Computer Algebra Methods for Holonomic Functions

Christoph Koutschan

Research Institute for Symbolic Computation Johannes Kepler Universität Linz, Austria

7 February 2008

The RISC Combinatorics Group

RISC: Research Institute for Symbolic Computation

- leader of the combinatorics group: Prof. Dr. Peter Paule
- computer algebra
- symbolic summation / integration
- computer proofs
- cooperation with colleagues from numerics (SFB F013)

Introductory Examples (1)

Task: Find a closed form for the sum

$$
s(n)=\sum_{k=0}^{n} \frac{(-1)^{k}}{2^{k}}\binom{n}{k}\binom{2 k}{k} .
$$

\longrightarrow Use fastZeil (by P. Paule and M. Schorn)!
Solution:

$$
s(n)= \begin{cases}\frac{(n-1)!!}{n!!} & n \text { even } \\ 0 & n \text { odd }\end{cases}
$$

Introductory Examples (2)

Task: Find a closed form for the double sum

$$
s(m, n)=\sum_{i=0}^{m} \sum_{j=0}^{n}(-1)^{i+j}\binom{i+j}{i}\binom{m}{i}\binom{n}{j}
$$

\longrightarrow Use MultiSum (by K. Wegschaider)!
Solution:

$$
s(m, n)=\delta_{m, n}
$$

Introductory Examples (3)

Task: Prove
$\sum_{j=-\infty}^{\infty}(-1)^{j} q^{4 j^{2}-3 j}\left[\begin{array}{c}2 n+1 \\ n+j\end{array}\right]_{2}=\left(q^{2 n+2} ; q^{2}\right)_{n+1} \sum_{j=0}^{\infty} \frac{q^{2 j^{2}+2 j}}{\left(-q ; q^{2}\right)_{j+1}}\left[\begin{array}{c}n \\ j\end{array}\right]_{2}$
\longrightarrow Use qZeil (by A. Riese), qGeneratingFunctions (by C.K.)!

Solution strategy:

- Find recurrences for both sides of the identity
- Compute a recurrence for the sum of both
- Check initial values

Introductory Examples (4)

Task: Find a closed form for the sum

$$
s(n)=\sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k} H_{k}}{(1+k)^{2}}
$$

\longrightarrow Use Sigma (by C. Schneider)!

Solution:

$$
s(n)=\frac{-2 H_{n}-(n+1) H_{n}^{2}+(n+1) H_{n}^{(2)}}{2(n+1)^{2}}
$$

Main Topic

Generalization to

- multivariate (holonomic) functions
- both discrete and continuous variables
- mixed difference-differential equations
- handling of "standard" and q-problems in the same framework

The main ingredients to achieve this are

- translation to pure algebra, i.e., to operator algebras (Ore algebras)
- noncommutative Gröbner bases
\longrightarrow D. Zeilberger's "Holonomic Systems Approach" (1991),
with extensions and refinements by F. Chyzak (1998)

Notation

Notation:

- \mathbb{K} : field of characteristic 0
- \mathcal{F} : a \mathbb{K}-algebra (of "functions")
- A_{n} : Weyl algebra
- annihilating operator of $f \in \mathcal{F}$: an operator $P \in A_{n}$ s.t. $P f=0$
- $\operatorname{Ann}_{A_{n}} f$: the ideal of annihilating operators of f in A_{n}

Definition: Ore Algebra (1)

Given $\sigma, \delta \in \operatorname{End}_{\mathbb{K}} \mathcal{F}$ with

$$
\delta(f g)=\sigma(f) \delta(g)+\delta(f) g \quad \text { for all } f, g \in \mathcal{F} \quad \text { (skew Leibniz law) }
$$

The endomorphism δ is called a σ-derivation.
Let \mathbb{A} be a \mathbb{K}-subalgebra of \mathcal{F} (e.g., $\mathbb{A}=\mathbb{K}[x]$ or $\mathbb{A}=\mathbb{K}(x))$ and assume that σ, δ restrict to a σ-derivation on \mathbb{A}.
Define the skew polynomial ring $\mathbb{O}=\mathbb{A}[\partial ; \sigma, \delta]$:

- polynomials in ∂
- coefficients in \mathbb{A}
- usual addition
- product that makes use of the commutation rule

$$
\partial a=\sigma(a) \partial+\delta(a) \text { for all } a \in \mathbb{A}
$$

Definition: Ore Algebra (2)

We turn \mathcal{F} into an \mathbb{O}-module by defining a "multiplication" (action) between an element in \mathbb{O} and $f \in \mathcal{F}$:

$$
\begin{aligned}
& a \bullet f=a \cdot f \\
& \partial \bullet f=\delta(f)
\end{aligned}
$$

Remark: In special cases we define the action $\partial \bullet f=\sigma(f)$.
Of course, this process can be iterated.

Ore Algebra: Examples

Example 1: $\mathbb{A}=\mathbb{K}[x], \sigma=1, \delta=\frac{\mathrm{d}}{\mathrm{d} x}$.
Then $\mathbb{K}[x]\left[D_{x} ; 1, \frac{\mathrm{~d}}{\mathrm{~d} x}\right]=\mathbb{K}[x]\left[D_{x} ; 1, D_{x}\right]$ is the Weyl algebra A_{1}.
Example 2: $\mathbb{A}=\mathbb{K}[n], \sigma(n)=n+1, \sigma(c)=c$ for $c \in \mathbb{K}, \delta=0$.
Then $\mathbb{K}[n]\left[S_{n} ; S_{n}, 0\right]$ is a shift algebra.
Example 3: $\mathbb{K}(n)\left[S_{n} ; S_{n}, 0\right]$

Special functions (1)

A sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of polynomials $P_{n} \in \mathbb{R}[x]$ is orthogonal if

$$
\int_{a}^{b} \rho(x) P_{m}(x) P_{n}(x) \mathrm{d} x=0 \quad \forall m, n \in \mathbb{N} \text { s.t. } m \neq n
$$

for a given interval $[a, b]$ and a weight function $\rho(x)$.
\longrightarrow Start with the standard basis $\left\{x^{n}\right\}$ and do Gram-Schmidt.
Example: $a=-1, b=1$ and $\rho(x)=1$: Legendre polynomials.

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
P_{2}(x) & =\frac{1}{2}\left(3 x^{2}-1\right) \\
P_{3}(x) & =\frac{1}{2}\left(5 x^{3}-3 x\right)
\end{aligned}
$$

Special functions (2)

Ore algebras are very well suited for representing special functions.

Example: Legendre polynomials $P_{n}(x)$.
Well-known formulae for Legendre polynomials:

$$
\begin{aligned}
& \left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0 \\
& (n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
\end{aligned}
$$

They translate to the following annihilating operators in the Ore algebra $\mathbb{K}[n, x]\left[S_{n} ; S_{n}, 0\right]\left[D_{x} ; 1, D_{x}\right]$:

$$
\begin{aligned}
& \left(1-x^{2}\right) D_{x}^{2}-2 x D_{x}+\left(n^{2}+n\right) \\
& (n+2) S_{n}^{2}-(2 n x+3 x) S_{n}+(n+1)
\end{aligned}
$$

Definition: Holonomic function

Definition:

$f \in \mathcal{F}$ is said to be holonomic if $A_{n} / \operatorname{Ann}_{A_{n}} f$ is a holonomic module.

Properties of holonomic functions

Closure properties:

- sum
- product
- definite integration

Elimination property:

Given an ideal I in A_{n} s.t. A_{n} / I is holonomic; then for any choice of $n+1$ among the generators of A_{n} there exists a nonzero operator in I that depends only on these. In other words, we can eliminate $n-1$ variables.

Holonomy for sequences

Let $f\left(k_{1}, \ldots, k_{r}\right)$ be a sequence in $\mathbb{C}^{\mathbb{N}^{r}}$. The multivariate generating function of f is

$$
F\left(x_{1}, \ldots, x_{r}\right)=\sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} f\left(k_{1}, \ldots, k_{r}\right) x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}
$$

The sequence f is called holonomic if its generating function is a holonomic function.
\longrightarrow The elimination property carries over!
Remark: Bernstein's inequality does not hold in the shift case.

Definite integration of holonomic functions (1)

Given: $\operatorname{Ann}_{\mathbb{O}} f$, the annihilator of a holonomic function $f(x, y)$ in the Ore algebra $\mathbb{O}=\mathbb{K}[x, y]\left[D_{x} ; 1 ; D_{x}\right]\left[D_{y} ; 1, D_{y}\right]$.
Find: The annihilator of $F(y)=\int_{a}^{b} f(x, y) \mathrm{d} x$
Since $\mathrm{Ann}_{\mathbb{O}} f$ is holonomic, there exists $P\left(y, D_{x}, D_{y}\right) \in \mathrm{Ann}_{\mathbb{O}} f$ that does not contain x.

$$
P\left(y, D_{x}, D_{y}\right)=Q\left(y, D_{y}\right)+D_{x} R\left(y, D_{x}, D_{y}\right)
$$

Performing the integration on $P f=0$ gives

$$
Q\left(y, D_{y}\right) F(y)+\left[R\left(y, D_{x}, D_{y}\right) f(x, y)\right]_{x=a}^{x=b}=0
$$

Definite integration of holonomic functions (2)

Given: $\operatorname{Ann}_{\mathbb{O}} f$, the annihilator of a holonomic function $f(x, y)$ in the Ore algebra $\mathbb{O}=\mathbb{K}[x, y]\left[D_{x} ; 1 ; D_{x}\right]\left[D_{y} ; 1, D_{y}\right]$.
Find: The annihilator of $F(y)=\int_{a}^{b} f(x, y) \mathrm{d} x$
Find $P \in \operatorname{Ann}_{\mathscr{O}} f$ which can be written in the form

$$
\begin{aligned}
& P\left(x, y, D_{x}, D_{y}\right)=Q\left(y, D_{y}\right)+D_{x} R\left(x, y, D_{x}, D_{y}\right) \\
0= & \int_{a}^{b} P\left(x, y, D_{x}, D_{y}\right) f(x, y) \mathrm{d} x \\
= & \int_{a}^{b} Q\left(y, D_{y}\right) f(x, y) \mathrm{d} x+\int_{a}^{b} D_{x} R\left(x, y, D_{x}, D_{y}\right) f(x, y) \mathrm{d} x
\end{aligned}
$$

Hence $Q\left(y, D_{y}\right) F(y)=0$ (in the case of "natural boundaries")
The operator Q can be computed with Takayama's algorithm (noncommutative Gröbner bases over modules). The theory of holonomy guarantees that such an operator exists.

Definite summation of holonomic functions

Given: $\operatorname{Ann}_{\mathscr{O}} f$, the annihilator of a holonomic sequence $f(k, n)$ in the Ore algebra $\mathbb{O}=\mathbb{K}[k, n]\left[S_{k} ; S_{k}, 0\right]\left[S_{n} ; S_{n}, 0\right]$.
Find: The annihilator of $F(n)=\sum_{k} f(k, n)$
Find $P \in \operatorname{Ann} f$ which can be written in the form

$$
\begin{aligned}
& P\left(k, n, S_{k}, S_{n}\right)=Q\left(n, S_{n}\right)+\Delta_{k} R\left(k, n, S_{k}, S_{n}\right) \\
0= & \sum_{k} P\left(k, n, S_{k}, S_{n}\right) f(k, n) \\
= & \sum_{k} Q\left(n, S_{n}\right) f(k, n)+\sum_{k} \Delta_{k} R\left(k, n, S_{k}, S_{n}\right) f(k, n)
\end{aligned}
$$

Hence $Q\left(n, S_{n}\right) F(n)=0$ (in the case of "natural boundaries")
The operator Q can be computed with Takayama's algorithm (noncommutative Gröbner bases over modules). The theory of holonomy guarantees that such an operator exists.

Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute the definite integral

$$
F(a, m)=\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}, \quad a \in \mathbb{C}, m \in \mathbb{N}
$$

\longrightarrow Find an x-free annihilator of the integrand.
\longrightarrow Or use Takayama's algorithm! Annihilator for the integral:
$\left\{(4 m+4) S_{m}-2 a D_{a}-4 m-3,\left(4 a^{2}-4\right) D_{a}^{2}+(8 m a+12 a) D_{a}+4 m+3\right\}$

Solution:

$$
F(a, m)=-\frac{(1+i)(-i)^{m} 2^{-m-1}\left(a^{2}-1\right)^{-\frac{m}{2}-\frac{1}{4}} \sqrt{\pi} Q_{m}^{m+\frac{1}{2}}(a)}{\Gamma(m+1)}
$$

Jacobi Polynomials (1)

The Jacobi polynomials are defined by

$$
P_{n}^{(a, b)}(x)=\sum_{k=0}^{\infty} \frac{(a+1)_{n}(-n)_{k}(n+a+b+1)_{k}}{n!(a+1)_{k} k!}\left(\frac{1-x}{2}\right)^{k}
$$

The summand is both hypergeometric and hyperexponential. Applying Takayama's algorithm gives an annihilator for $P_{n}^{(a, b)}(x)$:
$\left\{\left(-2 n^{2}-2 a n-2 b n-4 n-2 a-2 b-2\right) S_{n}\right.$

$$
+\left(a x^{2}+b x^{2}+2 n x^{2}+2 x^{2}-a-b-2 n-2\right) D_{x}
$$

$$
+x a^{2}+a^{2}+n a+2 b x a+3 n x a+3 x a+a-b^{2}-b-b n
$$

$$
+b^{2} x+2 n^{2} x+3 b x+3 b n x+4 n x+2 x
$$

$$
(-a-b-n-1) S_{b}+(x-1) D_{x}+(a+b+n+1)
$$

$$
(a+b+n+1) S_{a}+(-x-1) D_{x}+(-a-b-n-1)
$$

$$
\left.\left(1-x^{2}\right) D_{x}^{2}+(-x a-a+b-b x-2 x) D_{x}+\left(n^{2}+a n+b n+n\right)\right\}
$$

Jacobi polynomials (2)

Task: Prove (or even better: find!):

$$
\begin{aligned}
(2 n+a+b) P_{n}^{(a, b-1)}(x)= & (n+a+b) P_{n}^{(a, b)}(x) \\
& +(n+a) P_{n-1}^{(a, b)}(x) \\
(1-x) \frac{d}{d x} P_{n}^{(a, b)}(x)= & a P_{n}^{(a, b)}(x)-(n+a) P_{n}^{(a-1, b+1)}(x)
\end{aligned}
$$

Solution: Use Gröbner bases for elimination. We get:

$$
\begin{aligned}
& (a+b+n+2) S_{b} S_{n}+(a+n+1) S_{b}-(a+b+2 n+3) S_{n}, \\
& (1-x) D_{x} S_{a}+(a+n+1) S_{b}-(a+1) S_{a}
\end{aligned}
$$

∂-finite functions

Definition: Let \mathbb{O} be an Ore algebra over some \mathbb{K}-algebra \mathbb{A} (typically here $\mathbb{A}=\mathbb{K}(\mathbf{x})$. A left ideal I in \mathbb{O} is called ∂-finite w.r.t. \mathbb{O}, if \mathbb{O} / I is a finite dimensional vector space over \mathbb{A}.

A function $f \in \mathcal{F}$ is called ∂-finite w.r.t. \mathbb{O} if it is annihilated by a ∂-finite ideal. We have $\mathbb{O} / \operatorname{Ann}_{\mathbb{O}} f \cong \mathbb{O} \cdot f$.

Example:

$$
f(k, n)=\frac{1}{k^{2}+n^{2}}
$$

$f(n, k)$ is ∂-finite w.r.t. $\mathbb{Q}(k, n)\left[S_{k} ; S_{k}, 0\right]\left[S_{n} ; S_{n}, 0\right]$.
$I=\left\langle\left(k^{2}+n^{2}+2 n+1\right) S_{n}-\left(k^{2}+n^{2}\right),\left(k^{2}+2 k+n^{2}+1\right) S_{k}-\left(k^{2}+n^{2}\right)\right\rangle$
Note: The sequence $f(k, n)$ is not holonomic!

∂-finite functions

Closure properties:

- sum
- product
- application of Ore operators
- algebraic substitution (only in the differential case!)
\longrightarrow These closure properties can be executed effectively (using an extended version of the FGLM algorithm).

Remark: The annihilator of a ∂-finite function is usually not very difficult to compute.

holonomic vs. ∂-finite

Let

$$
\begin{aligned}
\mathbb{O}_{r} & =\mathbb{K}(x)\left[D_{x} ; 1, D_{x}\right] \\
\mathbb{O}_{p} & =\mathbb{K}[x]\left[D_{x} ; 1, D_{x}\right] .
\end{aligned}
$$

Theorem (Kashiwara): An ideal I in \mathbb{O}_{r} is ∂-finite if and only if $\mathbb{O}_{p} /\left(I \cap \mathbb{O}_{p}\right)$ is a holonomic module.

Remark: This applies only to the differential case.

Rational Resolution

Given a function f that is ∂-finite w.r.t. an Ore algebra \mathbb{O}. Any function in $\mathbb{O} \cdot f$ can be written in normal form

$$
\left(\sum_{\alpha \in V} \varphi_{\alpha} \partial^{\alpha}\right) \cdot f
$$

Task: Find an operator $Q \in \mathrm{Ann}_{\mathbb{O}} f$ with certain properties, e.g., such that $\partial Q-1=0$ (indefinite integration).

Algorithm:

- compute a Gröbner basis G for $\operatorname{Ann}_{\mathbb{O}} f$
- make an ansatz for Q with undetermined coefficients
- reduce the ansatz with G, i.e., compute the normal form
- all coefficients of the normal form must be zero
- solve the resulting system

Integrated Jacobi polynomials (1)

Define

$$
\begin{aligned}
p_{n}^{a}(x) & =\sum_{k=0}^{\infty} \frac{(a+1)_{n}(-n)_{k}(n+a+1)_{k}}{n!(a+1)_{k} k!}\left(\frac{1-x}{2}\right)^{k}, \\
\hat{p}_{n}^{a}(x) & =\int_{-1}^{x} p_{n-1}^{a}(y) \mathrm{d} y .
\end{aligned}
$$

Task: Express $\hat{p}_{n}^{a}(x)$ in terms of $p_{n-1}^{a}(x)$ and $p_{n}^{a-2}(x)$.
Ansatz: $\hat{p}_{n+1}^{a+2}(x)=Q \cdot p_{n}^{a}(x)$ with $Q=\varphi_{1}(x) S_{a}^{2}+\varphi_{2}(x) S_{n}$.

Integrated Jacobi polynomials (2)

Ansatz: $\hat{p}_{n+1}^{a+2}(x)=Q \cdot p_{n}^{a}(x)$ with $Q=\varphi_{1}(x) S_{a}^{2}+\varphi_{2}(x) S_{n}$.

Solution:

- compute a Gröbner basis G for $\operatorname{Ann} p_{n}^{a}$
- $\frac{\mathrm{d}}{\mathrm{d} x} \hat{p}_{n+1}^{a+2}=p_{n}^{a+2}$ translates to $0=D_{x} Q-S_{a}^{2}=: Z$
- compute the normal form of Z by reducing it with G
- all coefficients of the normal form must be zero
- solve the system of coupled differential equations for rational solutions: use OreSys (by S. Gerhold) for uncoupling.
We find

$$
(a+1) \hat{p}_{n+1}^{a+2}(x)=(1-x) p_{n}^{a+2}(x)+2 p_{n+1}^{a}(x)
$$

Jacobi polynomials (3)

Task: Prove (or even better: find!):

$$
\begin{aligned}
(2 n+a+b) P_{n}^{(a, b-1)}(x)= & (n+a+b) P_{n}^{(a, b)}(x) \\
& +(n+a) P_{n-1}^{(a, b)}(x) \\
(1-x) \frac{d}{d x} P_{n}^{(a, b)}(x)= & a P_{n}^{(a, b)}(x)-(n+a) P_{n}^{(a-1, b+1)}(x)
\end{aligned}
$$

Solution: Make the following ansaetze:

$$
\begin{aligned}
& \varphi_{1} S_{b}+\varphi_{2} S_{n}+\varphi_{3} S_{b} S_{n}=0 \\
& \varphi_{1} S_{a}+\varphi_{2} S_{b}+\varphi_{3} S_{a} D_{x}=0
\end{aligned}
$$

Thanks for your attention!

