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Abstract

Algorithms for algebraic analysis
by

Harrison Tsai
Doctor of Philosophy in Mathematics

University of California at Berkeley
Professor Bernd Sturmfels, Chair

One of the major goals in the field of symbolic computation of differential equa-
tions is to develop algorithms for exact or closed-form solutions. This thesis studies symbolic
computation of maximally overdetermined systems of linear partial differential equations
by using constructions in the corresponding ring of differential operators with polynomial
coeflicients, which is called the Weyl algebra D. We develop algorithms to find polynomial
solutions, rational function solutions, and more generally holonomic solutions. By holo-
nomic solutions, we mean the following: sometimes the best way to specify a function F’ is
as the solution of a system of differential equations — this is for instance how many special
functions are classically described. Our algorithm takes as input the differential equations
describing I’ as well as the system S that we wish to solve, and returns as output any
solutions to S existing within the D-module generated by F’. We also study aspects of the
opposite problem, namely given a function F, how can differential equations describing F
be produced? We introduce the Weyl closure of an ideal I of the Weyl algebra, which is
the set of all differential operators annihilating the common holomorphic solutions of I at
a generic point. We give an algorithm to compute Weyl closure, which has applications to
symbolic integration, and which we also use to make a detailed study of ideals in the first

Weyl algebra.

Professor Bernd Sturmfels
Dissertation Committee Chair
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Introduction

A system of linear partial differential equations can be viewed as a module over a ring of
differential operators, and algebraic analysis is the study of a system through the algebraic
structure of its corresponding module. This field was pioneered in the 1960’s and 1970’s by
Bernstein, Kashiwara, Malgrange, Sato, and others, who haved coined the term D-modules
to refer to the general study of modules over rings of differential operators on algebraic
varieties or analytic spaces. Since its inception, the theory of D-modules has proved useful
to a wide range of modern mathematics, including representation theory, mathematical
physics, singularity theory, and of course differential equations.

In recent years, there has been an active development in the computational side
of D-modules, and these efforts have similarly led to interesting and diverse applications.
For instance, in the 1980°s and 1990’s, Zeilberger and his collaborators applied ideas of
D-modules to create an algorithmic machine for proving and generating combinatorial iden-
tities. An excellent summary of this work can be found in their book [38]. Another focus
of algorithmic attention, which will be the point of view of this thesis, has been the Weyl
algebra

D= I(<$17 . .7$n7817 .. -7871)7

which is the ring of differential operators on affine space K™, where K is a field of charac-
teristic 0. In terms of generators and relations, it is a free associative algebra modulo the
relations

vix; —xje; =0 0,0, —0;0;, =0 0Oix; —x;0; = 0;;.

The algorithmic foundations in the Weyl algebra were laid by Galligo [21], Takayama [45],
and others in the mid-1980’s, who established a working theory of Grébner bases in this
slightly noncommutative setting. One of Takayama’s motivations was to apply Grébner
bases to improving and extending Zeilberger’s theory [47]. In recent years, Chyzak has
continued these efforts and has considerably advanced the study of special functions and
combinatorial identities by Grobner bases techniques [13].

In general, Grobner bases have become a highly useful tool in computational al-
gebra. In the field of computational algebraic geometry, Grébner bases have made many
constructions of commutative algebra possible, such as free resolutions, Hilbert functions,
and homological functors. In the field of computational algebraic D-modules, similar sorts
of constructions for modules over the Weyl algebra have only recently been made effective
by Oaku and Takayama. We mention here three of their key results: they are algorithms
for computing Grébner bases adapted to the V -filtration [32] (which we expain at the end of
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the preface), b-functions [31] (which we use and explain in Chapter 3), and derived restric-
tions [33] (which we use in Chapter 2 and Chapter 4 and explain in the Appendix). These
three algorithms have led to the ability to compute a collection of other algebraic operations
such as localization [36], tensor product [33], and integration [34]. Moreover, they have also
led to interesting applications in computational algebraic geometry, such as algorithms for
computing local cohomology and deRham cohomology in a wide class of situations (see the
work of Walther [51], [52], [53] and Oaku and Takayama [33], [34]).

In this thesis, we will apply the Grébner basis approach from the point of view
of algebraic analysis, that is to say, we wish to determine properties about a given system
of linear partial differential equations and in particular its solutions by using constructions
in the Weyl algebra. This point of view has been developed recently by Saito, Sturmfels,
and Takayama in their book [40], which is also an excellent starting place to learn about
algorithms for D-modules based on Grobner bases. For instance, they give Grébner basis
methods to construct power series solutions of a holonomic system of linear partial dif-
ferential equations at a regular singular point, and they use these techniques to make a
systematic study of Gel’fand-Kapranov-Zelevinsky systems of hypergeometric differential
equations. An important notion introduced in their book is a Grobner deformation, which
generalizes the notion of Grobner bases adapted to the V-filtration and which we explain
at the end of the preface.

The algorithmic development of D-modules has also been accompanied by imple-
mentation in computer algebra systems. The work of Chyzak is implemented in his computer
package Mgfun for Maple and is available at http://www-rocq.inria.fr/algo/chyzak.
Takayama was the first to implement Grobner bases in the Weyl algebra and has developed a
specialized system called kan/sm1, which has one-line commands for many of the algorithms
and applications described here and which is available at http://www.kobe-u.ac. jp/KAN.
Similarly, together with Anton Leykin and Mike Stillman, we have implemented a package
for D-modules for the computer algebra system Macaulay 2 [23]. One of the nice features of
Macaulay 2 is that it has a top level programming environment which makes the system flexi-
ble for applications. Our package will shortly be included in the Macaulay 2 distribution and
is currently available at http://www.math.berkeley.edu/ htsai/Dmodules.html. We
will include output from Macaulay 2 sessions throughout this thesis wherever appropriate.
A typical session will have the form

i1 : (statement 1;
statement 2;
statement 3)

ol = mathematical output

It means that Macaulay 2 has executed statements 1, 2, and 3, and has returned the output
of statement 3 (the ending semi-colons causes the output of statements 1 and 2 to be
suppressed).

Let us now give a brief summary of the contents of this thesis. In Chapter 1, we
study linear ordinary differential equations, which correspond to ideals of operators in the
first Weyl algebra. We show in particular how the characteristic ideal contains information
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about the solution spaces of a differential equation. In Chapter 2, we study the Weyl closure
of a system of linear partial differential equations. Roughly speaking, this is the ideal of
differential operators which annihilate the common solutions of the original system, much in
the same way that the radical operation of commutative algebra consists of the the ideal of
functions which vanish on the common zeros of a system of polynomial equations. The Weyl
closure turns out to be useful in the combinatorial applications of Chyzak, and we give an
algorithm to compute it. In Chapter 3, we give algorithms to find polynomial and rational
solutions to finite rank systems of linear partial differential equations. Finally in Chapter 4,
we give an algorithm to compute homomorphisms between holonomic D-modules M and N.
These homomorphisms can also be viewed as “solutions” to differential equations, namely
the image of a homomorphism is a “function” in the module N which solves the system of
differential equations corresponding to M.

Preliminaries and Conventions. This thesis should be understandable to someone who
has read the recent book Grébner Deformations of Hypergeometric Differential Fquations
by Saito, Sturmfels, and Takayama [40]. For the reader’s convenience we recall a handful
of notions introduced there which will be fundamental to many of our algorithms. A real
vector (u,v) = (Up, ..., Uy, V1, ..., V) € R?™ with u; +v; > 0 for all i = 1,...,n is called

)

a weight vector and defines a filtration D = UieZFZ»(u’U of the Weyl algebra by the linear
subspaces

Fz'(u’v) = Spany {waaﬁ turatv-f< Z}

For specific values of (u, v), these filtrations specialize to a number of well-studied filtrations.
For (u,v) = (—e; — -+ — eq, €1 + --- + €4), the filtration F(“*) is also referred to as the
V-filtration with respect to the subspace Y = {zy = -+ = 24 = 0}. Its role in computing
restriction to Y is discussed in the appendix. For (u,v) = (0,e) where e = €1 + - -+ + €5,
the filtration F(**) is more commonly known as the order filtration, and for (u,v) = (e, €),
the filtration F(**) is more commonly known as the Bernstein filtration.

When w4+ v > 0, meaning that each coordinate is positive, then the associated
graded ring grD is the polynomial ring K[z, §] while if u4+v = 0, then the associated graded
ring grD is again D. For an operator L = Eaﬁ Caga:aaﬁ € D, we thus define the initial
form with respect to (u,v) to be the subsum,

in(u,v) (L) = {

Similarly, for a left ideal I C D, we define the initial ideal with respect to (u,v) to be the
left ideal of grD given by

2{(1,/3 : cap#Ouatv-8 mazimal} Caﬁwagﬁ € Ar[m7€] ifut+v>0
E{Q,ﬁ:caﬁ;éO,wa-l—vﬁ mazimal } Caﬁwaaﬁ €D futv=0

in(w})(I) = SpanK{in(uW)(L) :Lel}.

When u + v = 0 so that (u,v) = (—w, w) for some vector w, then in(_,, (/) is called the
Grébner deformation of I with respect to w. When (u, v) = (0, €) so that the corresponding
filtration is the order filtration, then in(oﬁ)(I) is called the characteristic ideal and its zero
locus is called the characteristic variety of the quotient module D/I.

Finally, a finite subset G is called a Grébner basis with respect to (u,v) if I is
generated by G and in(, ,y([) is generated by in, ,)(g) for g € G.
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Let us also explain some conventions we will adopt throughout this thesis. K will
denote a computable subfield of the complex field C, unless otherwise stated. D or D,
will denote the n-th Weyl algebra except in Chapter 1, where D will denote the first Weyl
algebra. We use 6; to denote z;0;. We use x to stand for x4, ..., z,, and similarly for 8, &,
0, and other bold-face symbols. A left submodule of D" generated by {g1,...,¢gs} will be
denoted D -{g1,...,9s} and a right submodule will be denoted {g1,...,9s} - D.



Chapter 1

Ideals of the first Weyl algebra

In this chapter, we study left ideals of the first Weyl algebra K (z, d), which is the
free associative algebra modulo the relation 0z — 20 = 1. We will denote this algebra by
D or Dy in this chapter. In later chapters, D will stand more generally for the n-th Weyl
algebra. The material in this chapter is based upon the paper [48]. Our point of view will
be to compare ideals in D to ideals in R = K(z)(d), and we start by studying contractions
J N D for ideals J C R. In particular, since R is a principal ideal domain, J = R - L for
some L € R (we may also assume L € D by replacing L with a suitable f(z)L). On the
other hand, the contraction K- LN D need not be principal and we would like to understand
these situations. For instance, if L = 29 — 1 then R- LN D = D{xzd — 1,0%} and is no
longer principal.

Definition 1.0.1. The Weyl closure of a linear differential operator L. € D is
C(L):=R-LND.

We will be particularly interested in understanding the characteristic ideal of the
Weyl closure CI(L), which is the initial ideal of CI(L) under the order filtration. The zero
locus of the characteristic ideal is the characteristic variety, which is an important invariant
of the quotient module D/ CI(L). One of our aims is to show how the characteristic ideal
provides finer information which may also be of interest. An analytic interpretation of the
Weyl closure is the following. Suppose the operator L has order n. If K = Cand A € Cis a
nonsingular point of L, then the holomorphic solutions of L in a neighborhood of A form a
C-vector space V(L) of dimension n. In this case, the Weyl closure of L is equal to the ideal
of operators in D which annihilate Vy(L). From an algebraic perspective, the Weyl closure
of L also arises naturally when considering the support of D/DL. In particular, CI(L)/DL
is the submodule of D/DL consisting of elements which are supported on a finite subset of
Spec K[z].

Let us give a brief outline of the contents of this chapter. In Sections 1.1 and 1.2,
we give an algorithm to compute the Weyl closure CI(L), and we describe the characteristic
ideal of any ideal I with the property that D-L C I C CI(L). The Weyl closure algorithm is
an application of the restriction algorithm due to Oaku and Takayama [33]. In Section 1.3,
we give a combinatorial description of the characteristic ideal of CI(L) in terms of certain
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solution spaces of L. In Section 1.4, we use the Weyl closure to give an algorithm for
constructing a Jordan-Holder series for a holonomic D-module and a formula for its length.
As a corollary we obtain a criteria for when an operator L generates a maximal ideal in
D. In Section 1.5, we give an alternative proof of Stréombeck’s inequality [44] based on the
Weyl closure. This inequality describes all possible characteristic ideals of left ideals in D.
In Section 1.6, we use the Weyl closure to describe the space of isomorphism classes of left
ideals of D, a result first obtained by Cannings and Holland [9], and we also obtain an
algorithm to determine the isomorphism class of a left ideal from its generators. Let us give
now an example before beginning with the actual technical details.

Example 1.0.2. Consider the operator
L=2%z—1)(z —3)0* - (62° — 202 + 122)0 + (1227 — 32z + 12),

whose classical solution space V = Spanc{z*, z(z — 1)?} consists entirely of polynomials.

Then 9° € CI(L) but 8% ¢ D - L. In fact, our algorithm finds
Cl(L)=D-{L,9°} C D.

Now let us consider the initial ideal in(g1)(CI(L)) of the closure of L with respect to the
order filtration (see Definition 1.2.6 for the precise definition of initial ideal). We find that

ingo,1)(CI(L)) = (2 (z = 1) (= = 3)¢*, €7, €") C Clz,¢].

Finally, we observe in Corollary 1.3.3 a combinatorial relationship between the above gen-
erators of the initial ideal and the following property of the solution space V. At z = 0,
the solutions have multiplicity 1 and 4, at = 1 and = = 3, the solutions have multiplicity
0 and 2, and at all remaining points, the solutions have multiplicity 0 and 1. To see that
there is indeed a solution with multiplicity 2 at z = 3, consider the linear combination
424427z (z — 1)% = 4z (z + 3) (z — 3)%. This relationship will be made precise in Section 1.3
using the notion of cotype. For general L, we shall see that the correct relationship is be-
tween the initial ideal in(o 1y(CI(L)) and “solutions” of L in various spaces C[z]/((z — A)").

1.1 Local closure

In this section, we define the local closure, give an algorithm to compute it, and
describe its initial ideal with respect to the order filtration refined by the V-filtration. These
results will then be applied in Section 1.2 to the study of CI(L).

Definition 1.1.1. The local closure Cly\(L) of L € D at x = X is the ideal
Cly(L) = K[z,(z — \)"'|0)LN D
The local closure arises naturally when considering the following torsion of D/DL:

ChA(L) _ D
DL ~ DL

D ; .
HY_, (ﬁ) ={Te€D/DL:(z—-XN)T=0fori>0}=
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To compute the local closure, it thus suffices to compute generators of H?_,(D/DL) and lift
them to D. The lifted generators together with the element L are then a set of generators
for Cly(L). The reason why this reformulation is useful is Kashiwara’s equivalence, which
implies that the torsion module H?_,(D/DL) is generated as a D-module by the subspace
{T'e D/DL : (x — A\)T = 0}. We will give a precise statement of Kashiwara’s equivalence
in the proof of correctness of the algorithm.

Algorithm 1.1.2. (Local closure at z = \)
INPUT: an operator L = p,(2)0" + -+ -+ po(z) € D
OuTPUT: a set of generators of Cly(L).

1. Rewrite L as
> ot ifi<o0
L:ZQ%(O/\) Cz:{ (x—A)’ ifi>0
where 8y = (z — A\)0 and ¢, (6)) # 0.

2. Set m equal to the maximum integer root of the lowest term ¢, (6,) if it is greater
than 0. Otherwise, set m equal to 0.

3. If m+r < 0, set B = 0. Otherwise, compute a basis B for the kernel of the
(m+ 1) x (m + r + 1) matrix [Ry(L)ijlo<i<m,0<j<m+r, Whose entry in row ¢ and
column j is the following element of the ground field K:

R iz (1)

J=1) i+ V)g—i(i) ifi<j.

mr

For each ¥ = [vg, v1, ..., Umtr|" € B, set p, = >0 v;0".
4. Return {L, (z — X\)"!p,L : ¥ € B}.
Proof. (Correctness of Algorithm 1.1.2) The algorithm is an application of the restriction
algorithm due to Oaku and Takayama for the special case of D/DL restricted to the point
z = A. The details which we present are implicit in their paper [33].

Let us discuss the computation of H?_,(D/DL). In our situation, Kashiwara’s
equivalence [15, Theorem 17.2.4] states that

D N
HY (ﬁ) = @82 ker[z — A]
=0

where

ker[rt — A\]|={T € D/DL : (z — \)T = 0}.
In particular, H?_,(D/DL) is generated as a D-module by ker[z — A], which we prefer to
think of as the cohomology in degree —1 of the complex

0= — —% —— =0 T (z—NT.
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This complex is the restriction of D/DL to the point z = X and is equivalent to the complex

D L D
0 RN 0 ToTL 1.2
T @-ND (@-nND ~ (12)

since both complexes are quasi-isomorphic to the total complex of

(z=X)-

D D
L L
D (z=X)- D

where the horizontal maps are left multiplication by z — A and the vertical maps are right
multiplication by L.

So it suffices to analyze the complex (1.2). The module D/(z — A)D has the basis
{0 }%2 and can thus be viewed (as vector space) as the polynomial ring C[0]. With respect
to this basis, right multiplication by (z — A) becomes differentiation, i.e.,

Gl W — (VAT 4 iAi=1 — iai-1
d(ax—AN)=(x—-XNd+j0 jo e(m—A)D'

It follows that right multiplication of &7 by (rqr(6y) is

; _ a0 (j — k)o’~% ik <0
0 Cka(oA) = { [j]qu(j — ]g)aﬂ—k ifk>0

where [j]y = j(j — 1)--+(j — (k — 1)). In particular, if we identify the element >_. ;0" €
D/(z — A\)D with the column vector @ = [ag,a1,...],, then the element (3 .a;0')L €
D/(z — A)D is identified with R\(L)d@, where [R\(L)ij]; ;o is the infinite matrix with
entries given by (1.1). Written out, the matrix R\ (L) looks like,

q0(0)  [1]1q:(0) [2]2q2(0) [3]3¢3(0) [4]4q4(0)
q-1(1) (1) 2l1g: (1) [3]2g2(1) [4]3g3(1)
1-2(2) ¢-1(2) @2 [Blha(2) [4]202(2)
ML) =1 453) 420 1) B [“hiaE)
q-a(4)  q-3(4)  g¢204) ¢1(4)  q4)

Observe that Ry(L) is identically 0 below the diagonal with entries ¢, (7). Consequently, if
m is the maximum integer root of ¢.(6), then the kernel of R)(L) comes from the kernel of
the (m+1) X (m 4 r 4 1) upper left submatrix of R\(L).

It follows that the elements {p, : T € B} of Step 4 form a basis for the subspace
ker (D/(m - AN)D =A D/(z— )\)D). From the equivalence of complexes observed earlier in

the proof, the elements {(z — \)™'p,L : ¥ € B} form a basis for ker[z — A]. This concludes
the proof of correctness. O
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Example 1.1.3. Let us compute the local closure of L in Example 1.0.2 at the point z = 0.
For step 2, we rewrite L as

L= (36% — 150 + 12) + x(—46% + 2460 — 32) + 2*(6* — 70 + 12).

For step 3, the maximum integral root of 36* — 150 + 12 is § = 4. For step 4, we form the
matrix

12 =32 24 0 0
0 0 -24 36 0
Ro(LY=]0 0 -6 0 24
0 0 0 -6 16
0 0 0 0 0

whose kernel has basis B = {[8,3,0,0,0]%,[0,9,12,8,3]'}. Then P[8,3,0,0,0 = 30 + 8 and
Plo9,12,8,3 = 30* + 80 + 120 + 9. For step 5, generators of the local closure Clo(L) are
thus,

L = (2% —42° 4+ 32%)0% — (62° — 202? 4 122)0 + (122% — 322 + 12)
%p[873707070]tL — (3$3 - 12372 —I‘ 9$)83 + (8373 - 38$2 + 48$ - 18)82

— (4822 — 1422 + 72)0 + (962 — 184)
%p[0797127873]tL = (3$3 — 12.752 + 9$)86 + (8.753 — 2$2 — 60z + 36)85

+(122% — 562)0* + (92 — 122% — 69z + 56)9°

— (1822 + 72z — 138)0? — (5dz — 216)0 + 216. O

Let us now describe the initial ideal of Cl\(L) coming from the order filtration
refined by the V-filtration at the point z = A. Equivalently, we describe a standard basis
for CI\(L) in the sense of Briancon and Maisonobe [8] at z = A.

Definition 1.1.4. For T = p,(z)0" + ---+ po(z) and I C D a left ideal, let

iy (T) = (z—Norheen e Cla, ¢
iny(I) = SpangA{in\(T)|T € I} C Clz,€]

where ordy(f) is the order of vanishing of a polynomial f at the point z = X.

In the following theorem, we describe the initial ideal of an ideal I having the
property that DL C I C CI\(L).

Theorem 1.1.5. Let V C ker (D/(r -\ND =A D/(z— /\)D) be a finite dimensional vector

subspace, let {fo(D),..., fs(0)} be a basis of V' with the property that deg(f;) < deg(fi+1)
for all i, and let [(V) C D be the left ideal D -{L,(x — \)"'wL :v € V}. Then

iny(I(V)) = (iny(L), (z — A) =D edes(fo)=iin \ (1) : 0 < i < s).

Recall that Cly(L) = I(V) if V = ker (D/(z =)D % D/(z = \)D).
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Proof. To simplify notation, we assume that A = 0 and we write “in” for “in).” We wish to
construct a Grébner basis for I(V) = D - {L,27 ' fo(0)L, ...,z f()L}. Since all of the
generators are left multiples of L in K[z, z71](d), let us consider the D-submodule

M=D- -{1,z7 f5(),...,27  fs(0)} C K[z,27'](d).

We can extend Definition 1.1.4 to K[z, 27](d) as follows. For an element T' = p,(z)0" +
<+ po(z) € K[z, 271(0), let

in(T) = zordolnlen ¢ K[z, 21, ¢]
in(M) = Spang{in(T)|T € M} C K[z,z71,{]

where ordg(f) is the order of f at the point z = 0. Observe that in(M) is not an ideal of
Klz,z71, €] but a K[z, &]-submodule. Let us now define a Grobner basis of M to be a set
of elements {73,...,T,,} C M such that in(M) is generated by {in(7}),...,in(7},)} as a
K[z,&]-module. It then follows that the set {11L,...,T,,L} C I(V) is a Grébner basis for
I(V) because I(V) = ML and in({(V)) =in(M)in(L). So to construct a Grébner basis for
I(V), it suffices to construct a Grébner basis for M and multiply it on the right by L.

In the remainder of the proof, we describe a Grébner basis of M. An arbitrary
element 7" € M, after being reduced against {1} € M, can be written as

T = po (D)2 fo(0) + - - -+ ps(d) 21 £,(9)

where p;(9) € K[0]. Then T has a left normally ordered form,

T= Z ti]m_iaj.

i>1,j>0

Casg 1: Let us first assume that f;(9) = 9™ with r; < r;41 for all i. Then M is torus
invariant, or equivalently, homogeneous with respect to the weight vector (—1,1). In this
case, an arbitrary element T € M can be decomposed into its homogeneous components
T; € M, and hence to compute the initial ideal, it suffices to consider only the initial forms
of homogenous elements.

So let T" € M be a homogeneous element of weight d 4+ 1, and define n to be such
that r, < d < rp41. Then we can write

n n d—r; n
T= (—l)jai(?d_”m_l(?” = Z Z a;[d — m]]-x—f—lad—f = ZZai[d - ri]jx_j_lﬁd_j
=0 =0 7=0 7>0 =0

d— 1 1f]:0}.

”]f:{ d—ri)(d=—ri—1)...(d=r;—j+1) ;>0
If we set b; = .7 o a;[d — r;];, then in(T) = 27*¥~1¢4=F% where k is the least integer such
that by # 0. Now we claim that there exists {a;}"_, such that in(T) = z7"~1¢%" while
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—n—2€d—n—1 .

there does not exist {a;}", such that in(7) = = To see this, we form the

(n+1) x (n + 1) matrix,

[d—roly -+ [d—rd,
A=| s
d—rp]y -+ [d—ry],
Then [bo,...,b,] = [ao,...,a,]A so that our claim is equivalent to showing that A is
nonsingular. To see that A is nonsingular, consider a vector @ = [vg,...,v,]'. Then

AT = [py(d — 10),...,pu(d — r,)]", where p,(z) = Y." uvilz], € K[z]. If ¢ # 0, then
pu(z) # 0 and deg(p,) < n. Therefore, p, has at most n roots and A7 # 0. It now follows
immediately that

in(M) = (1,z71¢ro g2t s lers sy,

CAsE 2: Let us now return to the general case where f;(0) are arbitrary monic polynomials
of increasing degree r;.

(i) First, let us demonstrate the inclusion
(1,271~ 0 < n < s) Cin(M).

To do this, we shall inductively construct 7(® € M with the properties that in(T(”)) =
z="=1¢r=m and that T(") has weight r,, + 1 with respect to the weight vector (=1,1). The
case n = 0 is given by 7O = 271 fo(8). For the case of general n, we consider the class of
elements T" € M which can be written,

T= po((’))x"lfo(a) +--- +pn(a)$_1fn(a)

where p; is either 0 or of degree (r, — r;).

Let us denote by Ty the homogeneous component of T of weight d with respect
to the weight vector (—1,1). Then by Case 1, we can find a set {p; = ¢;0"~"*} such that
in(T,,4+1) = 27""1¢™=™_ On the other hand, for & < r,,,

Thp1 = Z p0(8)¢$_1f0(8)j+"'+ Z pn(a)rr_lfn(a)j'

Expanding into normal form, we may write

k
Thy1 = Z Chx_h_lak_h.
h=0
Now suppose the term ¢z~ "~19*=" of highest order in the above sum has order

k—h>r,—mn. Then h <n+k—r, < n since k < r,.This also implies that £ — h >
rn —n > rp — h since the r; are strictly increasing. We conclude that k£ > ry,.

By induction, we have constructed an element 7*) € M which has initial form
z=h=1¢mn=" and weight r, + 1. Then we may replace T by T — apd"nT™) for suitable
ayp, € K, for which Ty has order strictly less than £ —h. Continuing to replace if necessary,
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we arrive at T such that Tyy; has order less than r, — n. Furthermore, since gk—rn(h)
always has weight k& 4+ 1, the new T differs from our original T only in weights less than or
equal to k + 1. Thus, doing this for each £ < r,, in decreasing order, we eventually obtain
T of weight r,, + 1 such that in(7) = z="~'¢™»~". This completes the induction.

(ii) Now let us demonstrate the opposite inclusion
in(M) C (1,277 1™ 10 < n < s).

The argument is essentially the same. After reduction against {1} € M, we may write an
arbitrary T € M as

T =po(d)z~ " fo () + - + ps(9)2 ™" £,().

Let us decompose 7" into “homogeneous syzygy components” T'(d 4+ 1), which are defined

as
T+ = Y p@)e ().
{i:deg(pi)+ri=d}
Let n(d) be defined to satisfy r4) < d < rpg)41 (here we set royy = 00). We claim that
any nonzero monomial in the left normally ordered form of T'(d 4 1) either has order less
than d — n(d) or is the initial monomial of some @*T®) with T(*) defined as in (i).

To see this claim, we note that 7'(d + 1) has weight d + 1 with respect to the
weight vector (—1,1). Therefore, any nonzero monomial in the left normally ordered form
of T(d+ 1) is of some weight k¥ + 1 < d+ 1 and can be written as cx™ =19k with
h <k < d. If the order Kk — h > d — n(d), then A < n(d) + k — d < n(d). This implies
that £ —h > d — n(d) > r,q) — n(d) > rp — h, and it follows that cx= =19k~ is the initial
monomial of @k (h),

At this point, we set d’' to be the maximum integer such that T'(d’' + 1) # 0.
For every d < d', we have d — n(d) < d" — n(d’). Then by the above, every nonzero
monomial of the left normally ordered expression for T is either of order less than d’ —n(d’)
or is equal to the initial monomial of some #*7"). Thus, as long as there is a nonzero
monomial with order > d' — n(d’) occuring in the left normally ordered expression for T,
then in(T) € (1,277 1m0 < n < s).

To show the existence of this monomial, we observe that the only terms of weight
d' 4+ 1in T come from T(d’ + 1). In other words, the homogeneous component of weight
d+1,

Typr =T(d' + D gry1 = (E{i:deg(pi)-}—m:d’}pi(a)m_lfi(a))

d'41
odes(vi) p =197

= E{i:deg(pi)—l—m:d'} G
By Case 1, we conclude that in(Tyyq) = 2= for some 0 < m < n(d'), so that
the monomial ¢,,z=™"19%~" occurs in the left normally ordered form of T with order
d—m>d —n(d). O
Example 1.1.6. For the ideal Clg(L) of Example 1.1.3, we already computed a suitable

basis {30 + 8,30* + 89 + 1202 + 90} for ker(D/zD £> D/xzD). According to Theorem
1.1.5, the initial ideal is

ing(Clg (L)) = (ing(L), x ¢ ing(L), 23 ing(L)) = <$2§2, m§3,56>.
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1.2 Global closure

In this section, we give an algorithm to compute the Weyl closure CI(L) and we
describe its initial ideal under the order filtration.

Theorem 1.2.1. Let L = p,(2)0" + ---+ po(z), let K = C and let {\1,..., i} be the
distinct roots of p,(z). Then CI(L) = Cl\, (L) + ---+ Cl\,(L).

The key to proving the theorem is the following observation.

Lemma 1.2.2. Let L = p,(2)0" + -+ + po(z), and let p(z) = ged(pn(z),p)(z)) be the
squarefree part of p,. Then CI(L) = K[z, p '|(9)L N D.

Proof. (Lemma 1.2.2) Suppose that 7" € CI(L). Then T"= SL for some S € K(z)(d). By

collecting denominators, S can be written as

1 m
S = m(gm(x)(? + -+ go(z)).

The hypothesis 7" € CI(L) can now be written

T = ﬁ(gm(m)(?m bt g0(2)) (pa(2) 0™ + -+ po(z)) € D.

Expanding out the right hand side, we find that h(z) divides

gm(a;)pn(x)
Im () (Pr-1(z) + mp%(:v)) + gm-1(2)pn(z)

0o (2) P (2) 181 () + )+ g0(2)a(2).

If we factor h(z) = a(z)b(z) such that ged(a(z),pn(z)) = 1 and the squarefree partb(z)
divides p(z), then a(z) divides ¢,,(z) and by descending induction divides g¢;(z) for all
i. Therefore, S can also be written as b(z)~1S’ with S’ € D. As a consequence, T =
b(z)~1S'L € K[z,p~]L N D as required. O

Proof. (Theorem 1.2.1) From Lemma 1.2.2, it follows that CI(L)/DL = HJ(D/DL). Thus
in order to compute CI(L), it suffices to compute the torsion of D/DL with respect to p(z).
Again by Kashiwara’s equivalence,

0
H,(D/DL) = D(ker[p])
ker[p] ={T € D/DL : p(z)T = 0}.
As before, ker[p] is the cohomology in degree 0 of the complex

D p=)- D
—_— s — T T
0—>DL DL—>0 — p(x)
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which is equivalent to the complex

0— — - : -0 T—TL.

Since K is algebraically closed, we have the factorization p(z) = (z—Xy) - - - (z—Ag),
with distinct A; € K (recall that p(z) is squarefree). Then the projection maps {D/p(z)D —
D/(z — X\;)D}E_| together yield an isomorphism of right D-modules,

D s~ A D
@D D (- \)D

=1

with inverse given by
e; Hi;éj($ = i) '
Hi;éj(Aj - A)
As an isomorphism of right D-modules, these maps are compatible with right multiplication
by L, so that we have an isomorphism of complexes,
D L D

0= oD p@p !

kd
14

=1 =

D L D

The closure CI(L) is generated by L and the vector space of the left hand side.
By Algorithm 1.1.2, the local closure Cly,(L) is generated by L and the i-th vector space
component of the right hand side. This proves the equality of the theorem. O

The theorem says that if we know the factorization of p,(z) over K = C, then the
Weyl closure of L can be computed by computing local closures at the singular points.

Algorithm 1.2.3. (Weyl closure of L assuming knowledge of singular points)
INPUT: L =p,(2)0" + -+ po(z) € D, and the distinct roots {Ay, ..., A} of p,(2).
OuTPUT: a set of generators of CI(L).

1. For each ¢, let S; be generators of Cly,(L) as obtained by Algorithm 1.1.2.
2. Return U_,S;.

In practice, however, we may not know the factorization of p,(z) over K = C.
We shall give an algorithm when L € Q(z, ), where Q is the field of rational numbers.
We assume the ability to factor a polynomial f(z) € Q[z] into irreducibles over Q and
the ability to bound the integer roots of a polynomial g(z) € Q(«)[z], where Q(«) is an
algebraic extension of Q. These requirements are within the capabilities of a standard
computer algebra system.
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Algorithm 1.2.4. (Weyl closure of L € Q(z, 0) without knowledge of singular points)

INPUT: L = pn(m)an +t p0($) € Q<$7 a>
p(z) = ged(pn, Pl,) = [Tiey fr(z), irreducible factorization over Q[z].

OuTPUT: a set of generators of CI(L).

1. Foreach 1 <k <t,let 8, = (z — a)0 and rewrite L as

b= Sntne Loy oof T1 HS

Jr(a) r—a) ifi>0
i= Tk
such that ¢, (#) # 0. This new expression for L can be obtained by expanding
L= pal(o = 0) 4 )0+ 4 (e - @) + ) € Qe 0) € 00,0,

2. For each 1 < k < t, let my be the maximum integer root of ¢, (6,) if it is greater
than 0. Otherwise, let mj be equal to 0. Finally, set m = maxg{myg + r¢}.

3. Let W C D/p(z)D be the linear subspace with basis given by {297} for 0 < i < deg(p)
and 0 < 7 < m. Using linear algebra, compute a basis B of the kernel of the map
L D
W — .
p(z)D

4. Return {L,p(z)"'vL : v € B}.

Proof. (Correctness of Algorithm 1.2.4) We know from the proof of Theorem 1.2.1 that
generators of CI(L) can be taken to be L and {p(z)~'ul : u € U}, where

U= ter (p(f)D = p(f)D)

We also know from the isomorphism of complexes that U = @{/\:p()\):o} ¢ (Uy), where

Uy = ker ((x _D/\)D = (z —D/\)D)

D D T — U

o : — 1= H .
- A)D D A—

(@=ND " p(z) (vp=0y ©

Now let us suppose A is a root of the irreducible factor f;(z) of p(z). Then by
the proof of Algorithm 1.1.2, U, is contained in the linear subspace Wy C D/(z — A\)D
spanned by {8]}mk+rk, where my, is the integer computed in Step 3. Under the map ¢,
{ﬁf}m’“'i'r’“ is sent to {J;,2np(u=01 (& — /A = u)@f}mk-l_r’“ C 3D ) . All of these elements

are contained in the linear subspace W C D/p(z)D spanned by {2197} for 0 < i < deg(p)
and 0 < 7 < m. Therefore, U is contained in the subspace W, which proves the correctness
of the algorithm. O
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Example 1.2.5. Let us illustrate the algorithm on a very simple example, L = (23 +2)d —
322, whose solution space is spanned by the polynomial 22 +42. For the preprocessing, z°+2
is already irreducible in Q[z], hence for step 1, we write

Q[o]

L= ([t o)+ ol +2)0 - 3((r —0) +0)° € 3 s

(z,0)

= (3020, — 3¢%) + (z — a)(3ab, — 60) + (z — @)*(6, — 3)

For step 2, the maximum integer root of (3a?6, — 3a?) is 6, = 1, hence for step 3, we wish
to compute the kernel of

L D
SpanK{l, z, $2, 8, ac(?, 5628} — m
The image in D/(z> + 2)D is easily computed to be,
L-1 = =322 L-0 = —6z
L.z =6 L.z = -—62*
L-2? = 6z L-z%0 = 12

so that the kernel is spanned by {0 + z%,20 — 2,220 — 2z}. The output of step 4 is thus,

L = (2®+2)0 — 32?
ﬁ(@—}—ﬁ)ll = 0%+ 220 - 3=x
ﬁ(a@() -2)L. = 29*-20

x31+2 (220 —22)L = =?0* — 2z0.

Let us now describe the initial ideal of CI(L) with respect to the order filtration.

Definition 1.2.6. For T = p,(z)0" + ---+ po(z) and I C D a left ideal, let

inen(T) = pa(z)" € Klz,{]
inq)(I) = Spang{ing(T)|T €I} C Klz,{]

Theorem 1.2.7. Let L = p,(z)0" + ---+ po(z), let K = C, and let {\,..., \:} be the
distinct roots of p,(x). For each 1 < k <'t, let V}, C ker <D/(m - Ag)D X D/(z— /\k)D)

be a linear subspace, and let {fro(D),. .., frs,(0)} be a basis of Vi with the property that
deg(fri) < deg(fr,iv1) for alli. Finally, let

I=IWV)) -+ I1(V)=D-{L,(z— M) vl :v e Vy, 1<k <t}
with 1(Vy) defined as in Theorem 1.1.5. Then
1. iny, (1) =iny, (1 (Vi) (described in Theorem 1.1.5).
2. in (1) = (([Tjzi (2 = AR)H)E™ = (& = Ap)*E™ € iy, (1))

Recall that T = CI(L) if Vi = ker <D/(.r ~M)D 5 D/ - /\k)D) for all k.
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Proof. We have the decomposition I/DL = @j_,1(Vi)/DL = @&_ H)_, (I/DL). An
element T € I thus has the property that H§:1($ — X)%T € DL for some set of non-
negative integers {e;}. The element 7’ = [T{izry(z = A))“T then has the property that
(z — Ag)*T" € DL so that T" € I(Vy). Finally, iny, (T) = iny, (T7) € iny, (I(V%)), which
proves (1).

Now let T' € I with in( 1) (T) = f(2){™. If f(z) = [Teei(z = Ap)P*g(z) such that
g(Ax) # 0 for all &, then (z — A\;)*&™ =iny, (T) € iny, (I). This proves the inclusion “C”
of (2). To prove the opposite inclusion “2” of (2), let {jx}i_, be a set of non-negative
integers such that (z — A;)7#€™ € iny, (/) for all k. Then there exists T} € I such that
iny, (Tx) = (z — Ag)?*€™. This implies that ing(Tk) = (z - M)k g (z)€™ for some g ()
with gz(Az) # 0. Now consider the element S = hg(2)0™ "L + 35 _; hx(z) T, and let
Hs(z) = ho(z)pa(z) + Y4, hi(z)(z — Ak)7*gr(z). Then in(g1)(S) = Hs(z)¢™ as long as
Hs(z) # 0. In particular, we may choose S so that Hs(z) = ged{p.(z), (z — Ar)*gr(z) }i_,,
which divides []h_, (z — Ax)7*. O

Corollary 1.2.8. Let L = p,(2)0" 4+ ---+ po(z) € D and let {\1,..., \} be the distinct
roots of p,(z). Then the set of ideals which contain I and which contain no operator of
lower order can be parameterized by the space

kller [ker ((x fik)p = (z —D/\k)D)]

where Gr[V] denotes the Grassmannian of all vector subspaces of V. Furthermore, the
possible initial ideals are described by Theorem 1.2.7.

Proof. Given I satisfying the above hypothesis, we claim that DL C I C CI(L). To see this,
suppose T' ¢ CI(L). Then L does not divide 7" in R = K(2)(8). In particular, the greatest
common right divisor G of L and T in R has order less than n. The left ideal generated by
L and T in D will contain a multiple f(z)G, and since L is an element of minimal order in
I, we must have that 7' ¢ I. The corollary now follows from Theorem 1.2.7, since any ideal
between DI and CI(L) can be associated uniquely with vector subspaces Vi,..., V,. U

1.3 Cotype of a linear differential operator

In this section, we relate CI(L) and Cl, (L) to more familiar solution spaces of L. In
particular, we establish an equivalence between iny(CI(L)) and the dimensions of “solution
spaces” of L in K[z]/{(z — A)!) for i € N. We then compare Cl,(L) with power series
solutions of L in K[[z — A]], and at the end of the section, we give some simple applications
coming from this point of view.

It will be convenient to replace I with its balanced form, which we define as
follows.

Definition 1.3.1. The balanced form By(L) of L at x = X is the unique operator

BA(L) = (z = N)L = qo(B) + (2 = N (Ba) + -+ (z = ) 4 (6))
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with k € Z such that qo # 0. L is balanced at * = X if L = B\(L). L is balanced if it is
balanced at each of its singular points.

Note we can make L balanced at a point A by muliplying L by (ac—/\)i for a suitable
i € Z. Moreover, if I was already balanced at some other = ), then (z — A)'L remains
balanced at A’. Since there are only finitely many singular points, we may thus make L
balanced by multiplication by a suitable rational function p(z)/q(z). The advantage is that
L then acts on the ideals ((z — A)*), and we get induced maps

(@ fr[;;]w R fr[fﬂ]m D aie =N (L) ai(e =]

whose kernels represent the solutions of L in K[z]/{(z — \)"™)). If we let £ = K(z,8,),
then these kernels can also be described as,

L, :

W, := ker(L,) = Homp ( £ Kl ) .

EL’ ((z — \)n+1)
By applying Homg(F/FEL, —) to the inverse system (and its inverse limit)
K|[z] K|z] K|z] ) .
0 ——5 — — («lim = K[[z — A]])
(z=A) (=27 {(z =)t —

we obtain the inverse system of solution spaces

0 Wy =Wy qg W, (« Wy =Homg (%,K[[m— /\]])).
We now use the solutions spaces {W;} to make the following definition. For this
definition, let us also set W_; = 0.
Definition 1.3.2. The cotype of L at x = X is the ordered sequence,
cotypey (L) = {j € N[dim(W;) # dim (W;_1)}.
We can now formulate the equivalence between cotype and iny(CI(L)).
Corollary 1.3.3. Given L € D and a singular point A, the following are equivalent.
1. cotypey(L) = {jo, - -, Js, }-
2. iny(CI(L)) = (inx(BA(L)), (z = A) =Dt iny (By (L)) : 0 < i < 53).

Proof. We may as well assume that L is balanced at A. Let us understand the linear algebra
that is involved in computing the cotype. If 3" a;(z — A)* € K[[z — A]] is denoted by the
vector @ = [ag, ay, az,...]", then L o> a;(z — \)" = Q,(L)@ where

[ q0(0) 11 ao ]
71(0) qo(1) aq
20) (1) q(2) g
Qx\(L)a = 3(0) (1) @1(2) @(3) as
74(0) ¢3(1) @2(2) @1 (3) q(4) a4
:(0) q4(1) ¢3(2) ¢23) @1(4) qo(5) as
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The matrix Q) (L) is derived from the computation ¢(#,) @ ' = ¢(i)z*. We observe that
W,; = ker(Q;), where @); denotes the left upper (j + 1) x (j + 1) submatrix of @\(L).
The corollary now follows immediately from Algorithm 1.1.2, Theorem 1.1.5, and the fact
that for balanced L, Q\(L) = (SRA(L)S™!)!, where S is the diagonal matrix with entries
M;; = 1! and Ry is as in Algorithm 1.1.2. O

Corollary 1.3.4. (Closed operators) Let L = p, ()0 +---+po(z) € D. Then L generates
a closed ideal if and only if

1. ged(pae), ., pole)) = 1
2. For each singular point X of L, typex(L) =0 or {0,...,n)\} for some ny € N
Example 1.3.5. The Gauss hypergeometric equation corresponds to the family of operators
Lope=2(1—-2)0* + (c—z(a+b+1))0 — ab

with singular points 0 and 1. By analyzing the matrices Qo(Lapc) and Q1(Lgp,c), we obtain
that L, . generates a closed ideal except when

(either ¢ € Z<g or ¢ € Z>44p) and (either a € Z<g or b € Z<g).

Let us now discuss some elementary properties of the cotype, which are easily seen
using the matrix representation @Q(L).

Lemma 1.3.6. The ranks of (); either stay constant or increase by one as j increases by
one. Therefore, the dimensions of {W;} either stay constant or increase by one:

1. Ifrank(Q;) = rank(Q;-1) + 1, then dim(W;) = dim(W,_1).
2. If rank(Q;) = rank(Q;_1), then dim(W;) = dim(W;_;) + 1.
Lemma 1.3.7. If dim(W;) # dim(W;_1), then ¢(j) =

the number of distinct non-negative integral roots of qo(6y
non-negative integral root,

)
0. Therefore, letting d denote
) and m denote the mazimum

dim(W;) <d lim dim(W;) = dim(W,,).
J—r0o0
Corollary 1.3.8. The cotype is a subset of the non-negative integral exponents of L at
x = X. In particular, it is a finite ordered set which we shall usually write as {jo,...,js}-
By definition, the exponents of L are the roots of the indicial polynomial qo(6).

To continue our comparison of CI(L) with solution spaces, let us remark that
there is another distinguished subset of the non-negative integral exponents coming from
the power series solutions W, C K[[z — A]]. This subset of exponents can be described by
the following definition.

Definition 1.3.9. The type of L at x = X\ is the finile ordered sequence, usually written

{10y -yir},
typey (L) = {i € N|(z — \)'u; € W, for some unit u; € K[[z — \]]}.
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The type and cotype are related via the matrix @, (recall that m is the maximum
non-negative integral exponent). In particular, @, has left upper submatrices {Qj}}“:l and
right lower submatrices {M;}7",,

70(0) q0(7)
Q= ST M; = :
;(0) -+ qo(J) Gm (i) -+ qo(m)
and the following are immediately verified.

Lemma 1.3.10. (Comparison of type and cotype)
1. j € cotype, (L) if and only if rank(Q;) = rank(Q);_1).
i € typey (L) if and only if rank(M;) = rank(M;41).
2. | typey(L)| = | cotypey (L)| = limy, 00 dim(W,,,) = dim(We,).
3. If dim(Wy) = d (number of non-negative integral exponents), then type,(L) =
cotype, (L) = {non-negative integer exponents of L at x = A}.

4. If © = X is nonsingular, and n is the order of L, then type,(L) = cotype,(L) =
{0,1,...,n — 1} = {all exponents of L at x = \}.

Lemma 1.3.10, Part 3 shows that the type and cotype are the same when every
non-negative integral exponent corresponds to a power series solution. When this is the
case, by Corollary 1.3.3 and Theorem 1.2.7, we get a relation between ing)(CI(L)) and
the spaces of power series solutions of L at the singular points of L. In particular, we can
derive the following applications, where it is clear that every non-negative integral exponent
at a point of K corresponds to a power series solution. We state these applications without
proof.

Corollary 1.3.11. (Entire Solutions) Let L € D have order n. The following are equivalent:
1. L has a basis of n entire solutions.
2. L has a basis of n power series solutions for every point of K.
3 ¢ in,1)(CI(L)) for some i € N.

Moreover, Corollary 1.3.3 and Theorem 1.2.7 give a relation between in(OJ)Cl(L) and the
spaces of the power series solutions of L at each point of K.

Corollary 1.3.12. (First Order Equations) Let L = p(z)0— q(z) with p, q relatively prime.
Let p(z) = c¢(z — A1) -+ - (z — Ag)® be the factorization of p. Then

((z — /\i)&gn%—l) ife; =1 and a()

[

iny, (CI(L)) = { ((z = X)=E) if e, > 1 or @ ¢ N
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nen(@L) = [ - " neN),

{iles=1,2d €75}

Thus, in1)(CI(L)) is combinatorially related to the zeros and their multiplicities as well

as the singularities and their order of growth of Sol(L) = elalv,
The following corollaries follow from Bernstein’s theorem and Lemma 1.3.10.

Corollary 1.3.13. (Annihilators of Polynomials) Let { fi(z),..., fo(z)} C K[z]. Then
Annp(fiy .y fa) = CI(L) = D - {L, gmaxldeslfa)}+1}

where
1. Ji@)d - fiz)
' ged (fi, ff)
L=LCLM(Ly,...,Ly,).

Here, LCLM stands for the least common left multiple in D. Again, Corollary 1.3.3 and
Theorem 1.2.7 give a relation between in(g y(Annp(fi,..., fn)) and the the analytic nature
of the vector space Spang{fi,..., fn} of functions at each point of K.

Proof. The proof uses an argument of Galligo in [21] on how to find the 2 generators
of an ideal in the first Weyl algebra. The element L is of lowest order and thus its
lead monomial with respect to the lexicographic order with @ > 2 will occur on the
bottom wall of the staircase of in<(Annp(fi,...,fn)). On the other hand, the element
gmaxi{deg(fi)}+1 hag lead monomial on the left hand wall of the staircase. It follows that
D -{L, gmaxi{des(fi)}+1y Annp(fi,..., fn) is O-dimensional, hence is the 0-module by Bern-
stein’s theorem. O

Corollary 1.3.14. (Annihilator of a rational function) The annihilator ideal of a rational
function p/q € K(z) where ged(p,q) =1 is the ideal,

P Pg0 = (qP" = P4")  deg(n)+1 }
Amnp [Z ) =D - , 0°°8\P
P <Q) {gcd(pm’) ged(q, ¢') I

Proof. The initial form of the first generator with respect to the order filtration is the ele-
ment (pg/ ged(p, p') ged(q, ¢'))€ while the initial form of the second generator is g&des(p)+1,
By multiplying the first generator by 99¢8(?), we get an operator whose initial form is the el-
ement (pq/ ged(p, p') ged(q, q'))fdeg(p)H. A suitable K[z]-linear combination of this element
and the second generator will produce an operator with initial form (g/ ged(q, ¢))&des@)+1,
By Lemma 1.3.10, this new operator will have lead term with respect to @ > x on the left
wall of the staircase of in<(Annp(p/q)). As in the proof of the polynomial annihilator,
Bernstein’s theorem again implies that the elements generate. O

Example 1.3.15. Let us reexamine Example 1.0.2 in terms of the type and cotype. We
have that CI(L) = Annp(z*,z(x — 1)?), and hence type, (L) = cotype,(L) for all X since



CHAPTER 1. IDEALS OF THE FIRST WEYL ALGEBRA 22

the solutions are entire. We saw earlier that in 1)(CI(L)) = (x?(z — 1) (2 — 3)&%, €3, £5),
hence by Corollary 1.3.3,

typeo(L) = {1,4}
typey (L) = {0,2}
types(L) = {0,2}
typey(L) = {0,1} for all other A

By the definition of type, this means that the vector space Spany{z* z(z — 1)?} contains
functions of multiplicity 1 and 4 at z = 0, multiplicity 0 and 2 at x = 1 and at z = 3,
and multiplicity 0 and 1 elsewhere. Thus, we can determine the analytic nature of a vector
space of polynomials by computing the characteristic ideal of its annihilator ideal. This is
what is meant by Corollary 1.3.13.

Example 1.3.16. Our previous applications depended upon the type and cotype being
the same. In this example, we show that when dim(W,,) < d, i.e. not every non-negative
integral exponent corresponds to a power series solution, then the type and cotype can
contain different information. Consider the operator

L =2%9*+ (2°+2%-32)0 +3
=(0—-1)(0—3)+ 26+ 220

which has matrix representation around the point = 0,

coococow
cCo = o
owwL

w w o

w

By Lemma 1.3.10, cotypey(L) = (1) while typey(L) = (3). I particulare there are two non-
negative integer exponents but one of them corresponds to a logarithmic solution. Moreover,
the solution spaces {W;} are

0+ {0 K- {2} K {242} & K- {®}« K -{2° - 2"} -

1
(e Weo = K {2t 4 22”40 ))

which shows that the maps are not necessarily surjective.

1.4 Jordan-Holder series

In this section, we give an algorithm to construct a Jordan-Hdlder series for a
holonomic D-module M, a formula for its length, and a partial characterization of the
factors of M and their multiplicities.
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By definition, a Jordan-Hélder series for M is a maximal chain of submodules
0=NyCNC---CN,_1CN, =M

with N;/N;_; simple. When M is holonomic, such a series is finite and has a well-defined
length r. Further, for any simple D-module N, the multiplicity of N in M, which is
the number of times N;/N;_; is isomorphic to N, is also well-defined. We denote it by
mult(N, M) and if it is greater than 0, we say that N is a factor of M.

It is well-known that a holonomic D-module is cyclic. A brute force algorithm to
find a cyclic presentation would be to use parametric Grébner bases and test elements with
undetermined coefficients of higher and higher Bernstein degree until a generator is found.
However as far as we know, an efficient algorithm to find a cyclic generator is unknown.
Nevertheless, we shall assume that M is presented to us as D/ for some left ideal I C D.
Note that a Jordan-Hdolder series for D/I equivalently corresponds to a maximal chain of
ideals containing I,

I=hyhchcCc---Ccl,_yClI.=D.

Before going to the general case, let us first consider the Jordan-Hoélder problem
when [ = DL, where L is irreducible as an operator in R = K(z)(9).

Theorem 1.4.1. Let L € D be a balanced operator which is irreducible as an element of
R, and let {\y,..., A\¢} be the singular points of L. Then

st (2} =13t (oo (21662 )

k=1

Furthermore,

mult (ﬁ, %) — dimg (HomD (%, K((z - Ak))))

which accounts for all but one factor. The unaccounted factor is isomorphic to D/ CI(L)
if dim e (Homp (£-, K ((z — Ag)))) = dimg (Homp (£, K[[z — Ag]])) for all singular points.
Otherwise the unaccounted factor is isomorphic to D - {f(z),Cl(L)}/ Cl(L), where f(z) €
K[z] is of least degree such that () annihilates all solutions of F(CI(L)) in & _, K[z]e .
Here F : D — D is the Fourier transform sending x — 0 and 0 — —x.

Proof. Our strategy will be to place the closure in the middle,
DLcClL)cCD

and to construct Jordan-Hélder series for CI(L)/DL and for D/ CI(L).

Part 1 (Jordan-Hélder for CI(L)/DL): This part is an application of our theory for the
Weyl closure. In particular, we have already shown

ClUL) _

D i

_ 0 _

DL Hiz-x) (—DL) kGB D - ker[z — Ag].
=1 =1
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Let {fko,. .., fs, } be a basis for ker[z — A;]. By Kashiwara’s equivalence,

Sk Sk D
D - ker[z — M| = Df, = _
er[z k] g:% Tk ZGZ% D(e — )

Now consider the ideals obtained by successively adjoining elements of ker[z — Ag],
i.e. let Iy = D -{L, fio} and define inductively

I = Ia,b—l‘I’Dfab if 6> 0
7\ Iucrs,, 4+ Dfao ifb=0.

for each 1 < a <t and 0 < b < s,. Then the sequence of ideals
DLC---ClypC---CCIL)

have as successive quotients

I, ., D
Ia,b—l B D($ — Aa)
loo D

Iﬂ—lysa—l o D(ib — Aa) '

Each quotient has multiplicity one and dimension one, and hence is simple. Thus,
this sequence of ideals is maximal and corresponds to a Jordan-Hélder series for CI(L)/DL.
Moreover, by Lemma 1.3.10, we see that

mult (D(xlz e Cg?) = dimg (ker[z — A]) = dimg (HomD (%, K[[z - /\k]]))

length (%) = kz;dim K (HomD (%, K[z - /\k]])) .

ParT 2 (Jordan-Hélder for D/ CI(L)): In this part, we seek to construct a maximal chain
of ideals between CI(L) and D. The key step will be the following claim.

Claim 1.4.2. Suppose that x = X is a singular point. Then the following are equivalent.
1. D-{(z = N\, CI(L)} is proper such that (x — X\)"~' ¢ D-{(z — \)*,CI(L)}.
2. D-{(@—-X\",F(CI(L))} is proper such that (0 — X\)"~* ¢ D -{(d - \)", F(CI(L))}.
3. F(CI(L)) has a solution h(z)e’” with h(z) € K[z] of degree n — 1.

4. L has a solution in K((z — X)) with a pole of order n > 0.
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Proof. (Claim 1.4.2) The conditions (1),(2), and (3) are clearly equivalent. To prove the
equivalence of (3) and (4), we will construct maps

Homp (%7 K((z - /\))) — Homp (Cll()L) ' [I(X([([i : i])]))

=5 Homp (% K[:c]e”) .

In the following 2 steps, we show that the second map is an isomorphism and that the first

map is surjective with kernel equal to Homp (%, K[z — /\]]) This proves the equivalence

of (3) and (4). O
Step 1.4.3. GivenT € D, there is an isomorphism

Homp (%, H) >~ Homp (%(T),K[x]e)‘z)

U — U

Z a;(z — \)'

i=—n

-1
1 .
§ ﬁai$—z—16)\$]
—1 — .

i=—n

where W[m] denotes the morphism of D-modules defined by sending 1 to m.

Proof. (Step 1.4.3) Let us write,

s o ifi<o0
T—ZQ’ZH(O/\) Q’—{ (—A)" ifi>0

where p,(6) # 0. Then

Teo(z=A) =Y [lpa(i) (@ =X+ pr(i) (@ — 2)7*"

k<0 E>0

Therefore, if we represent an element Y°,_qvi(z —A)" € K((z — A))/K[[z — A]] by the vector
[+, v_3,v-2,v1]", where v; = 0 for i < 0, then the action of T"on K((z — A))/K[[z — A]]

is represented by the matrix [Q(T)ij]i](o with entries

Sy pimiG) i
Q(T)z]_{ ], ipimi () i < 4. “3)

On the other hand, for the Fourier transform, we have

=Sy im0y G={ § LS

F(T)e e = Z(—l)kpk(—j - 1)$j_k6/\z + Z Ulpk(—J5 — l)xj_ke)‘z.
k<0 k>0
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Therefore, if we represent an element EierimieM € K[z]e* by the corresponding vector

@ = [wg, wy,ws,...],, where w; = 0 for i > 0, then the action of F(T) on K[z]e'” is

represented by the matrix [A(F(T))ij]; ;o With entries

(=17 'pj—i(=j = 1) ifi>]
[)i—ipj-i(=5 = 1) ifi<j

A =

for ¢,5 € N.

Finally, let us compare the matrices Q(T) and A(F(T)). First, we flip Q(T) by
considering the matrix [Q(T)’j]i,jeN defined by Q(T)i; = Q(T)—i—1,—j—1. Then a computa-
tion shows that A(F (7)) = S~'Q(T)S where S is the diagonal matrix with entries S;; = i!.
Thus we get our desired isomorphism,

ker(@(T)) = ker(A(F(T)) D ez =2 ﬁm_i_le”.

Step 1.4.4. The map

Homp (57 (2 =) ) — Homp (o7 =31 )

is surjective with kernel equal to Homp (%, K[z — A]]).

Proof. (Step 1.4.4) Suppose that ¢ = 3°;_'_ a;(z — A) is a solution of CI(L) in K((z —
\)/K[[z — A]]. We wish to show that ¢ has a lift ¢ in K ((z — A)) which is a also solution
of L.

Let us represent Y., vi(z — A)* € K((z — A)) by the vector [+, v_1,vg, vq, - -]".
Then using the notation of Step 1.4.3, the action of T on K((z — \)) is represented by the
matrix [Q(T);]; ;o7 With entries given by (4.3). In terms of Q(T), the assumption that ¢
is a solution of CI(L) means that for every T' € CI(L), the vector @(¢) = [a—p,---,a_1]" is
in the kernel of the submatrix [Q(7T')i;li<—1,—n<j<—1-

The problem of lifting ¢ to % is equivalent to extending @(¢) to a vector &'(5) =
[@a_p, - ,a_y,ag,ay, --]" in the kernel of the extended submatrix [Q(L)ijliez,j>—n- Let us

decompose this submatrix as

_ g o Q= [
[Q(L)ijliez. j>—n = [ Q0. O, ] Q- = [Q(L)ijliz0,—ngj<—1
Q+ = [Q(L)ijliz0,5>0-

L)ijlic—1,-n<j<—1

S~ — —

Since @4 is lower triangular, let us first show that @(¢) can be extended to a vector
[@_p, - a_1,---,ag)" in the kernel of [Q(L);]i<k,—n<j<k. This is equivalent to showing
that (Q_)x - @(¢) € im((Q+)r), where My denotes the matrix consisting of the first £+ 1
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(=) (+)

rows of M. Let us denote the row vectors of (J_ and Q4 by @, ’ and ;" respectively.
Now we claim that for any relation amongst the row vectors of ()4, we have
k k
Y eaP =0 = (O ad?)ode) = o (Qo)wi(e) =0 (4.4)

where o denotes the dot product. Before proving (4.4), let us argue why it implies that
(Q_)k - @(¢) € im((Q4)r). For W C K*¥+1 let Wt = {5 € K gow =0V & € W}. By
the non-degeneracy of the dot product, W+ = . Now note that the hypothesis of (4.4)
is @€ im((Q4)x)t, and hence (4.4) shows that (Q_) - @(¢) € im((Q4)r)t* = im((Q+))-

To prove (4.4), suppose we have a relation ), ciu_fﬁ) =0, and let ¢ = [cg, €1, .. .]%.
Then Q% ¢ = 0. By Corollary 1.3.3, recall that Q) = Q(L)' = SR\(L)S™" where S is
diagonal with entries S;; = 7!. In particular, R)\(L)S~!¢ = 0, so that by Algorithm 1.1.2,
the element 7. = (z — A\)7}(X.(e;/i)0") L € CI(L). Now by a computation which we leave
to the reader,

[Q(T.)-1,5]-n<i<—1 = Z Cﬂfiz(_)-
Since ¢ is a solution of T, € CI(L), we noted earlier that @(¢) is in the kernel of the matrix
[Q(Su)ij]i<_17_n<]‘<_1. This means that >, ci'ﬁg_) od(¢) =0, as desired.

Thus, we have shown that d(¢) can be extended to a vector [a_,, -, a1, -, ag]
in the kernel of [@(L)z’j]igk,—ngjgk for any k. To complete the proof, we should make sure
that the extensions for increasing k can be chosen so as to converge to a meaningful vector.
Since L is balanced, we can write L = >_'_, 2q;(). Let m be the maximum non-negative
integer root of qo(#) if it exists, or —1 otherwise. By the above, we can extend @(¢) to some
[a_p,- - ,a_1, -+ ,a,]" in the kernel of [@(L)ij]igm,—ngy‘gm- Since (4 is lower triangular
with diagonal entries ¢o(7), which are all nonzero for ¢ > m, then [a_,, - ,a_1, -, @]
extends uniquely to 5(5) =[a_p, "+ ,a_1, "+, @y, --]"in the kernel of [@(L)ij]iez,jz_n. O

t

(Continuation of Part 2) To complete the Jordan-Hélder problem for D/CI(L), we consider
all the singular points Ay, ..., A; of L. For each A,, we find a maximal set of solutions
GPaty -y Pary to L in K((z — Ay)) \ K[[z — A4]] with the property that they have poles of
order 0 < Mgy < Myg < -+ - < My, respectively. By Claim 1.4.2, we get the ideal

Jay = D(z — Ag)™ + CI(L) (z — Ag) ™™t ¢ J .
Using these ideals, we can construct a descending chain of ideals
D>Hy1 DHi2 DD Hgp DD Hy, DCI(L)

where
Hp = ']17“1 N ']27“2 A---N ']a—l,ra_l N Jap

a—1

=D {(z = A" [] (&= x)™} + CUL).

k=1
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We claim that this is a maximal chain of ideals between CI(L) and D. To see
this, we first note using Claim 1.4.2 that Z(CI(L)) has a basis hyy(z)ee®, .-+ | h,, (z)ete®
of solutions in K[z]e*s® such that deg(hqy) = mgp — 1. Therefore,

A A A A
F(Hap) = Annp(h11e™7, . by €7 0 hg1e™ e L hgpee®)

and it follows that
F(Hap)

)

. D R D
F(Hypt1) er Annp(hi1eM®, ... hgporeta®) Annp(hy1eM®, .. hgpeta®) )

From the linear independence of {h;;e**}, we leave to the reader to show that the
map

D . D o o D
Ann(hy1eM% ... hgpeta) Ann(hyyet®) Ann(hgpera®)

1 (1,...,1)

is an isomorphism of D-modules and that

f(Hab) ~ D
F(Hypr1)  Ann(hgpet®)

D

> Dhgpe’” = K[z]eM 2 ——————.
b€ [z]e D@ =)

12

In other words,
Hy, D Hy o D

Ha,b—}—l o D($ — Aa) Ha_175a—1 o D($ — AQ) )

Finally, we must show that Hy., is minimal over CI(L). First, we claim that an
ideal I properly containing CI(L) also contains a polynomial f(z). To see this, suppose we
are given 1" ¢ CI(L). Then as elements of R = K(z)(0), L and T generate R because L is
irreducible. This implies that the left ideal D -{L,T} C D contains some polynomial f(z).

Second, we claim that an ideal I properly containing CI(L) cannot contain a
polynomial f(z) having no singular points as roots. This claim is a simple application
of Grobner bases and Bernstein’s theorem: Suppose f(z) has no singular points as roots
and that L has order n. Then for some pair of polynomials ¢g(z) and h(z), the operator
T = g(z)0"f(z) + h(z)L € D -{f(z),L} has initial term in)(7T) = £". In particular,
(f(z),£") Cingny(D - {f(z), L}) which implies that D/(Df(z)+ CI(L)) has dimension 0.
By Bernstein’s theorem, D f(z) + CI(L) = D.

Translating over to the Fourier transform, we conclude that any ideal properly
containing F(CI(L)) contains some constant coefficient operator f(0). There is a unique
minimal ideal of the form D f(9) + F(CI(L)), and it is equal to the annihilating ideal of the
solutions of F(CI(L)) in @xex K[z]e*. But F(CI(L)) has no solutions in K[z]e*” when A
is not a singular point because D(9d — X)™ 4+ F(CI(L)) = D for all m in this case. Therefore,
a minimal ideal of the form Df(9) + F(CI(L)) is equal to the annihilating ideal of the
solutions of F(CI(L)) in &% _, K[z]e*®, which is exactly F(Hy.,). O

Corollary 1.4.5. An operator L = p,(2)0™ + ---+ po(z) € D generates a mazimal ideal
in D if and only if
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1. ng(pn(‘r)7 c .7p0(;r)) =1
2. L is irreducible as an operator in R.
3. For each singular point A of L,

a. cotypey(L) =0 or {0,1,...,n,\} for some n) € N.
b. Fvery solution of L in K((z — X)) lies in K[[z — A]].

In particular, (3) is satisfied if the exponents of L are non-integral at every singular point.

Based upon our theorem, we shall now present an algorithm to compute a Jordan-
Hoélder series for a holonomic D-module. First however, we must address the role of the
field K. In particular, the Jordan-Hé6lder series depends on the field K. For instance the
D-module D/D(z? 4 1) has length 2 when K = C and length 1 when K = Q. Moreover,
when K = C in this example, the output of the algorithm cannot be defined in the subfield
Q even though the input could be defined there.

To avoid this difficulty, we shall continue to assume that K is algebraically closed
and that we can factor completely over K. In this sense, our algorithm is a theoretical one.
However, if we would like to take K = Q, then our algorithm can be turned into a practical
algorithm by using the same techniques employed in Algorithm 1.2.4.

Algorithm 1.4.6. (Jordan-Hélder series for holonomic D-modules)
INpuT: I C D, a left ideal.
OuTtpuT: Jordan-Holder series of D/1.

1. Find an operator L. € I of minimal order by computing a Grébner basis of I with
respect to the order filtration.

2. Factor L as an operator in R, e.g. by using algorithms in [50]. This factorization can
be expressed as

1
L=—"Iy L,
9(z)
where ¢g(z) € K[z] and where Ly,..., L,, € D are operators of positive order which

are irreducible as operators of R. Replace L by g(z)L = L;y...L,, which is also of
minimal order in /. Here, we have assumed that we can factor over K.

3. For each j from 1 and m, find the singular points of L; and label them {X;1,...,A;}.
Again, we have assumed that we can factor over K.

4. For each j between 1 and m and each k£ between 1 and #;, use Algorithm 1.1.2 to find
ol
a basis {fjr0(0), .-, fiks;, (0)} of ker(m — ﬁ). Using Grébner bases,
find the indices {r;z},2 such that

(2 = Ajk) ™ fikry (0)LjLjpr -+ Ly &

I+ {(ac — /\jk)_lf]’ki(é?)LijH D 0<i < T‘jk[}.
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5. For each j from 1 and m and each k£ from 1 and ¢;, find the set
{njr > 0:3¢ € K((x — Ajx)), Li(¢) = 0,0rdy, (¢) = —nju 1,2

This is done by solving the kernel of a truncated submatrix of @(Lj), where the
truncation is determined by computing the minimal and maximal integer exponents
at Aji. Let us also assume that the set is ordered with n;z; > 1k i41.

6. Construct ideals by successively adjoining elements,
Iio=I1+4+DL;L;1y- Ly
Iio=1ja_1+ Dxjaljt1-- L
where x;, is the a-th element of the ordered set
Si =A@ = Xjp) ™ ik (O) L 01 <k <y, 1 << ugy}

t—k
u {(z- /\jk)njkl H(x - /\]‘h)njhl 1<k <t 1<1< ’U]'k}.
h=1
Here, both subsets are ordered from least to greatest under the lexicographic order
on the indices (k,/). The ordering of the total set S; is obtained by concatenating the
second ordered subset onto the end of the first ordered subset.

7. Return {/;4/1}1<j<m1<a<m,, a Jordan-Hélder series for D/I, where the inclusions
follow the lexicographic order on the indices (j, a).

Proof. (Correctness of Algorithm 1.4.6): Consider the chain of increasing ideals
I=I+DL,---L,,CI+DLy---L,, C---CI+DL,, CD.

To compute a Jordan-Hélder series, it suffices to refine this chain of ideals to a maximal chain
of ideals. Let us now describe a refinement between I + DL;---L,, and I + DL;yy---L,,.
Note that the quotient is

I+ DLiyy Ly DLig1 Ly

I+DL;-- L, ~ DL;- Ly, +(INDLiyy--La)

o~

D
I

where I; is the kernel of the surjective morphism

DLiyy - L,

D
T DLi Ly + (1N DLigy -~ L)

1+ Ligy e L.

Moreover, since L = Ly --- L, is of minimal order in I,
INDLiy1-+ Ly CCHLy-+-Li)Ligr -+ Ly CCHL) Ligr -+ Ly

This implies that DL; C I; C CI(Ly).

Since L; is irreducible, we can use the methods developed in Theorem 1.4.1 to
construct a Jordan-Holder series for D/I;. These methods lead exactly to steps 5, 6, and 7 of
our algorithm, where a maximal chain of ideals between I+DL;---L,, and I+DL;y1---L,,
is constructed. O
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Example 1.4.7. Let us compute a Jordan-Hélder series for D/ DL where
L= (2°+22% - 32%)0% — (42° — 42" — 122% — 122)0 + (62" — 122° — 62 — 242 — 12)
For step 2, L has the factorization I = Ly Ly where

Ly = (2*+ 2%+ 3224+ 32)0 + (42° + 322 + 62 + 3)
Ly = (22-2)0+ (—22+4)

For step 3, the singular points of L; are {0, —1,v/37, —v/3i}, and the singular points of L,
are {0, 1}. For step 4, the various kernels have bases,

Kernel Basis
ol
i = e {0 -2}
(z-ﬁ)D — (z-ﬁ)D {0+ 3}
D__°by D {20 — 1+ 3v/3i}

D oL D .
(z+v/3i)D f (z+v/3i)D {20-1- 3\/32}
Db {0* - 40°}

and adding the following elements one by one to L creates strictly increasing ideals,

3 L p2 . 2 _ 903 2 ‘
T, = 2=21,1, (23 + 2%+ 32+ 3)9%* — 2(2® + 22 + 32+ 3)0

x - +(82? — 6z + 6) L

Ty= 21,1, = [(2®+32)0%* 4+ 3(2® + 32)0 — (1222 + 92 + 15)] L

r+1

' 2(23 + (1+\/§i)$2+\/§ix)82 1
Ty= D50, = —(1 =33 (2% + (14 V3i)22 + V3ix)d | La
| +(4 - 12¢/34)22 + (21 — 5/3d)z + (9 + 3v/34) |

_ [ 2(z + (1 - \/gz)mQ — \/§i$)82 1
Ty= 2=, = —(1+3V3) (@3 + (1 — V3i)a2 — V3iz)d | Ly
| (44 12¢/34)22 + (21 + 5v/3d)z + (9 — 3v/37) |

= P9, = (- )0 (- 10)00 - 160°

T

For step 5, we note that the solution space of L; is spanned by z* + 2 4 322 4 3z while the
solution space of Lj is spanned by z*/(z — 1)2. Therefore, the only singular point where a
solution has a pole occurs for Ly at z = 1, which is a pole of order 2. For steps 6 and 7, it
follows that a Jordan-Holder series for D/DL is

c D{L, T} c D{L, T, T3} c D{L,T\, T, 15} c D{L, Ty, Ts,T5, T4}
DL DL DL DL
D{L,} c DALy, T5} c D{Ly, T5, (z - 1)°} c D
DL DL DL DL’

0
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1.5 Inverse problem of Grobner basis theory

Given a term order or filtration of D, the inverse problem of Grébner basis theory
is to determine all initial ideals that occur under the term order or filtration. The inverse
problem for the order filtration was solved by Strombeck [44] who gave a set of inequalities
which must be satisfied by the initial ideal, and who also proved the existence of initial
ideals satisfying any such set of inequalities. As a corollary of Theorem 1.2.7, we obtain
another proof of Strémbeck’s inequality. At the level of linear algebra, our proof is probably
ultimately the same as Strémbeck’s. However, we hope that our use of the Weyl closure
offers a clarification by organizing the linear algebra involved.

Let us also remark that Strémbeck’s solution implies the solution of the inverse
Grébner basis problem with respect to lexicographic order d > x or with respect to the
order filtration refined by the V-filtration. The inverse Grobner basis problem with respect
to the V-filtration was solved by Briancon and Maisonobe [8]. As far as we know, the
problem is open for the Bernstein filtration.

Theorem 1.5.1. (Strombeck [44], Inverse problem for the order filtration)

1. Let I C D be a left ideal. Suppose that

i) <<H T — M) “m) IS > (5.5)

where for each k between 1 and t, {ji p }m>n is a decreasing sequence of non-negative
integers with lim, o0 jipm = pi. Then

jk,n—}—uk S n + HE- (56)

2. Conversely suppose for each k between 1 and t, {jim fm>n 15 @ decreasing sequence of
non-negative integers with limit py such that ji 4., < n+ pr. Then there exists a
left ideal I C D such that ing 1)(I) is given by (5.5).

Proof. PART 1: From the point of view of the closure, we think of I as sandwiched between
DL Cc I C Cl(L), where L is an element of minimal order n in I (see proof of Corollary
1.2.8). We might as well choose L with ing (L) = (IThey (& — Ap)7En)E™. We can now
describe the initial ideal of I by Theorem 1.2.7. Let us review how this is done. By
hypothesis, L has singular points {Aq,...,A\;}. Then I = I(V4) 4+ --- 4+ I(V}) for some
subspaces Vi, C ker(D/(z — Ag)D ok D/(z — Ag)D). Finally, if {fi0(0),..., frs,(0)} is a
basis of V};, with the property that deg(fr;) < deg(fi41) for all ¢, then

m)\k( )

= (& — Ap)ien—(iFDgntdes(fi) =i . 0 < i < o)
in (0 1)( )=

((Izi (@ = AR)*)E™ = (2 = Ap) €™ € iny, (1))
It only remains to translate this description into the inequality (5.6). For instance,

Pk = jrn —dim(Vy). To go further, we need to understand the subspaces Vj. By Algorithm
1.1.2, Vi can be identified with a subspace of ker(Ry, (L)), so let us examine the matrix

(5.7)
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Ry, (L) of (1.1). We can write L = p,(z)d" + - - -+ po(z) where p,(z) = [[\_,(z — Ag)7en.

We can also write L in the form

s " if 1 <0
L—Z:qu'(%) Q’—{ (z —Ap)' ifi>0

such that ¢.() # 0. Notice then that the term p,(z)0™ becomes a subsum of the above
sum with the shape,

pa(@)0" = > Gigi(6r,)

ZZ]k,n —-n

where g;, . —n(0) # 0 and deg(gj, ,—») = min{n, jr»}. Thus, r < jr, — n and deg(q.) < n.

Now recall that ker(Rx, (L)) = ker [Rx,(L)ijloc;cm o<i<cmir- Lhis matrix is iden-
tically 0 below the rth diagonal while its rth diagonal consists of entries {g. (%) };>max{0,—r}-
Here, the rth diagonal means the diagonal of entries in row ¢ and column ¢ 4 r.

Now we have 2 cases. First, if » < 0, then dim (ker(R), (L))) < n since deg(g,) < n.
We conclude that jj,, — pp = dim(Vy) < n, which implies ji n4u, < Jon < 1+ pg.

Second, if r > 0, then the first r columns of R), (L) are identically 0. So the
subspace W spanned by {0'}:Z; is contained in ker(Ry,(L)). Now let W), = V; N W and
suppose that dim (W) = /. Then by (5.7), (z — A\g)/en =" €' ¢ iny, (I), which implies
that jgppr—r < jin — 1. We also claim that n 4+ p; > n 4 r — r’. This follows because
Pk = jen —dim(Vy), where ji ,, > n +r and dim(Vy) < n+ r’. Finally, we obtain

jk,n-l—uk < jk,n-}—r—r’ < jk,n -7 < jk,n +n— dlm(‘/k) =n+ ug
which completes the proof of Part 1.

PART 2: The strategy is to construct L with ing (L) = (ITeey (z = Ag)?en)€™ and such
that ker(R), (L)) contains the appropriate vector space Vi. To see what V}, should be, we
compare (5.7) with (5.5). It follows that we simply need {deg(fro),...,deg(fxs,)} to be
equal to the set

S = U k4 Jkn — Jhntizts @+ Jhn — Jkmei — 1] CN
{i>0:k nti<Jknti—1y

whose cardinality is |Sg| = jk,n — k. Here, [a,b] denotes the set of integers between a and
b including endpoints. Also, let ¢ = max;es, {jkn — 1, ¢} and let m = max{t;}.

First, let us construct L such that ker(R), (L)) contains V. There are two subcases
to consider:

(i) If 1., < 7, then define L = 9"~/1n (8, +1)" [Lies, (0x, — (i+n—3j1,)). Then
Vi = Spang{0° : 1 € S;} = ker(R), (L)), as desired.

(i) If j1,, > n, then 1 py,, < n+pq implies that j1, — J1 4 > J1n—n— 1 =
|S1| —n. It follows that [S; N[0, ji,, —n—1]| > |S1]| — n and hence, [S1NN>; | <m. So
we can define L= (z = A" (0, +1)" 7 2 g o (03, = (40— ).

Then Vi = Spang {0 : i € S1} C ker(R), (L)), as desired.
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We now replace L by the operator (z — Ag)?2m -+ (z — A;)/t» L, which continues
to have the property that ker(Ry, (L)) D Spang{d® : i € S1} = V; and also enjoys the
property that in 1)(L) = (HZ:1($ — Ag)7#n)€m. Tt now remains to further adjust L so that
ker(Ry, (L)) contains V} as well. We shall give a brief sketch as to how this is done, and
leave the details to the reader.

At the moment, the only thing we know about the matrix Ry, (L) for k # 1 is that
its (jx,n» — n)-th diagonal has entries coming from a polynomial of degree n and the matrix
is zero below this diagonal. As usual, let ¢; denote 0 if i < 0 and denote (z — Ag)* if i > 0.
Then by adding to L an operator [], ., (z — MME, _ng0(8y,) where M > m and where
deg(go) < n — 1, we can adjust the matrix Ry, (L) so that the entries of the (ji, — n)-th
diagonal come from an arbitrary polynomial of degree n and so that the matrix is still zero
below this diagonal. In particular, we can force the entries indexed by Sy N N>, _, to be
zero. Also, for M sufficiently large, the first m columns of the matrices Ry, (L) for ¢ # k
are unaffected.

Similarly, for r > 0, we can add to L operators J[, ., (z — MMz —=N)¢, _ngr(6y,)
with M > m and deg(g,) < n — 1 so that the (j, —n + r)-th diagonal of R, (L) is given
by an arbitrary polynomial either of degree n or degree n — 1 and such that lesser diagonals
are unchanged. So we can also force the entries indexed by Sp N Nyj, . \ {tx} of the
(Jkn — n + r)-th diagonal to be zero. Again for M sufficiently large, the first m columns
of the matrices R),(L) for ¢ # k are unaffected. If we do this for all r less than some
sufficiently large 7/, we eventually obtain L such that in¢ 1)(L) = [Tiey (@ — Ag)P%m€™ and
such that ker(R,, (L)) contains Spang{0d" : i € S;} = V}. Continuing this procedure for all
k, we produce the desired L. O

Corollary 1.5.2. (Inverse problem for the order filtration refined by the V-filtration)
There exists a left ideal I C D such that iny(I) = ((z — A)?™&™ : m > n) where {j,,} is a
decreasing sequence of non-negative integers with limit y if and only if j,4, < n+ p.

Corollary 1.5.3. (Inverse problem for pure lexicographic order 9 > z)
The set of initial ideals with respect to the pure lexicographic term order 0 > x is equal to
the set of monomial ideals of K[z,&] having dimension 1.

Proof. Consider I = Annp(p(z)) where p(z) = (z — A\1)®* - -+ (z — A;)®. By Lemma 1.3.10,
the cotype of L = ((z — M) -+ (z = A)™)0 = oiy ei[l;(x — Aj) at s is {e;}. By
Theorem 1.2.7 and Corollary 1.3.3,

ing (1) = (a7¢, 2" MEasHlg+ 2 j > )

Note that ¢maxideit+1 ¢ inc<(I). Since the {e;} are arbitrary, we can thus make an ideal
corresponding to any staircase which intersects the £-axis and whose lower wall has &-
exponent 1. By multiplying the generators of I on the right by /97, we can make an ideal
corresponding to any staircase which does not intersect the z-axis. Since neither z or 0 is
preferred in the Weyl algebra, by symmetry we can also make ideals corresponding to any
staircase not intersecting the &-axis. This exhaust all 1-dimensional ideals. O

Another set of interesting problems is to consider the inverse Grobner basis prob-
lems for a restricted class of ideals. For example,
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Corollary 1.5.4. (Inverse problem of closed ideals for the order filtration)
There exists a closed ideal I such that in(g 1y(I) is given by (5.5) if and only if for each k,
either (i.) jrn, < m, or (ii.) jrn, > n and pr > jr, — n+ 1.

Similarly in Corollary 1.3.13, we described the initial ideal of the annihilator of
polynomials. It would be interesting to solve the inverse problem for this set of ideals.
By Corollary 1.3.3 and Lemma 1.3.10, this problem is essentially equivalent to determin-
ing whether a vector space of polynomials can be found satisfying prescribed multiplicity
conditions at various points. For instance, the ideal (z%(z — 1)&%, €3, &%) is the initial
ideal of the annihilator of polynomials if and only if there exists a 2-dimensional vec-
tor space V of polynomials which have multiplicity 1 or 4 at z = 0, multiplicity 0 or
2 at z = 1, and multiplicity 0 or 1 everywhere else. We saw in Example 1.0.2 that
the candidate V = Spang{z* z(z — 1)?} does not work since it contains a polynomial
p(z) = 42* — 27z (x — 1)? = z(4z — 3)(z — 3)? with multiplicity 2 at z = 3. More generally,
we could ask the same questions for the set of annihilator ideals of rational functions.

1.6 Isomorphism classes of left ideals

The space of isomorphism classes of right ideals of D was described by Cannings
and Holland as a special case of their work [9]. It was further studied by Le Bruyn [25]. In
this section, we will reproduce the description given by Cannings and Holland from the point
of view of the Weyl closure. One added benefit of this approach is that given generators
of an ideal, we can determine the corresponding isomorphism class using variants of our
closure algorithms. To remain consistent with the rest of this chapter, we shall consider left
ideals rather than right ideals.

Theorem 1.6.1. The space of isomorphism classes (as D-modules) of left ideals of D is

Isom(D) = U U {(A1, V1), (A2, V), (A, Vi) }

l‘EN{/\l ,...,/\t}cf{

where Vi, C K[0] is a nonzero finite dimensional vector space associated to Ay,. To determine
the isomorphism class of a left ideal I, there is a unique L € I of minimal order such that all
other elements of minimal order in I are K[z] multiples of L. Then I/DL is supported on
a finite subset {A1,..., A} C K, and Vi = {f(0) € K[0] : f(0)L = (x — A\g)T for some T €
I}.

Proof. Given a left ideal I and an operator T € I, the D-module I /DT is annihilated by
some p(z) € Klz] if and only if 7" is of minimal order in /. Moreover, the operator L
defined in the theorem is unique since R - I is principal in R = K(z)(0). Thus /DL is the
unique smallest D-module of the form I /DT which is totally supported on a finite subset of
K. This makes I/DL an isomorphism invariant. Similarly, the spaces V}, are isomorphism
invariants. Furthermore by Kashiwara’s equivalence, I = D - {L, (z — A\;)"1f(9)L : f(9) €
Vi, k = 1,...,t} which shows that the spaces V. also determine I as a D-module up to
isomorphism. Finally, the existence of a representative ideal for each isomorphism class can
be obtained using the methods of Theorem 1.5.1, Part 2. O
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Algorithm 1.6.2. (Computing the isomorphism class of a left ideal I)
INPUT: {Ly,..., L}, generators of a left ideal I C D.
OutpuT: {(Ag, Vi) : Vi # 0}, a point of Isom(D).

1. Compute a reduced Grébner basis of I with respect to the order filtration. Set L
equal to the element of lowest order in 1.

2. Suppose L = p,(z)0" + --- + po(z). We assume we have the factorization p,(z) =
(z — Ap)et -+ (z — Ay)®. If we are not able to obtain the factorization, then we need
to employ methods similar to Algorithm 1.2.4, and we leave the details to the reader.

3. For each k between 1 and ¢, compute ker(R,, (L)) using Algorithm 1.1.2. Set V}, =
{f(9) € ker(Ry, (L)) : (z — A\p)"' f(O)L € I}, which we can compute using Grébner

bases and undetermined coefficients.

4. Return {(Ag, Vi) : Vi # 0}.
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Chapter 2

Weyl closure, torsion, and local
cohomology

In Chapter 1, we introduced the Weyl closure operation for ideals of the first Weyl
algebra (see Definition 1.0.1). In this chapter, we study the analogous operation in the
n-th Weyl algebra, K(z1,...,2,,01,...,0,), which will henceforth be denoted by D or D,,.
Similarly, let R denote the ring of differential operators with rational function coefficients,
K(z1,...,2,)(01,...,0,). We may now extend Definition 1.0.1 and formulate the Weyl
closure operation for arbitrary left submodules of D".

Definition 2.0.3. Let N C D" be a left D-submodule. The Weyl closurEe of N, denoted
CI(N), is the submodule
CI(LN) — R . ZV ﬂ DT.

The question of computing the Weyl closure for finite rank ideals of D (see Def-
inition 2.1.2 for a definition of rank) was posed in [14] by Chyzak and Salvy, who call
this question the “extension-contraction problem” and consider it more generally for left
ideals of Ore algebras. Their motivation to compute Weyl closure is for non-commutative
elimination and its application to symbolic integration. Namely, given a left ideal I in
Dyyq = Dy(ty,...,tq,04,...,0,) consisting of operators which annihilate a function f =
f(z1,...,2pn,t1,...,tq), then the left ideal of D,, defined by

JUI)={U+04yDpyqg+---+ 0, Dpyq) N Dy,

consists of operators which annihilate the integral
g($17"'7xn) :/ fdtl "'dtd7
C

where (' is a suitable homology cycle (see [40, Theorem 5.5.1] for a proof).

The intersection ideal J(I) for an ideal I which is holonomic can be computed
by an algorithm due to Takayama [46] and refined in [40, Algorithm 5.5.4]. Thus, given
a function f, the first step in Chyzak and Salvy’s technique for symbolic integration is
to obtain enough operators annihilating f so that the ideal I they generate is holonomic.
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Moreover, it is also clear that if we can make the ideal I even larger, then we will obtain
an ideal J(I) which is possibly also larger and therefore a better description of the integral
of f. Thus ideally, we would like to obtain the full annihilating ideal of f in D, that is
I = Annp(f). As we shall see, in many situations it is easy to obtain generators for a
slightly different ideal, Anng(f), which is the annihilating ideal of f in R. In this case, the
annihilating ideal Annp(f) is the contraction Anng(f)N D, i.e. the Weyl closure.

Example 2.0.4. We give an example taken from Stanley’s book [43] and which is the
subject of recent work of Pemantle [37]. Given a rational function F(z,t) in two vari-
ables and a power series expansion F(z,t) = Zr,seN a,sx"t®, then the diagonal function
&() = X2, en @rr®” is known to be an algebraic function. It can be computed using residues
as fc t~YF(t,z/t)dt, where C is an appropriate homology cycle. For instance, consider
F(z,t) = (1 — 2 — t — zt)~!, for which a,; counts the number of ways to reach (r,s) from
(0,0) using steps of size (1,0), (0,1), or (1,1). Then we would like to compute,

/ dt
ct—2—12 -t

Let us compute differential equations describing the integral. Namely, first note
that the integrand f = (t — 2 — t* — 2t)~! is a solution of the differential operators L; =
Oyt —x —t* — xt) and Ly = 9,(t — x — t* — xt). The operators L; and L, generate
the annihilating ideal of f in R since they form a rank 1 system. However, the ideal
I =D -{Ly, Ly} is not the annihilating ideal of f in D and is not even holonomic. In fact,

J(I)=(I+0:D)NK(z,d,) =0,

hence the ideal I does not produce any information about the integral. On the other hand,
using our implementation in Macaulay 2, we can find the annihilator over D by using the
Weyl closure.

i2 : (W = QQ[x,t,Dx,Dt, WeylAlgebra => {x=>Dx, t=>Dt}];
f = t-x-t72-x%t;
I = ideal(Dx#*f, Dt*f);

ClI = WeylClosure(I))
2
02 = ideal (x#*Dx + 2t*Dx - t*Dt - Dx - Dt, x*t*Dx + t Dx + x*Dx - ...

We can test whether or not the Weyl closure CI([/) is equal to 1.

i3 : ClI ==1
03 = false

By some experimentation, we find that CI(/) =1+ D - {(z + 2t — 1)0, — (t + 1)0;}.

i4 : ClI == I + ideal((x+2*t-1)#*Dx - (t+1)*Dt)
04 = true

Moreover, the integration ideal J(CI(I)) is,
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i5 : DintegrationIdeal(ClI, {0,1})
2
o5 = ideal(x Dx - 6x*Dx + x + Dx - 3)

o5 : Ideal of QQ [x, Dx, WeylAlgebra => {x => Dx}]

Here the parameter {0, 1} of DintegrationIdeal indicates that ¢ is to be integrated out
as opposed to z. The integration ideal .J(CI([)) is a rank one ordinary differential equation
whose solution space is spanned by the function p(z) = (22 — 6z 4+ 1)~'/2. Hence the
integral [ f(x,t)dt a scalar multiple of p(z), and since a;; = 3, we conclude that £(z) =
(22 — 62 +1)~1/2

In this chapter, we present algorithms to compute the Weyl closure. In Section 2.1,
we recall basic facts of D-module theory, in particular the notion of singular locus and
the relation between finite rank and holonomic D-modules. In Section 2.2, we provide
an algorithm to compute Weyl closure for finite rank modules. The theoretical basis is
a lemma which states that CI(N) = D[f~!]- N n D" for any polynomial f vanishing
on the singular locus of D"/N, and the algorithm then becomes a direct application of
the localization algorithm due to Oaku, Takayama, and Walther [36]. In Section 2.3, we
provide an algorithm to compute the Weyl closure for arbitrary modules. The details of
the algorithm are given in Section 2.4, where we present an algorithm to compute torsion
of an arbitrary finitely generated D-module with respect to an ideal of polynomials. The
algorithm is a slight extension of Oaku’s algorithm for computing torsion of a holonomic D-
module [32]. In Section 2.5, we give an algorithm to find the primes ideals of the polynomial
ring which are associated to a D-module M. In Section 2.6, we discuss a construction for
local cohomology due to Oaku and Takayama and also independently to Adolphson and
Sperber. This section is expository and serves to relate the work of both sets of researchers.

Example 2.0.5. We mention here a class of ideals where the Weyl closure can be explicitly
described. Let #; = x;0;. A torus invariant ideal I C D is an ideal generated by elements of
the form zp(0)8°, where a, 8 € N* and p(8) € K[6)]. For a discussion of torus invariant
ideals and their solution spaces, see [40, Section 2.3].

In the expression a:ap(O)BB of I, we may assume that o and [ have disjoint
support. Now given any set of generators G = {malpl(B)Bﬁl, .. .,a:ampm(O)Bﬁm} of I,
consider the ideal J = (q1(8),...,¢n(0)) C K[6] where ¢;(8) = % p;(0)8%. Then J has
the property that R -1 = R -J, hence it suffices to describe the Weyl closure of ideals
J C K[6], which are called Frobenius ideals. This is accomplished by the following lemma,
whose proof is straightforward.

Lemma 2.0.6. Let J C K[#y,...,0,] be an ideal. Then
CI(D ' ]) = @ 81111 o 87?71 (] : [Hl]ozl te [Hn]ozn)
aeN™”

where [0;]o, = 0;(6; —1) ---(6; —a; +1). Moreover, the unique mazimal torus invariant ideal
I in D with the property that I N K[6y,...,0,] = J is the ideal denoted

Sat(J) = €D uf' - ul (T : [01]s, - [0a]5,)
pezZ™
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where
_{ oF i pi>0
Ui = —B:
Z; if 3; <0
6,6 =1)---(0—Bi+1) i Bi >0
[0:]p, = q (B:i+1)(6:+2)---(0+|8:]) if B; <O
1 if B; =0

The above lemma can be compared with a lemma of Briancon and Maisonobe on
torus invariant ideals of the first Weyl algebra in [8]. Namely, the analysis there can be
extended to understanding the inclusion J C Sat(J) in terms of holomorphic and micro-
function solutions of J. For future reference, we also give the following lemma on dimension.
Here the dimension of a commutative ideal .J C K[#] is the usual Krull dimension while the
dimension of an ideal I C D is defined in Section 2.1.

Lemma 2.0.7. Let J C K[by,...,0,] be an ideal, and let I C D be a torus invariant ideal
with the property that I N K[0] = J. Then dim(I) = dim(J) + n.

Proof. First, if J has dimension k, then the Frobenius ideal D -.J has dimension n + k.
Since D -J C I C Sat(J), it suffices to show that dim(Sat(/)) = n + k. We know already
that dim(Sat(.J)) < n+ k and we are left to show the inequality dim(Sat(.JJ)) > n+ k. The
proof now follows the approach of [40, Theorem 5.1.3]. Let X be an irreducible component
of dimension k of the variety V' (J) C K™ so that J C I(X). Then for each i from 1 to n, X
is contained in at most one hyperplane {#; — j = 0} for all j € Z. By relabeling coordinates,
we may assume that X is contained in the hyperplanes {#; —ny =0,--- 60, —n, = 0} with
n; > 0, the hyperplanes {6,441 + m,41 =0,---,6, + ms = 0} with m; > 0, and in none of
the hyperplanes {6; — j = 0} for i > s,j € Z. Then

I()():<01_n17"'707“_nr707“+1‘|’m7“—|—17"'705+m5>+l(

where K C K[fs41,...,0,]is an ideal of dimension k& — s which is not supported on any of
the special hyperplanes. In this case,

Sat(I(X)) = (7™, ...,om 2l o2l +

r

<01_n17"'70T_n7”70T+1+m7”-|—17"'705+m5>+l(

so that
in(g,ey(Sat(1(X))) = ( mtl o gnrtl m:l;fl, N

<$1€17 e 7xs€s> + in(O,e) (I()
and has dimension n + k. Since Sat(.J) C Sat(/(X)), this shows dim(Sat(J)) > n+ k. O
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2.1 Singular locus

In this section, we collect some basic facts of D-module theory which will be
useful in our discussion of Weyl closure. In particular, we recall the notion of singular
locus, establish the relation between finite rank and holonomic modules, and provide an
analytic interpretation of the Weyl closure. The material in this section is based upon the
book [40, Section 1.4] and Kashiwara’s paper [27].

Let us first recall a number of standard definitions. The order of an operator
L =73, senn caﬁmaaﬁ in D is by definition equal to max(, g.., 20} |B]. The ring D is
naturally filtered by order, i.e D = US2,D(j), where D(j) consists of operators of order less
than or equal to j. For a finitely generated left D-module M, a filtration U2 F% (M) of M
is said to be good (with respect to the order filtration) if Fj (M) is finitely generated over
K[z] and if there exists ko € N such that D(j) - Fi, (M) = Fy+; (M) for all j € N. Given a
presentation D" /M, of M with generators {e;};_,, there is a corresponding standard good
filtration,

Fo(M) = Spange{ec}is  Fy(M) = D(j) - Fo(M).

For a good filtration of M, we denote the associated graded module by grM. 1t is a module
over the coordinate ring grD = Klzy,...,2,,&1,...,&,] of the cotangent bundle T*K™.
The characteristic variety of M, denoted char(M), is the support of grM on T*K™ i.e. the
zero locus of anngp(grM). The local dimension of M at a point p € T*K™ is equal to
the dimension of the characteristic variety at p. The local dimension is either zero or
greater than or equal to n by the Fundamental Theorem of Algebraic Analysis (see e.g. [40,
Theorem 1.4.6]). The set of points where the local dimension is strictly greater than n
is called the non-holonomic locus. The dimension of M is equal to the dimension of the
characteristic variety, or in other words the maximum of the local dimensions. The set of
D-modules of dimension exactly n form a special subcategory.

Definition 2.1.1. A D-module M is holonomic if its dimension is equal to n.
Holonomic D-modules have finite rank, whose definition we now recall.

Definition 2.1.2. The rank of a D-module M, denoted rank(M) is equal to dimg () R-M.
We say that M has finite rank if rank(M) < oo.

As we shall see, the notions of holonomic and finite rank are closely related. In
order to understand their connections, it will be useful to introduce the notion of singular

locus. The canonical projection of the cotangent bundle to the base space is denoted
T:T*K" —» K",

Definition 2.1.3. Let M be a finitely generated D-module. Then the singular locus of
M, denoted Sing(M), is the Zariski closure of the projection of the characteristic variety
minus the zero section from the cotangent bundle to K", i.e. Sing(M) = Z(w(char(M) \
Vi(&,...,&))). Algebraically, for any good filtration of M with respect to the order filtration,
the singular locus is the zero set

V((anngp(grM) : (&1,..., &) ) N K[z, ..., 2,]) C K",
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The singular locus can be computed by using Grobner bases in the Weyl algebra D
and in the polynomial ring K[z, £]. Given an element L = Y77 > _yn Pia(2)0%e; € DT,
let us put

in(O,e) (L) = Z Pia (m)gael € I([m7§]r'

{i,a : pia#0, |a] mazimal}

Algorithm 2.1.4. (Singular locus of M [40, Section 1.4])
INPUT: a presentation M ~ D"/D -{Ty,...,T,} of a left D-module.
OutpuT: {f1,..., i} C K[z] such that Sing(M) =V (f1,..., fs).

L. Set N =D -{Ti,...,T,} and compute generators for in(g ) (V).

2. Compute anngig ¢)(K[z,£]"/inoe)(N)), e.g. by intersecting the kernels of the com-
ponent maps ¢; : K[z, & — K[z, &]"/in<(N) such that ¢;(1) =¢; fori=1,...,r.

3. Using commutative Grobner bases methods for saturation and intersection, compute

generators { fi,..., fy} of (annK[Lg](K[w, &"/inc(N)): (&, .. .,fn>°°) N Klz].
4. Return {fy,..., f5}.

The singular locus contains useful information when M has finite rank. For in-
stance, we have the following lemmas.

Lemma 2.1.5. Sing(M) is a proper subvariety of K" if and only if M has finite rank.

Proof. Suppose M has finite rank. Any filtration of M compatible with the order filtration
extends to a filtration of - M. Hence by standard arguments, dim (5 (K (2)[£] - grM) =

dimc(z)(R-M) < oo, which implies that for each 7, there exists some fz(az)ff € anngp(grM)
for j > 0. It follows that (anngp(grM) : (&, ...,&,)>) contains the polynomial ], fi(=)
and is nonzero. Conversely, assume that Sing(M) is proper. Then some f(x) # 0 vanishes
on Sing(M) or in other words there exists m, N > 0 such that f(z)™€" € anngp(grM) for
all |a] > N. Moreover, since the filtration F is good, R - M is generated as an R-module by
the finite-dimensional K (@)-vector space Fy, (R - M) for some kg € N. It follows that R - M
is spanned by {{“Fy, (R- M) : |a| < N} and is finite-dimensional. O

Lemma 2.1.6. If M has finite rank, then the non-holonomic locus of M is contained inside
7~ (Sing(M)), the subvariety of the cotangent bundle defined by the inverse image of the
singular locus.

Proof. : Suppose the polynomial f vanishes on Sing(M). Then there exists m, N > 0 such
that fm¢N € anngp(grM) for all 5. This implies that char(M) C V(f) UV (&, ..., &),
or in other words, the non-holonomic locus is contained inside f = 0 on the cotangent

bundle. O

These lemmas were used by Kashiwara to establish the relation between finite rank
and holonomic D-modules [27]. Let us phrase the relation in terms of the Weyl closure, a
formulation first made by Takayama in [47].
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Proposition 2.1.7. A left D-module M = D" /N is of finite rank if and only if D" /CI(N)
s holonomic.

Proof. If M has finite rank, then by the lemmas above the singular locus is proper and
its inverse image in the cotangent bundle contains the non-holonomic locus. Let f be
any polynomial vanishing on the singular locus. Since f = 0 contains the non-holonomic
locus, it follows from Kashiwara [27] that M[f~!] is holonomic. The module D" /CI(N) is
a subquotient of M[f~!] and hence is holonomic as well.

Conversely, suppose that D" /CI(NV) is holonomic. Since R-M = R"/R-CI(N), it
suffices to show that D" /CI(N) has finite rank. The following argument from [40, Proposi-
tion 1.4.9] shows that any holonomic module M’ has finite rank. If M’ is holonomic, then by
definition char(M’) = V(anngp(gri’)) has dimension n. The projection of char(A) onto
the n + 1-dimensional subspace with coordinates {z1,...,2,,&} therefore has dimension
< n so that its defining ideal is nonempty. Since this projection equals V(anngp(grM’) N
K[z, &]), this implies that there exists some nonzero f(w)ﬁZN” € anngp(grM). By defini-
tion of good filtration, there exists some kg € N such that M = D - Fy, (M), where Fy (M)
is finitely generated over K[z]. It follows that R - M is finite-dimensional over K (z) be-
cause it is spanned over K (z) by the elements in the finite dimensional K (z)-vector spaces

{€° Fiy (M) : a; < N} O

From the analytic perspective, the singular locus of a finite rank module generalizes
the notion of singular points of a linear ordinary differential equation. In particular, let us
state a special case of the famous theorem of Cauchy-Kovalevskii-Kashiwara.

Theorem 2.1.8. (Cauchy-Kovalevskii-Kashiwara, see e.g. [40, Theorem 1.4.19]) Let M =
D" /N be a module of finite rank and let U be a simply connected domain in C* \ Sing(M).
Consider the system of vector-valued linear partial differential equations,

Lew=0, LeN, for vectors i of holomorphic functions on U

Then the dimension of the complex vector space of holomorphic solutions on U, denoted
Soly(N), is equal to rank(I).

Using Theorem 2.1.8, we arrive at the following analytic interpretation of the Weyl
closure.

Proposition 2.1.9. Let M = D" /N and U be as in Theorem 2.1.8. Then
CI(N) = Annp(Soly(N))

where Annp(Soly(N)) denotes the set of all differential operators in D" which annihilate
the functions in Soly (N).

Proof. Since Soly (N) = Soly (CI(N)), it is clear that N C CI(N) C Annp(Soly(N)). By
Theorem 2.1.8, the ideal Annp(Soly/(N)) must have the same rank as N. Therefore, the
surjection of finite dimensional K (x)-vector spaces,

R . R
R-N R - Annp(Soly (N))
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is an isomorphism. It follows that - N = R-Annp(Soly;(NV)) and hence Annp(Solyy(N)) C
R'LNQD:CI(LN)- D

Using Proposition 2.1.9, the Weyl closure operation of an ideal I in D can be
loosely regarded as analogous to the radical operation of an ideal J in K[z]. That is, the
Weyl closure of I is the ideal of operators which annihilate the common solutions of [
whereas the radical of J is the ideal of functions which vanish on the common zeroes of .J.

2.2 Finite rank algorithm

In this section, we provide an algorithm to compute the Weyl closure of a sub-
module N C D" such that the quotient module M = D"/N has finite rank. This solves
the extension-contraction problem posed by Chyzak and Salvy in [14] for the case of the
Weyl algebra. To obtain the algorithm, we first identify polynomials f such that for a given
submodule N C D", we have CI(N) = D[f~1]- NN D". The algorithm is then a direct ap-
plication of the localization algorithm of Oaku-Takayama-Walther [36]. In the next section,
we will provide an algorithm to compute the Weyl closure of arbitrary submodules.

Theorem 2.2.1. Let N C D" be a left D-submodule such that D" /N is finite rank. Then
CI(N) = D[f~Y]- NN D" for any polynomial f vanishing on the singular locus Sing(D" /N).

Proof. By definition of singular locus, we have f € \/(anngrp (gr(DT/N)) : (&, ..., &)%), or
in other words, gr(D"/N) is annihilated by elements fcffl, ooy fo€0n for some ¢, dy, . . ., d, €
N. Thus the finitely generated K[z,&][f~!]-module gr((D"/N)[f~1]) is annihilated by
fl, ..., &% and in particular is finitely generated over K[z][f~'] as well. It follows that
the D[f~1']-module (D"/N)[f~!] is finitely generated over K[z][f~1]. It is a basic fact of
D-module theory that a Dx-module which is also coherent as an Ox-module is locally
free over Ox (see e.g. [22, Lemma 5, Lemma 6]). Here, we take X to be the nonsingular
variety A" \ V(f), whose ring of differential operators is precisely D[f~!]. In particular,
(D"/N)[f~1] is thus torsion-free with respect to K[z][f~']. From this fact, it follows that
the D-submodule,
Dr D[f—l]r B Dr
DU NnD “Df].N_ N
is torsion-free with respect to K[z]. In other words, let L € CI(NN), which means that
gL € N C D[f7']-Nn D" for some g € K[z]. Then the image of L in D"/D[f~!]- NN D"
has torsion with respect to g, and hence it must already be the case that L € D[f~1]-NnD".
We conclude that CI(N) = D[f~1]-NnDr. O

[/~

Remark 2.2.2. Theorem 2.2.1 suggests the possibility of the statement “If f vanishes on
Sing(M), then M has torsion with respect to f”. However, this statement is easily dismissed
for holonomic and finite rank modules by considering the family of ideals I = Dy -{z0 — a},
whose quotients modules Dy/D; - {20 — a} have singular locus z = 0. As we can verify by
the methods of Chapter 1, if a € N then CI(I) = D;-{0°*!, 20— a} and D/I is not torsion-
free while if @ ¢ N then CI(/) = I and D/I is torsion-free. Finding a finer description of
the Weyl closure which resolves families such as Dy/D;-{z0 — a} seems a difficult problem.
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Investigating b-functions with respect to the singular locus (see Definition 3.2.1) might be a
good place to start. Similarly, we can also dismiss the converse statement “If M has torsion
with respect to f, then f vanishes on Sing(M)”. This statement is a little more subtle, as
it is even true for holonomic Di-modules. To see that it is false in general, consider the
holonomic module M = Dy/Djy - {2101, 2201, 2202 + 1}. Then Sing(M) = {z2 = 0}, while
the element 0y € Dy/I has (zy, z2)-torsion.

For the reader’s convenience, we now summarize the localization algorithm of
Oaku, Takayama, and Walther [36], which allows us to compute M[f~!] for a D-module M
that is holonomic away from the zero locus of f. Let D, = D(v, d,) and let us define a ring
map

¢:D—>DU T, —>T; , (?]' Haj—vg((?f/(?%)av.
We also denote by ¢ the componentwise extension of ¢ to a map D" — DJ,.

Algorithm 2.2.3. (Localization of D-modules [36])

INpUT: f € K[z] and generators {T1,...,T,} of N C D" such that D" /N is holonomic on
U=K"\V(f).

OuTPUT: ky,...,k, € Nand {Sy,...,S} C D", where D" /D -{Sy,...,Sp} ~ (D"/N)[f™1]
and where the localization map ¢ : D"/N — D"/D-{Sy,..., Sy} is defined by ¢(e;) = friel.

1. Compute {¢(11),...,0(1,)}.

2. Foreachi=1,...,r, compute the b-function b;(s) for integration of D, (e;4+¢(N))/D,-
{6(N),(1—vf)e;} along 9,. That is, find the monic generator b;(s)e; to the intersec-
tion K[vd,le; Niny, (D, - {&(N), (1 —vf)e;}), where w is the weight vector assigning
weight 1 to v, —1 to d,, and 0 to all other variables. Replace vd, by —s — 1.

3. For each i = 1,...,r, let k; be the largest non-negative root of b;(s). If there is no
such root put u; = 0. Otherwise, put u; = v¥e;.

4. Compute the kernel of the map D" — (D} /0, D"+ D, -{ (1~ fv)e;, $(N)}7_,) defined
by sending e; — ;. Let these generators be {Sy,..., S;}.

5. Return {ky,...,k.-} C Nand {Sy,..., S} C D".

We can now formulate the Weyl closure algorithm for finite rank modules, and
give some examples using the implementation in Macaulay 2.

Algorithm 2.2.4. (Weyl closure of finite rank modules)
INpUT: generators {1},...,1,} of N C D" such that D"/N is finite rank.
OuTpuT: G, a generating set for CI(V).

1. Compute a polynomial f € K[x] vanishing on the singular locus of D" /N.
2. Compute the localization map ¢ : (D"/N) — (D" /N)[f~'] using Algorithm 2.2.3.

3. Compute generators G for the kernel of D" 5 (D"/N) - (D7 /N)[f~1].
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4. Return G.

Proof. By Lemma 2.1.6, the non-holonomic locus of M is contained inside the singular
locus of M, hence we may apply Algorithm 2.2.3 to obtain the localization of M at f. By
Theorem 2.2.1, the Weyl closure of NV is the kernel of p o 7. U

Example 2.2.5. The annihilator of el/(#*=v*2") in R is the rank 1 ideal generated by
G = {(z® — y*2?)?0, + 322, (2° — y?2%)?0, — 2y2?, (2° — y?2%)?0, — 2y°2).

Then AnnD(el/(“gs_y2z2)) equals the Weyl closure R -GN D, and using Macaulay 2, we find
that it is generated by the elements G U {yd, — 20,, y*2°0, — %$4EL.—-2$SZEE -2}

i1 : (W = QQ[x,y,z,Dx,Dy,Dz, WeylAlgebra => {x=>Dx, y=>Dy, z=>Dz}];

f = (x73-y72%z72);

I = ideal (£~ 2*Dx+3%x~2, £ 2*Dy-2*y*z~2, £~ 2xDz-2%y 2%z);

ClI = WeylClosure(I))

2 3 2 2 3 2
ol = ideal (y*Dy - z*Dz, y*z Dx + —*x Dy, y z*Dx + -*x Dz,
2 2

i2 : C1I == 1
02 = false
i3 : C1I == I + ideal(y*Dy-z#Dz, y~2*z"3*Dz-(2/3)*x"4*Dx-2*x"3*z*Dz-2)

03 = true

Example 2.2.6. In this example, we see that a Gelfand-Kapranov-Zelevinsky (GKZ) hy-
pergeometric ideal can be Weyl closed for some parameter vectors and not Weyl closed for
others. Under the notation of [40, Section 3.1], we consider the GKZ ideal I = H4(f)
associated to the matrix A and parameter vector § given by,

a=[a13] o=[h]

In Macaulay 2, we type,

i1l : (A = matrix{{1,1,1},{0,1,2}};
I = gkz(A, {0,0}))
2
0ol =ideal D -DD , xD +xD +xD, xD +2xD)
2 13 11 22 33 2 2 33

The singular locus of I is known to be zjz3(23 — 4z125).

i2 : singlocus I
2 2 2
02 = ideal(x x x - 4x x )
123 13
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To compute the Weyl closure, it turns out that the localization map with respect
to the singular locus is computationally too intensive. It is more efficient to compute the
localization maps iteratively with respect to factors of the singular locus and then compose
them together. This is theoretically possible as long as the module is specializable along
the factors. Using Macaulay 2, we find that [ is already Weyl closed:

i3 : (W = ring I;

FO = map(W~1/I, W™1, matrix{{1_W}});
F1 = DlocalizeMap(I, x_272-4*x_1*x_3);
F2 = DlocalizeMap(target F1, x_1);

F3 = DlocalizeMap(target F2, x_3);

ClI = ideal kernel (F3*F2*F1%xF0))
2 22 1 2 2 1 2 3

03 = ideal (- DDD +DD, -#x DD + -*xxDDD + =-«DDD,
123 13 8 213 4 3123 8 123

i4 : ClI ==

o4 = true

Now consider the GKZ ideal I' corresonding to the different parameter vector
B =[-1,-2]". Using Macaulay 2, we now find,

i5 : (I’ = gkz(A, {-1,-2});
W =ring I’;

FO = map(W~1/I’, W1, matrix{{1_W}});
F1 = DlocalizeMap(I’, x_272-4*x_1*x_3);
F2 = DlocalizeMap(target F1, x_1);

F3 = DlocalizeMap(target F2, x_3);
ClI’ = ideal kernel (F3*F2xF1%F0))

1 2 1 22 1 2 2 1 2 N
ideal (- - DD D + -*xD D, -——*xx DD + —-—*x DDD + ...

ob =

3 123 3 13 24 213 12 3123
i6 : ClI’ == I’
06 = false

After some experimentation, we find that the Weyl closure has the extra generator given
below,

i7 : ClI’ == I’ + ideal(x_2"2*%D_1"2-4*x_3"2%D_1*D_3-6*x_3*D_1)
o7 = true

Moreover this extra generator I has the property that z1L € I’ and we can determine its
representation by the original generators

i8 : (L = (x_2"2*%D_1"2-4%x_3"2*D_1*D_3-6*x_3*D_1);
(x_1xL) % I°)
08 =0
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i9 @ (x_1#L) // (gens I’)

09 = {2} | -1x_2"2x_3 |
{2} | x_2"2D_1-4x_3"2D_3-6x_3 I
{2} | -1x_2"2D_1+x_2x_3D_2+2x_3"2D_3+3x_3 |

In other words, we find that we can write,

_56%353(822 — 010s)
L=— +(2301 — 42305 — 623) (61 + 02 + 63 + 1)
U\ H(—2201 + 222302 + 22205 + 323) (09 + 205 + 2)

The question of whether GKZ hypergeometric systems are generically Weyl closed is cur-
rently being investigated by Laura Matusevich.

2.3 General algorithm

In this section we give an algorithm to compute the Weyl closure of an arbitrary
submodule N C D". To obtain the algorithm, we again first identify polynomials f such
that CI(N) = D[f~!]- NN D". Then we develop an algorithm to compute the torsion
submodule HJQ(DT/N) ={L € D"/N : fiIL = 0 for some 7 > 0}. From these ingredients,
the Weyl closure algorithm can be summarized as follows.

Algorithm 2.3.1. (Weyl closure of N C D")
InpuT: {T4,...,T,}, generators of N C D".
OurpuT: {Uy,...,U.} C D", generators of CI(N).

1. Compute a polynomial f such that CI(N) = D[f~!]- NN D" using Algorithm 2.3.3.

2. Compute {Ry,..., Ry} C D" whose images in D"/N generate the torsion module
H?(DT/N) using Algorithm 2.4.3.

3. Return {T%,...,T,, Ry, ..., Rp}.

The first step is thus to identify polynomials f such that CI(N) = D[f~1]-NnDr.
An equivalent way to formulate this statement is to say that f is contained in every nonzero
prime ideal of K[z] which is associated to M = D"/N. When M has finite rank we
were able to show in Section 2.2 that this is the case for f vanishing on the singular
locus. Since the singular locus is the Zariski closure of the projection of the characteristic
variety minus the zero section, this suggests a connection between associated primes and
characteristic varieties. For finitely generated D-modules, we will give such a connection
in Proposition 2.5.4 of Section 2.5. Using it, we can make the following analog to the
singular locus. For i =n,---,2n, let char(M;) be the characteristic variety of the maximal
submodule M; of M with dimension 7. Now let V' be the union of the projections of those
irreducible components of each char(M;) which do not project onto the entire K. Then any
polynomial f vanishing on V will be contained in every nonzero prime ideal of K[z] which is
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associated to M and hence will have the property that CI(N) = D[f~1]- NN D". Note that
when M has finite rank, then by Lemma 2.1.6 the variety V is exactly the singular locus.
We remark however that the variety V is quite intensive to compute as it requires primary
decomposition as well as an algorithm to find the canonical filtration of M by dimension.

Another approach to identifying polynomials f satisfying CI(N) = D[f~!]-NnD"
which is considerably less intensive computationally is to use the following basic fact of D-
module theory (see e.g. [6, Chapter VII, Lemma 9.3]).

Lemma 2.3.2. Let M be a finitely generated D-module. Then there exists f € K[x] such
that M[f~=1] is a free K[x][f~']-module.

Moreover, the polynomial f guaranteed by Lemma 2.3.2 can be computed using
Grobner bases.

Algorithm 2.3.3. (Computing f so that M[f~!] is a free K[x][f~!]-module)
INPUT: a presentation M ~ D" /D -{Ty,...,T,} of a left D-module.
OutpuT: f € K[z] such that M[f~!] is free over K[z][f~!].

1. Put N =D -{Ty,...,T,}. Choose any term order < on R" and compute a Grébner
basis G of R - N with respect to < which also has the property that G C V.

2. For each element g; € G, suppose that the lead term of g; is equal to f;(xz)9%e;,.
3. Return f =T]. f;(=).

Proof. Let S = {(B,i) € N" x N : 8%; ¢ in(R- N)}, and let us denote D[f~']- N
by N[f~!. We claim that D[f~']/N[f~!] = @(ﬁﬂ»)eslﬁ'[a}][f_l]aﬁei, ie. (D"/N)[f7Y is
free as a K[z][f~!]-module. To see this, let G’ be the result of normalizing each element
in G to have lead coefficient 1. Note then that the elements of G’ are also elements of
N[f~". Therefore, for any («,j) ¢ S, then 8%¢; € in(R - N) and (8%¢; mod(N[f~]) is
in @(572')65]([)(][]‘_1]3562' by “reduction”. Therefore 87¢; for (3,i) € S span. Now suppose
there were some relation Y, fi(2)@%e;, € N[f~'] with f; € K[z][f~'] and (ag,iz) € S.
Then by multiplying by a high enough power of f we get a relation ), gx(2)0%%e;, € N
with ¢x € K[z] and (ag,ix) € S. This is a contradiction to the definition of S. It follows
that 8%¢; for (8,1) € S are also independent as required. O

Remark 2.3.4. For the case of finite rank modules, we note that the singular locus provides
a better candidate for Weyl closure than the output of Algorithm 2.3.3. For example, let
I = Dy-{zd —1,0%}. Then Sing(D;/I) = 0, hence D;/I is locally free over K[z] (and
hence free) according to Theorem 2.2.1. On the other hand, the generators {zd — 1, 9%}
form a Grébner basis with respect to any term order, hence Algorithm 2.3.3 always produces
f = z, and we are only allowed to conclude from this that (D;/I)[z~!] is free over K[z, z7!].
However, in this case the module D;/I is already the free module D; @ z = K|[z], only
Algorithm 2.3.3 is not able to detect this.
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2.4 Computing torsion

In this section, we give an algorithm to compute the torsion of a finitely generated
D-module M with respect to a polynomial f, or more generally with respect to an ideal
I C K[z]. This completes the ingredients of Algorithm 2.3.1 for computing the general
Weyl closure.

Our algorithm is a slight extension of Oaku’s algorithm to compute torsion of a
holonomic D-module [32]. Let us start by recalling the theoretical basis for this algorithm.

Theorem 2.4.1. [32] Let M be a left D-module and f € K[z]. Then

Dyt t. Dptt
H?(M) ~ ker ( 7 OK[x] M — J OK[x] M) (4.1)
where Dyq1 := D(t,0y), J is the ideal D1y -{t — f, 0z, + g—gﬁ:@t P yand (Dpgr/J) @ M is
given the structure of a left D,11-module by

zi(L@m)=z,L®m t(L@m)=tL®m
O (L@m) =0, L@m+L®J;m  0(L@m)=0L®m.

Proof. We first observe that D,41/J is free as a K[z]-module with the decomposition
Dyi1/J = @2, K[2]0;; this can be seen from the isomorphism of left D, -modules ¥ :
(Dpt1/Dpy1 - {t,0yy oo o, 05, ) = (Dng1/J) given by sending z; — z;, t — t — f, 0y, —
Oy, + (0f/0x;)0%, and 0y — 0y. It follows that (D,41/J) Orlz) M = @3;0(8;' ®r M). We

now claim that the desired isomorphism (4.1) is given by the map

kerLH?(M) Z@f@miwmo.
=0
To see this, suppose m = Y o0 9 @ m; € (Dypy1/J @ M), where m; = 0 for all but finitely
many ¢. Then
tm = Yi50t0; @m
= Yiol0it —i0;7") @ m
= YiolfOf —i0) @m;
= Y00 @ (fmi— (i4+ 1)miy1).
Therefore, tm = 0 if and only if (14 1)m;11 = fm; for all i, or equivalently m; = (1/4!) fimo
for all 7. Since also m; = 0 for all but finitely many ¢, this last condition also means
fmo = 0 for i > 0, thus establishing that (4.1) is an isomorphism. O

More generally, the complex in (4.1) computes the local cohomology of M with
respect to the principal ideal generated by f. This construction can also be extended to a
complex which computes the local cohomology modules of M with respect to any ideal of
the polynomial ring. We will discuss this construction in Section 2.6.

A presentation of the module (D,41/J) ®k[z M which appears in Theorem 2.4.1
was given by Walther in [51]. Put ¥; = 0, + (0f/02;)0: and for an element P =
dipi(T1, e Tyt Oy Ony Or)ej € Dy, define

P(P) = ij(ml, ces gyt = fi01,.0,0,,01)e; € Dy .
J
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Lemma 2.4.2. [51] Given a presentation M ~ D"/N, then we have the presentation
(Dny1/J) @Kcqa) (D"/N) = Dyy1 /K(N) as left Dyy1-modules, where

K(N) i= Dugr - {(t = £)e;¥jmr + Dugr - $(N).

Proof. Consider the map ¢ : D} 1 —(Dny1/J) @k[z) (D7/N) of left D, 11-modules defined
by ¢(e;) = 1 ® e;. We claim that ¢ is surjective with kernel equal to K(N). To show
surjectivity, note that (D,41/J) @[ (D"/N) is spanned as a K-vector space by the images
of “monomials” 9} ® ava(?fej. A computation shows ¢(0iz%9%) = 9iz°9’ e (1 ® €;) =
! ® xa(?fej and therefore ¢ is surjective.

To determine the kernel of ¢, a computation shows that K (N) C ker(¢). To obtain
the opposite inclusion, let m be an arbitrary element of ker(¢). Note that the subalgebras
K(z,0,0;) and K(z,9,0;) are equal. Thus modulo the relations {(t — f)e;}7_;, we can
write m = 3" ¢;;050i2%9€;. Since m € ker(s), this implies ¢(m) = > (cijapdiz®9°) o (1®
€;) = Y 0f @ cijupr®8ye; = 0in (Dng1/J) @kpz] (D7/N). Recall that Dyyq/J is free as a
K[z]-module with basis {0i}, and therefore we must have ONVY Ciiapr®0s e; € N for all
i. It follows that 3" ¢;j030;2°9%€; € Dyyy - %(N) and hence m € K(N). O

Now we may give an adapted version of Oaku’s torsion algorithm by combining
and extending the techniques of [32], [33], and [51]. The algorithm computes torsion for
an arbitrary finitely generated D-module. One ingredient of the algorithm and its proof
is the notion of V-filtration and V-adapted resolution. We explain these notions in the
Appendix, where they play a role more generally for the restriction algorithm. For the
reader’s convenience, we recall the definitions here as well. The V -filtration Fy of a shifted
free module D], [m] with respect to the hyperplane Y = {t = 0} is defined by

Fy (D, []) = Spang {2 8°t0fe; 1 a, 3 € N,k — j < my + i}

A free resolution X* of the form,

a o Yi+1 -
X°- ”‘_>D:;J_|‘_|'11|imj+1] AR D;J_l_l[mj] —_—

is said to be V-adapted if
Vi (B (D [41])) C By (D) [5]))

for all ¢ and all j, and if a resolution is also induced on the level of associated graded

modules,

gr(;41)

gr(X®) oo — gr(DIH [ij4a)) gr(Dy [g]) — -+

The b-function of a module Dj /N with respect to the V-filtration Fy is the monic
polynomial b(s) € K[s] of least degree such that 6(6)grg(D},,,/P) = 0 where 6 = t0;.

Algorithm 2.4.3. (Torsion module H9(M))
INPUT: a presentation M ~ D" /D -{Ty,...,T,} of a left D-module.
OutpuT: {Ry,..., Ry} C D" whose images in M ~ D" /D -{Ty,...,T,} generate HJ?(M)
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1. Compute the generators {t — f,¥(T1),...,9¥(T,)} of K(N).

2. Compute a Grobner basis G = {¢1,...,9s} of K(N) with respect to the weight vector
(—w,w) where w = (0,...,0,1). (Here (—w,w) gives the elements {te;}’_, weight
—1, the elements {Jre;}"_; weight 1, and the elements {z;e;, 0;e;}; ; weight 0). Note
that G generates gr(K (/N)) with respect to the induced V-filtration.

3. Compute d € Z such that grey (D), /K(N)) N gri(D} /K (N)) is injective for
k > d. If D"/N is holonomic, then d can be taken to be the maximum integer root
of the b-function b(s) of D) ,/K(N) with respect to V-filtration. If D"/N is not
holonomic, then use Algorithm 2.4.5.

4. Let ¢g : D3 [1] — D7 _,[0] be the map of (filtered) left D,,41-modules (with respect
to the V-filtration Iy ) defined by sending e; — g;, and where m € Z” is such that
m; equals the (—w,w)-weight of g;. Express the map ¢g : Fi(A*[]) — FL(AT[0))
induced by ¢¢g as a map of finitely generated D-modules, where A := (D,,41/t- Dyy1).

5. Compute elements {F; = 377_; Pije;Y_, C D: .| whose images in F}" (A"[0]) generate
the kernel of ag-

6. Compute elements {Q;}°_, C Dy, .| such that tQ; = 2521 P;;g; for all 1.

7. Reduce each @Q; modulo D, 11 - {(t — f)e;}i_; to an element Q} € K[z, 0y, 0:]. Let
R; € D" be the element obtained by substituting d; =0 in Q.

8. Return {Ry,..., Ry}.

Proof. Let the kernel of (D} ,/K(N)) N (D}, 41/K(N)) be denoted by W. From The-
orem 2.4.1 and Lemma 2.4.2 and using the notation there, we have that H}(D"/N) =

o ¢(W). Step 3 implies that W C F( ZH[—T]/K(N)). To see why d may be taken to
be the maximum integer root of b(s) when D" /N is holonomic, note that D"*!/K(N) is
also holonomic, hence b(s) # 0. By definition b(6; 4 k) - gry(D},,,/K(N)) = 0. To show
injectivity, suppose m € gry (D, /K(N)) with tm = 0. Then 0 = b(6; + k 4+ 1)m =
b(0st + k)m = b(k)m. Thus if k > d, then b(k) # 0 and m = 0.

Let now X* be a V-adapted free resolution of D] _,/K(N) extending the map ¢g

of Step 4, and let Z* denote the complex 0 — D:L+1[_T] Ly D}y — 0. Then the total
complex of X*®p,,,, Z* is quasi-isomorphic to both A®p,, ., X* and Z*®p,,,, (D}, ,/K(N)).
Moreover, these quasi-isomorphisms induce quasi-isomorphisms on the graded level with
respect to the V-filtration Fy . Since the kernel W, which is the —1-th cohomology of
Z* ®p,,, (Dhy1/K(N)), is contained in Fi( ;H[—T]/K(N)), therefore also the —1-th
cohomology of A ®p,,, X* may be generated by cycles in F2(A*[ni]), or in other words by
the kernel of ¢g.

Note that the maps in A ®p,,, X* are maps of left D-modules, and moreover
since Ff(A) = @F oD - 9}, both the source and target of ¢; are free D-modules of finite
rank. Thus the kernel of ¢; can be computed in Step 5 by Grobner bases. The cycles
{P;}_, can now be lifted to cycles {P; & Q;}_, which generate the —1-th cohomology of
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Tot*(X* ®p Z*). These are in turn projected to cycles {Q,}_, which generate the kernel
W, which is the process of Step 6.

Finally, for each @;, we need to compute ¢ o ¢(Q,). To do this, we can as-
sume that ; is reduced modulo D41 - {(t — f)e;}i_;. Now we should express Q; in
the form @Q; = Ejkaﬁcijkagmaﬁﬁ(?fej. Then ¢(Q,) = ijaﬁ oF ® cijkaga:aﬁgej and @ o
#(Q;) = EjOaﬁ Cijocyﬁzca@gej. Note however that given the standard expression @; =
Eﬂmﬁ cgjkaﬁia(?g@fej, then C,’imaﬁ = ¢jjoap. Thus it suffices to substitute d; = 0 in @;
to get ¢ 0 ¢(Q);), as we do in Step 7. O

To achieve Step 3 of Algorithm 2.4.3 when D”/N is not holonomic, we shall use
the following proposition.

Proposition 2.4.4. Let B C D}, be a left submodule, let w = (0,...,0,1), and let H =
in(_w,wy(B) N D[6;]" where 6; = t0;. If (H : 0; — k) = H, then the map gry (D}, ,,/B) 4
gr,(Dy 41/ B) is injective. Moreover, for any left D[0;]-submodule H' C D[6;]", the condition
(H": 0, — k) = H' is generic.

Proof. We shall prove the contrapositive, that is, if there exists a nonzero element T €
ker(gry, (D}, ,,/B) 4 gry (D, 1/B)), then (H : 6; — k) # H. So assume the existence of
T. Then T lifts to a (—w,w)-homogeneous element 7" € D] ., of weight k£ + 1 such that
T ¢ in(_w@) (B) while tT" € in(_wﬂﬂ)(B).

Assume now that & > 0. The argument is similar for £ < 0 by interchanging
the roles of t and d;. We can now write 77 = 9" P where P € D[#,]". Then t*+'7" =
;- (6; — k)P € H. We shall now show t*0fP = 6,---(6, — k + 1)P ¢ in(Zuw,w)(B),
which proves that (H : 8, — k) # H. In fact, we claim that #0/P ¢ in () (B) for all
0 < i< j<k. This is true for all j when i = 0 because T' = (?tk'HP ¢ in(_w,w)(B) by
assumption. For general (¢, ) with ¢ > 1, we argue by contradiction. If ti(?fP € in(_wwy(B),
then (B 4k —j+i)--- (0 +k—j+ 1P = 0F 7T 9l P € in(_w,w)(B). We also know
that 6,0fP = t0fT'P € in(_y,)(B). Since 8 and (6 +k — j + 1) -~ (6 + k — j + 1)
are relatively prime, this implies OFP € in(_w,w)(B), which contradicts the assumption
OFT' P ¢ in(_y.0)(B).

To prove the statement about submodules H' C D[#;]", let F' denote the standard
good filtration of D[#;]" coming from the order filtration of D[6,], where 6; gets order 0. For
each k € Z such that (H' : §; — k) # H, there exists an element 7} ¢ H’ such that (8; —
k)T), € H'. We can further assume that in( .y (T%) € ine)(H') while (8; — k)in(o ) (T%) €
ing,e)(H'). In other words, there is a nonzero element of K[z,&s,0]"/ing.)(H) having
torsion with respect to (6; — k). Since K[z, &z, 0]"/in(g)(H') is finitely generated over the
polynomial ring K[z,&z, 0], this can only occur for finitely many integers k by primary
decomposition. O

We can now make Proposition 2.4.4 algorithmic.

Algorithm 2.4.5. (Injectivity of gry, (D}, ,/B) 5 gri(D;1/B))
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INPUT: generators {S1,...,5,} of BC Dj;.
Ourput: d € Z with gry (D, ,/B) 4 gr, (D), 41/ B) injective for all £ > d.

1. Compute (—w,w)-homogeneous generators {Ly,..., Ly} C D], of the initial ideal
in(_y,w)(B) where w = (0,...,0,1). Let d; be the (—w, w)-weight of L;, and let H
be the left D[#;]-submodule of D[#;]" generated by {¢i L1, ...,(.L.} where ¢; = t% if
d; >0 and ¢; = 8% if d; < 0.

2. Compute generators {hy, ..., h.} C K[z, §,60;]" of in(g.)(H) where (0, ¢) is the weight

vector giving the element 2d°fe; weight |3].

3. Compute a Grébner basis G = {g1,...,g.} of the K(X)[z, &, 0;, s]-module generated
by {(1 — s)h;,s(0: — Nej}i; C K(X)[=,&, 0, 5]" using any elimination order having
{sei}i_; > {zej, &ej, 0:e;};_,. In the process of computing G, keep all computations
in K[A], that is never perform any division in the field K(\) but rather cross-multiply
lead coefficients in forming S-pairs.

4. Compute the greatest integer root d which occurs in any of the leading coefficients

pi(A) of g;.
5. Return d.

Proof. The submodule H computed in Step 1 is the intersection H = in(_,,.,)(B) N D[6;]".
Step 2 computes in)(H). By the proof of Proposition 2.4.4, if (inqc)(H) : 0 — k) =
ing,ey(H), then (H : 6; — k) = H, which implies by the same proposition that the map
grp1(D) 41/ B) L gri(Dy 1/ B) is injective. So we are reduced to analyzing the condition
(ino,e)(H) : ;—k) = in(g ) (H). Step 3 is a Grobner basis method to compute the saturation
(in(o,e)(H) : 0: — k) (see e.g. [16]). Namely, put P = {g/(6: = A) : g € G N K(A\)[z, &z, 0]}
Then P is a Grébner basis for the saturation (in ) (H) : 6; — A). Moreover, since in(q . (H)
is defined over K, it follows that (inq.)(H) : 6; — A) = in(H). Now suppose that
pi(Xo) # 0 for all i. Then the leading monomials of G|y, are the same as those of
G, and hence a straightening relation for any S-pair of G|y, can be obtained from the
straightening relation of the corresponding S-pair of G by substitution A — Ag. It follows
that G|\, remains a Grobner basis for the submodule it generates. Put Py, = {g/(6; —
Ao) 1 g € Gaoa, N K[z, &z,0¢]}. Then Py, is now a Grébner basis for the saturation
(ino,ey(H) : 8; — Ao). Note also that Py, = P|rx, because the lead term of any element in
G \ P contains s and has lead coefficient p(A) with p(Ag) # 0. Therefore P,, also remains
a Grobner basis for ing ) (H), hence (in ¢y (H) : 6; — Ao) = in(g ) (H). This establishes the
validity of the integer d of Step 4 and completes the proof. U

This completes the algorithm for computing torsion modules HJQ(M) of an ar-
bitrary D-module M with respect to a polynomial f. By intersecting, we may similarly
compute torsion modules with respect to arbitray ideals I C K[z].

Algorithm 2.4.6. (Torsion module HY(M))
INPUT: a presentation M ~ D" /D -{Ty,...,T,} and generators {f,..., fi} of I C K[z].
OuTpPuT: {Ry,..., Ry} C D" whose images in M ~ D"/D -{T\,...,T,} generate H?(M).
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1. Compute the torsion submodules Hy, (M) C M using Algorithm 2.4.3.
2. Compute the intersection of all Hy, (M) using Grébner bases.

3. Return generators of the intersection.

Remark 2.4.7. Algorithm 2.4.5 combined with Steps 2 to 6 of Algorithm 2.4.3 computes
the kernel of the map M s M where M is any finitely generated left D, i-module.
This kernel is equivalently the 1-th restriction module of M to the hyperplane ¢t = 0. By
computing intersections as in Algorithm 2.4.6, we can similarly compute the ¢-th restriction
of M to any codimension 7 subspace.

Remark 2.4.8. Both Algorithm 2.4.3 and Algorithm 2.4.5 have yet to be implemented in
Macaulay 2. The applications of computing torsion of D-modules which are not finite rank
are not yet clear.

2.5 Associated primes of D-modules

In this section, we give an algorithm to find the prime ideals of the polynomial
ring K[z1,...,2,] which are associated to a D-module M. For instance, this might be
interesting for finding the associated primes of a local cohomology module Hy (K [z]) where
I is an ideal of K[z]. The algorithm is based upon the following basic fact in D-module
theory.

Lemma 2.5.1. Let K = C. The support of a D-module M is equal to the projection
m(char(M)) of its characteristic variety.

Algorithm 2.5.2. (Associated primes of a D-module)
INPUT: a presentation M ~ D" /D -{Ty,...,T,} of a left D-module.
OuTPUT: prime ideals of K[z] associated to M.

1. Compute the characteristic module in(g () (N) C K[z, £]" of N.
2. Compute a primary decomposition of K[z, £]"/ing ) (N).

3. For each prime ¢ C Kz, &] associated to the characteristic module, compute the
intersection p, = ¢ N K[z].

4. Compute ng(M) using Algorithm 2.4.6, and collect the set P of primes p, such that
m(char(Hy, (M))) =V (p,).

5. Return P.

Proof. Suppose the ideal p C KJ[z] is associated to M. Then there exists m € M whose
annihilator is annK[m](m) = p. Similarly, every element of D -m C M is annihilated by
some power of p. In other words, the support of the submodule D - m is equal to V(p),
hence by Lemma 2.5.1 the projection 7(char(D - m)) of the characteristic variety of D - m
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is also equal to V/(p). This means that gr(y .)(D - m) contains an associated prime ¢ whose
intersection p, = ¢ N K[z] equals p. Now the exact sequence

0—-D-m—>M-—=>M/D-m—20
leads to an exact sequence of associated graded modules,
0— gr(oﬁ) (D . m) — gr(O,e) (M) — gl‘(O,e) (M/D . m) — 0.

It follows that the associated primes of grg (D - m) as a K[z,{]-module are contained
inside the associated primes of gr(oﬁ)(M). Thus by computing the associated primes of
gr(oﬁ)(M) in Step 3, we produce the prime g. O

From the theoretical point of view, the candidates for associated primes are related
to irreducible components of various characteristic varieties. For instance, the singular locus
can be regarded as the union of the projections of all irreducible components of char(M)
except for the irreducible component corresponding to the zero section of the cotangent
bundle (if it occurs). The general relationship follows from work of Kashiwara [26] and
more recently Smith [42] on the relation between submodules and irreducible components
of the characteristic variety.

Theorem 2.5.3. (Smith [42]) If M is a finitely generated D-module whose nonzero submod-
ules all have dimension > p, then every irreducible component of the characteristic variety
of M also has dimension > p.

The following description of associated primes is a direct consequence of Theo-
rem 2.5.3.

Proposition 2.5.4. Let M be a finitely generated D-module. For i from n to 2n—1 let M;
be the mazimal submodule of M of dimension i, and let {p;;}; C K[z1,...,2n,&1, ..., &)
be the collection of prime ideals corresponding to the dimension @ irreducible components of
the characteristic variety of M;. Then the associated primes of M are contained in the set
of prime ideals {p;; " K[z1,...,2,]} ;.

Proof. Suppose that a prime ideal p C K[z] is associated to M. Then there is an element
m € M such that anngz(m) = p. Again, by Lemma 2.5.1 the projection 7 (char(D -m)) of
the characteristic variety of D -m equals V (p), thus there is a component ¢ which projects
onto V' (p). Let ¢ be the dimension of this component, and consider the maximum submodule
(D -m); of D-m of dimension i. We have an exact sequence,
0= (D-m);—D-m— D%m—w
(D -m);

so that char(D - m) = char((D - m);) U char(D - m/(D - m);). Moreover, D-m/(D -m);
contains no submodules of dimension < 7, hence the components of its characteristic variety
are all strictly bigger than 7. It follows that ¢ is a component of (D -m);. Now consider the
maximum submodule M; of M of dimension i so that (D-m); C M;. Since the characteristic
variety of M; has dimension 7 and char(M;) = char((D - m);) U char(M;/(D - m);), we see
that ( is also a component of the characteristic variety of M,;. O
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Corollary 2.5.5. Let M be a holonomic D-module. Then the associated primes of M are
contained in the set of prime ideals corresponding to the projections of irreducible compo-
nents of the characteristic variety of M.

Example 2.5.6. Consider again the holonomic module M = Dy/Do{x101, 2201, 2205 + 1}
of Remark 2.2.2. Its characteristic variety is equal to

Vi(z1&r, 2261, 2282) = V(&1,&) UV (&, 22) UV (21, 29)

It follows that the associated primes are contained in the set of prime ideals {(z3), (21, z2)}.
In this case, (z1, z2) is the annihilator of d; and is the only prime ideal of K[z, ] associated
to M.

Remark 2.5.7. Algorithm 2.5.2 has yet to be implemented in Macaulay 2, even for the
case of holonomic D-modules. It would be interesting to have this algorithm available, for
instance to investigate the associated primes of local cohomology modules. Mustata has
given an example based upon [29] where a local cohomology module of the polynomial ring
with respect to a monomial ideal has an embedded associated prime [30]. This example
suggests that local cohomology modules can have mysterious structures.

We also remark that Proposition 2.5.4 can be made algorithmic as well. The first
step is to compute the canonical filtration M,, C M,4+1 C --- C M, which can be achieved
in principle by an implementation of the dualizing complex methods of [7, Chapter 2]. This
would make an interesting project in computational homological algebra.

2.6 Local cohomology

In Section 2.4, we realized the f-torsion of a finitely generated D-module M as
the cohomology of a complex of finitely generated D,,;1-modules (Theorem 4.1). In this
section, we discuss an extension of this construction to computing local cohomology due to
Oaku and Takayama [33]. The complex which they use has also been studied by Adolphson
and Sperber [1]. We will bring together these points of view here.

Let S = K[z1,...,z,] denote the polynomial ring and I = (f1,...,fs) C S an
ideal. By definition, Hj(—) is the i-th derived functor in the category of S-modules of the
left exact functor for torsion,

HY(M) = {m e M : I*m =0 for some k > 0}.

The usual method to realize the local cohomology modules is via the Cech complex,
which we now describe. Let C*(f;) denote the complex of S-modules 0 — S — S[%] —+ 0

where the map is defined by sending 1 — % Then H}(M) is the ¢-th cohomology module
of the Cech complex C*(M; f1,..., f1) := ®?:1 C*(f;) ® M, where the tensor products are
all over S. When M is a holonomic D-module, the Cech complex is additionally a complex
of holonomic D-modules. In this situation, Walther has given an algorithm to compute
presentations of the cohomology modules as D-modules [51].

In [33], Oaku and Takayama introduce another complex, which we shall call the
twisted Koszul complex, to compute local cohomology. They prove the following theorem,
which specializes to Theorem 4.1 of Section 5 when ¢ = 0 and d = 1.
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Theorem 2.6.1. (Oaku-Takayama [33]) Let M be a holonomic D-module. Then for any
1 > 0, we have an isomorphism of left D-modules,

Hi(M) = g~ ((@ O Ka] M)° ) (6.2)

{t1:~~~:td:0}

where D, 44 denotes the (n + d)th Weyl algebra D(ty,...,tq,0,,...,0:,), where the right
hand side denotes the (i—d)-th derived restriction module of the D, q-module (D, 4q/J)QM
to the subspace {t; = ---=t45 = 0}, and where

d
0 ) .
J = Dpya-{t; = fi(2), 00, + > aﬁffatkll <j<d1<i<n},
k=1 ¢

Oaku and Takayama also provide in [33] an algorithm to compute the cohomology
modules of a derived restriction complex, thus obtaining another algorithm to compute
local cohomology of holonomic D-modules. The proof of Theorem 2.6.1 in [33] consists of
an elegant equivalence in the derived category based upon ideas of Kashiwara [27]. On
the other hand, a proof “in coordinates” follows from an earlier paper of Adolphson and
Sperber [1], who consider the complex of Theorem 2.6.1 on the level of S-modules and
establish a quasi-isomorphism to the Cech complex. More generally, Adolphson and Sperber
make a similar construction of a twisted Koszul complex for A-modules M, where A is a
commutative ring with identity. In trying to understand Oaku and Takayama’s algorithm,
we also arrived at a proof “in coordinates” which is essentially the same as the proof of
Adolphson and Sperber. We shall provide an exposition here which brings together the
work of Qaku and Takayama and the work of Adolphson and Sperber. We also give a
presentation of D, yq/J @ M following [51], which facilitates the algorithmic computation
of (6.2).

Let us first describe the twisted Koszul complex T*(M; fi, ..., f4) on the level of
S-modules where M is an S-module and fi,..., f; € S. We will return to the D-module
structure and Theorem 2.6.1 afterwards. Let S[t] := S[ty, ..., %]

Definition 2.6.2. The twisted Koszul module M[dy,, .. .,atd]{fl"“’fd} of an S-module M
with respect to the polynomials fi,..., f; € S is the S[t]-module,

M0y, ..., 0 )Vt = M @k K[y, ..., 01)) = @,enaM 7,
where the action of S[t] is as follows:

;e (my ®0)) =ax,my @07
Oz—e]

t;o(my®07) = fim, @0 —a;m® 0, .
We will usually suppress notation and write M[d;] when fy,..., fq are clear.

Definition 2.6.3. The twisted Koszul complex of an S-module M with respect to the poly-
nomials fi,..., fa € S is the Koszul complex T*(M; fi1, ..., fa) = K*(M[d;t1,. .., tq).
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Let us consider the 0-th cohomology of the twisted Koszul complex. It equals

HOT*) = {=Ym.®0c M[3]|t;m=0%¥j=1,... d}
= {m| X, fima® 0} —ajm, @03, 7 =0V}
= {m | X (fima = (o + )maqe;) ® 07 = 0 Y5}
= {m| fima = (aj + 1)maqe; Yo, Vj}
= A | mo = (1/ad) f7" - f4mg Yo}

Since m, = 0 for all but finitely many «, the last line implies also that f]Nma =0 for N
sufficiently large for all j. It follows that the map ¢° : M[0;] — M sending 77 mg induces

an isomorphism H°(T*) = HY(M).

Theorem 2.6.4. (Adolphson-Sperber [1]) The map ¢° extends to a quasi-isomorphism,
e T (M fr, . fa) = O (M5 fr, - fa)

between the twisted Koszul complex and the Cech complez,

T°:0 M0 — P M[o)e — P Mo)e;— - —M[D))E..a— 0
1<i<d 1<i<j<d

®o ©1 l ®2 l ®3

1<i<d 1<i<5<d

is defined by, o
@'t M[04)€y i, = M[+—2]

filmfis
!
a.m
ay > o
DR ZCNPRURED o e L
o o ;=0 for fZ fzs
1€ (21,00005)

Proof. The twisted Koszul module M{[d;] has increasing S[t]-submodules,
M[at]k = @{aeNd:al,...,adSk}M ® 81‘0[

Since M[0;] = U2 M [0k, the twisted Koszul complex is the limit of its subcomplexes,
lim_, K*(M[0k;t1,...,tq), where the maps

W8 K (M[Okitr, - o ta) — K (M[0ks1it1, . .-, La)

are induced from the inclusions M[0;]x < M[0¢|x+1. Similarly, the Cech complex can be

defined as the limit of Koszul complexes, lim_, K*(M, f1k+1, ey 5“), where the maps
. 'I(. M: k+1 k+1 I(o M: k+2 k42
Y KO (MG ) = K (MG A )
(fiy fis)-

are induced from the maps Mé;,....,  —  Mé;, ...
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Let us now construct a family of chain-maps ¢} between the above sub-complexes
K*(M[0]k;t1,...,tq) and the Koszul complexes K'(M;ff“, .. .,f(f“). Define ¢} =
& _ops by @+ M[0:]r, — M where ‘P%(Z{a anyag<k} (Ma ® 07)) = mg, and for s > 1,

s fpeeis Qpeeis . — -
@Z = @ gokl , gokl : M[@t]keil...is — Meilmis
0<i1<-<is<d

- k— 2 — Qg -
Z (ma ® 8?)62'1...2'5 — Z (a!fil G fZ « ’ma)eil...is-

{o : a1,...,aq<k} {aé(a'i:o fo)r }
TE (01 ,eenris

A computation shows that ¢}, , o} = 75, o ¢}, so that the family of chain
maps {¢p} forms a map of towers of complexes. We will next show that ¢} is also a
quasi-isomorphism. Since (see e.g. [54] for the first equality),

Hy(M) = lim,, HI(K*(M; ff*, ... i)
= lim%HZ(I(.(M[at]k;th"'7td))
= HY(K*(M[d:];t1,...,td)),

it would then follow that the twisted Koszul complex computes local cohomology and also

that ¢® is a quasi-isomorphism. So it only remains to prove the following claim. U
Claim 2.6.5. ¢} : K*(M[0i;t1,...,tq) — I&"(ZW;fIk‘H7 e, 5“) is a chain map quasi-
isomorphism.

Proof. One checks by a computation that ¢* is a chain map. To prove that ¢* is a quasi-
isomorphism, we induct on the length d 4+ 1 of the twisted Koszul complex. The base case
d =1 is outlined by Oaku in [32].

Base case. For d = 1, we are to show that the following chain map is a quasi-isomorphism,

0 — M[0]s —2 M[0y]) — 0

k ek
k41,
0— M—"—> M, —0
where the maps are
k . k Lk
o e o

D ai®a;, v ag Y hi@a; 5 il
=0 =0 =0

We have already seen that ¢) induces an isomorphism on the level of homology, so we are
left to show that ¢} does as well.

For surjectivity of 992' on thg level of homology, suppose m € M such that ff
0. Then the element Ele $fim®0; € M[d]y is in the kernel of [t;-] and maps ynder ©9 to
m. For injectivity of ¢} on the level of homology, suppose that @ = Ele a; ® 04, € ker[t;-].

=
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Then t1d = Ef (i — (i 4 Daiy1) @ 9, =0, or a; = %ag for all i. Thus if ©(@) = ag =0,
then @ = 0.

For surjectivity of ¢} on the level of homology, given m € M, the element m ® (91{“1
maps under ¢} to m. For injectivity of ¢} on the level of homology, let b= Zf:o bi®8§1, and
suppose that gollc(g) € im[fFF1]. This means there exists m € M such that Zfzoi!flk_ibi =

5+1m. We wish to show that b € im[t]. Set ag = 0, and inductively set a; = w
for 1 < ¢ < k. Then,
1 1 z'fk Zb K+l
flak:_%flbk—1+zf12(lk—1: :—Z 1 lk!
Now let @ = Efzo a; @ (9,?1. It follows that,
k kel ’ k-1 ' .

ha=3 (fiei=(i+Daip) 00, =3 b @, + fien®h =3 b @9, - T—.

=0 =0 i=0 :

Finally, set d =a+ Ef:o fim ® 3;1 so that t1a’ = g, as desired.

7!
General case. The key tool for the induction step is a certain long exact sequence of
Koszul complexes. In particular, consider the following three double complexes:
1. Rows are the Koszul complex K*(M[04]4%;t1,...,t4—1) and columns are induced by
the multiplication map tq : M[0¢|qr — M[0¢]ak, where M[0¢]4 % denotes the twisted
Koszul module (M[dy,,...,d;,]t/1-fab),

0 —M[di]ap — M[D]]; — -+ —M[D]ar— 0
ty ty ty

0 —>M[8t]d7k — M[@t]gfkl—> —>M[at]d,k—> 0,

2. Rows are the Koszul complex K*(M[0]4—1k;t1,...,ts—1) and columns are induced
by the multiplication map fk+1 t M[0t]a—1,6 = M[0¢]a—1,k, where M[0¢]4_1 5 denotes
the twisted Koszul module (M[d;,, ..., JWimfady,.

0—>M[3]d 1,k —* M[@]d lk—>"'—>M[8t]d—1,k—>O

k+1 k+1 k+1
£t £t £t

0 — M0 a1 — M)} j— -+ —M[D] a1 s— 0,
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3. Rows are the Koszul complex K*(M; fk'H, ey 51'11) and columns are induced by the
multiplication map fk‘H M- M,

0— M—M¥7' ... 5 M —0

E+1 E+1 E+1
£t 15 £t

... — M —0,

The Koszul complexes K*(M[0]x;t1,...,tq) and K*(M,; fk‘H, .. k‘H) can be
identified with the total complexes of the double complexes (1) and (3 ) To complete
the induction step, we construct maps of double complexes p*® from (1) to (2) and v**
from (2) to (3) such that on the level of total complexes, Tot(x*®) and Tot(v*®) are quasi-
isomorphisms and ¢} = Tot(u*®) o Tot(v**).

To define p**, note that My = (Md—l,k[atd]{fd})k- Thus by the base case (d = 1)
applied to M4_; ; and the polynomial f;, we get a chain map quasi-isomorphism

g o K (Maoy 1[0 ]k; ta) — K*(Ma—1; f57)

k . 0 .
S a4 @0, 5 ag Zb © ;i & Zz"fc’;‘lbi.
=0 1=0
Since the columns of the double complexes (1) and (2) are copies of the Koszul complexes
K®(Mg_1,%[0¢,]k; tq) and K®(Mg_q x; f!;“) respectively, u7 induces a map of double com-
plexes p*® from (1) to (2). To define v**, we use the chain maps,

1/]: . I(.(Md_17k;t17...7td_1) (M fk+1,..., C];j_ll),

which are quasi-isomorphisms by induction. Then using v} for both the top and bottom
rows defines a map of double complexes v*® between (2) and (3).

To show that u®® and v*® are quasi-isomorphisms, we can use the long-exact se-
quence of Koszul complexes coming from the row-filtration spectral sequence of (1), (2), or
(3). Namely, these are long exact sequences of the form,

coo HITHPL)) = HY (NG = H(SE) — HTH(PE) = -

where Ny are the induced complexes at the top row of j = (1), (2), or (3) on the cohomology
of the column maps, P'j are similarly the induced complexes at the bottom row on the
cohomology of the column maps, and S('j) are the total complexes. In particular, we have

() NGy oy

(1) (* (ker(Md ko td) tl, RN td—l) K* (Cok(]\f,juC : td); tl, RN td—l)
(2) A.(kel(Md 1,k - fd ) tl,...,td_l) Y.(COk(Md 1,k * fd ) tl,...,td_l)
(3) K*(ker(M : ka) k‘H, cen, 5j11) K*(cok(M : fk‘H) k‘H, e, 5j11)
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Since uj is a quasi-isomorphism, it induces isomorphisms
ker (Mg ks ta) = ker(My_y x; fi+! k(Mg ;ta) = cok(My_x; f5+!
er(Myr;tq) = ker(Mg_1x; f;7)  cok(Mgpr;ta) = cok(Mg_q1x; 7).
It follows that p*® induces quasi-isomorphisms,

K'(ker(MM : td);tl, .. -atd—l) i} (kel‘(Md 1,k * fd ) t1, .. '7td—1)

~

I(.(COI((ZW,;“C : td);tl, .. '7td—1) — (COk(Md 1,k * fd ) t1, .. -atd—l)

Similarly, a quick computation shows,
ker(Md—l,k fk-{-l) _ ker(M fk+1)[at17 . 8td_1]{f1,...,fd_1}

cok(My_rx : fE+1) = cok(M; [0y, . .., By, JUrTamr),

Hence v** induces chain maps having the form ¢}, which are quasi-isomorphisms by induc-
tion,

K*(ker(Mg_q % : f;;"'l); t1yoeytd—1) = K*(ker(M : fk‘H) k'H, e, C]ﬁ'll

~

K*(cok(Mg_1 1 : f!;“);tl, coytam1) — K*(cok(M : fk‘H) k‘H, e, 5f11)

Thus, p** and v**® induce isomorphisms
HY(N(y) — H(NY))  HU(Ph) = H(PY)

HZ'(N(;)) =5 HZ'(N;Q)) H"(P( ) =5 HZ(P( )

From the long exact sequence and the five-lemma, we conclude that Tot(u*®) and Tot(v**)
are quasi-isomorphisms. Thus, the composition Tot(u**) o Tot(v*®) is a quasi-isomorphism,
and a computation shows that it equals ¢}. O

Remark 2.6.6. There is a chain-map quasi-isomorphism
Pp s KM o ) o K(M[0; fEFY . fR)

in the opposite direction from ¢* defined by,

1 [0} (o3 o)
Yi(m) = Z all---ddm@)@t

{o1,...,0q<k}

y 21-.-2'5 (mgzlzs) — Z H f )m® aae“ i

{ oz:oz<kV2 }zgzl, i)
a;=k for 1€(%1,...,8s)

However, these maps do not agree for increasing &, and hence do not define a map in the

opposite direction from the Cech complex to the twisted Koszul complex.

Now suppose M is a D-module, and let D, 4q = D(ty,...,t4,04,...,0:,). Then
Oaku and Takayama define a D,,;4-module structure on M[d;] as follows.



CHAPTER 2. WEYL CLOSURE, TORSION, AND LOCAL COHOMOLOGY 64

Definition 2.6.7. Let M be a D-module. Then the twisted Koszul module M[0;] of M with
respect to f1,..., fqa has a D,i4-module structure given by

;e (my ®0) =ax,my @0

t; o (mg ®07) = fimy, ®07 —o;m® (?ta_ej
Dy, ® (Mo @ OF) = Dimy @ 07 + Y1, 50my @ 0%
D, @ (Mo @07) =my @0,

Lemma 2.6.8. If M is a D-module, then the twisted Koszul module M[0;] of M with
respect to fi,. .., fg is isomorphic as D,y q-module to (Dpyq/J) @g[o) M, where J = Dy yq-

i 8
{t; =[5 0n, + 22524 a_gat]}lgjgd,lgign

Proof. Given an element 07 @ m € (Dypq4/J) ®@py) M, we have

r,e (07 @m) = z00@m

0y ® x;m

0,07 @m + 07 @ 0y, m

07 (= g0 5200) @ im + 0 @ D
= - 2?21 8ta+e] ® g—gm + 07 ® 0y;m
t]'(?? ® m

oft; @m — ozj(??_e] Qm

0@ fim—a;0, "7 @m

o @m,

O, @ (07 @ m)

t]'O ((9?@772)

0, » (07 ©m)

This agrees with the previously defined D, 4-structure of the twisted Koszul module. More-
over, the map of left D, 4-modules

; Dn d Dn+d
K[x][0] = . —
[X][ t] Dn+d'{t17"'7td7arl7"'78rn} J
i Oy Oy ity — fi(z) Op v O + %@J
j=1 7"
is an isomorphism, so that % Orpg M = K[x][0] g M = K[0] @ M. O

The maps in the twisted Koszul complex are maps of D-modules although not
maps of D, 4s-modules. Moreover, a quick computation shows that ¢* is a chain map of
D-modules.

Proposition 2.6.9. The chain map ¢* : T*(M;ty,...,tq) — C*(M; f1,..., f1) is a quasi-
isomorphism of complexes of D-modules.

We now give a presentation of the twisted Koszul module M{[d;] in terms of a pre-
sentation of M by extending Lemma 2.4.2. As corollaries, we see that if M is finitely gener-
ated as a D-module, then M[0;] is finitely generated as a D,,44-module. Similarly, if M is
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holonomic, then M[d;] is holonomic. Asin Section 2.4, redefine ¥; = 0, —I—X:;l:1 (0f;/0z;)0,
and put

¢(P) = ij(:cl,...,xn,tl —fl,...,td—fd,191,...,ﬁn,atl,...,(?td)ej € D:L-I—l
J

for =3 pi(z1,. s nt1, oy ta, 01,000y Ony Ogyy oo, Ory)ej € DYy,

Lemma 2.6.10. Given a presentation M ~ D" /N, then we have the presentation of left
Dy yq-modules (Dpya/J) @kla) (D"/N) ~ Dypyq/K(N), where

K(N) := Dypa - {(ti = fi)e;}2_y + Dnya - 0(N).

Proof. Consider the map ¢ : D} | ,——(Dpya/J) @kig) (D7/N) of left Dy, 4-modules defined
by ¢(e;) =1 ® e;. By the same arguments as in the proof of Lemma 2.4.2, we have that ¢
is surjective with kernel equal to K(N). O

Algorithms for local cohomology of D-modules. It now follows that the local coho-
mology of a D-module M = D" /N at the ideal I = (fi,..., f4) is equal to the cohomology
of the Koszul complex T* = K*((D;_;/K(N))jt1,...,ts). This Koszul complex equiva-
lently computes the derived restriction of the D,44-module D;_|_d/K(N) to the subspace
{t1 = -+ =13 = 0}. When D"/N and thus D) _,/K(N) are holonomic, an algorithm to
compute derived restriction is given in [33] and which we summarize in the appendix. The
method is to produce a complex of finitely generated D-modules (whose cohomology can
be computed using Grébner bases) which is quasi-isomorphic to 7. We have seen that the
Cech complex is itself a complex of finitely generated D-modules which is quasi-isomorphic
to T*. However the Cech complex is not the complex constructed by the restriction al-
gorithm. In particular, the algorithm produces a complex consisting of free D-modules
of finite rank. The maps between them can be quite complicated and are induced from
Grobner bases coming from Grobner deformations. In contrast, the modules which appear
in the Cech complex have the form Z\ﬂfi1 1),1] and typically have complicated presentations
as D-modules whereas the maps between them are now easy to understand. It would be
interesting to investigate which method is more efficient and under what circumstances.
These algorithms have been implemented in Macaulay 2 as the scripts

localCohom( ..., Strategy => 0OT)
localCohom( ..., Strategy => Walther)

Non-singular affine varieties. When 5 : Y < X is a closed embedding of nonsingular
varieties, a theorem due to Kashiwara states that the category of Dy-modules is equivalent
to the category of Dx-modules supported on Y. For an ideal I C K[z] such that j : V(I) —
K™ is nonsingular, one consequence of this equivalence is a relationship between the local
cohomology of a D-module M with respect to I and the derived restriction of M to the
variety V (I).
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Proposition 2.6.11. (see e.g. Bernstein [5]) Let M be a left D-module, I C K[z] an ideal
corresponding to a nonsingular variety, and j : V(I) — K" the inclusion. Then

H}(M) = Jx ( TOT(I;;I[:(]V([))_Z'(K[m]/Iv M) OK[z] WK[z]/I)

where Torgr[:(]v([))_i(K[w]/], M) is also the (dim (V (1)) — 1)-th derived restriction of M to

V(I) and j,. denotes the direct image.

Proof. A formulation of Kashiwara’s equivalence for the inclusion j : V(I) < K™ is that
HY(M) = j. oHom a1 (K[z]/1, M) where we note that Hom g (K [z]/1, M) has the struc-
ture of a left Dy (y)-module. The functor j. is additionally exact, hence

H{(M) = j. o Extigp (K[@]/1, M),

Now Extyer, (K[z]/1, M) ~ H"(HomK[z](F', M)) ~ Hi(HomK[m](l”7 K[z])® k(g M) where
F* is a free resolution of K[z]/I. Since V (I) is nonsingular, the complex Hom 4 (1", K[z])
is exact except in cohomological degree dim(V (7)) where its cohomology is isomorphic to
the canonical module wg(,)/r which is also locally isomorphic to K[z]/I. This shows that

HY (Hom(a) (F*, K[2]) @ M) = Torgindy 1 (K[2]/T, M) @ a1 O

m(

When [ is a nonsingular complete intersection, then w1 ~ K[®]/I as Dg(q)/1-
modules. Moreover, when [ is generated by linear forms fi,..., f;, then the derived re-
striction modules can be computed directly by the algorithm of Oaku and Takayama. Since
direct images are easy to compute for inclusions, this gives an algorithm for local coho-
mology with respect to a linear subspace. In other words, we do not need to pass to the
twisted Koszul complex or the Cech complex, which are computationally more intensive, to

compute local cohomology with respect to V (f1,..., f1).
The above observation is useful for instance when fy,..., f; generate the maximal
ideal m = (z1,...,2,) and M is holonomic. In this case, the derived restriction modules of

M to the origin are finite-dimensional K-vector spaces, and the local cohomology modules
Hi (M) are the direct images of these vector spaces, which by Kashiwara’s equivalence are
their injective hulls. This gives a method to compute the Lyubeznik numbers X;,,_;(S/I),
which by definition are the socle dimensions of the local cohomology modules H}n(H}(S))
and hence are equal to the dimension of the derived restriction modules of Hj(S) to the
origin. We remark that an algorithm to compute Lyubeznik numbers was first given by

Walther in [51].

Algorithm 2.6.12. (Computing Lyubeznik numbers)
INPUT: a left ideal I C K[z].
OuTpruT: the Lyubeznik numbers X; ,_;(K[z]/I).

1. Compute the local cohomology modules H}(K[m]) using the algorithm of [51] or the
algorithm of [33].

2. Compute the dimensions \; ,_; = dimgx H (K [z]/(z) ®ﬁ,[m] H}(K[m])) of the derived

restriction modules of H}(M) to the origin.
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3. Return the X\; ,_;.

Example 2.6.13. As a simple example, let us compute the Lyubeznik numbers of the
ring Klz,y,z]/I where I is the ideal (z(y — z),zyz). First, we compute using Walther’s
algorithm the local cohomology modules of polynomial ring K[z, v, z] with respect to I.

i1 : (W = QQ[x,y,z,Dx,Dy,Dz, WeylAlgebra => {x=>Dx, y=>Dy, z=>Dz}];
I = ideal (x*(y-z), x*y*z);
HI = localCohom I)

ol = HashTable{0O => 0 }
1 => cokernel {0} | Dz Dy xDx+2 x2 |
2 => cokernel {0} | y-1z zDy+zDz+2 xDx+2 z2 |

Second, we compute the derived restrictions to the origin of each nonzero local cohomology
module. In the above table, H](K[]) is accessed by HI#j.

i2 : Drestriction (HI#1, {1,1,1})

02 = HashTable{0 => 0 }
2 =>0
3 =>0

1
1 =>QQ

i3 : Drestriction (HI#2, {1,1,1})

03 = HashTable{0 => 0}
1=>0
2 =>0
3 =>0

It follows that the only nonzero Lyubeznik number is Ay 3 = 1.
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Chapter 3

Polynomial and rational solutions

Polynomial and rational solutions for linear ordinary differential equations can be
obtained by algorithmic methods. For instance, the Maple package DEtools provides effi-
cient functions polysols and ratsols to find polynomial and rational solutions for a given
linear ordinary differential equation with rational function coefficients. On a naive level,
these algorithms are based on bounding the degree of polynomial solutions and bounding
the order of poles of rational solutions. Such bounds can be obtained from the indicial
polynomial at infinity or the indicial polynomials at each pole.

In the several variables case, a natural analogue to the notion of a linear ordinary
differential equation with rational function coefficients is the notion of a finite rank system
of linear partial differential equations with rational function coefficients. These notions are
analogous in the sense that they both imply a finite-dimensional vector space of holomorphic
solutions at a generic point. In [12], Chyzak gave an algorithm to find rational solutions
of finite rank systems by combining elimination methods in the ring of differential opera-
tors with rational function coefficients with Abramov’s algorithm for rational solutions of
ordinary differential equations with parameters. Chyzak’s approach is analogous to solving
systems of algebraic equations of zero-dimensional ideals by elimination.

In this chapter, our aim is to give new algorithms based on D-modules theory for
finding polynomial and rational solutions of finite rank systems. The material here is based
on our paper [35] with Oaku and Takayama. As we have seen in Section 2.1, finite rank
systems can be translated to holonomic systems over the Weyl algebra D by virtue of the
Weyl closure. This allows us to utilize computational methods developed for holonomic D-
modules. Namely, we will replace the indicial polynomial at infinity by the notion of Grébner
deformation as introduced in [40], and we will replace the indicial polynomial at a pole by
the notion of b-function with respect to a hypersurface as introduced by Kashiwara [27].

3.1 Polynomial solutions by Grobner deformations

For the case of linear ordinary differential equations, one method to compute
polynomial solutions is to compute the indicial polynomial at infinity, find its maximum
non-negative integer root which provides an upper bound to the degree of all polynomial
solutions, and finally determine the coefficients of polynomial solutions by linear algebra.
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The analogous method works for holonomic systems by using Grobner deformations. One
difference is that there are now many directions of infinity in K™, hence we introduce a
weight vector w € R”™ to encode the direction. The following discussion comes entirely
from [40], except for Corollary 3.1.5 and Algorithm 3.1.9.

Definition 3.1.1. Let w € R™.
1. The initial form with respect to w of an element L =73 BN caﬁwaaﬁ €D is

in(_wwy (L) = Z capz®d® € D

—w-a+w-3 mazrimal
2. The Grobner deformation with respect to w of a left ideal I C D is the left ideal

in(_w@)(f) = {in(_w@) (L) L€ I} C D.

Theorem 3.1.2. [3] There exist only finitely many Grébner deformations. The equivalence
classes form a fan of R™, and weight vectors in the open cones are called generic.

Given a polynomial f =} _y»c.2?, we can similarly define the initial form of f
with respect to a weight vector w € R™ as

in,(f) :== Z cax?.
{a€N" : cq#0,—w-a mazimal}
a

For generic w, the initial form in,(f) is a single monomial ¢,z
possibilities of the exponent a by the following lemmas.

, and we can bound the

Lemma 3.1.3. [40, Theorem 2.5.5] If f(x) is a polynomial solution of I, then in,(f)(z)
is a polynomial solution of in(_y, ., (I).

Proof. Let us define the w-degree of an element L = 3° 4 capz®d® € D as deg, (L) =
max{aﬁeNn:caﬁ;éo}{—w-oz—I—w-ﬁ}, and similarly the w-degree of a polynomial f =3 d,z* €
K[z] as deg,,(f) = max{,enna,z0}{—w - a}. The computation z*0" e z* = [a]gz>~F+*
shows that deg, (z%0° e %) = deg,, (229") + deg,, (x*) if it is nonzero. Given L € D
and f € K[z], it follows that the component of L e f consisting of monomials of w-degree
deg,, (L) + deg,,(f) is equal to in(_,, ) (L) ®in,(f). In particular if f is annihilated by L,
then in,, (f) is annihilated by in(_,, (L) as required. O

Lemma 3.1.4. [40, Theorem 2.3.11] Let I be finite rank and w generic. Put 0; = x;0; and
R=K(z1,...,2,)(01,...,0,). Then the indicial ideal

ind(_wﬂﬂ)(f) =R- in(_w@)(f) NK[#,...,0,]
is an Artinian ideal in K[fy,...,0,] and the polynomial solutions of in(_,, . (I) equals

Spang{z®|a € ‘/(ind(_ww)(l))}.
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Proof. By Lemma 2.0.7, in order to show that the indicial ideal is Artinian, it suffices
to show that I’ has dimension n for any torus invariant ideal I’ with the property that
I'0 K[6] = ind(_y)(]). Since w is generic, the Grébner deformation in(_,,.,)(/) is torus
invariant, and hence Cl(in(_,,)([)) is torus invariant as well. By definition,

ind(_w@) (I) =R in(_ww) (I) NDNK[O] = Cl(in(_mw) (I)) N K[6],

and thus it suffices to show that Cl(in(_, ) ()) is holonomic.

For any holonomic ideal .J and any weight vector w € R", it is shown in [40,
Theorem 2.2.1] that in(_, (/) is also holonomic. Since I is finite rank, we know by
Proposition 2.1.7 that CI(I) is holonomic, hence its Grobner deformation in(_,, .,)(CI(7)) is
also holonomic. Moreover it is straightforward to see that in(_,, ..\ (CI(1)) C Cl(in(_y,.(1)),
and hence Cl(in(_,, (7)) is holonomic as well, as required. O

The Newton polytope of a polynomial f is the convex hull of the exponent vectors
of f. For generic w, the exponent a of in, (f) = cz® is a vertex of the Newton polytope of
f, and since Lemmas 3.1.3 and 3.1.4 also imply that « is an exponent of the indicial ideal,
we thus obtain the following corollary.

Corollary 3.1.5. The Newton polytope of a polynomial solution f to I lies in the convex
hull of all non-negative integer exponents of all indicial ideals of I.

An efficient algorithm to compute indicial ideals is given in [40]. We use the

notation [0]y = [Ty [T/ (6; — j) for b € N™.

Algorithm 3.1.6. (Finding the indicial ideal [40, Theorem 2.3.4])
INPUT: a left ideal I C D and a generic weight vector w € R".
OuTPUT: generators of the inidicial ideal ind(_,, (1)

1. Compute a torus invariant generating set G = {malpl(O)Bﬁl, e ,marpr(O)BﬁT} of
in_y, (7).

2. Return {[@]s,p(0 — (1), --,[0]5,p(0 — 53,)}.

Example 3.1.7. Let us consider the ideal I = D-{8,+ 36, — 7,92 — ,}, which is the GKZ
hypergeometric system associated to the matrix A = [1, 3] and the parameter value g = [7].
Let the weight vector w = (wy, wy). Then the initial form of L; = 6, 436, — 7 with respect
to (—w,w) is always equal to itself. On the other hand, the initial form of Ly = 92 — 9,
depends on w. If 3wy < wsy then in(_,, ,)(L2) = =0y, if 3wy > wy then in_,, ,y(L2) = 02,
and if 3wy = wy then in(_,, ) (L2) = La. In fact in this case, in(_, ,)(L1) and in(_y, ) (L2)
always generate in(_wﬂu)(l) which we can verify using Macaulay 2, hence we have,

w typical (—w,w) in(_y (1)
3wy < wz | (L, 1,—1,-1) | D10, + 30, — 7, -0y}
3wy > wy | (—=1,-1,1,1) | D-{6,+ 36, - 17,03}
3wy =wy | (1,3,—1,-3) 1
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Thus the generic weight vectors are those with 3wy # wy. We now get the indicial ideals
and exponents,

w ind(_y ) (1) exponents
3wy < wy D-{6,—-7,0,} (7,0)
, , 0. +30, -7 7 5
s> 0 GGGy f 0D 022
3w = wy —— -

The convex hull of the integer exponents {(7,0), (1,2)}is the set {(7,0), (4,1), (1,2)}, hence
the general polynomial solution has the form f = egz” 4+ ¢jz*y + cozy®. By applying the
operators Ly and Ly to f, setting the coefficients to 0, and solving the resulting system of
linear equations, we find that the polynomial solution space is one-dimensional and spanned
by f =27 4 210z%y + 2520zy>.

It is not necessary to find all Grobner deformations to obtain polynomial solutions.
Let b(s) be the generator of in(_, .,y (1) N K[s], s = 7", w;f;. The polynomial b(s) is called
the b-function of I with respect to (—w, w). When [ is holonomic, the b-function is nonzero
for any weight vector w. The next proposition follows from the definition of b(s).

Proposition 3.1.8. Let w be a strictly negative weight vector. Consider the b-function
b(s) of I with respect to (—w, w) and let —ky be the smallest integer root of b(s) = 0. The
polynomial solutions of I have the form

Z cpzl. (1.1)

{peEN™ : p;>0,—p-w<k; }

Algorithm 3.1.9. (Finding the polynomial solutions by a Grébner deformation)
INPUT: a finite rank left ideal I C D.
OuTpPUT: the polynomial solutions of I.

1. Take a strictly negative weight vector w and compute the Grébner deformation

N,y (1)

2. Ifin(_y ) (1) is holonomic, compute the b-function b(s) with respect to (—w, w), which
is the monic generator of in(_,, ., ()N K[s], where s = >, w;#; (see e.g. [40, Algorithm
5.15] for this procedure). If in(_,, () is not holonomic but w is generic, compute
the indicial ideal ind(_,, (/) using Algorithm 3.1.6, then set b(s) to be the monic
generator of ind(_,, ) (/) N K[s]. If in(_,,,)(]) is not holonomic and w is not generic,
pick another w and start over (alternatively one could compute the monic generator
of Cl(in_y, ., (1)) N K[s] and proceed, but this is inefficient in practice).

3. Compute the smallest non-positive integer root —ky of b(s). If there are no non-
positive integer roots, then there is no polynomial solution other than 0.

4. If there is a minimal integer root, then determine the coefficients ¢, of (1.1) by solving
linear equations for the coefficients.
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Remark 3.1.10. The algorithm generalizes immediately to an algorithm for computing
Laurent polynomial solutions by allowing for negative exponents as well. In this case, we
need to use enough b-functions to bound the convex hulls in every direction. For example,
it is enough to compute b-functions with respect to the 2n weight vectors (—e;, e;) and
(e;,—e;) fori=1,...,n.

Example 3.1.11. The following is the system of partial differential equations for the Appell
function I (a,b,¥b',c) [2]:

0,0, +6,+c—1)—z(0,+ 6, +a)(0,+b),
0y (6 + 0y +c— 1) — y(0: + by + a) (0, + ),
(z — y)0,0y — b0, + b0,

where a,b,b’, ¢ are complex parameters. Let us demonstrate how Algorithm 3.1.9 works
for the system of parameter values (a,b,b’,c) = (2,—3,-2,5). First, we choose a strictly
negative weight vector w = (—1,—2) and compute the b-function b(s), s = —6, — 26,,
which is the generator of the principal ideal in(_y, .,)(7) N Q[0 — 26,]. We can use the
V-homogenization or the homogenized Weyl algebra to get the generator (see, e.g., [40,
Section 1.2]). Second, we need to find the integer roots of the b-function b(s) = 0.

i1 : I = AppellF1({2,-3,-2,5})
3 2 2 2 2
ideal (- x Dx - x y*Dx*Dy + x Dx + x*y*Dx*Dy + 3x*y*Dy + ...

ol

i2 : b = bFunction(I, {-1,-2})
3 2
s + 3s - 28s

02

i3 : getIntRoots b
o3 = {0, 4, -7}

From Proposition 3.1.8, the highest (—w)-degree monomial czPy? in a polynomial solution
gives rise to an integer solution wip+wyeqg = —p—2q of the b-function. Hence, the polynomial

f= Z cpqlyl.

P,4>0,p429<7

solutions are of the form

Finally, we determine the coefficients ¢,, by applying the differential operators to f and
putting the results to 0. In Macaulay 2, we have

i2 : PolySols I
32 3 9 22 12 3 72 2 36 2 63 2
02 ={xy - 3xy - —*¥Xx y + —=*X + ——*X y + ——kX*ky - ——Fkx - ...
2 5 5 5 5
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Thus we find that there is one polynomial solution,

1, 1 4.5 .3, 24 3,
(Cop¥ oy gg)e (Y — g5yt 5o
12, 6 6 1, 4
Sy SR YR A AT RSP
+ Y T EY 5)1‘+5y =Y+

3.2 Rational solutions by Grobner deformations

For a linear ordinary differential equation (a,(z)0" + ---+ ao(z)) ® f = 0 with
a;(z) € K[z], a simple algorithm to find rational solutions consists of the following. Find
the singular points, which are the roots A; of a,(z). For each A;, calculate the indicial
polynomial p; at A;, and let m; be the minimum negative integer root of p;. Also let NV be
the maximum non-negative integer root of the indicial polynomial at co. Then all rational
solutions have the form g(z) [[,(z — A;)™¢ with g(z) € K[z], where the total degree is < N.

To generalize this approach to many variables, we need to identify analogs of
singular points and indicial polynomials. The analog of singular points is the singular locus,
which was introduced in Chapter 2 as Definition 2.1.3. Moreover, Theorem 2.1.8 of Cauchy,
Kovalevskii, and Kashiwara implies that any rational solution to I has its poles contained
inside the singular locus of D/I. Thus if f(x) defines the codimension 1 component of
Sing(D/I), we may limit our search for rational solutions to K[x][f~'].

We now would like a way to bound the order of the poles along f = 0 for rational
solutions. For this purpose, the analog of the indicial polynomial is the notion of the b-
function for f and a section u of a holonomic system, which was introduced by Kashiwara

[27]:
Definition 3.2.1. For a holonomic D-module M and a polynomial f, let
N = (C[f_l ) S]fs ®K[m] Ma (22)

which has a structure of a left D[s]-module via the Leibnitz rule. Let u be an element of
M. Then the b-function for f and u (or for f*u) at p € C* is the minimum degree monic
polynomial 0 # b(s) € C[s| satisfying a functional equation of the form

b(s)f*®u=Lf(f*@u) (2.3)

for some L € D[s][g™] with g(p) # 0. The global b-function for f and u (or for f*u) is the
minimum degree monic polynomial satisfying (2.3) for some L € D[s].

The b-function depends on the point p, and as a function of p, there is a strati-
fication of C* for which the b-function does not change on each stratum (see e.g. [32] for
an algorithmic proof of this fact). The global b-function is the least common multiple of
the b-functions at every point. The following theorem is due to my co-authors Oaku and
Takayama.

Theorem 3.2.2. Let u be the image of 1 in D/I, and let b(s) be the b-function for f and
u at a point p € C* where f(p) = 0. Assume that I admits an analytic solution of the
form g f" around p, where r € C, ¢ is a holomorphic function on a neighborhood of p, and

g(p) #0. Then s+ r + 1 divides b(s).
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Proof. Let D*" and 02" be respectively the sheaf of analytic differential operators and the
sheaf of holomorphic functions on C*. We may similarly define the analytic b-function of
a D*-module M at a point p as the minimum degree monic polynomial b(s) such that
b(s)f* @ u € D*™[s]f(f* @ u) holds in N = O*"[f~! 5] ®pan M at p. Since the b-function
is an analytic invariant and the analytic and the algebraic b-functions coincide (see e.g.
[32, Section 8]), we may work in the analytic category. We do this to consider solutions
gf" where ¢ is holomorphic at p. If we only wish to consider solutions ¢ f” where ¢ is a
polynomial, then we may work in the algebraic category.

In general, given a map of left D*"-modules ¢ : M — M3" and a section u of
M3™, the b-function for f°u at a point p is divisible by the b-function for f*¢(u) at p. We
apply this basic fact to the following map ¢. Let J?" be the annihilating ideal of g f" in
D2, Since J2" D [ := D[ and ¢(p) # 0, we have a left D**-homomorphism

SO . Dan/Ian H Danng’ — Danfr % Oan[f—l]f?"
which sends u to g f". This map extends to a left D*"[s]-homomorphism
1@p: O0[f! s|f* @ps D" /[0
— O [f71, 8] f* @om O[] f7 = O[], s] f*+"

which sends f* ® u to gf**". By the definition of b(s), there exists a germ P(s) of D[s] at
p such that

(P(s)f = b(s))(f* ®u) = 0.

Since 1® is a left D*"-homomorphism, applying it to the above equation gives the equation

(P(s)f —b(s))(gf5t") = 0, or in other words,
9 P(S)g S = b(s) 1

Thus, we see that the Bernstein-Sato polynomial b¢(s) of f at p divides b(s —r). Note that
s+ 1 divides bs(s) since f(p) = 0 (see [26]). In conclusion, we have proved that s+ 1 divides
b(s — r). This completes the proof. O

By virtue of the above theorem, we can obtain upper bounds by computing the
b-functions for f’u at a smooth point of each irreducible component f; = 0 of the singular
locus f = 0 of I where u is the image of 1 in D/I. From now on, let us take f € K[x] to
be a square-free polynomial defining the codimension one component of the singular locus,
and let f = f--- f, be its irreducible decomposition in K[x]. Let us also fix u to be the
image of 1in D/I.

Theorem 3.2.3. Let b;(s) be the b-function for fPu at a generic point of f; = 0. Denote
by r; the mazimum integer root of b;(s) = 0. Then any rational solution (if any) to I can
be written in the form gfl_”_1 e form =L with a polynomial g € C[x]. If some b;(s) has no
integral root, then there exist no rational solutions to I other than zero.
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Proof. An arbitrary rational solution to I can be written in the form gf7" --- f ¥ with
integers vy, ...,v,, and g € C[x]. Since the space of the rational solutions with coefficients
in C is spanned by those with coefficients in K, we may assume g € K[z], and f and g
are relatively prime in K[x]. Let p be a generic point of f; = 0. We may assume that
fi is smooth at p, g(p) # 0, and f;(p) # 0 for j # i. It follows from Theorem 3.2.2 that
bi(v; — 1) = 0. This implies v; < r; 4+ 1. O

Since b-functions divide the global b-function, an upper bound can also be obtained
from the global b-function.

Corollary 3.2.4. Let b;(s) be the global b-function for f?u, and let r; denote the mazimum
integer root of b;(s) = 0. Then any rational solution (if any) to I can be written in the form
gfl_“_1 o form=l with a polynomial g € C[x].

Example 3.2.5. Put 6, = 2,0;. Then the GKZ system associated to the matrix and
parameter,
1 11 | B
=l 1 2] o=[3]

Li=0,4+0;4+65— 0
Hi(B)=D - Ly=60,+4203—p
L3 = 0,05 — 02

is the ideal,

The singular locus is zyz3A = 0, where A = .r% — 4zqz3. Using an algorithm due to
Oaku to compute b-functions which we will describe shortly, we find multiples of the global
b-functions with respect to the various factors of the singular locus.

fi | multiple of b-function wrt f;
71| (s+1)(s+ b —Pa+1)
73| (s+1)(s+ B —fi+1)
Al GrNGHATID)

For example, when 8, = 0 and 3 = —1, then

z1:(s+1)s
z3:(s+1)(s+2) = {rational solutions of I} C z]'C[z]
A:(s+1)(s+3/2)

In fact, this GKZ system has rank 2 and its solutions are spanned by the roots t = (j
and t = ( of the generic quadratic polynomial z1#? + 29t + 29 = 0 regarded as functions
¢ = Ci(z1,22,23) and (o = (a(21, 72, z3) of the coefficients. By the quadratic formula
these roots are (; = (—z3 + \/Z)/Q:Ul and (3 = (—z2 — \/Z)/Q:Ul, hence we see that
—(1 — (3 = x9/zy is the rational solution. Moreover, the solution {; — (3 = \/Z/.rl gives
rise to the root —3/2 of the b-function with respect A.

In [10], Cattani, D’Andrea, and Dickenstein show that the only rational solutions
to GKZ systems coming from homogeneous matrices of size 2 by n are Laurent solutions.
In other words, the discriminant A in our example above never appears as the pole of a
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rational solution, regardless of the parameter value 3. We can also read this fact from the b-
functions with respect to A. Namely, note that the ring K[z][A™!]is spanned as a K-vector
space by elements of the form z{'z5225° A7, with ay, ap, @3 € N and j € Z. Next we note
that 2] 2% 23? A7 is an eigenvector of L; and Ly with eigenvalues (a1 + az 4+ a3z + 25 — 31)
and (ag 4 2a3+25 — (32). It thus follows that rational solutions can occur only if 8y, 82 € Z.
If this is the case, then the only integer root of ba(s) is —1, and hence A will not appear as
a denominator. The question of which “discriminants” appear as poles of rational solutions
to GKZ systems has been studied more generally by Cattani, Dickenstein, and Sturmfels
in [11].

Example 3.2.6. We mention Corollary 3.2.4 since the algorithm to compute global b-
functions is simpler than the algorithm to compute b-functions. However, the b-function
offers finer information. For instance, the well-known example f = 2% + y? + 2% + w? has
Bernstein-Sato polynomial (s+ 1)(s+ 2) coming from the functional equation, (97 + 07 +
02 +92%) - ;' = (s+ 1)(s+ 2)f°. Now consider the module M = D - f=1 and let u
be the element f~' € M. Then M gets the presentation M ~ D/I where the generator
corresponds to v and I = Annp(f~'). By construction, the only rational solution of I is
/1. However, the global b-function for f*u is s(s+ 1), and hence Corollary 3.2.4 implies
that rational solutions of I all have the form gf~! or ¢f°, where ¢ is a polynomial not
divisible by f. On the other hand, the Bernstein-Sato polynomial of f at any nonsingular
point p of f = 0 (i.e. except for the origin) is s+ 1. It follows that the b-function for f*u
equals s at the generic point of f = 0 and hence Theorem 3.2.3 implies that all rational
solutions of I actually have the form ¢gf~'.

An algorithm to compute the b-function and the global b-function for f*u was first
given by Oaku in [32] based upon tensor product computation, which is memory intensive.
Shortly thereafter, Walther refined this algorithm in [51] to give a more efficient method
to compute the global b-function for f*u. Both methods give the global b-function exactly,
under the condition that I is f-saturated. Otherwise, we get a multiple of the global b-
function. Here, an ideal [ is said to be f-saturated if (I : f*°) = I. Similarly, Oaku’s
method of [32] gives the b-function exactly if [ is f-saturated and additionally a certain
primary decomposition in C[x] is known. If primary decomposition is only available in
K|[x], we again get a multiple of the b-function.

Let us now describe an algorithm to compute the b-function for f*u at a generic
point of f = 0 by combining the method of [51] and the primary decomposition as was used
in [32]. The following exposition is due to Oaku.

Algorithm 3.2.7. (Computing a multiple of the b-function at a generic point)

INPUT: a finite set G of generators of a holonomic D-ideal I and an irreducible polynomial
f € K[x].

OuTpUT: b'(s) € K[s], which is a multiple of the b-function b(s) for f*u at a generic point
of f =0, where u is the image of 1 in D/I.

1. Introducing a new variable ¢, put ¥; = 9; + (0f/0z;)0;. Let I be the left ideal of
D,41, the Weyl algebra on the variables x4, ..., z,,¢, that is generated by

(P(x,91,...,0,) | P(x,01,...,8,) € Go} U{t — f(x)}.
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2. Let Gy be a finite set of generators of the left ideal in(—l,o,...,o;l,o,...,o)(I) of D,41. Here,
—1 is the weight for ¢ and 1 is the weight for 0;.

3. Rewrite each element P of G; in the form
P=0/'P(tdy,x,0,...,0,) or P=1t"'P(tdy,x,1,...,0,)
with a non-negative integer u, and define 1 (P) by,
Y(P) :=tH0y P =10y -+ (t0y — p+ 1) P (g, %, D1, - . ., D)

or P(P):=t"P = (td+ 1) -+ (t0; + p) P' (104, x, 01, ..., Oy).
Put
G2 = {¢(P)(_S_ 17X7817 . 78n) | Pe Gl}

4. Compute the elimination ideal J := K[s,x]| N D[s]G2. (The global b-function can be
obtained at this stage by computing the monic generator of the ideal J N K[s].)

5. Compute a primary decomposition of .J in K[s,x] as
J=:1N---NQ,.

6. For each i = 1,...,v, compute Q;; := @; N K[x], which is a primary ideal of K[x].

7. Let b'(s) be the monic generator of the ideal
(@i N K[s] | VQir C K[X]f}

of K[s]. (Note that \/Q;, C K[x]f implies that \/Q;; equals K[x]f or {0}.)

Theorem 3.2.8. In the above algorithm, the polynomial b'(s) is precisely the b-function for
fPu at a generic point of f = 0 if I is f-saturated (i.e., I : f* = 1) and each C[s,x]Q;
remains primary in C[s,x|. Otherwise, the polynomial b'(s) is a multiple of the b-function
for fPu at a generic point of f = 0.

Proof. The proof follows by combining the proofs of [51, Lemma 4.1], [32, Theorem 6.14],
and [32, Theorem 4.7]. O

Remark 3.2.9. Since [ is f-saturated if and only if the torsion module H?(D/I) is nonzero,
we may compute H?(I) and likewise the f-saturation D[f~!]- 1N D by using the methods
of Chapter 2. Namely, if I is holonomic, then we may apply Oaku’s torsion algorithm which
was summarized in Algorithm 2.4.3. If I is not holonomic, then we apply Algorithms 2.4.3
and 2.4.5.

Remark 3.2.10. Only Steps 1 through 4 of Algorithm 3.2.7 for b-functions have been
implemented in Macaulay 2. Thus, we have a script to compute multiples of global b-
functions, but we do not currently have scripts to compute multiples of b-functions at a
point p.
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Once we have determined the integers ry,...,r, of Theorem 3.2.3, we can use
Grobner deformations to obtain the rational solutions. Put k; = —(r; + 1). Then by virtue
of Theorem 3.2.3, we have only to determine rational solutions of the form gflk1 <o fhm for
some polynomial g. This amounts to computing polynomial solutions of some twisted ideal

I(kl,...,km) of I.

Lemma 3.2.11. Let [ C D be a left ideal generated by {Py,..., P}, let f = f1--fn €
K[z], and let {ky,...,k,} C C. For each generator P;, let a; € N be sufficiently large so
that f* P; may be expressed as

fUuP=pi(z1, .. 20 fO1, ..., fO,) € K(x1,...,2n, fO1, ..., fOu).
Now consider the ideal
I(kl,...,km) = D{pl(mlv cees Iy L17 .. 7Ln) ;(”:1

where

f 3f]
]f] .

Then the space V' of polynomial solutions of Iy, . 1.y is isomorphic to the space W of

solutions of I inside the Clx]-module Clz] 1]“ oo fEm by the map V. — W sending g
gff1 - fEm . Moreover, rank(I) = rank(/, . k)

Li = fo —|—Zk (2.4)

j=1

Proof. Consider how f0; acts on an element gflk1 o fhmoc Clz] 1]“ L
89 f f]

k
S
]f] m

Oie (gt fu) =

In other words, f0; acts on the polynomial part g as the differential operator L; of (2.4),
and the part of the lemma on solutions follows.

Given a point p of I away from both the singular locus of I and the zero locus of
f, then the map V' — W also extends to a map between the holomorphic solution spaces of
Iigy.. k) and T at p (here a branch of flk1 .- fkm at pis chosen so that it may be regarded
as a holomorphic function at p). Since rank of an ideal is generically equal to the dimension
of the holomorphic solution space, the part of the lemma on rank follows. This can also be
shown algebraically by observing that

in(O,e)(p(mlv .. '7$n7fala .. 7f8 )) in Oe)(p(xh .. '7$n7L17 .. 7Ln))

We also remark that the definition of (4, . ) is ambiguous but can be made well-defined
by applying the Weyl closure operation. O

Algorithm 3.2.12. (Computing the rational solutions of a finite rank ideal)
INPUT: a finite rank left ideal 7 C D.
OUTPUT: a basis of the rational solutions h € K(x) of [ ¢ h = 0.
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1. Compute a polynomial f defining the codimension 1 component of Sing(/) using
Algorithm 2.1.4.

2. Compute the irreducible decomposition f = fi--- f,, in K[x].

3. For each i = 1,...,m, compute the output &'(s) of Algorithm 3.2.7 with [ and f; as

input. Let r; be the maximum integer root of b’(s) = 0 and put k; = —(r; + 1). If
b'(s) has no integral root for some 7, then there exists no rational solution other than
zero.

4. Form the twisted ideal I, .. ,,) described in Lemma 3.2.11.

5. Compute a basis {gi,...,gz} of the polynomial solutions of Iy, k) using Algo-
rithm 3.1.9.

6. Return {glfllCl Y .,gkffl - fFm1 a4 basis of the rational solutions of I.
Example 3.2.13. Let I be the left ideal generated by
Li=0,(0,+6,) —x(0,+0,+3)(0,—1)

Ly = 0@/(006 + Hy) - y(0: + by +3)(0y +1).

The Appell function F(3,—1,1,1;2,y) is a solution of this system. The singular locus of
I'is zy(z — 1)(y — 1)(z — y) = 0. We can compute the global b-functions of u along its
components f; using Macaulay 2:

i1 : factorBFunction globalBFunction(I,x)
2
ol = (s +2) (s +1)

i2 : factorBFunction globalBFunction(I,y)
02 = (s + 1)(s)(s + 2)

i3 : factorBFunction globalBFunction(I,x-1)
03 = (s + 1)(s)

i4 : factorBFunction globalBFunction(I,y-1)
o4 = (s - 2)(s + 1)

i5 : factorBFunction globalBFunction(I,x-y)
2

o5 = (s +2) (s + 1)(s + 3)

We conclude from this that any rational solution to I, if it exists, can be written in the
form g(z,y)y~'(z — 1)~ (y — 1)~ with a polynomial g. Now we may compute the twisted
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ideal I(g _1,0,-1,-3), where fi=2, fa =y, fs=z -y, fa=2—-1,fs =y—1, and [ is the
product. Multiplying by f?, we get the expressions,

Ly = (2% =2°)(f0.)* +2((1-32)f - (1 - w)yg—f ~(1-2)28L)(f.)+
z(1—2)y(f0,)(f0:) + xyf(fD,) + 3z f*

Ly = (¥ =y (0,2 +y((1-5y)f — (1 - y)a gl — (1 - y)y3D)(f0,)+
y(1 = y)z(f0:)(f0y) — yz f(f0.) — 3y f?,

and we set 17 and T3 to be the operators obtained from the substitution of L; into f0; as
defined by (2.4). We remark that the ideal I(0,-1,0,-1,-3) generated by T1 and T3 is neither
holonomic nor specializable with respect to the weight vector (1,1, —1,—1), hence we use
the indicial ideal in step 2 of Algorithm 3.1.9 to get its polynomial solutions. Our Macaulay
2 script finds,

\-/A\-/A

i6 : RatSols(I, {x,y,x-1,y-1,x-y}, {10,1})

3 2
-x+y -x*y + 3*kx*y - 3*kx*y + 4*kx - 3%y
06 = {-——————————mm ) T }
4 3 2 4 3 2
-y +3y -3y +y Ty +3xy - 3%y +y

Here, the second argument to the function RatSols is a list of factors of the singular locus,
and the third argument is a weight vector for the Grébner deformation in Algorithm 3.1.9.
After some simplification, we find that the rational function solutions are z/y and (zy* —

3zy+3z —1)/(y - 1)°.
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Chapter 4

Homomorphisms between
holonomic D-modules

Let Homp(M, N) denote the set of left D-module maps between two left D-
modules M and N. Then Homp(M, N) is a K-vector space and can also be regarded
as the solutions of M inside N. Namely, given a presentation M ~ D™ /D -{Ly,..., L.},
let S denote the system of vector-valued linear partial differential equations,

S={Lief=---=1L, e f=0},

and let Sol(S; N) denote the N-valued solutions f € N™ to S. Then the homomorphism
space Homp (D" /D -{L4,..., L.}, N) is isomorphic to the solution space Sol(S; N) where
the identification is as follows. A homomorphism ¢ in Homp(D™ /D -{Ly,..., L, }, N) cor-
responds to the solution [p(e1), . .., p(e,)]T € N™ of S, while a solution f = [f1,..., fr,]" €
N7 of § corresponds to the homomorphism which sends e; to f;.

If M and N are holonomic, then the set Homp (M, N) as well as the higher de-
rived functors EXt%(M, N) are finite-dimensional K-vector spaces. In this chapter, we give
algorithms that compute explicit bases for Homp (M, N) and Ext’, (M, N) in this situation.
The material presented here is based on joint work with Oaku, Takayama, and Walther
in [35], [49]. Algebraically, the problem of computing a basis of homomorphisms is easy to
describe. Namely, since a map of left D-modules from M to N is uniquely determined by
the images of a set of generators of M, we must simply determine which sets of elements of
N constitute legal choices for the images of a homomorphism (of a fixed set of generators
of M). It is perhaps surprising that this is a difficult computation. One of the reasons is
that Homp (M, N) lacks any D-module structure in general and is just a K-vector space.

In recent years, one of the fundamental advances in computational D-modules
has been the development of algorithms by Oaku and Takayama [32], [33] to compute the
derived restriction modules Tor? (D/{z1,...,24} - D, M) and derived integration modules
Tor? (D /{0y, ...,84} - D, M) of a holonomic D-module M to a linear subspace z; = - -- =
zqg = 0. We give a summary of these algorithms in the Appendix. These algorithms
have been the basis for the local cohomology algorithm discussed in Section 2.5 as well
as for various deRham cohomology algorithms [34], [52], and they have been extended to
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algorithms for derived restriction and integration of complexes with holonomic cohomology
by Walther [52].

Similarly, as was pointed out by Takayama, the computation of Homp (M, N') and
EXtiD(M, N) can also be reduced to a restriction computation by using isomorphisms of
Kashiwara [27] and Bjork [7]. These isomorphisms are,

Extl (M, N) ~ Tor?_.(Ext} (M, D), N), (0.1)
which turns an Ext computation into a Tor computation and
TOTJD(M/7 N) = TOI‘?%(D?TL/{‘M - Y, di + 5i}?:1 Dy, T(M/) X ‘V)7 (0'2)

which turns a Tor computation into a twisted restriction computation in twice as many
variables (an explanation of the notation used above can be found in Section 4.5).

In this chapter, we obtain an algorithm to compute an explicit basis of EXtiD(M, N)
by analyzing the isomorphisms (0.1) and (0.2) and making them compatible with the re-
striction algorithm. In Section 4.1, we establish notation and review the construction of free
resolutions and the holonomic dual. In Section 4.2, we present a proof of isomorphism (0.1)
adapted from [7]. In Section 4.3, we give an algorithm for the case N = K[zy,...,2,],
which is used to compute polynomial solutions of a system S. In Section 4.4, we give an
algorithm for the case N = KJzy,...,2,][f"!], which can be used to compute rational
solutions of S. In Section 4.5, we give our main result, which is an algorithm to compute
Homp (M, N) for general holonomic modules M, N. In Section 4.6, we give a companion
algorithm which computes the derived functors Ext%, (M, N) and their representations as
Yoneda Ext groups. In Section 4.7, we give an algorithm to determine whether M and N
are isomorphic and if so to find an isomorphism. In the Appendix, we review Oaku and
Takayama’s restriction and integration algorithms.

4.1 Left versus right modules and the holonomic dual

Maps of left and right D-modules. Let us start by explaining our convention for writing
maps of left or right D-modules. As usual, maps between finitely generated modules will be
represented by matrices, but some attention has to be given to the order in which elements
are multiplied due to the noncommutativity of D. Let us denote the identity matrix of size
r by id,, and similarly the identity map on the module M by idj,.

Given an r X s matrix A = [a;;] with entries in D, we get a map of free left
D-modules,

A
D= D : [ly,... . 0]—=[ly,....0] A,

where D" and D? are regarded as modules of row vectors, and the map is matrix multipli-

cation. Under this convention, the composition of maps D" A D5 and D By Dt s the

map D" AB Dt where AB is usual matrix multiplication.
In general, suppose M and N are left D-modules with presentations D" /My and
D?/Ny. Then the matrix A induces a left D-module map between M and N, denoted

(D" /M) A (D*/Ny), precisely when L - A € Ny for all row vectors L € M. This
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condition need only be checked for a generating set of My. Conversely, any map of left
D-modules between M and N can be represented by some matrix A in the manner above.

Now let us discuss maps of right D-modules. The r X s matrix A also defines a
map of right D-modules in the opposite direction,

(DHYT 25 (DT 2 [, )T s AL, 0T,

where the superscript-T means to regard the free modules (D*)T and (D")T as consisting
of column vectors. We will suppress the superscript-7" when the context is clear. As before,
the matrix A induces a right D-module map between right D-modules N’ = (D?®)T /N} and
M' = (D")T /M) whenever A - L € M} for all column vectors L € Nj. We denote the map

by (D*)T/N§ -5 (D7)T/Mj.

Free resolutions and the Ext modules. Given a left D-module M, a free resolution
of M can be constructed using Grébner bases. Under the convention described above, we
write a resolution in the form,

M_aq1
— >

X*:.s Do oDt M pro oy o,
—— <~

degree —a degree 0

The Ext modules Ext’, (M, D) are the cohomology modules of the complex Homp(X*, D).
We have an isomorphism Homp (D", D) ~ (D")T by identifying a homomorphism ¢ with the

column vector [¢(e1),. .., ¢(e,)]T. Moreover, if we apply Homp(—, D) to a map D" A ps
and use the identification Homp (D", D) ~ (D")T| then the map Homp(-A, D) is identified

with (D*)T Ay (D")T. Thus, Extl, (M, D) are the cohomology modules of the complex

HOHID(AX.,D) 0« (DT_“)T M el (Dr_l)T 4]\& (DTO)T — 0
N—— N——
degree a degree 0

The Ext modules of M are closely related to the dimension of M. Recall that the

dimension of a D-module is the dimension of its characteristic variety. Let j(M) be the
smallest non-negative integer such that Exth)(M, D) # 0.

Theorem 4.1.1. (see e.g. [7]) Let M be a left D-module. Then
1. dim(M) 4+ j(M) =2n
2. dim(Ext} (M, D)) < 2n — i. In particular, Extly (M, D) =0 for i > n.

Corollary 4.1.2. If M is holonomic, then Ext} (M, D) is the only nonzero Ext module and
has dimension n.

Left-right correspondence and the top differential forms. The category of left D-
modules is equivalent to the category of right D-modules, and for convenience, we will
sometimes prefer to work in one category rather than the other — for instance, we will
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phrase all algorithms in terms of left D-modules. In the Weyl algebra, the correspondence
is given by the algebra involution

DD 2%9% s (—0)Pa°.

The map 7 is called the adjoint operator or standard transposition. Given a left D-module
D" /My, the corresponding right D-module is

DT’ DT’
T (ﬁo) = m, T(Mo) = {r(L)|L € My},
Similarly, given a homomorphism of left D-modules ¢ : D" /My—sD?® /Ny defined by right
multiplication by the r x s matrix A = [a;;], the corresponding homomorphism of right D-
modules 7(¢) : D" /7(Mo)—D?*/7(Np) is defined by left multiplication by the s X r matrix
7(A) == [r(a;;)]T. The map 7 is used similarly to go from right to left D-modules.

On a theoretical level, the left-right correspondence is established through the
module of top dimensional differential forms €2, which is a right D-module under the action
of the Lie derivative. This correspondence works more generally for modules over rings of
differential operators on smooth algebraic varieties, but we only describe the case of the
Weyl algebra below. Given a left D-module M, there is a corresponding right D-module
Q ®@kix) M where the structure is given by extending the actions,

(wem)f=wfem (we@m)é=wE@m—wm

forw e Q, meM, fe K[x]and £ € Der(K[x]). Given a presentation D" /My for M with
generators denoted {e;}i_,, then in Q @k M we have

(1®e)2%0" = (1@ 2%)0° = 1@ (=0)P2%; = 1® 7(2°0%)e;.

It follows that Q @[y M is generated by {1 ®e;};_; and gets the presentation DJ,/7(M).
Conversely, given a right D-module N, there is a corresponding left D-module
Hom g4 (2, N) where the structure is given by extending the actions,

(fo)(w) =p(w)f () (w) = p(ws) — p(w)§

for ¢ € Homgpg(,N), w € Q, f € K[x], and £ € Der(K[x]). A morphism ¢ €
Hom g, (€2, N) can be identified with its image (1) € N. Since

(2°099)(1) = (22(9%9))(1) = (0%¢) (1)a” = @(1)(~) 2°
= ¢(1)7(2°9"),

the morphism 223°¢ gets identified with ¢(1)7(2207). In particular, given a presentation
D? /Ny of N, then Hom g4 (€2, N) is generated as a left D-module by the morphisms {¢;}7_;
such that ¢;(1) = e;. By the computation above, a relation ), e;¢; = 0in N corresponds to

a relation ) 7(g;) i in Hom g (€2, N) because (32, 7(g:) i) (1) = 32, eim(7(9:)) = >, €igi-
It follows that Hom g, (€2, N) is generated by {p;}?_, and gets the presentation

HomK[X](Q, N) =~ D?/1(No). (1.3)
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Holonomic dual. As we saw in Corollary 4.1.2, if M is holonomic then the only nonzero
Ext module is Ext}, (M, D), which is a right D-module of dimension n. By applying the left-
right correspondence, we thus get a duality for the category of holonomic left D-modules.

Definition 4.1.3. The holonomic dual of a holonomic left D-module M, denoted D(M),
is the holonomic left D-module, D(M) := Hom g, (Q, Extp (M, D)) ~ r(Extp (M, D)).

Let us discuss how the holonomic dual D(M) can be computed.

Algorithm 4.1.4. (Computing the holonomic dual)
INPUT: a presentation M ~ D" /D -{Ly,..., L.}, of a holonomic left D-module.
OuTtpuT: the holonomic dual D(M).

1. Compute the first n + 1 steps of any free resolution of M. Let the n-th part of the
resolution be D? -2 pa —Q> Dr.

2. Dualize and apply the adjoint operator (recall if P = [p;;], then 7(P) = [r(p;;)]7) to
get DP T8 pa 79 pr.

3. Return ker(-7(P))/im(-7(Q)).

Proof: Let the first n + 1 steps of a free resolution of M be denoted,
. r -P r Q Tp— T
Dt — D" — D't — . DT 0.
Applying Homp (D, —) yields a complex of right D-modules,
Homp (D, F*) : (D™+1)T &L= (DT & (Drn=)T .o (D)7 0,
and by definition,
ker(D"m+1 i D)
m(Dm & Dra-i)

Since D(M) = Hom g (2, Ext}, (M, D)), it only remains to determine the effect
]

of applylng Hom g4 (2, —). Using the equation (1.3), if {El, .. ,Ek} are generators of

= ker(D"m+! R D™, and Y, Ligi € I = im(D™ & D'=1) is a relation, then

the corresponding relation . 7(g:)¢; in Hom gy (€2, Exty (M, D)) can be realized as the
relation 32, 7(Lig;) = 7(g:)7(L:) € 7(I). Tt follows that

Ext} (M, D) ~

ker(D"m+1 o) D)

im(Dra Z2) prai)

D(M) ~

which is the output of step 3. U
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Example 4.1.5. The Appell system F;(2,—-3,—2,5) of Example 3.1.11 has the resolution
0—D! %1 D? 29 D' — 0, where
Qo= [ (520, 6, - 00, ]T
7| W - ) (0.0, + 02) — 2(y + )0 + 4yd, + 20, — 80, — 4

Q — (y2 - y)(az(?y + 85) - 2$8I + 6y8y + 81‘ - 98y
' — (02 — 3)dy + (6, — )0,

The holonomic dual D(/(2,-3,—-2,5)) is the cokernel of 7(Q)1) and is the Appell system
F1(—1,4,2,-3). We verify this in Macaulay 2 by,

i1 : (I = AppellF1({2,-3,-2,5});

W = ring I;

Idual = Ddual I)

cokernel {0} | xDxDy-1yDxDy-2Dx-4/-1Dy y2DxDy-1/-1y2Dy~2-1yDxDy+. ..

ol

i2 : ideal relations Idual == AppellF1({-1,4,2,-3})
02 true

4.2 Homological isomorphism

The following identification, which we take from Bjork [7], is our main theoretical
tool to explicitly compute homomorphisms of holonomic D-modules.

Theorem 4.2.1. [7] Let M and N be holonomic left D-modules. Then
Extly (M, N) = Tor?_.(Ext% (M, D), N). (2.4)

Proof. Since it will be useful to us later, we give the main steps of the proof here. The
interesting bit of the construction is the transformation of a Hom into a tensor product.
The presentation is adapted from [7]. Let X*® be a free resolution of M,

M_a41

X*:0— Do S p— M pro a0

We may assume it is of finite length by virtue of Hilbert’s syzygy theorem — namely,
Schreyer’s proof and method carries over to D (see e.g. [16]). The dual of X* is the complex
of right D-modules,

Homp(X*, D) : 0 (Dr-+)T Y=t (pr=n)T Yo (proyT
N—— N —
degree a degree 0

Since Homp (D", D) @p N ~ Homp(D", N), we see that Homp(X*, D) ®p N ~
Homp(X*, N), whose cohomology groups are by definition Ext}, (M, N). Now as is custom-
ary, replace NV by a free resolution Y*, which we may also take to be of finite length,

Yo 0o D Ny pee Mpse L N g (2.5)
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We get the double complex Homp (X, D) ®@p Y,

0 0 0
T T T

(M_g41-)®ids (Mp-) @id s
ot o .. (D™-1)T@pDso — 0 (D70)T®pD%0 0

'y

0+ (D"=a)T@pD0 <

(—idr_,)%®(-Ng) —idr_; ®(-Np) idrg ®(-Np)
(M_g41°)®ids_y (Mg )®ids_,
0+ (DT—G)T®DDS—1 (DT—l)T®DDS_1 -— (DTO)T®DDS_1(—O
(—idr_a)a®(.N_b+1) —idr_, ®('N—b+1) idrg ®('N—b+1)
(M_g41°)@ids_ (Mp-)®ids_
0+ (D"-e)T@pD*-b (D"-1)T@pD*~b «——— " (D70)T@p D*=b 40
0 0 0

(2.6)

Since the columns of the double complex are exact except at positions in the top

row, it follows that the cohomology of the total complex equals the cohomology of the
complex induced on the table of F; terms (vertical cohomologies),

0 < Homp (D", N) Homp((M_a41:),N)  Homp((Mo-),N)

Homp(D™,N) + 0 (2.7)
(S Y ———

degree a degree 0

As stated earlier, these cohomology groups are Exti;(M, N).

On the other hand, since M is holonomic, the complex Homp(X*, D) is exact
except in degree m, where its cohomology is by definition Ext} (M, D). Hence the rows of
the double complex are also exact except at positions in the n-th column, i.e. the column
containing terms (D"~ @p (—)). It follows that the cohomology of the total complex also
equals the cohomology of the complex induced on the other table of F; terms (horizontal
cohomologies), which in this case is

idgym (M, D) ®@(-No)
0 — Extp(M, D) ®@p D*~% — - - Extp(M, D) @p D*° — 0 (2.8)

By definition, the above complex has cohomology groups Tor?(Ext”D(M, D), N), which
establishes the identification. O

In the next few sections, our goal will be to compute an explicit basis of cohomology
classes of the complex (2.7). In particular, the cohomology in degree 0 corresponds explicitly
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to Homp (M, N) because any map 1> € Homp (D™, N') which is in the degree 0 kernel, i.e. in

HOIIID((M()-),N)

H°(Homp (D™, N) Homp (D™, N) + 0), (2.9)
N—

degree 0

factors through M ~ D" /My, hence defines a homomorphism ¢ : M — N. The reason
why it is hard to compute these cohomology classes is that the modules Homp (D", N)
in the complex (2.7) are left D-modules while the maps Homp((M;-), N) are not maps of
left D-modules. In the next few sections, we will explain how the ingredients of the proof
of Theorem 4.2.1 can be combined with the restriction algorithm to compute the desired
cohomology classes.

4.3 Polynomial solutions by duality

In this section, we give an algorithm to compute Homp (M, K[x]) for holonomic
M. This vector space is more efficiently computed by Grobner deformations as described
in Chapter 3, but we wish to discuss this special case in order to introduce the general
methodology.

For N = K[z], the isomorphism (2.4) of Theorem 4.2.1 specializes to

Exth (M, K[z]) ~ Tor?_.(Ext} (M, D), K[z]). (3.10)

If we are only interested in the dimensions of these vector spaces, then by applying the
adjoint operator to the right-hand side, we get Exty (M, K[]) ~ Tor?_.(Q, D(M)), which
are the derived integrations of D(M) to the origin.

Algorithm 4.3.1. (Evaluating dimensions of polynomial solution spaces)
INPUT: a holonomic left D-module M.
OuTpuT: dimensions of Ext}, (M, K[x]).

1. Compute the dual D(M) using Algorithm 4.1.4

2. Compute the derived integrations of D(M) to the origin using Algorithm 4.8.7. They
are finite dimensional vector spaces.

3. Return the dimensions.

Example 4.3.2. Let us use the duality method to evaluate the dimension of polynomial
solutions of the Appell system Fy(2,—3,—2,5). We saw earlier that the holonomic dual is
the Appell system F1(—1,4,2, —3), and hence we would like to know the dimensions of its
derived integration to the origin. Using Macaulay 2, we find,

i1 : PolyExt AppellF1({2,-3,-2,5})

1
ol = HashTable{0 => QQ }
1
2 =>QQ
2

1=>QQ
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Here, the output i => QQJ means that dim Ext’, (M, K[x]) = j. In other words, there is
one polynomial solution, as we computed earlier.

To obtain an explicit basis of polynomial solutions, the proof of Theorem 4.2.1
also leads directly to an alternative algorithm. As a D-module, the polynomial ring has the
presentation K[z]~ D/D -{0y,...,9,} and can be resolved by the Koszul complex,

[81]

J(—1)7—1 :

(O O8] g o pr B
N~

K*:0—» _D
N~
degree n degree 0

The complex (2.8) whose cohomology computes Tor?_, (Ext} (M, D), K[z]) then specializes
to Exth (M, D) ®@p K* and is equivalently the derived integration complex of Ext}, (M, D).
in the category of right D-modules. Oaku and Takayama’s integration algorithm can now
be applied to obtain a basis of explicit cohomology classes in H"(Ext} (M, D) @p K*®) ~
Tor? (Ext? (M, D), K[]). These classes can then be transferred via the double complex
(2.6) to cohomology classes in the complex (2.9), where they represent homomorphisms in
Homp (M, K[z]). The method and details are best illustrated through an example.

Example 4.3.3. Consider the GKZ hypergeometric system M4 () associated to the matrix
A =[1,2] and parameter vector 3 = [5], i.e. the D-module associated to the equations,

u=~0; +20,-5 U:812_82
A resolution for M4 () is

[=v u+t2]

X*:0— D' D? D' =0
while a resolution for K[z, z5] is the Koszul complex,
143.]
K022, p2 =0 g
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The augmented double complex Homp(X*, D) ®p K* is

Klzy, 2] = [Fv ut2) K[ml,m]z L K[z, 23]
Ext}(Ma(8), D) = D' < [y wt2] p? o bl D!
9y 0
) %) {55 1| I
0 _81 v Q
[_OU u-(})—? —O’U u—(IJ—Z] |:8 u:|
Exth(Ma(B), D)? D? D* v D?
181 2] CEN [p 828 31 3]
Ext}(Ma(5), D) oot pro—bl

Here, we interpret an element of a module in the above diagram as a column
vector for purposes of the horizontal maps and as a row vector for purposes of the vertical
maps. The induced complex at the left-hand wall is the derived integration to the origin of
Ext?,(M4(8), D) in the category of right D-modules. Applying the integration algorithm,
we find that the horizontal cohomology at the module in the bottom left-hand corner
is 1-dimensional and spanned by the residue class of

Lig= —(2252y — 402723 + 1202123)0; — (2§ — 30z]2 + 1802723 — 12023).

We lift this class to a cohomology class of the complex induced at the top row via a “transfer”
sequence in the total complex given schematically by

D2 [%] Dl 3 L172
1% 8]
=01
[—U u4+2 0 0 ] |- 0 _alJ
D? 0 =v % phs Ly,
[01 82]
Dl = LI,O

In other words, L;; is obtained by taking the image of Lo under the vertical map and
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then a pre-image under the horizontal map, and similarly for L, 5. We find that,

22329 — 402723 + 120227
— (2} — 20z}z2 + 60z,23)

b = — (28 — 202125 + 602323) '
zi — 202329 + 602123) 01 + (1027 — 1202325 + 12023)
Ly = [ 25 — 202379 + 607123 ] .

The space of polynomial solutions is spanned by the residue class of Ly 5 in K[z, 23], which
is #7 — 202729 + 607123,

Remark 4.3.4. The transfer sequence above is used to show that Tor is a balanced functor
in Weibel [54, Section 2.7]. A generalization of the transfer sequence is also used to compute
the cup product structure for deRham cohomology of the complement of an affine variety

in [53].

From a practical standpoint, the method outlined above is not quite the final
story. The detail we have left out is how Oaku and Takayama’s integration algorithm
actually computes the cohomology classes of a Koszul complex such as Ext}, (M, D)®p K*°.
Their algorithm does not compute these classes directly. Rather, their method (phrased in
terms of right D-modules) is to first compute a V-adapted resolution Z* of Ext}, (M, D).
Then they give a technique to compute explicitly the cohomology of Z* @p K[z]. This
complex is quasi-isomorphic to Ext} (M, D) ®p K*, and cohomology classes are transferred
by setting up another double complex Z*®@p K*. Thus, our method as described to compute
polynomial solutions requires two transfers via two double complexes.

Given the true nature of the integration algorithm, the two transfers can be col-
lapsed into a single step. Namely, we start with Homp(X*, D),

HOHID()(.7 D) 0= .J\L_" (DT—”)T M-ni1- . Mo- (Dro)T —0
— N——
degree n degree 0

which is exact except in cohomological degree n because M is holonomic. We are interested
in explicit cohomology classes for H°(Homp(X*®, D)®p K[z]). To obtain them, we replace
Homp(X*, D) with a quasi-isomorphic v—adapted resolution F* along with an explicit
quasi-isomorphism 7, from F*® to Homp(X?®, D). That is, we make a map m, from a free
module (D*-»)T onto some choice of generators of ker(M_,-), take the pre-image P of
im(M_,,41-) under 7, and compute a V-adapted resolution E*® of D*-n/P. Schematically,

S_m\T 1° Np-
0 D P”) (D5 =m)T <L (Do) T 2 (D0)T (Do 1)T e
I I
I I
I I
™ 1 1
I I
, ' o
O te(DT=n=1)T 2 (Dr=m)T «FL (prent1)T. &8 (DroYT (g
N — N —

degree n degree 0
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Using the integration algorithm, the cohomology classes of E* @p K[x] can now be com-
puted. In order to transfer them to Homp(X?®, D) @p K[z], a chain map lifting =, is
computed and utilized as suggested by the dashed arrows. We summarize the algorithm as
follows. To keep computations in terms of left D-modules, we make use of the transposition
7 at various places. Applying 7 to the polynomial ring K[z] gives the top differential forms
Q=D/{01,...,0.} - D =r1(K[z]).

Algorithm 4.3.5. (Polynomial solutions by duality)

INpUT: {Ly1,..., L, } C D™ such that M = D™ /D -{L4,..., L, } is holonomic.

OuTpPUT: the polynomial solutions R € K[x]™ of the system of differential equations given
by {L;e R=0 :i=1,...,7m}.

1. Compute a free resolution X* of M of length n 4+ 1. Let its part in cohomological
degree —n be denoted:

'M—n 'M—n-l-l
—_— _—

oo DP-n—t Dr—n Dr—»+1 5 ...

2. Form the complex 7(Homp(X*®, D)) obtained by dualizing X* and then applying the
standard transposition. Its part in cohomological degree n now looks like:

-T(M_y)

e DT—n—l - DT" ;T(M—n+1)

Dr-n+1 ...

3. Compute a surjection 7, : D*~" — ker(-7(M_,,)), and find the pre-image 7(P) :=
7, (im (-7(M_,41))). This yields the presentation D" /7(P) ~ r(Ext},(M, D)).

4. Compute the derived integration module HO((Q ®% (D*-»/r(P))[n]) using Algo-
rithm 4.8.7. In particular, this algorithm produces

(i.) A V-adapted free resolution E* of D= /7(P) of length n + 1,

E*:0& D’ « Dl (... D1 D% o D1,
~— <~

degree n degree 0

(ii.) Elements {g1,...,g9x} C D* whose images modulo im(€2® D*®') form a basis for

1o ((20h (57)) ) =~ Ho@ep B7) ~ G pmtes)

5. Lift the map m, to a chain map m, : £* — 7(Homp(X?®, D)). Denote these maps
s DS — DT

6. Evaluate {7(mo(g1)),...,7(mo(gx))} and let {R;(x),..., Rx(x)} be their images in
(D/D -{01,...,0,})"° ~ K[x].

7. Return {R;(x),..., Rx(x)}, a basis for the polynomial solutions to M.
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Example 4.3.6. Let us return to the GKZ example and apply the revised algorithm. For
Step 1, we have already computed a resolution X*. Its length equals the global homological
dimension. Thus for Step 2, we get a complex which is a resolution for the holonomic dual,

7

where u/ = —(6; + 26 + 6) and v’ = —(9? + ;). For Step 3, it follows that we get the
presentation,

o' )

D? D' 0,

7(Hom(X*®, D)) : 0+ D'

D D
D-{u/, o'} ~ D {0 + 26, + 6,02 + 0}

7(Extp (M, D)) ~

For Step 4, we compute the derived integration of this module. It turns out that
the complex 7(Hom(X*, D)) is already a V-adapted resolution when taken with the shifts
0 + D[0] « D?[1,0] + D![1] + 0. The integration b-function is s — 4, hence according to
the integration algorithm, Q®p7(Hom(X*®, D)) is quasi-isomorphic to the finite-dimensional
subcomplex,

0+ ]54(91[0]) L _u_l] 74 (92[1 0]) [—u—B] F4

(Q1]) « 0.

Here, l?’4(Ql[1]) is spanned by the 21 monomials of degree < 5,

5 4 3.2 2
{1, 21, 29,... $17$1$27$1$27$1$27$1$27$2}

while ]?4(92[0, 1]) is spanned by the 36 monomials

4 .3 2
{1,229, ... :cl,:cl:cg,xle,.rl.rQ, }61 U
5 .4 39 %3 5
{1,3@1,332,.. ol aliwy, afed, 22ad vyl 25} - ey,

The matrix [ul_, ] induces a map of K-vector spaces between them whose kernel is spanned
by the degree 5 polynomial Ry = (2§ — 202325 + 60z123). The Macaulay 2 session is,

i1 : I = gkz(matrix{{1,2}}, {5})

2
0ol =ideal (D -D, xD +2xD - 5)
1 2 11 2 2
i2 : PolySols (I, Alg => Duality)
5 3 2
02 = {2x + 40x x + 120x x }
1 12 12

We use the option Alg => Duality in PolySols above to indicate that we would like to
use Algorithm 4.3.5 based on duality as opposed to Algorithm 3.1.9 based on Grébner
deformations.
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4.4 Rational solutions by duality

In this section, we give a duality algorithm to compute an explicit basis of the space
Homp (M, K[x][f~!]) for holonomic M. The method is essentially the same as the algorithm
for polynomial solutions. Since a rational solution has its poles inside the singular locus of
M, we obtain an algorithm to compute the rational solutions of M. Here, as otherwise, we
shall use N[f~'] to denote N @gpx K[x][f7].

If we are only interested in dimensions of the vector spaces Ext’, (M, K[z][f~']),
then the isomorphism (2.4) of Theorem 4.2.1 specializes to (see e.g the proof of Algo-
rithm 4.4.3),

Extl (M, K[2][f~1]) TorP
TornD

1 1R

On the vector space level, it thus suffices to compute the derived integrations of D(M)[f~!]
to the origin.

Algorithm 4.4.1. (Evaluating dimensions of rational solution spaces)
INPUT: a holonomic left D-module M.
OuTPUT: dimensions of Ext, (M, K[x][f~]).

1. Compute a polynomial f vanishing on the codimension 1 component of the singular
locus of M using Algorithm 2.1.4.

2. Compute the dual D(M) using Algorithm 4.1.4.
3. Compute the localization D(M)[f~'] using Algorithm 2.2.3.

4. Compute the derived integrations of D(M)[f~!] to the origin using Algorithm 4.8.7.
They are finite dimensional vector spaces.

5. Return the dimensions.

Example 4.4.2. Let us now evaluate the dimension of rational solutions to the Appell
system M = Fy(2,-3,-2,5). As we computed earlier, D(M) ~ I} (-1,4,2, —3). We first
compute the singular locus of M,

i1 : singlocus (M = AppellF1({2,-3,-2,5}))
32 23 3 3 2 2
ol = ideal(x y - x§y - Xy + X*¥y + X J - X*y )

It factors as f = zy(z — y)(z — 1)(y — 1). It will be difficult to compute the localization
of D(M) at the full polynomial f. Let us instead start by evaluating the dimension of
solutions in K[z, y][z71]. Going through the algorithm, we find,



CHAPTER 4. HOMOMORPHISMS BETWEEN HOLONOMIC D-MODULES 95

i2 : RatlExt (M, x)

2
02 = HashTable{0 => QQ }
3
2 => QQ
5
1 => QQ

Since we already computed a polynomial solution, this means there is one rational solution
with pole along z. Similarly, we get the exact same dimensions for Ext%, (M, K[z, y][y~']),
which means that there is also one rational solution with pole along y. We will list these
rational solutions in Example 4.4.5. We now compute the rank,

i3 : Drank M
03 =3

which is 3, and therefore we have accounted for a full basis of solutions. We could never-
theless also compute,

i4 : RatlExt (M, f)

1
04 = HashTable{0 => QQ }
2
2 => QQ
3
1 => QQ

where f is any of the polynomials z —y, * — 1, or y — 1. As expected, there are no rational

solutions with poles along # —y,  — 1, or y — 1, but in all cases there are new Ext! and
Ext?.

An explicit algorithm for computing rational solutions can be made in a similar
way as for the polynomial case.

Algorithm 4.4.3. (Rational solutions by duality)

InpuT: {Ly,..., L, } C D™ such that M = (D™/D -{Ly,..., L, }) is holonomic.
OuTPUT: the rational solutions R € K (x)™ of the system of differential equations given by
{L;eR=0:i=1,...,1m}.

1. Compute a polynomial f vanishing on the codimension 1 component of the singular
locus of M using Algorithm 2.1.4.

2. Compute a free resolution X*® of M up to length n+ 1. Let its part in cohomological
degree —n be denoted:

'M—n 'M—'n-l-l
—_— _—

D

oo Drfen—1 Dr-n+1 5 ...
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3. Form the complex 7(Homp(X?®, D)). Its part in cohomological degree n now looks
like:

7(M_n) Dr-n T(M_nt1)

oo PDren—1 Dr—n+1 ...

4. Compute a surjection
wy, 2 D — ker(-m(M_,)),

and find the preimage 7(P) := @, ' (im(-7(M_,+1))). Denote by w@¢, the induced
map on the localizations, D*=[f~1] = ker(-7(M_,))[f~].

5. Compute the localization of D*-»/r(P) at f using Algorithm 2.2.3. This produces a
presentation,

7 D(@) - (D(P)[[J];]])

e;modr(Q)) — (e;modr(P)) @ f~*

6. Compute the derived integration H°((Q®E D= /7(Q))[n]) using Algorithm 4.8.7. In
particular, this algorithm produces

(i.) A V-adapted free resolution E* of D*==/7(Q) of length n + 1,

E*:0 D° ™ « D*tl — ... D°1 ¢« D%« D1,
~— <~

degree n degree 0

(ii.) Elements {g1,...,9x} C D* whose images form a basis for

D—n ~ o\ - ker(Q® D=1 Q®pD*so
HO((Q@h 25 ) [n]) = HO@Q@p 1*) ~ Sel@znb a0, D)

7. Let m, be the composition
wipop: D — D[ — ker(-T(ZM_n))[f_l]7

where ¢ : D= —3 D*-n[f~!] is the map defined by e; — ¢; ® f~%. Lift 7, to a
chain map 7, : £* — Homp(X*, D)[f71].

8. Evaluate {r(mo(g1)),...,7(mo(gx))} C D[] and let {Ri(x),..., Re(x)} be their
residues in (D[f~1]/D[f=]-{01,...,0,})7 ~ K[x][f~1]™.
9. Return {R;(x),..., Ri(x)}, a basis for the rational solutions to M.
Proof. Any rational solution of M has its poles contained inside the singular locus of M.
The proof is now essentially the same as for the polynomial case. The space of rational

solutions can be identified with the 0-th cohomology of the complex (2.7), which specializes
to

Homp(X*, D) ®p K[x][f™'] ~ Homp(X*,D)[f~ " ®@p[s-1) K[z][f~"]
~ Homp(X*, D)[f~ "] @pp— PIf '] ©p K[z]
~ Homp(X*, D)[f1op K[z]
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Since the complex Homp(X*, D) is exact except in cohomological degree n where
its cohomology is Ext} (M, D), and since localization is also exact, the localized complex
Homp (X*, D)[f~!] remains exact except in cohomological degree n where its cohomology
becomes Ext} (M, D)[f~!]. Hence Homp(X*, D)[f~!] ®p K[z] computes the derived in-
tegration modules of Ext}, (M, D)[f~!] in the category of right D-modules. The above
algorithm computes cohomology classes for the derived integration modules and transfers
them back to cohomology classes of Homp(X*®, D) @p K[x][f}]. O

Remark 4.4.4. Let us explain how the lifting of 7, to a chain map in Step 7 may be
accomplished algorithmically. We wish to do computations in terms of D and not D[f~1].
The idea is that localization is exact, hence any boundary in Homp(X®, D)[f~!] is the
localization of a boundary in Homp(X*®, D). Suppose we have computed 7; : D*~ —
Dr=:[f=']. Then to compute 7;_1, we first compute the images ¢; of e; € D*%+! under
Ds=it1 — D= L pDr- [f71]. Because the existing my,...,7; are the beginning of a
chain map, the /; are in the image of D"=+1[f~!] — D"=s[f~!]. Now we use the fact
that localization is exact, which means for sufficiently large m;, f™¥; is in the image of
D=+t — D"=i. To find valid m;, we can multiply £; by successively higher powers of f and
test for membership at each step via Grébner basis over D. Now compute any preimage
P; of f™i{; in D™=, The map m;_1 : D=+t — D"=+1[f~!] may be defined by sending
e f[TTP;

Example 4.4.5. Let us continue Example 4.4.2 and obtain the solution of the Appell
system Fy(2,-3,—2,5) with pole along z explicitly. We already computed the resolution,

M_ M,
X*:.0-D! !, p? Q

D' =0,

hence 7(Homp(X*®, D)) is a resolution for 7(Ext}h (M, D)) = Fy(—1,4,2,-3),

r(Homp(X*, D)) : 0t =) po 7))
where,
T(M 1) — |: (0$+4)8y_ (0y+2)ar ]
- (Y2 = ) (0:0y + 02) + 2(z + y) 0 — 29y — 20, + 70, — 2
My [ (y2 = 1) (0.0, + 02) + 2(x + 29)d, — 30, + 60, — 4 ]T
’ —(0 +4)0, + (6, + 3)0; '

Using Algorithm 2.2.3, we compute that the localization has presentation

5: D = Dlz"] ~ 7(Ext} 27!
? gy (i) = b D)l

1 mod 7(Q) (1 mod im(-(M_1))) @z~ "

where )
T(Q):D-{ (00, + 67 + 860, + 20, +12) — (6. + 0, + 4)0, }

(0,0, + 26,4+ 70, + 14) — (0, + 10)20,
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We then compute that D/7(Q) has a V-adapted resolution,

u3]

E* 0« Do) <22 p2jo, 1) &2 prqe o,

where
u = 20,0, — xyd;0, — 220, + 1120, — Tyd, — 14
Uy = x38§ + 303(?95(% — m28£ — $28I(?y + 16220, + 11$2(?y—|—
4zy0, — 920, — 1120, + 522 — 7
_ 352 .3 2292 _ .2 2 2
vy = 2°0;+2°0,0, — 2°0; — 70,0y + 16270, + 122°0,+
4zy0, — 820, — 1120, + 522 — 6
Vg = —562335(% + 2y0,0y + 220, — 1120, + 6y0, + 12.
We would like to construct a chain map 7, : £* — 7(Homp(X?*, D)) which lifts the map
Ty : DY0] — D[z~ !]' defined by 1 + 2=7. To compute the next map = : D?[0, —1] —
D[z~1]%, we need to find preimages of the elements 73 o (-[uy, u2]”)(e1) = mo(u;) and 73 0
(-[ur, u2]")(e2) = w2 (uz) under the map (-7(M_;)) : D'[z71] «— D?[z7']. Note that

mg o (+[u, uz]T)(el) = u -z’

= 2((0, + 1), — (0, +2)0,)

It follows that 73 o (-[u1, ug)”)(2%e1) = (-7(M_1))(€}) so that we may set 7 (e;) = =~ %€.
In a similar manner, we obtain the chain map,

3]

B0 D'0] D0, 1] D'-1] 0
m 7] m [ ] o | e
7(Homp(X®, D)) : 0 «— D'[z71] (M) D*[z™1] 7o) D'[z71] 0,
where
a = —3(0"-y)(0:+0y) + 2 +2y - 3
c = J(@—yd+3

The integration b-function is (s — 11)(s — 4)(s — 1), hence according to the integration
algorithm, Q ®@p F* is quasi-isomorphic to its subcomplex F!''(Q®p E*®). Using Macaulay

v ,v2]

2, we find that ker(2 =" Q?) is 2-dimensional and spanned by,

9 3,.9 8 48 .8 | 727

g = 7y — 3527 -6y + T2t + Fa'y
126,77 _ 846 168, 6 , 42 5 5
Tty s um e
g2 = —THFY+ 77— Ty — 35T+ 57y

The residue class of 7(m(g1)) yields the polynomial solution,

24 144 165
(2y* — 6y + 3)503 + (=9 + = ?)‘502
72 5 252 252 42 168

el Pl P st Syt — 42
+ (5y 5y+5)m+( 5y+5y )
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while the residue class of 7(mo(g2)) yields the rational solution,

6 24 6 6 5
(—6:64—|—4;r3y—?x2y2—|—4$3—7$ y+ ,ry ——a: —|—— y—ﬁy) 6,

By similar methods, we obtain the rational solutions with pole along y,

( 23y? — 21 2yt 4 2 21, 345y5 23y + 622y )y_7
—%acy + 7yt + 1233 — EJUQy—}—&Uy 4y3

Together with the polynomial solution found in Example 3.1.11, these solutions span the

holomorphic solution space in a neighborhood of any point away from zy = 0.

Remark 4.4.6. In the next section, we give an algorithm to compute Homp(M, N) for
arbitrary holonomic M and N. Using it with N = K[x][f~!], we get a similar but compu-
tationally different duality method to compute rational solutions. The basic difference is
that the algorithm of this section uses computations over D and in principle over D[f~1],
while the algorithm of the next section uses computations over Ds,, the Weyl algebra in
twice as many variables. From the computational perspective, we believe the algorithm of
this section is more efficient.

4.5 Holonomic solutions

In this section, we give an algorithm to compute a basis of Homp(M, N) for
holonomic left D-modules M and N. We will use the following notation. As before, D

will denote the ring of differential operators in the variables z,...,z, with derivations
d1y...,0,. Occasionally we will also write D,, or D, for D. In a similar fashion, D,
will stand for the ring of differential operators in the variables yq, ..., y, with derivations
81yeeey Ope

If X is a Dy-module and Y a Dy-module then we denote by X XY the external
product of X and Y. It equals the tensor product of X and Y over the field K, equipped
with its natural structure as a module over Dy, = D, X D,, the ring of differential operators

inzy,...,2n,Y1,-.., Y, with derivations {0;, 0;}1<; j<n. In addition, let n denote the algebra
isomorphism,
1 1 n
Ty sk — & 0 — 5y + 0;
. D D k3 2 (3] k3 2J% (3]
(e o { yi = =gt =6, S qyi— 0 f, )7

and let A and A denote the right Dg,-modules,

D2n D2n

A= Ai=——— —n(A).
{xz_yuaz‘i’(szl §@§R}D2n XD2n+yD2n 77( )

As mentioned in the introduction to this chapter, an algorithm to compute the
dimensions of Ext, (M, N) will be based upon the isomorphisms (0.1) and (0.2):

Extly (M, N) = Tor?_.(Ext% (M, D), N)
Tor? (M’, N) ~ Tor?*" (Do /{zi — yi, 0 + 8:}1—y - Doy, 7(M') B N).
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Combining these isomorphisms where M’ = Ext} (M, D) produces
Ext (M, N) ~ Tor?z)" (Dap/{zi — i, 0i + 837y - Doy, T(Exth (M, D)) K N) (5.11)

In order to compute Homp (M, N) explicitly, we will trace the isomorphism (5.11). We
explain how to do this step by step in the following algorithm. The motivation behind the
algorithm is discussed in the proof.

Algorithm 4.5.1. (Holonomic solutions by duality)
INPUT: presentations M = D" /My and N = D*0 /Ny of holonomic left D-modules.
OuTpPuUT: a basis for Homp (M, N).

1. Compute finite free resolutions X*® and Y* of M and N,

- 'M—a M
X*:0— Do —L ... D= D 5 M0
degree —a degree 0
-N_ -Ni
Y*:0—» Db ... D1 2R DY SN0
degree —b degree 0

Also, dualize X* and apply the standard transposition to obtain,

T(M_qt1) -7(Mo)

T(Homp(X*, D)): 0+ D" s DT D™ 0.
S~ ~~
degree a degree 0

2. Form the double complex 7(Homp(X*®, D)) K Y* of left Dy,-modules and its total

complex
Z%:0 4 Doyt it Do, oot Dyt e 0
N—— SN——
degree a degree 0
where

Dy = @ D RD*.
i—j=k
Let the part of Z* in cohomological degree n be denoted,

T, Tn—1
DZntn+1 — DZntn . DZntn_l

3. Compute a surjection 7, : Dy,""— ker(-n(7},)), and find generators for the preimage
Pi= gt (im(-n(Tno)))-

4. Compute the derived restriction H°((A ®%2n Dy, /P)[n]) using Algorithm 4.8.6. In
particular, this algorithm produces,

(i.) A V-adapted free resolution £* of D**/P of length n + 1,

E. . 0 — D2nun — D2nun—1 A D2nu1 — DQnuO — DQnu_l'

degree n degree 0
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(ii.) Elements {¢1,...,9x} C D2,"° whose residues in A ®p,, E* form a basis for

ker(A®D2nD2nu1 (—A®D2n D2nu0 )
im(A®p,,, D2n "0 A@p,, Dan"~1)

HO ((A ®% DT) [n]) ~ HO(A ®p,, E*)~

5. Lift the map 7, to a chain map 7, : E* — n(Z*). Denote the maps m; : D% — D",

6. Compute the image of each g; under the composition of chain maps,

B A ®p,, Z* —» Tot*(Homp(X*, D) @p Y*)
o) P1
—1
n(z*) — z* Homp(X*, N)

Here p; is the projection onto Homp(X®, D) @ Y° followed by factorization through
17V0-

These are all chain maps of complexes of vector spaces. Step by step, we do the
following. Evaluate {L; = 57 (70(¢g1)),- -, Lr = 17 (m0(gx))}, and write each L; in
terms of the decomposition,

Li=®;Li; e D7 RDy7 (= Daw").
i

Now re-express L; o modulo {z; — y;,0; +6; : 1 < i < n}- Dy, @p,, (DK DZO) S0
that z; and d; do not appear in any component. Using the identification D7* K D0 ~
D%e1 @ ---@ D e,, where {e;} forms the canonical D-basis for D?, we then get an
expression

Li,O = €i71€1 + e + &moem € (Dy)soel @ e @ (Dy)soem .

Let {EM, .. .,Zi7ro} be the residues in (D® /Ng) ~ N. Finally, set ¢; € Homp(M, N)
to be the map induced by

{61 — €i717 €9 f@z, ceey €pg 2 Eiﬂ”o}‘

7. Return {¢1,...,¢r}, a basis for Homp (M, N).

Proof. The main idea behind the algorithm is to adapt the proof of Theorem 4.2.1. In that
proof, we saw that Tot*(Hom(X*, D) ®@p Y*) 2% Homp(X*, N) is a quasi-isomorphism.
Thus it suffices to compute explicit generating classes for

HO(Tot*(Homp(X*, D) ®p Y*)) = H°(Homp(X*, N)) ~ Homp (M, N).

Here, the double complex Homp(X*®, D) ®p Y* is in some sense easier to digest
because it consists entirely of free D-modules. However, it too only carries the structure of a



CHAPTER 4. HOMOMORPHISMS BETWEEN HOLONOMIC D-MODULES 102

complex of infinite-dimensional vector spaces, making its cohomology no easier to compute
than the cohomology of Homp(X*®, N).

Thus, we instead are led to consider the double complex 7(Homp(X*, D)) K Y*
of Step 2, whose total complex T* does carry the structure of a complex of left Dg,-
modules. Moreover, we can get back to the original double complex by “restricting back
to the diagonal”. In other words, we claim that as a double complex of vector spaces,
Homp(X*®, D)®p Y* can be naturally identified with the double complex,

A ®@p (r(Homp(X*, D)) KY?*).

To make the identification, first note that the natural map

D2n

=A
{2; —yi,0;+6; : 1 <i<n}- Dy,

Dy —

is an isomorphism of left D,-modules. Let {e;,...,e.} denote the canonical basis of a free
module D". Then an arbitrary element of A®p,, (D,"®D,*) can be expressed uniquely as
> €xXmy, where my, € D,°. Similarly, an element of D" ®p D® can be expressed uniquely
as y_; ex @ my where my € D®. Hence we get an isomorphic identification as D,-modules
of A®p,, (D;"®D,*) and D" @p D?. In particular, this shows that the modules appearing
in the double complexes are the same.

It remains to show that the maps in the double complexes can also be identified.
An arbitrary vertical map of A®p,, (7(Homp(X*®, D))XY*) acts on an arbitrary element
> 1 1 ® e ®my, according to,

A @p,, (D" BDy™)  Si(=1) exB(-N; ) ()
ida ®(—idy; ) B(-N;)

A ®D2n (D‘rrl‘ & Dysj-l-l) Ek 1®ek®mk

This is exactly the way the corresponding vertical map in Homp(X*®, D) @p Y* works on
the corresponding element:

Dzm @b Dysj Ek(_l)éek(@(']\f])(mk)
(_ idn‘ )i®('NJ)

D$Ti ®pD Dys]-H >k er®my

Likewise, an arbitrary horizontal map of A ®@p, (7(Homp(X*®, D))KY*) acts on
an arbitrary element according to,

A @Day (D$T¢+1 X Dys]) ida ®(-7(M;))R1

A ®p,, (D" B D,*)

>k 1@exBmy 2k 1007 (M) (ex)Rmy -
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Here, we would like to re-express the image Y-, 1 ® (-7(M;))(ex) ®my in the form ), 1®
er, ¥ ny. To help us, note the following computation in A ®@p,, (D" X D,*):

(102°0%;R®m) =10 0% Ky m=10¢ R (=8 y"m =1 ¢ R7(y*5%)m.
Using it, we get that

Zl®('T(Mi))(ek)®mk = Zzl(@T(Mi)jkej&mk
k kg
= ZZl@ej‘&T(T(Mi)jk)mk
kg
= ZZl@q&(Mi)jkmk
kg

This is exactly the way the corresponding horizontal map in Homp(X*®, D) @p Y* works
on an arbitrary element:

(M;)®id

Dritt D D% i) Dri D D

2k ck®my Pk 2 e @(M;) jrmk

Thus, we have explicitly identified A@p (r(Homp(X*, D))®Y*) with Homp (X*, D)®@pY*.

The task now becomes to compute explicit cohomology classes which are a basis
for H(A ®p,, Z°*). To do this, we note that Z* is exact except in cohomological degree
n, where its cohomology is T7(Ext}h (M, D)) W N. This follows because 7(Homp(X*, D)) is
exact by holonomicity except in degree n, where its cohomology is 7(Ext}, (M, D)), and Y* is
exact except in degree 0, where its cohomology is V. In other words, the complex A®p,, A Z*
is in some sense a restriction complex. Namely, after applying the algebra isomorphism 7,
we get an honest restriction complex A @ n(Z*) for the restriction of n(r(Ext} (M, D))KN)
to the origin (the restriction complex of a left Dg,-module M’ is by definition A ®f)2n M.

We can thus compute the cohomology groups of A ®@p,, n(Z*) by applying the
restriction algorithm. However, since we are after explicit representatives for the cohomol-
ogy classes, we need to use a presentation of n(r(Ext} (M, D)) ® N) which is compatible
with n(Z*). This is the content of Step 3. Once equipped with a compatible presenta-
tion, we apply the restriction algorithm to it, which is the content of Step 4. This step
produces explicit cohomology classes of A ®p,,, E/*, where E'* is a V-adapted resolution of
n(T(Exth (M, D)) ® N). To then get explicit cohomology classes of A @p, 7(Z*), we con-
struct a chain map between E* and n(Z*), which is the content of Step 5. The cohomology
classes can now be transported to A ®p,, 7(Z*) using the chain map, then to A ®@p, 7°
using n~!, then to Tot*(Homp (X*®, D)®pY*) using the natural identification described ear-
lier, and finally to the complex Homp(X*®, N) using the natural augmentation map. These
steps are all grouped together in Step 6. This completes the proof of the algorithm. U

Example 4.5.2. Let M = D/D-(d —1) and N = D/D - (9 — 1), where D is the first
Weyl algebra. Then for Step 1, we have the resolutions,

(9-1)

. . —2
X 0D PN pt o ye.0- pt Y

D' =0
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For Step 2, we form the complex Z* = Tot(r(Homp(X*, D)) K Y*),

3] 2
1 . _ —(9,
Z. . 0 — D21 ( Y ) D22 [(ay 1) ’ (8 +1)] D21 — 0
N~~~ N~~~ S~~~
degree 1 degree —1 degree 0

For Steps 3-5, we get the output,

[ Lyt+os+1 ]
—8;—1)2 [(Ay—8,-1)2,—Ly—8, -1
(70 Dyt o tE%Y D,? v femqv %l o
m=1] wO=~[gy_éx_1 {
,[§y+8x+1] Ly
2 : T YT e —1
E*: 0« Dy'[0] v D;%[-1,2] i Dy'[1] 0

The complex F* is a V-adapted resolution of the cohomology of n(Z*) at degree 1, and the
restriction b-function is b(s) = (s + 1)(s + 2). Hence A ®@p FE* is quasi-isomorphic to its
sub-complex FF~1(A ®p E*)

[Fy+oa+1 1

[2 y2 0@_ ~[y2,—%y—8m—l] _

0 0 <~——— Spang 0@3_95 <~ Spang {1}« 0
0® 0y

Hence the cohomology HY(A ®@p E*) is spanned by {04 1,0 ¢ d,}. Applying g, we see
that the vector space H(A ®p n(Z*)) is spanned by the residue classes of {(2y — 0, — 1) ®
1, 8y(%y -9, —1)®d,}. Next applying 7', H°(A®p Z*) is spanned by the residue classes
of {L1 = (0, +20,—- 1) 1,Ly = —%(m@z—l—Qyﬁy—l—yaz—l—Q:c@y —x—y)@—%(m—l—y)}. Modulo
the right ideal generated by {z —y, 0,4+ 0y}, we can re-express these cohomology classes by
{0y -1)®1,(ydy —y—1)® —y}. Applying p1 we get {L1o9=0y —1,La0=yd, —y — 1},
which corresponds to a basis of Homp (M, N) given by,

&1 - D [8-1] D
""D(0-1) D-(0—1)2
qb . D (rd—z—1] D
D-(@-1) D-(0-1)%

The Macaulay 2 session is,

i1 : (W = QQ[x,Dx,WeylAlgebra => {x=>Dx}];
M = cokernel matrix{{Dx-1}};
N = cokernel matrix{{(Dx-1)"2}};
DHom(M,N) )

ol = {{0} | -1xDx+x+1 |, {0} | 1/-1Dx-1/-1 |}
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Remark 4.5.3. When M is a holonomic D-module and N is an arbitrary finitely generated
D-module, then Homp (M, N) = Homp (M, Hol(NV)), where Hol(N) denotes the maximal
holonomic submodule of N. This submodule can be computed by a dualizing complex, as
suggested in Remark 2.5.7. When M is not holonomic, then Homp (M, N) is in general not
finite-dimensional, and as far as we know there is not a good theory for dealing with this
situation.

4.6 Extensions of holonomic D-modules

In this section we explain how one can modify our algorithm for the computation
of Homp (M, N) in order to compute explicitly the higher derived functors Ext' (M, N) for
holonomic D-modules M and N.

A useful way to represent Ext’, (M, N) is as the i-th Yoneda Ext group (see e.g. [54,
Section 3.4]), which consists of equivalence classes of exact sequences,

£:0—» N Q X5 0 M —0,
for any list of (not necessarily free) D-modules @, X2 ..., X", Two exact sequences &
and &' are considered equivalent when there is a chain map of the form,
£:0— N Q X+ .. x0 M —0
&:0— N Q' X, x”? M —0.

In our modified algorithm we follow the same steps as in Algorithm 4.5.1, except
that in Step 4 we compute H ~"+*(A ®f)2n (Dgy, "/ P)) instead of H~™(A ®f)2n (Dgy, | P)).
The output is a basis {¢1, . .., @&} of the finite-dimensional vector space H'(Homp(X*, N)),
where X* is a free resolution of M,

M_, M,
s . Dt S D M 0.
N~~~

degree —a degree 0

X*:0— Do
——

To obtain the i-th Yoneda Ext group from our output for EXt%(M, N), we follow
the [54, Section 3.4] and associate to a cohomology class ¢ € H(Homp(X*®, N)) the exact
sequence,

Ep):0 —- N —Q— D+ — ... -5 D5 M —0.

Here, @ is the cokernel of (-M_;41,¢) : D"~ — D"=+1 @ N, and the maps are all the
natural ones. Notice that the only difference between any &(¢) and £(¢’) are their cor-
responding (Q’s and the maps to and from them. In terms of the basis {¢1,..., 5} of
H'(Homp(X*, N)), the set of possible Q’s which appear can thus be packaged as the set,

Vi

D= @ D%
:{ @ (K}l,...,:‘ik)EI(k}.

(08 No)+ D {(-M_; + X5y #non) () Voo™
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When ¢ = 1, the 1-st Yoneda Ext group consists of equivalence classes of extensions
of M by N,
E:0=-N—Q—M=(D"°/D"'-My) =0

where @ = X~'@ N modulo X~2-M_;. Thus, once we have computed a basis {¢1, ..., v}
of H'(Homp(X*, N)) via the modified Algorithm 4.5.1, the possible extensions @ of M by
N are,
D=1 @ D%
V, = @ - — | (K1, 6k) € KRS
(0 No) + D -{(-M_1+ 35—y rnen)(€) 123

Example 4.6.1. Let D = K (z, d) be the first Weyl algebraand M = D/D-0, N = D/D-z.
Then for Step 1 of Algorithm 4.5.1, we have the resolutions,

X*:0-D' LD 50, Y0 D' D S0
For Step 2, we form the complex Z* = Tot(r(Homp(X*, D)) K Y*),

1]

[y,—9x]

Z%:0+« Dy! D3? Dy « 0
~—~

degree 1
For Steps 3-6, we find that H'(A ®@p, Z°*) is spanned by {1}, and projecting by py,
Ext}, (M, N) ~ H'(Homp(X®,D/D - z) is spanned by the natural projection ¢ : D —
(D/D - z). For k € K, the cohomology classes k¢ correspond to the extensions on the
bottom row of the following diagram,

-8 D

D D
0— D9 -0
K -[0,1] idD/D~6
0 D 11,0] D-ery®D-eg -_[(fl D 0
Dz D-zer 4+ D - (key + dey) D0

When x # 0, the module Q(x) = (D-e1 B D -e3)/(D-ze; + D - (key + Oey)) is generated by
e2 and is always isomorphic to D/D - zd. When k = 0, the module is no longer generated
by e and is isomorphic to D/D -9 & D/D -z but not to D/D - z0.

In fact, the module (D-eq1 & D-e3)/(D-ze; + D - (key + 0eg)) is always generated
by the residue class of e; + €5 and has the cyclic presentation D/D - {0%z + k20, 220} with
respect to this generator. Using this presentation, the extensions take the form,

D [-23] D Jzo+1] D
Dz D -{0%z + kzd, 220} Do

Remark 4.6.2. The algorithm for computing Yoneda Ext explicitly is not completely

0— 0.

implemented in Macaulay 2. Currently there is an implementation which returns the di-
mensions of the Ext groups. For instance, let M(a,b) be the GKZ system:

01
1 11 a
(012) 0> _(b) ) 8133—822,
05
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and let N = D/D -{zy,z9,23} be the module of the delta functions with support at the

origin (0,0,0). We wish to compute dimensions of the Ext groups between M (a,b) and N.
For M(0,0), we find,

i1l : (A = matrix{{1,1,1},{0,1,2}%};
M = cokernel gens gkz(A, {0,0});
N = cokernel matrix{{x_1,x_2,x_3}};
DExt(M,N))

ol = HashTable{0 => 0}

1=>0
2=>0
3=>0

On the other hand, for D(M(0,0)) ~ M(—1,—1), we find

i3 : (A = matrix{{1,1,1},{0,1,2}%};
M = cokernel gens gkz(4, {-1,-1});
N = cokernel matrix{{x_1,x_2,x_3}};
DExt(M,N))

03 = HashTable{O0 => 0 }

1
1 =>QQ

1
3 => QQ

2
2 => QQ

4.7 Isomorphisms of holonomic D-modules

In this section, we give an algorithm to determine if two holonomic D-modules M
and N are isomorphic and if so to produce an explicit isomorphism. We then make some
well-known remarks on using the endomorphism ring Endp (M) of D-linear maps from M
to itself to obtain a decomposition of M into a direct sum of indecomposables.

If holonomic M and N are isomorphic, then Homp (M, N) ~ Endp(M) is a finite-
dimensional K-algebra. In the theory of finite dimensional K-algebras, the Jacobson radical
J is the intersection of all maximal left ideals of F, and it has the property that the quotient
E/J is a semi-simple K-algebra. By the Wedderburn-Artin theorem, a semi-simple algebra
is isomorphic to a direct product of matrix rings over division algebras, and hence by taking
the algebraic closure, we find that £/J @ K is isomorphic to the direct product of matrix
rings over the field K. One consequence of this decomposition is that the non-units of
E/J®k K form a determinantal hypersurface. In particular, the units of £/J @k K form a
Zariski open set, and hence the units of £/.J also form a Zariski open set. Moreover, units
and non-units respect the Jacobson radical in the sense that if j is in the Jacobson radical
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of F and if u is a unit of K then u + j is also a unit, and similarly, if n is not a unit of F/
then n 4+ 7 is not a unit. We can thus conclude the following lemma.

Lemma 4.7.1. Let M be a holonomic D-module. Then the space of D-linear isomorphisms
Isop(M) from M to itself is open in Endp (M) under the Zariski topology.

The lemma says that if holonomic M and N are isomorphic then most maps
from M to N are isomorphisms. We now give an algorithm to determine if M and N are
isomorphic based on Algorithm 4.5.1 and Lemma 4.7.1.

Algorithm 4.7.2. (Is M isomorphic to N?)

INPUT: presentations M ~ DM /D - {Py,...,P,} and N =~ D"V /D -{Qq,...,Qp} of left
holonomic D-modules.

OutpuT: “No” if M % N;and “Yes” together with an isomorphism ¢: M — N if M ~ N.

1. Compute bases {s1,...,s,} and {t1,...,t;} for the vector spaces V = Homp (M, N)
and W = Homp (N, M) using Algorithm 4.5.1, where s; and ¢; are respectively mps x
mps and my X my matrices with entries in D representing homomorphisms by right
multiplication. Recall that we veiw D™¥ and D™¥ as consisting of row vectors. If
o # 1, return “No” and exit.

2. Introduce new indeterminates {yu;}] and {v}], and form the “generic homomor-
phisms” >, pu;s; € Homp (M, N)and 3. v;t; € Homp(N, M). Then the compositions
doiihivisiotp M — N — M and 37, - pvit; - s; - N = M — N are respectively
mpyr X mpr and my X my-matrices with entries in Dp1, ..., fm s Vi oo oy Uyl

3. Reduce the rows of the matrix Em- piv;s; - t; —idy,,, modulo a Grobner basis for D -
{P1,...,P,} C D™M_ Force this reduction to be zero by setting the coefficients (which
are inhomogeneous bilinear polynomials in y;, ;) of every standard monomial in every
entry to be zero. Collect these relations in the ideal Ins C K[p1, ..o, iy, Y1y e oy Viny)

4. Similarly, reduce the rows of the matrix Ei,j piv;t; - s;—id,, , modulo a Grobner basis
for D-{Q1,...,Qp} C D™V . Force this reduction to be zero by setting the coefficients
of every standard monomial in every entry to be zero, and collect these relations in
the ideal In C K[p, v].

5. Put I(V,W) = Iy + Iny C K[, v]. If I(V,W) contains a unit, return “No” and exit.

6. Otherwise compute an isomorphism Y ], k;s; in Homp(M, N) by finding the first
T coordinates of any point in the zero locus of I(V,W). For instance, we can do
this by inductively finding k; € K for each ¢ from 1 to 7 such that I(V, W)+ (111 —
ky,...,p; — k;) is a proper ideal. At each step ¢, this can be accomplished by trying
different numbers for &; until a suitable choice is found.

7. Return “Yes” and the isomorphism (}7_, k;s;) : M — N.

Remark 4.7.3. Algorithm 4.7.2 can also be modified to detect whether M is a direct
summand of N. Namely M is a direct summand of N if and only if the ideal Ip; of step 3
is not the unit ideal. Similarly N is a direct summand of M if and only if the ideal Iy of
step 4 is not the unit ideal
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Proof. Reduction of the generic matrix Ei,j wivisi - t; —idy,,, modulo D -{P;,..., P} in
step 3 leads to a generic remainder which depends on the parameters p;,v;. Moreover,
since a Grébner basis of D - {Py,..., P,} is parameter-free, this generic remainder has the
property that its specialization to a fixed choice of parameters p; = a;,v; = b; gives the
remainder of Zi,j a;b;s; - t; —id,,,, modulo D - {Py,..., P,}. Thus setting the remainder
to zero in step 3 corresponds to deriving conditions on the parameters u;,; which makes
the endomorphism given by Ei,j piv;s; - t; equal to the identity on M. This is possible
if and only if M is a direct summand of N. The analogous statement holds for reduction
of Ei,j wivit; - s; —idy,,, modulo D - {Q1,...,Qs} and setting its resulting remainder to
zero. Here, setting a remainder to zero is equivalent to the vanishing of the coefficients of
its standard monomials, and we collect these vanishing conditions in the ideal I(V, W) of
Klp,v].

Now a linear combination ), a;s; : M — N is an isomorphism with inverse ) b;t; :
N — M if and only if the composition Ei,j a;b;s; - t; is congruent to id,,,, modulo D -
{P1,..., P} and the opposite composition }_, . a;b;t; - s; is congruent to id,,, modulo
D -{Q1,...,Qp}. Thus the common zeroes (as,...,ar,b1,...,b;) of I(V,W) correspond
to isomorphisms ). a;s; and their inverses E]‘ b;t;. In particular, if 7(V, W) is the entire
ring, which we detect by searching for 1 in a Grébner basis of I(V, W), then there are no
isomorphisms.

On the other hand if I(V,W) is proper, then M and N are isomorphic and
we obtain an explicit isomorphism from finding any common solution of I(V,W). By
Lemma 4.7.1, the invertible homomorphisms from M to N are Zariski dense in the vector
space Homp (M, N). Hence, a common solution can be explicitly found by by intersecting
the zero locus of I(V, W) with a suitable number of generic hyperplanes {y = k;}. Because
of denseness, each of these hyperplanes can be found in a finite number of steps. In other
words, if I(V, W)+ (u1 — k1,..., 0 — ki—1) is proper, then there are only finitely many k;
for which the sum I(V, W)+ (uy — k1, ..., — k;) is the unit ideal. O

Remark 4.7.4. Once we have specialized the p; in a common solution of I(V, W), then the
v; are determined because of the bilinear nature of the relations (which gives linear relations
for the v; once all y; are chosen). This also means that if there is any solution, then the y;
are rational functions in the v; and vice versa. In particular, if ¢ € Homp (M, N) is defined
over the field K then ¢~! is defined over K as well and no field extensions are required. We
now give two simple examples, one where M and N are isomorphic, and one where they
are not.

Example 4.7.5. Let n = 1 and M = N = D/D - 9% One checks that V = W =
Homp (M, N) is generated by the 4 morphisms s; = -(9), s; = -(20), s3 = (1), and
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s4 = (2?0 — z). We obtain the generic morphism

4 4
ZZWVM s =1 = (usvs —pava — 1)
=1 j=1

+ (—pavs — pavs — p3ve)
+ (p3vy + pva + pav3)0
+ (—pavy + povy + pava + povs + pyvg) a0
+ (pavs + prova + H3V4)$23
plus 9 other terms which are in D - 9? independently of the parameters.
Hence in order for 2?21 1:8; to be an isomorphism, the p; need to be part of a
solution to the ideal
I(V,W) = (usvs —pivs — 1,
—HaV3 — [aV4 — [3V4,
H3V1 + pavy + favs,
— a1 + poVe + p3vy 4 faV3 + p vy,
pavs + flaVs + psvs).
This ideal is not the unit ideal and has degree 8. Hence there are isomorphisms between
M and N. Pick “at random” p; =1, gy = 2, and puz = 0. Then the ideal I(V, W)+ (11 —

1, p2 — 2, u3 — 0) equals the ideal (1 — 1, g — 2, g, va+ 1, v2 + v3, 11 + %1/3, pavs —2). We
see that we have to avoid p4 = 0 but otherwise have complete choice.

Example 4.7.6. et n = 1, M = D/D-9? and N = D/D - 9. One checks that V =
Homp (N, M) is generated by ¢ = -(0) and t; = -(20 — 1) while W = Homp(M, N) is
generated by sy = -(1) and s3 = -(z). The sum > y,v;s; - t; takes the form

p2v2720 + (pive + pov1)x0 + 1110 — (pive + pave).
Modulo D - 9 we want this to be 1, so we get the relation
povy — pavg = 1.

We note that this equation has plenty of solutions, which means that M can be realized as
a summand of N. On the other hand, the sum ) y;v;t; - s; takes the form

piv10 + (pava + piovn)x0 — pvy — pave + pav2220.

Modulo D - 3% we want this to be 1, so we get the relations

—p1v2 1,

pivy = 0,

pavy + oy = 0,
tove = 0.

Putting all the equations together, we obtain the unit ideal, and hence M and N are not
isomorphic.
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Let us end by mentioning the general relationship coming from ring theory between
E = Endp(M) and M. An element e of E is said to be an idempotent if € = e, and two
idempotents e and f are said to be orthogonal if ef = fe = 0. The relationship between
F and M can now be stated as follows: There is a bijective correspondence between (1)
the decompositions of M into a direct sum of submodules and (2) the decompositions
of the identity element 1 = ey + --- 4 €5 of E into pairwise orthogonal idempotents [17,
Theorem 1.7.2]. The correspondence is gotten by taking a set of orthogonal idempotents
{e1,...,€es} and producing the decomposition M = ey - M & --- P es - M. Moreover, the
Krull-Schmidt-Azumaya Theorem states that M has a decomposition into a direct sum
of indecomposable submodules, and this decomposition is unique up to re-ordering and
isomorphism (see e.g. [24, Theorem 19.21]). Here, a D-module is said to be indecomposable
if it cannot be written as a direct sum of two nonzero submodules. Thus, it would be useful
to have an algorithm which produces a full set of orthogonal idempotents for the K-algebra
Endp(M) since combined with Algorithm 4.5.1, this would give a method to decompose
holonomic D-modules into indecomposables.

There is an active area of research concerning computations in finite-dimensional
K-algebras E. For instance, when K is a number field, early work of Friedl and Ronyai
provides polynomial-time algorithms to find the radical of F and the decomposition of F into
simple algebras if F' is semi-simple [20]. These algorithms take as inputs a set of matrices
which generate E as a subalgebra of a matrix ring (for instance, consider £ embedded as
its regular representation) and output matrices which generate the radical of F or which
correspond to the identity elements of the simple subalgebras of the semi-simple FE. Thus
the latter algorithm is already enough to decompose M into a direct sum of submodules,
where each submodule corresponds to the sum of all indecomposable submodules of a given
type.

We should also mention that the radical of F is independent of field extension of K
while the decomposition into simple algebras depends upon the field K. Thus, the analogous
problem of finding a full set of orthogonal idempotents of a simple algebra depends on the
field, and has been shown to be computationally difficult [39]. However, for the case of
K = C, Eberly has given Las Vegas polynomial time algorithms to find the decomposition
of a simple algebra as a full matrix ring [18]. Thus if we are willing to use K = C, then
the work of Friedl and Ronyai combined with the work of Eberly will produce the radical
J of E and a complete set of orthogonal idempotents of F£//.J. The only step which is left
is to lift these idempotents modulo J to orthogonal idempotents of F (see e.g. [17, Lemma
3.2.1.] for the theory of lifting individual idempotents). Eberly has preliminary ideas on
how this may be accomplished algorithmically [19].

4.8 Homomorphisms of finite rank systems

Recall the ring R = K(z1,...,2,)(01,...,0,) of linear differential operators with
rational function coefficients. Given a left D-module M, we will denote by Mg the ex-
tension of M to an R-module Mg = K(z) @[y M. In this section, we will study the
relation between Homp (M, N) and Hompg(Mpg, Ngr) for holonomic D-modules M and N.
The material here is based on discussions with Frederic Chyzak and Michael Singer and is
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still in somewhat preliminary stages.

The following discussion is valid for both D and R, hence we will use D to stand
for either D or R and similarly M and N to stand for either D-modules or R-modules.
Also, we will use A to denote the corresponding K[z] or K(z). It was pointed out to us
by Singer that Hom 4 (M, ) has the structure of a left D-module: A function f € A acts
on Hom4(M,N) in the obvious way, that is for ¢ € Hom4(M, N) and m € M, then
(fep)(m)=o¢(f -m)= f-¢(m) Similarly a derivation 6 acts on Hom4 (M, N) by sending
¢ to (Beg)(m)=486-¢(m)— ¢(f-m). One checks that this action satisfies the conditions,

(fO)eop = [-(0e9)

fefep = felep+0(f)eg

[0,0]ep = bHedep—Deled
where [0, 9] is the Lie derivative, and hence the action extends to a structure of left D-module
(see e.g. [27]). This is also equivalent to saying that the standard connection

",
5]

Hom (M, N) 25 Q' @4 Homy (M, N)

is integrable. The flat sections of this connection are the elements ¢ € Homu4(M,N)
satisfying

;@ o(m)=0;-¢(m)—¢(0;-m)=0
for all m € M and 7 from 1 to n. In other words, the flat sections are exactly the D-linear

maps Homp (M, N).

When M = Mg and N/ = Ng are finite rank, then there is a natural algorithmic
way to compute the flat sections, observed by Singer and discussed for the case n = 1in [41].
For simplicity, let us assume that Mr = R/I and Ngr = R/J have cyclic presentations.
The case where we are given a non-cyclic presentation is similar. To proceed, fix a term
order on R, compute a Grébner basis of J, and let By = {9™',...,8“"} be the standard
monomials of Ng = R/J. Then By is a K(z)-basis of Ng, where r = rank(Ng). An
element ¢ € Homp(Mpg, Ng) is determined by the image of a cyclic generator, which for us
is the class of 1. The generic image can be written

o0 =3 a;(2)9%,
j=1
where a;(2) € K(2). Thus to find the flat sections, we need to solve for the possibilities on
a;(x). Let a generating set of I be {Ly,...,L;}. For each generator L;, we evaluate L; -
(>2i—1 @j(z)@%7), and reduce it modulo the Grdbner basis of ./ to obtain a new expression,

1) = ZLZ']' . [ao, Ceey ar]ta%
J

where L;; € R" are row vectors of differential operators. In particular, the element
E; L @;(2)8% defines a flat section if and only if [ag,...,a,]' is a rational function so-

lution of the vector-valued system S = {L;; e a = 0}2 =1
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We would now like to understand the system .S in terms of our earlier algorithms.
To this end, we note that the flat sections are equivalently,

Homp (M, N) ~ Homp (D/D -{01, ..., 0}, Homy (M, N)).

Let us use the homological isomorphism of Section 4.2 and the fact that Ext} (A, D) ~ Q.
Here, 2 now stands for the top dimensional differential forms, and has the presentation
D/{01,...,0,} - D, while A has the presentation D/D -{0,...,0,}. The following isomor-
phisms are now valid for D = R because HomK(z)(MR, Ng) remains finite rank if Mg and
Np are finite rank. Similarly, they are valid for the case D = D whenever Homgy (M,N)is
holonomic, which we believe is the case if M and N are both holonomic. The isomorphisms
are,

Homp (M, N) Homp (D/D - {01, ...,0,}, Homy (M, N))
Homp (A, Homy (M, N))
Torh (2, Hom 4 (M, N))
Torp (r(Hom 4 (M, N)), A)
Homp (Ext} (r(Homg (M, N)), D), A)
Homp (D(Hom4 (M, N)), A).

It thus follows that the system S is the dual system of Homy (M, N) if either D = R or
Hom g5 (M, N) is holonomic. One algorithmic question is how to compute and represent

Homy (M, N) for D= D and D = R.

Let us now discuss the relation between Homp(M, N) and Homg(Mg, Ng). The
basic idea comes from the computation of rational solutions. In other words, when N =
K[z], then Homgr(Mg, Nr) = Homg(Mg, K(z)) corresponds to the rational solutions of
M, and moreover, by Theorem 2.1.8 of Cauchy-Kovalevskiia-Kashiwara, we also know that
Hompg(MRg, K (2)) = Hompg(M, K[z][f~!]) for any polynomial f vanishing on the codimen-
sion one component of the singular locus. The general statement is as follows.

Proposition 4.8.1. Let M = D" /My and N = D*/Ny be holonomic D-modules, and let f
be a polynomial defining the codimension one component of the singular locus of M. Then

12121 R R

Homp (Mg, Ng) = Homp((D"/ Cl(Mo))[f~'], (D*/ CI(No))[f~11)

Proof. Let us denote M’ = (D"/ Cl(Mo))[f~'] and N’ = (D?/ CI(No))[f~']. It is clear that
any homomorphism in Homp (M’, N') defines a unique homomorphism in Homg(Mpg, Ng)
by extension. We need to show that any homomorphism in Homg(Mpg, Ng) also comes
from a homomorphism in Homp(M’, N') in this manner.

Since f defines the codimension 1 component of the singular locus, the key fact is
that M’ is generated as a D[f~!]-module by {h; -e1,...,h, - €.} for any set of polynomials
{h1,...,h.} C K[z] where {ej,...,e.} is the canonical basis of D[f~!]". More precisely,
the submodules D[f~!]-e; and D[f~'h; - €; of M’ are equal for all i. This property
follows by an argument similar to the one used to prove that the Weyl closure of My equals
D[f~"]- My D"

A homomorphism ¥ € Hompg (Mg, Ng) is defined by its images {¢(e1),...,¥(e,)}
inside Ng. Let {T1,...,T,} be lifts of {¢(e1),...,¢¥(e,)} to elements of R". Then we have
{Ty,...,T,} C D[(fg)~']" for some polynomial g € K[z].
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For k> 0, {¢*Ty,...,¢"T,} C D[f~']". Since D[f~']-e; and D[f~']g" - e; are
equal as submodules of M’, there exist operators L; € D[%] such that L;g" - e; = e; € M.
Then {L.1g*T1,..., L.g"T,.} can also be chosen as the lifts of {¢(e1),...,%(e,)}. Therefore
1 is the extension of the homomorphism ¥’ € Homp(M’, N') which is defined by mapping
e; to the residue class of L;g*T; in N'. O

Example 4.8.2. Suppose M = N = D/D {229, 9z}, which is a cyclic presentation of the
holonomic module (D/Dd) & (D/Dz). Then Homp(M, N) is 2-dimensional and spanned
by the maps -(1) and -(z0). On the other hand, Mr = Ngp = R/R0 = K(z) so that
Homp (Mg, Ng) is 1-dimensional and spanned by the identity. Moreover, the singular locus
of M is z = 0, the Weyl closure of D - {229,0%z} is D - 9, the localization (D/D - 9)[z71]
is isomorphic to K[z,2~!], and Homp (K[z,2~'], K[z,2~']) is similarly 1-dimensional and
spanned by the identity.
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Appendix on the restriction
algorithm

In recent years, one of the major breakthroughs in computational algebraic anal-
ysis has been the development of algorithms to compute derived restriction and derived
integration. In this thesis, these algorithms play a major role, and in this appendix, we
provide a summary for the reader’s convenience. An algorithm was first given by Oaku
to compute the derived restriction modules of a holonomic D-module M to a hyperplane
zy = 0 in [32]. This algorithm was then extended by Oaku and Takayama to compute
the derived restriction of a holonomic D-module M to a linear subspace 1 = -+ 24 = 0
in [33]. Finally, the algorithm was generalized by Walther to compute the derived restric-
tion of bounded complexes with holonomic cohomology in [52]. Moreover, algorithms for
derived integration are an immediate consequence of these algorithms due to the algebraic
similarities between restriction and integration. As we have seen in Chapter 2, the restric-
tion algorithm was used to compute local cohomology in [33]. Similarly, it has been used
to compute the deRham cohomology of complements of affine varieties of C* in [34], [52].
In this thesis, the restriction algorithm is the main ingredient in Chapter 4 for computing
homomorphisms and Ext between holonomic D-modules.

Let us recall briefly the general definition of derived restriction. Given a Dx-
module M on an algebraic variety X and a map of algebraic varieties f : ¥ — X, then
the inverse image of M in the sense of algebraic geometry is the Oy-module f*(M) =
Oy @f-10, f~'M. Moreover, we can extend the Oy-module structure to a Dy-module
structure since derivations of Oy act naturally by pushing forward a tangent vector on Y to
a tangent vector on X via f. Thus, the inverse image functor makes sense in the category
of D-modules, and the derived restriction modules of M under f are defined to be the left
derived functors of f* in the category of D-modules.

For the case of the Weyl algebra, an arbitrary map of affine spaces f : K™ — K™
can be factored as f = mo¢por : K™ — K™ x K™ — K™ x K™ — K™ where
t(z) = (x,0) is an inclusion, ¢(x,y) = (z,y + f(x)) is an isomorphism, and 7(z,y) = y
is a projection. Moreover, both ¢* and 7* are exact, hence the only interesting map for
restriction is ¢*. Thus, we will only consider inclusions of affine space, i.e. let X = K"t¢
with coordinates (z1,...,2Zn,t1,...,t4), Y = {t1 = --- =t4 = 0} ~ K" with coordinates
(z1,...,2,), and f =+ :Y < X be the inclusion ¢(z) = (2,0). In this case, the derived
restriction modules of a left Dx-module M, which we shall denote Hi(M{/_>X), are equal
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to the Tor groups,
H'(MY_,x) i= H'(Lf*(M)) ~ Tor* (Ay, M),

where Ay is the right Dx-module Dx /{t,,...,t;}-Dx. In principle, these modules can thus
be computed as the homology of the Koszul complex K*(M;ty,...,tq), or as the homology
of the complex Ay ®@p, P* where P* is a projective resolution of M. The problem is
that the maps in K*(M;ty,...,t4) are not maps of left Dx-modules while the modules in
Ay ®p, P* are no longer left Dx-modules. Both complexes are indeed complexes of left
Dy-modules but the modules are no longer finitely generated as Dy-modules.

The challenge then is to replace either of these complexes by a quasi-isomorphic
complex which does consist of finitely generated Dy-modules. The main ideas are to replace
P* by a so-called Vy-adapted free resolution, and then to use an appropriate b-function to
identify a quasi-isomorphic subcomplex of Ay @p, PP* which is also finitely generated over
Dy . Let us now explain the details of these ideas. The following is a brief summary of [33]
although we modify the shift convention. As above, let X = K™% Dx = K(z,t, 85, 8:),
Y={ti=--=t;3=0} ~ K", and Dy = K(x, 9g).

Definition 4.8.3. The V -filtration Fy of a shifted free module D"[m] with respect to Y is
defined by

Fy (D [17]) = Span g {z" 84687 e, : p,v, 0, f € N, |B] — |o] < i+ m}.

We remark that the V-filtration induces filtrations on submodules and quotients
in the usual manner.

Definition 4.8.4. A free resolution P* of M of the form,
L ri41r1, = Yi+1 Tir =
P — DT M) — Dy[m] — -
is said to be Vy -adapted if

bjp1 (Fy (D [ 44])) C By (DR [W;]))

for all 1 and all 7, and if a resolution is also induced on the level of associated graded
modules,

° Tyl = rd’] 1 rir o
gr(P*) o — (D [ 4a]) S8 gr (D2 []) — - -

Definition 4.8.5. The b-function of M for restriction to'Y is the monic polynomial b(8) €
K0 of least degree, if any, which satisfies b(0)gr’(M) = 0 with respect to the Vy -filtration,
where = t10¢ + -+ -+ 1404,

When M is holonomic and P* is a Vy-adapted resolution of M, then the b-function
is nonzero and its maximum positive integer root gives a point of truncation for finding a
quasi-isomorphic and Dy -finitely-generated subcomplex of Ay ®p, P*. We remark that
Grobner basis methods to compute Vy-adapted resolutions and b-functions are given by
Oaku and Takayama in [33]. A good exposition of these algorithms can also be found
in [40, Chapter 5]. We now have the ingredients to summarize the restriction algorithm.
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Algorithm 4.8.6. (Derived restriction modules of holonomic M to a linear subspace)

INPUT: a presentation M = D'Q/Dx -{L,..., Ls} of a left holonomic Dx-module, and a
coordinate subspace Y ={t; =--- =1t = 0}.
OuTpPUT: the derived restriction modules H'(My _ x) for i =0,...,d.

1. Compute the b-function b(6) of M for restriction to Y.

2. Let ki be the maximum integer root of b(#). If there are no integer roots, then return
HZ(M{,_>X) =0fori=0,...,d and quit.

3. Compute a Vy-adapted free resolution of M,

P*ioe—s DR ] 28 DY) — -
4. Compute the truncated induced complex,
r - E rir -
FY (Ay @py P*) 2o — FRAYH [iia]) 25 FRAYR]) — -

as a complex of finitely generated left Dy-modules.

5. Compute the —i-th cohomology group ker,/im Ei—l-l of the above complex in the
form Dyf/P; for i =0,...,d.

6. Return H'(My_ ) = Dyi /P fori=0,...,d.

We would similarly like to define the direct image f and its derived functors, which
are called the derived integrations, for a Dy-module M with respect toamap f: X =Y
in the category of D-modules. In general, the direct image functor is considerably more
complicated than the inverse image and exists in the derived category, but for the case
where X and Y are affine coordinate spaces it can be described in elementary terms. Again
for a map f : K™ — K™2 with factorization f = 1o ¢ om, both ¢y and ¢4 are exact,
hence the only interesting map for integration is m4. Thus we only consider the case where
X = K™t with coordinates (z1,...,2n,t1,...,tq4), ¥ = K" with coordinates (z1,...,2,),
and f = 7 : X — Y is the projection 7(z1,...,2p,t1,...,ts) = (21,...,2,). Then the
derived integrations of a left Dy-module M, which we shall denote H'(My, ), are also
equal to the Tor groups,

H (M) = (L7 (M) = Tor (Qy, M),

where Qy is the right D x-module Dx /{0},,...,0:,}-Dx. Thereis an algebra automorphism
called the Fourier transform

Fx:Dx = Dx  @Pt°8%0) s (—8)"(—8;) x"t’

such that Fx(y) = Ay. We can therefore use the restriction algorithm to compute
integration as well.
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Algorithm 4.8.7. (Derived integration modules of holonomic M to a linear subspace)

INPUT: a presentation M = D'Q/Dx -{L,..., Ls} of a left holonomic Dx-module, and a
projection 7 : X — Y where 7(zq,..., 25, t1,...,tq) = (21,...,2p).
OuTpPUT: the derived integration modules H'(My_x) for i =0,...,d.

1. Compute the derived restriction modules H'(Fx (M)} _, y) of the Fourier transform
of M to the linear subspace Y = {t; = ---=1t; = 0} using Algorithm 4.8.6.

2. Return the left Dy modules 7' (H!(Fx (M)$ ) fori = 0,...,d where 73! denotes
the inverse Fourier transform of Dy.

From the theoretical point of view, we also make the following definitions for
integration.

Definition 4.8.8. The f/-ﬁltmtion ﬁy of a shifted free module D"[m] with respect to 'Y is
defined by

Fy(D'[ii]) = Spang {294t} é : p,v,0, 3 € N, |a] — |8 < i+ m}.

Definition 4.8.9. The b-function of M for integration to'Y is the monic polynomialg(Ol €
K[0] of least degree, if any, which satisfies b(—8 — d)gr®(M) = 0 with respect to the Vy-
filtration, where 8 =10y, + -+ t40;,.

Note that fx(ﬁ{/(DT[n_i])) = I%(D"[1])), hence a Vy-adapted resolution M can
be obtained as Fy'(P*) where P* is a Vy-adapted resolution of Fx(M). Similarly, the b-
function b(#) of M for integration to Y is equal to the b-function b(8) of F (M) for restriction
to Y.
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