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The RISC Combinatorics Group

RISC: Research Institute for Symbolic Computation

• leader of the combinatorics group: Prof. Dr. Peter Paule

• computer algebra

• symbolic summation / integration

• computer proofs

• cooperation with colleagues from numerics (SFB F013)



Introductory Examples (1)

Task: Find a closed form for the sum

s(n) =
n∑

k=0

(−1)k

2k

(
n

k

)(
2k

k

)
.

−→ Use fastZeil (by P. Paule and M. Schorn)!

Solution:

s(n) =
{

(n−1)!!
n!! n even

0 n odd



Introductory Examples (2)

Task: Find a closed form for the double sum

s(m,n) =
m∑

i=0

n∑
j=0

(−1)i+j

(
i + j

i

)(
m

i

)(
n

j

)

−→ Use MultiSum (by K. Wegschaider)!

Solution:
s(m,n) = δm,n



Introductory Examples (3)

Task: Prove

∞∑
j=−∞

(−1)jq4j2−3j

[
2n + 1
n + j

]
2

= (q2n+2; q2)n+1

∞∑
j=0

q2j2+2j

(−q; q2)j+1

[
n
j

]
2

.

−→ Use qZeil (by A. Riese), qGeneratingFunctions (by C.K.)!

Solution strategy:

• Find recurrences for both sides of the identity

• Compute a recurrence for the sum of both

• Check initial values



Introductory Examples (4)

Task: Find a closed form for the sum

s(n) =
n∑

k=0

(−1)k
(
n
k

)
Hk

(1 + k)2

−→ Use Sigma (by C. Schneider)!

Solution:

s(n) =
−2Hn − (n + 1)H2

n + (n + 1)H(2)
n

2(n + 1)2



Main Topic

Generalization to

• multivariate (holonomic) functions

• both discrete and continuous variables

• mixed difference-differential equations

• handling of “standard” and q-problems in the same framework

The main ingredients to achieve this are

• translation to pure algebra, i.e., to operator algebras
(Ore algebras)

• noncommutative Gröbner bases

−→ D. Zeilberger’s “Holonomic Systems Approach” (1991),
with extensions and refinements by F. Chyzak (1998)



Notation

Notation:

• K: field of characteristic 0

• F : a K-algebra (of “functions”)

• An: Weyl algebra

• annihilating operator of f ∈ F : an operator P ∈ An s.t.
Pf = 0

• AnnAn f : the ideal of annihilating operators of f in An



Definition: Ore Algebra (1)

Given σ, δ ∈ EndK F with

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (skew Leibniz law)

The endomorphism δ is called a σ-derivation.

Let A be a K-subalgebra of F (e.g., A = K[x] or A = K(x)) and
assume that σ, δ restrict to a σ-derivation on A.
Define the skew polynomial ring O = A[∂;σ, δ]:
• polynomials in ∂

• coefficients in A
• usual addition

• product that makes use of the commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A



Definition: Ore Algebra (2)

We turn F into an O-module by defining a “multiplication”
(action) between an element in O and f ∈ F :

a • f = a · f,

∂ • f = δ(f).

Remark: In special cases we define the action ∂ • f = σ(f).

Of course, this process can be iterated.



Ore Algebra: Examples

Example 1: A = K[x], σ = 1, δ = d
dx .

Then K[x][Dx; 1, d
dx ] = K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: A = K[n], σ(n) = n + 1, σ(c) = c for c ∈ K, δ = 0.

Then K[n][Sn;Sn, 0] is a shift algebra.

Example 3: K(n)[Sn;Sn, 0]



Special functions (1)

A sequence (Pn)n∈N of polynomials Pn ∈ R[x] is orthogonal if∫ b

a
ρ(x)Pm(x)Pn(x)dx = 0 ∀m,n ∈ N s.t. m 6= n

for a given interval [a, b] and a weight function ρ(x).

−→ Start with the standard basis {xn} and do Gram-Schmidt.

Example: a = −1, b = 1 and ρ(x) = 1: Legendre polynomials.

P0(x) = 1
P1(x) = x

P2(x) = 1
2(3x2 − 1)

P3(x) = 1
2(5x3 − 3x)



Special functions (2)

Ore algebras are very well suited for representing special functions.

Example: Legendre polynomials Pn(x).
Well-known formulae for Legendre polynomials:

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0,

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x).

They translate to the following annihilating operators in the Ore
algebra K[n, x][Sn;Sn, 0][Dx; 1, Dx]:

(1− x2)D2
x − 2xDx + (n2 + n),

(n + 2)S2
n − (2nx + 3x)Sn + (n + 1).



Definition: Holonomic function

Definition:
f ∈ F is said to be holonomic if An/ AnnAn f is a holonomic
module.



Properties of holonomic functions

Closure properties:

• sum

• product

• definite integration

Elimination property:
Given an ideal I in An s.t. An/I is holonomic; then for any choice
of n + 1 among the generators of An there exists a nonzero
operator in I that depends only on these. In other words, we can
eliminate n− 1 variables.



Holonomy for sequences

Let f(k1, . . . , kr) be a sequence in CNr
. The multivariate

generating function of f is

F (x1, . . . , xr) =
∞∑

k1=0

· · ·
∞∑

kr=0

f(k1, . . . , kr)xk1
1 · · ·xkr

r .

The sequence f is called holonomic if its generating function is a
holonomic function.
−→ The elimination property carries over!
Remark: Bernstein’s inequality does not hold in the shift case.



Definite integration of holonomic functions (1)

Given: AnnO f , the annihilator of a holonomic function f(x, y) in
the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y)dx

Since AnnO f is holonomic, there exists P (y, Dx, Dy) ∈ AnnO f
that does not contain x.

P (y, Dx, Dy) = Q(y, Dy) + DxR(y, Dx, Dy)

Performing the integration on Pf = 0 gives

Q(y, Dy)F (y) + [R(y, Dx, Dy)f(x, y)]x=b
x=a = 0



Definite integration of holonomic functions (2)

Given: AnnO f , the annihilator of a holonomic function f(x, y) in
the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y)dx

Find P ∈ AnnO f which can be written in the form

P (x, y, Dx, Dy) = Q(y, Dy) + DxR(x, y, Dx, Dy)

0 =
∫ b

a
P (x, y, Dx, Dy)f(x, y)dx

=
∫ b

a
Q(y, Dy)f(x, y)dx +

∫ b

a
DxR(x, y, Dx, Dy)f(x, y)dx

Hence Q(y, Dy)F (y) = 0 (in the case of “natural boundaries”)

The operator Q can be computed with Takayama’s algorithm
(noncommutative Gröbner bases over modules). The theory of
holonomy guarantees that such an operator exists.



Definite summation of holonomic functions

Given: AnnO f , the annihilator of a holonomic sequence f(k, n) in
the Ore algebra O = K[k, n][Sk;Sk, 0][Sn;Sn, 0].
Find: The annihilator of F (n) =

∑
k f(k, n)

Find P ∈ Ann f which can be written in the form

P (k, n, Sk, Sn) = Q(n, Sn) + ∆kR(k, n, Sk, Sn)

0 =
∑

k

P (k, n, Sk, Sn)f(k, n)

=
∑

k

Q(n, Sn)f(k, n) +
∑

k

∆kR(k, n, Sk, Sn)f(k, n)

Hence Q(n, Sn)F (n) = 0 (in the case of “natural boundaries”)

The operator Q can be computed with Takayama’s algorithm
(noncommutative Gröbner bases over modules). The theory of
holonomy guarantees that such an operator exists.



Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute the definite integral

F (a,m) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
, a ∈ C,m ∈ N

−→ Find an x-free annihilator of the integrand.

−→ Or use Takayama’s algorithm! Annihilator for the integral:

{(4m+4)Sm−2aDa−4m−3, (4a2−4)D2
a+(8ma+12a)Da+4m+3}

Solution:

F (a,m) = −
(1 + i)(−i)m2−m−1

(
a2 − 1

)−m
2
− 1

4
√

πQ
m+ 1

2
m (a)

Γ(m + 1)



Jacobi Polynomials (1)

The Jacobi polynomials are defined by

P (a,b)
n (x) =

∞∑
k=0

(a + 1)n(−n)k(n + a + b + 1)k

n!(a + 1)kk!

(
1− x

2

)k

The summand is both hypergeometric and hyperexponential.

Applying Takayama’s algorithm gives an annihilator for P
(a,b)
n (x):

{(−2n2 − 2an− 2bn− 4n− 2a− 2b− 2)Sn

+(ax2 + bx2 + 2nx2 + 2x2 − a− b− 2n− 2)Dx

+xa2 + a2 + na + 2bxa + 3nxa + 3xa + a− b2 − b− bn
+b2x + 2n2x + 3bx + 3bnx + 4nx + 2x,

(−a− b− n− 1)Sb + (x− 1)Dx + (a + b + n + 1),
(a + b + n + 1)Sa + (−x− 1)Dx + (−a− b− n− 1),
(1− x2)D2

x + (−xa− a + b− bx− 2x)Dx + (n2 + an + bn + n)}.



Jacobi polynomials (2)

Task: Prove (or even better: find!):

(2n + a + b)P (a,b−1)
n (x) = (n + a + b)P (a,b)

n (x)

+(n + a)P (a,b)
n−1 (x),

(1− x)
d

dx
P (a,b)

n (x) = aP (a,b)
n (x)− (n + a)P (a−1,b+1)

n (x).

Solution: Use Gröbner bases for elimination. We get:

(a + b + n + 2)SbSn + (a + n + 1)Sb − (a + b + 2n + 3)Sn,

(1− x)DxSa + (a + n + 1)Sb − (a + 1)Sa



∂-finite functions

Definition: Let O be an Ore algebra over some K-algebra A
(typically here A = K(x). A left ideal I in O is called ∂-finite
w.r.t. O, if O/I is a finite dimensional vector space over A.
A function f ∈ F is called ∂-finite w.r.t. O if it is annihilated by a
∂-finite ideal. We have O/ AnnO f ∼= O · f .

Example:

f(k, n) =
1

k2 + n2

f(n, k) is ∂-finite w.r.t. Q(k, n)[Sk;Sk, 0][Sn;Sn, 0].

I = 〈(k2+n2+2n+1)Sn−(k2+n2), (k2+2k+n2+1)Sk−(k2+n2)〉

Note: The sequence f(k, n) is not holonomic!



∂-finite functions

Closure properties:

• sum

• product

• application of Ore operators

• algebraic substitution (only in the differential case!)

−→ These closure properties can be executed effectively (using an
extended version of the FGLM algorithm).

Remark: The annihilator of a ∂-finite function is usually not very
difficult to compute.



holonomic vs. ∂-finite

Let

Or = K(x)[Dx; 1, Dx]
Op = K[x][Dx; 1, Dx].

Theorem (Kashiwara): An ideal I in Or is ∂-finite if and only if
Op/(I ∩Op) is a holonomic module.

Remark: This applies only to the differential case.



Rational Resolution

Given a function f that is ∂-finite w.r.t. an Ore algebra O.
Any function in O · f can be written in normal form(∑

α∈V

ϕα∂α

)
· f.

Task: Find an operator Q ∈ AnnO f with certain properties, e.g.,
such that ∂Q− 1 = 0 (indefinite integration).
Algorithm:

• compute a Gröbner basis G for AnnO f

• make an ansatz for Q with undetermined coefficients

• reduce the ansatz with G, i.e., compute the normal form

• all coefficients of the normal form must be zero

• solve the resulting system



Integrated Jacobi polynomials (1)

Define

pa
n(x) =

∞∑
k=0

(a + 1)n(−n)k(n + a + 1)k

n!(a + 1)kk!

(
1− x

2

)k

,

p̂a
n(x) =

∫ x

−1
pa

n−1(y)dy.

Task: Express p̂a
n(x) in terms of pa

n−1(x) and pa−2
n (x).

Ansatz: p̂a+2
n+1(x) = Q · pa

n(x) with Q = ϕ1(x)S2
a + ϕ2(x)Sn.



Integrated Jacobi polynomials (2)

Ansatz: p̂a+2
n+1(x) = Q · pa

n(x) with Q = ϕ1(x)S2
a + ϕ2(x)Sn.

Solution:

• compute a Gröbner basis G for Ann pa
n

• d
dx p̂a+2

n+1 = pa+2
n translates to 0 = DxQ− S2

a =: Z

• compute the normal form of Z by reducing it with G

• all coefficients of the normal form must be zero

• solve the system of coupled differential equations for rational
solutions: use OreSys (by S. Gerhold) for uncoupling.

We find

(a + 1)p̂a+2
n+1(x) = (1− x)pa+2

n (x) + 2pa
n+1(x).



Jacobi polynomials (3)

Task: Prove (or even better: find!):

(2n + a + b)P (a,b−1)
n (x) = (n + a + b)P (a,b)

n (x)

+(n + a)P (a,b)
n−1 (x),

(1− x)
d

dx
P (a,b)

n (x) = aP (a,b)
n (x)− (n + a)P (a−1,b+1)

n (x).

Solution: Make the following ansaetze:

ϕ1Sb + ϕ2Sn + ϕ3SbSn = 0
ϕ1Sa + ϕ2Sb + ϕ3SaDx = 0



Thanks for your attention!


