation*}
U_{6}=U=\bar{V}_{c} . \tag{18}
\end{equation*}
$$

It is clear that $g_{k k} \in \mathbf{I}(V)$ implies that $g_{k k}^{F} \in \mathbf{I}\left(V_{c}\right)$, which in turn implies that $g_{k k}^{F} \in \mathbf{I}\left(\bar{V}_{c}\right)$, so that

$$
\begin{equation*}
\bar{V}_{c} \subset U \subset U_{6} \tag{19}
\end{equation*}
$$

Applying the ideas in $\S 1.8 .3$ of (Greuel, G.-M. and Pfister, G. A SINGULAR Introduction to Commutative Algebra, 2002) if we form the ideal $N=\left\langle J_{G} \cap \mathbb{C}[c], \mathcal{B}_{6}, J\right\rangle=\left\langle R, \mathcal{B}_{6}, J\right\rangle$ in $\mathbb{C}[a, b, c]$ and compute $H=N \cap \mathbb{C}[c]$, then $\bar{V}_{c}=\mathbf{V}(H)$. We also checked that the ideals H and G_{6} are the same ideal in $\mathbb{C}[c]$, so that $\bar{V}_{c}=\mathbf{V}\left(G_{6}\right)=U_{6}$. Together with (19) this yields

$$
U_{6}=U=\bar{V}_{c} .
$$

Let \widetilde{G}_{6} denote the ideal $\left\langle g_{11}^{F}, \ldots, g_{66}^{F}\right\rangle$ in $\mathbb{C}[\bar{W}]$. By the natural isomorphism of $\mathbb{C}[\bar{W}]$ with $\mathbb{C}[c] / R$ this ideal is radical if and only if the ideal $\left\langle g_{11}^{F}+R, \ldots, g_{66}^{F}+R\right\rangle$ in $\mathbb{C}[c] / R$ is radical. Letting r_{j}, $1 \leq j \leq 44$, denote the generators of R as listed above, it is easy to check that this is true if the ideal $H=\left\langle g_{11}^{F}, \ldots, g_{66}^{F}, r_{1}, \ldots, r_{44}\right\rangle$ is a radical ideal in $\mathbb{C}[c]$. Computing the radical of H with Singular we find that it is. Thus \widetilde{G}_{6} is radical in $\mathbb{C}[\bar{W}]$.

The equality $U=U_{6}$ tells us that for every $k \in \mathbb{N}$ $g_{k k}^{F} \in \mathbf{I}\left(U_{6}\right)=\mathbf{I}\left(\mathbf{V}\left(G_{6}\right)\right)$. But then viewed as a polynomial mapping on \bar{W}, i.e., as an element of $\mathbb{C}[\bar{W}]$, we have that $g_{k k}^{F} \in \mathbf{I}_{\bar{W}}\left(\mathbf{V}_{\bar{W}}\left(\widetilde{G}_{6}\right)\right)$. This means that $g_{k k}^{F} \in \sqrt{\widetilde{G}_{6}}=\widetilde{G}_{6}$ in $\mathbb{C}[\bar{W}]$. Thus there exist polynomials $f_{j, k}$ such that for $c \in \bar{W}$

$$
g_{k k}^{F}(c)=g_{11}^{F}(c) f_{1, k}(c)+\cdots+g_{66}^{F}(c) f_{6, k}(c)
$$

Applying F^{*} and that by the Generalized Bautin Theorem the cyclicity of a center at the origin is at most four (since $g_{11}=g_{33}=0$.).

$$
\begin{equation*}
\dot{x}=\lambda x+i\left(x-a_{-12} \bar{x}^{2}-a_{20} x^{3}-a_{11} x^{2} \bar{x}-a_{02} x \bar{x}^{2}\right) . \tag{20}
\end{equation*}
$$

With system (20) we associate the complex system

$$
\begin{align*}
& \dot{x}=i\left(x-a_{-12} y^{2}-a_{20} x^{3}-a_{11} x^{2} y-a_{02} x y^{2}\right) \\
& \dot{y}=-i\left(y-b_{2,-1} x^{2}-b_{20} x^{2} y-b_{11} x y^{2}-b_{02} y^{3}\right) \tag{21}
\end{align*}
$$

The first seven focus quantities define the variety of the Bautin ideal of (21), that is, $\mathbf{V}(\mathcal{B})=\mathbf{V}\left(\mathcal{B}_{7}\right)$, where $\mathcal{B}_{7}=\left\langle g_{11}, \ldots, g_{77}\right\rangle$ (Y.-R. Liu, 1990).
\mathcal{B}_{7} is not a radical ideal.

Computations show that the ideals $\mathcal{B}_{7}, \mathcal{B}_{8}, \mathcal{B}_{9}$ of system (20) are nonradical ideals also in $\mathbb{C}[\mathcal{M}]$.
Nevertheless, \mathcal{B}_{9} has a relatively simple primary decomposition in $\mathbb{C}[\mathcal{M}]$ and it allows to obtain a bound for cyclicity of system (20) for "almost all" values of parameters $a_{k j}$.

The cyclicity of the system

Theorem

The center at the origin of system (20) with all parameters $a_{k j}$ different from zero has cyclicity at most eight.

To prove the theorem it is sufficient to show that for any $\left(a^{*}, b^{*}\right)$ with all coordinates different from zero and $b_{j k}=\bar{a}_{k j}$, and $k>9$

$$
\begin{equation*}
g_{k k}=g_{11} f_{1}+g_{22} f_{2}+g_{44} f_{4}+g_{55} f_{4}+\cdots+g_{99} f_{9} \tag{22}
\end{equation*}
$$

in $\mathcal{G}_{\left(a^{*}, b^{*}\right)}$, where $\mathcal{G}_{\left(a^{*}, b^{*}\right)}$ is the ring of germs of complex analytic functions at $\left(a^{*}, b^{*}\right)$.

Output produced by primdecSY (Shimoyama and Yokoyama algorithm) of Singular
[1]:
[1] :

$$
\begin{array}{lll}
-[1]=c 14-c 15 & -[2]=c 12-3 * c 13 & -[3]=c 11-9 * c 13 \\
-[4]=c 10-27 * c 13 & -[5]=c 7-3 * c 8 & -[6]=c 6-9 * c 8 \\
-[7]=c 5-27 * c 8 & -[8]=c 4-c 9 & -[9]=c 3-3 * c 9 \\
-[10]=3 * c 2-c 9 & -[11]=c 1^{\wedge} 2 * c 9^{\wedge} 3-27 * c 8 * c 13 \\
2]: & & \\
-[1]=c 14-c 15 & -[2]=c 12-3 * c 13 & -[3]=c 11-9 * c 13 \\
-[4]=c 10-27 * c 13 & -[5]=c 7-3 * c 8 & -[6]=c 6-9 * c 8 \\
-[7]=c 5-27 * c 8 & -[8]=c 4-c 9 & -[9]=c 3-3 * c 9 \\
-[10]=3 * c 2-c 9 & -[11]=c 1^{\wedge} 2 * c 9^{\wedge} 3-27 * c 8 * c 13
\end{array}
$$

[2] :

Primary Decomposition of \mathcal{B}_{6} in $\mathbb{C}\left[c_{1}, \ldots, c_{15}\right]$

[2] :
[1]:

$$
\begin{array}{lll}
-[1]=c 15 & -[2]=c 14 & -[3]=c 12+c 13 \\
-[4]=c 11-c 13 & -[5]=c 10+c 13 & -[6]=c 7+c 8 \\
-[7]=c 6-c 8 & -[8]=c 5+c 8 & -[9]=c 4-c 9 \\
-[10]=c 3+c 9 & -[11]=c 2+c 9 & -[12]=c 1^{\wedge} 2 * c 9^{\wedge} 3+c 8 * c 13
\end{array}
$$

[2] :

$$
\begin{array}{lll}
-[1]=c 15 & -[2]=c 14 & -[3]=c 12+c 13 \\
-[4]=c 11-c 13 & -[5]=c 10+c 13 & -[6]=c 7+c 8 \\
-[7]=c 6-c 8 & -[8]=c 5+c 8 & -[9]=c 4-c 9 \\
-[10]=c 3+c 9 & -[11]=c 2+c 9 & -[12]=c 1^{\wedge} 2 * c 9^{\wedge} 3+c 8 * c 13
\end{array}
$$

and so on.
[6] :
[1]:
_ [1] =c14-c15
_ $[2]=2 * c 5-3 * c 6-8 * c 7-3 * c 8-2 * c 10+3 * c 11+8 * c 12+3 * c 13$
_ [158] $=3 * c 2^{\wedge} 4 * c 9^{\wedge} 8 * c 13^{\wedge} 2-6 * c 2^{\wedge} 3 * c 9^{\wedge} 9 * c 13 \wedge 2+5 * c 2^{\wedge} 2 * c 9$
_ [159] $=27 * c 2^{\wedge} 6 * c 9^{\wedge} 7 * c 13-54 * c 2^{\wedge} 5 * c 9^{\wedge} 8 * c 13+45 * c 2^{\wedge} 4 * c 9^{\wedge}$
_ [160] =c3^8* ${ }^{-1} 9^{\wedge} 6$
_ [161] $=27 * c 2^{\wedge} 8 * c 9 \wedge 6-54 * c 2^{\wedge} 7 * c 9 \wedge 7+45 * c 2^{\wedge} 6 * c 9 \wedge 8-20 * c 2^{\wedge}!$
_ [162] $=\mathrm{c} 2^{\wedge} 3 * \mathrm{c} 9^{\wedge} 10 * \mathrm{c} 13^{\wedge} 2$
_ [163] $=\mathrm{c} 2^{\wedge} 5 * \mathrm{c} 9^{\wedge} 9 * \mathrm{c} 13-2 * \mathrm{c} 2^{\wedge} 4 * \mathrm{c} 9^{\wedge} 10 * \mathrm{c} 13$
_ [164] $=3 * \mathrm{c} 2^{\wedge} 7 * \mathrm{c} 9^{\wedge} 8-6 * \mathrm{c} 2^{\wedge} 6 * \mathrm{c} 9^{\wedge} 9+5 * \mathrm{c} 2^{\wedge} 5 * \mathrm{c} 9^{\wedge} 10$
_[165]=c2^6*c9^10

Primary Decomposition of \mathcal{B}_{6} in $\mathbb{C}\left[c_{1}, \ldots, c_{15}\right]$

```
[2]:
    _[1]=c15
    _[2] =c14
    [3] =c13
    _ [4] =c12
    _[5] =c11
    _ [6] =c10
    _ [7] =c9
    _ \([8]=c 8\)
    _ [9] =c7
    _ [10] =c6
    _[11]=c5
    _ [12] =c4
    _ [13] \(=c 3 \quad\) _ \([14]=c 2 \quad\) _ [15] \(=c 1\)
```


Proposition

Let $I=\left\langle g_{1}, \ldots, g_{t}\right\rangle$ be an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that the primary decomposition of I is given as

$$
I=P_{1} \cap \cdots \cap P_{k} \cap Q
$$

where P_{s} is prime for $s=1, \ldots, k$, and $Q \neq \sqrt{Q}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Let g be a polynomial vanishing on $\mathbf{V}(I)$ and let $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ be an arbitrary point of $V(I)$ different from the origin $(0, \ldots, 0)$. Then in a small neighborhood of x^{*}

$$
g=g_{1} f_{1}+\cdots+g_{t} f_{t}
$$

where f_{1}, \ldots, f_{t} are power series convergent at x^{*}.

The ideal $\left\langle g_{11}^{F}, \ldots, g_{99}^{F}\right\rangle \subset \mathbb{C}\left[c_{1}, \ldots, c_{15}\right]$ has the structure as in the Proposition.
Therefore, by the proposition, there exist rational functions $f_{j, k}$ such that for

$$
\begin{align*}
g_{k k}^{F}(c)=g_{11}^{F}(c) f_{1, k}(c)+ & g_{22}^{F}(c) f_{2, k}(c)+g_{44}^{F}(c) f_{4, k}(c)+\ldots \\
& +g_{99}^{F}(c) f_{9, k}(c)+\sum_{j=1}^{44} r_{j}(c) s_{j, k}(c) \tag{23}
\end{align*}
$$

and $f_{j, k}$ (resp. $\left.s_{j, k}(c)\right)$ are of the form $f_{j, k}(c)=\hat{f}_{j, k} / c_{l}^{j}$ (resp. $\left.s_{j, k}(c)=\hat{s}_{j, k} / c_{l}^{j}\right)$, with $\hat{f}_{j, k}, \hat{s}_{j, k}$ being polynomials. After some technical work it can be proved that the cyclicity of a center at the origin of the corresponding system of ODEs is at most eight.

