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Introductory Examples (1)

Task: Find a closed form for the sum

-5 () )

k=0

— Use fastZeil (by P. Paule and M. Schorn)!

Solution:

n!!

(=D even
s(n) = { 0 n odd
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Introductory Examples (2)

Task: Find a closed form for the double sum
=350 () (1))
=0 5=0 ¢ J

— Use MultiSum (by K. Wegschaider)!

Solution:
s(m,n) = Omn
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Introductory Examples (3)

Task: Prove
o0 [e'e] 2'2+2'
i 4j2—35 | 2n+ 1 242, 2 g I
(—1)7¢" 3”[ } =@ ) 1) | | -
jz_:oo n+j |, " jzo (—@:¢)j+1 LI ]y

— Use qZeil (by A. Riese), qGeneratingFunctions (by C.K.)!

Solution strategy:
e Find recurrences for both sides of the identity
e Compute a recurrence for the sum of both

e Check initial values
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Introductory Examples (4)

Task: Find a closed form for the sum
2
— (1+k)

— Use Sigma (by C. Schneider)!

Solution:

() = Z2Hn = (0 + DI+ (n+ DHP
= 2(n + 1)2
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Main Topic

Generalization to
e multivariate (holonomic) functions

both discrete and continuous variables

mixed difference-differential equations

handling of “standard” and ¢-problems in the same framework

The main ingredients to achieve this are

translation to pure algebra, i.e., to operator algebras
(Ore algebras)

e noncommutative Grobner bases

— D. Zeilberger's “Holonomic Systems Approach” (1991),
with extensions and refinements by F. Chyzak (1998)
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Notation

Notation:
e K: field of characteristic 0
e F: a K-algebra (of “functions”)
e A,: Weyl algebra
e annihilating operator of f € F: an operator P € A, s.t.
Pf=0

e Anny, f: the ideal of annihilating operators of f in A4,
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Definition: Ore Algebra (1)

Given 0,0 € Endg F with
5(fg)=0c(f)o(g) +6(f)g forall f,g e F (skew Leibniz law)

The endomorphism ¢ is called a o-derivation.

Let A be a K-subalgebra of F (e.g., A = K]z] or A =K(z)) and
assume that o, § restrict to a o-derivation on A.
Define the skew polynomial ring O = A[9; o, d]:

e polynomials in 9

e coefficients in A

e usual addition

e product that makes use of the commutation rule

da = o(a)d + d6(a) for all a € A
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Definition: Ore Algebra (2)

We turn F into an O-module by defining a “multiplication”
(action) between an element in O and f € F:

aef = a-f,
def = d(f).
Remark: In special cases we define the action 0 e f = o(f).

Of course, this process can be iterated.

.M.M.
%



Ore Algebra: Examples

Example 1: A =Kjz|, 0 =1, = %.

Then Kz][Dy; 1, 1-] = K[z][Ds; 1, D.] is the Weyl algebra A;.
Example 2: A =K[n|, o(n) =n+1, o(c) =cforceK, 6 =0.
Then K[n][Sy; Sn, 0] is a shift algebra.

Example 3: K(n)[S,; Sy, 0]
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Special functions (1)
A sequence (P, )nen of polynomials P, € R[x] is orthogonal if
b
/ p(x)Pp(z)Py(x)de =0 Vm,n € Nst. m#n

for a given interval [a, b] and a weight function p(z).
— Start with the standard basis {z"} and do Gram-Schmidt.

Example: a = —1, b =1 and p(z) = 1: Legendre polynomials.

Py(z) = 1

P(z) = =

Py(z) = 1(322-1)
Py(z) = %(52%—32)
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Special functions (2)

Ore algebras are very well suited for representing special functions.

Example: Legendre polynomials P, (x).
Well-known formulae for Legendre polynomials:

(1 —2?)P!(z) — 22zP. () + n(n + 1)Py(z) = 0,
(n+1)Pt1(x) = (2n+ 1)xPy(x) — nPy—1(x).
They translate to the following annihilating operators in the Ore
algebra K[n, z|[Sn; Sn, 0][Dz; 1, Dy):
(1 —2?)D2 — 22D, + (n? +n),
(n+2)S% — (2nz + 32)S, + (n + 1).
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Definition: Holonomic function

Definition:
f € F is said to be holonomic if A,,/ Anng, f is a holonomic
module.
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Properties of holonomic functions

Closure properties:

e sum
e product
o definite integration
Elimination property:
Given an ideal I in A, s.t. A,,/I is holonomic; then for any choice
of n + 1 among the generators of A,, there exists a nonzero

operator in I that depends only on these. In other words, we can
eliminate n — 1 variables.
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Holonomy for sequences

Let f(k1,..., k) be a sequence in CN'. The multivariate
generating function of f is

F(zy,...,x,) = Z Z f(kl,...,kr)x’fl---xf’“.
k1=0 kr=0

The sequence f is called holonomic if its generating function is a
holonomic function.

—— The elimination property carries over!

Remark: Bernstein's inequality does not hold in the shift case.
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Definite integration of holonomic functions (1)

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = K]z, y] [Dgg7 1,D ][Dy, 1,D ].

Find: The annihilator of F(y f f(z,y)d

Since Anng f is holonomic, there exists P(y, D,,D,) € Anng f
that does not contain z.

P(y, D,, Dy) = Q(f% Dy) + DzR(yy D,, Dy)
Performing the integration on Pf = 0 gives

Q(y, Dy)F(y) + [R(y, Dy, Dy) f(,9)]°=" = 0
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Definite integration of holonomic functions (2)

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = K[z, y] [Dm7 1,D 1[Dy; 1, Dy).

Find: The annihilator of F(y f flx,y)dz

Find P € Anng f which can be written in the form

P(l‘, Y, Dy, Dy) = Q(% Dy) + DxR($7 Y, Dy, Dy)

b
O = /P(.’I),y,Dm,Dy)f((B,y)de
ab b
- / Q(y. Dy) (. )z + / DuR(x,y, Du, Dy)f (2, y)da

Hence Q(y, Dy)F(y) = 0 (in the case of “natural boundaries™)

The operator () can be computed with Takayama'’s algorithm
(noncommutative Grobner bases over modules). The theory of
holonomy guarantees that such an operator exists.
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Definite summation of holonomic functions

Given: Anng f, the annihilator of a holonomic sequence f(k,n) in
the Ore algebra O = K[k, n][Sk; Sk, 0][Sn; Sn, 0].

Find: The annihilator of Fi(n) =%, f(k,n)

Find P € Ann f which can be written in the form

P(k, n, Sk, Sn) = Q(n, Sn) + AkR(/{?, n, Sk, Sn)
0 = > P(k,n, Sk, Sn)f(k,n)
k
= > Q(n,Sn)f(k,n) + Y AgR(k,n, S, Sn) f(k, 1)
k k

Hence Q(n, Sp)F(n) = 0 (in the case of “natural boundaries”)

The operator () can be computed with Takayama's algorithm
(noncommutative Grobner bases over modules). The theory of
holonomy guarantees that such an operator exists.
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Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute the definite integral

F(a,m) /OO dr € C,meN
a,m)= a m
) 0 (.%'4 + 2@.7]2 + 1)m+1’ ’

—— Find an z-free annihilator of the integrand.
— Or use Takayama's algorithm! Annihilator for the integral:
{(4m+4)S,,—2aDy—4m—3, (44> —4) D>+ (8ma+12a) D, 4+4m+3}

Solution:

i (@ - 1) R R (a)
Fla,m) = - T(m + 1)
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Jacobi Polynomials (1)

The Jacobi polynomials are defined by

i (a4 Dn(—n)p(n+a+b+ 1) (1—x)k
= n' (a+ 1)kk! 2
The summand is both hypergeometric and hyperexponential.
Applying Takayama's algorithm gives an annihilator for pleb) (x):
{(—2n?% — 2an — 2bn — 4n — 2a — 2b — 2)S,

+(az? + bz? + 2n2? + 222 —a — b —2n — 2)D,

+xa® + a® + na + 2bxa + 3nza + 3ra+a —b*> —b—bn

+b%x + 2n%x + 3bx + 3bnx + 4nz + 2z,

(—a—=b—n—-1S,+(x—1)Dz+ (a+b+n+1),

(a+b+n+1)Se+(—x—1)Dy+ (—a—b—n—1),

(1—2?)D2 + (—za—a+b—bx —22)D, + (n®* +an+bn+n)}.
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Jacobi polynomials (2)

Task: Prove (or even better: find!):

(2n+a+b)PP V(z) = (n+a+b)P(z)
+(n+a) P (),
(1- :c)%Pé‘“’) (@) = aP{*"(x) = (n+a)P{" M (a).

Solution: Use Grobner bases for elimination. We get:
(a+b+n+2)SpSp+ (a+n+1)S, — (a+b+2n+ 3)S,,
(1—=2)DySe+ (a+n+1)S, — (a+1)5,
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O-finite functions

Definition: Let O be an Ore algebra over some K-algebra A
(typically here A = K(x). A left ideal I in O is called O-finite
w.r.t. O, if O/I is a finite dimensional vector space over A.

A function f € F is called O-finite w.r.t. Q if it is annihilated by a
O-finite ideal. We have O/ Anng f 2 O - f.

Example:

1
fom) = e

f(n, k) is O-finite w.r.t. Q(k,n)[Sk; Sk, 0][Sn; Sn, 0].
I = {(kK*+n?+2n+1)S,— (K> +n?), (k*4+-2k+n>+1)Sp— (k*+n?))
Note: The sequence f(k,n) is not holonomic!
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O-finite functions

Closure properties:

® sum

product

application of Ore operators
e algebraic substitution (only in the differential case!)

— These closure properties can be executed effectively (using an
extended version of the FGLM algorithm).

Remark: The annihilator of a O-finite function is usually not very
difficult to compute.
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holonomic vs. O-finite

Let

O, = K(x)[Dg;1,Dy]
0, = Kiz|[Ds;1, Dyl

Theorem (Kashiwara): An ideal I in O, is O-finite if and only if
0,/(I N O,) is a holonomic module.

Remark: This applies only to the differential case.
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Rational Resolution

Given a function f that is O-finite w.r.t. an Ore algebra Q.
Any function in O - f can be written in normal form

(5 s

acV

Task: Find an operator (Q € Anng f with certain properties, e.g.,
such that 0Q — 1 = 0 (indefinite integration).
Algorithm:

compute a Grobner basis G for Anng f

make an ansatz for () with undetermined coefficients
reduce the ansatz with G, i.e., compute the normal form
all coefficients of the normal form must be zero

solve the resulting system
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Integrated Jacobi polynomials (1)

Define
o S (@t Dt ot e (1-z\f

i@ = [ s
Task: Express p2(z) in terms of p2_;(x) and p?~2(z).

Ansatz: ﬁZﬁ () = Q- p(x) with Q = 1(2)S? + 2()S,.
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Integrated Jacobi polynomials (2)

Ansatz: ﬁg‘fl(x) = Q- p(x) with Q = p1(2)S2 + pa(x)S,.
Solution:

e compute a Grobner basis G for Ann p?

. %ﬁf:fl = p2*2 translates to 0 = D,Q — S% =: Z

e compute the normal form of Z by reducing it with G

e all coefficients of the normal form must be zero

e solve the system of coupled differential equations for rational

solutions: use OreSys (by S. Gerhold) for uncoupling.

We find
(a+1)pit3(x) = (1 —z)plt>(x) + 2p% 41 (2).
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Jacobi polynomials (3)

Task: Prove (or even better: find!):

@n+a+b)P* () = (n+a+b)P")(x)
+(n+a) P\ (),
(1 - )L PeD(@) = aPf(z) — (n+ a)PL ) a)

Solution: Make the following ansaetze:

©1.Sp + p2.Sn + ©35,5, =0
('Plsa + 90251) + ()03SaDz =0
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Thanks for your attention!



