Annihilator of a Power of a Polynomial

Viktor Levandovskyy

RWTH Aachen

22.11.2007, RWTH

Problem formulation

Given a ring $R = \mathbb{C}[x_1, \dots, x_n]$, a polynomial $f \in R$ and a number $\alpha \in \mathbb{C}$. Compute the left ideal $\mathsf{Ann}(f^\alpha) \in D(R)$, where D(R) is the Weyl algebra in 2n variables $x_1, \dots, x_n, \partial_1, \dots, \partial_n$ subject to usual relations.

Preliminaries

We utilize a D-module structure of a left module in

$$R[f^s] := \mathbb{C}[x_1,\ldots,x_n,\frac{1}{f}]\cdot f^s.$$

The algorithm ANNFs computes a D-module structure on $R[f^s]$, that is a left ideal $I \subset D$, such that $R[f^s] \cong D/I$.

Algebraic Analysis

Indeed, for A a G-algebra of Lie type, GrA is commutative and we have GK. $\dim_A(M) = GK$. $\dim_{GrA} L(M) = Kr$. $\dim_{GrA} L(M)$.

Theorem (Weak FTAA, SST)

A proper left ideal in $D(R) = \mathbb{K}\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n | \dots \rangle$ has GK-dimension > n.

Let $I \subset D(R)$. Compute the left Gröbner basis of I with respect to the elimination ordering for ∂_i (a weight vector $(0, \dots, 0, 1, \dots, 1)$). Then the **characteristic ideal** of I is the ideal in the commutative ring $GrD(R) = \mathbb{K}[x_1, \dots, x_n, \partial_1, \dots, \partial_n]$, generated by the leading terms of I. The zero set of this ideal is called the **characteristic variety**.

Theorem (Strong FTAA, SST)

Let I be a proper left ideal in $D(R) = \mathbb{K}\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \mid \dots \rangle$. Then every minimal prime of a char. ideal of I has dimension $\geq n$.

Multiplicatively Closed Ore Subsets

Let S be a multiplicatively closed (m.c.) subset of some algebra A, that is $1 \in S$ and $a, b \in S \Rightarrow ab \in S$. S is called an **Ore set** in A, if

 $\forall s \in S, a \in A, \exists r \in S, b \in A \text{ such that } ar = sb \left(s^{-1}a = br^{-1} \right).$

Ore condition

 $\forall s \in S, a \in A, \quad sA \cap aS \neq \emptyset.$

For an associative \mathbb{K} -algebra A and a m.c. subset S, we consider $S \times A$ and introduce the following equivalence relation \simeq on it: $(s, a) \simeq (r, b)$, if for some $x, y \in A$, ax = by, sx = ry.

Ore localization

Then, $S \times A/\simeq$ is called an **Ore localization** of A w.r.t. S. It is often denoted by $A_S = \{s^{-1}a | s \in S, a \in A\}$.

Ann F^s Method: From Kashiwara to Malgrange

Recall, that for $s \in \mathbb{K}$, $\operatorname{Ann}_{D(R)} f^s = \{ a \in D(R) \mid a \bullet f^s = 0 \}$.

Theorem (Kashiwara 1981)

 $D(R)/\operatorname{Ann}_{D(R)}f^s$ is a (regular) holonomic D(R)–module for any $s\in \mathbb{K}$.

Malgrange's construction for $f = f_1 \cdot \dots \cdot f_p$: consider the left ideal

$$I_{f} := \langle \{ t_{j} - f_{j}, \sum_{j=1}^{p} \frac{\partial f_{j}}{\partial x_{i}} \partial t_{j} + \partial_{i} \} \rangle, 1 \leq j \leq p, 1 \leq i \leq n,$$

$$I_f \subset \mathbb{K}\langle \{t_j, \partial t_j\} \mid [\partial t_j, t_j] = 1 \rangle \otimes_{\mathbb{K}} \mathbb{K}\langle \{x_i, \partial_i\} \mid [\partial_i, x_i] = 1 \rangle$$

Theorem (1.)

The ideal of operators in $D[s] := D(R) \otimes_{\mathbb{K}} \mathbb{K}[s]$, annihilating f^s equals to the image of the $I_f \cap D[t \cdot \partial t]$ under the substitution $t \cdot \partial t \mapsto -s-1$.

Proof: next slides.

Recall: Generalized Product Criterion

Let A be an associative \mathbb{K} -algebra. We use the following notations: [a,b] := ab - ba, a *commutator* or a *Lie bracket* of $a,b \in A$.

$\forall a, b, c \in A$ the following bracket identities hold

- [a, b] = -[b, a], in particular [a, a] = 0
- [ab, c] = a[b, c] + [a, c]b

Recall Levandovskyy and Schönemann, ISSAC 2003.

Generalized Product Criterion

Let *A* be a *G*–algebra of Lie type (that is, all relations are of the type $x_i x_i = x_i x_i + d_{ii}$, $\forall 1 \le i < j \le n$.

Let $f, g \in A$. Suppose that Im(f) and Im(g) have no common factors, then $spoly(f,g) \rightarrow_{\{f,g\}} [f,g]$.

Proving the Theorem, part I

Let $f = f_1 \cdot \ldots \cdot f_p$ and let $g_i = \partial_i + \sum_j \frac{\partial f_j}{\partial x_i} \partial t_j$. A_{p+n} below stays for $D(R) \otimes_{\mathbb{K}} \mathbb{K} \langle \{t_i, \partial t_i \mid 1 \leq i \leq p\} \mid t_i \partial t_i = \partial t_i \cdot t_i + 1 \rangle$.

Lemma

 $I_f = \langle \{t_i - f_i, \{g_i\}\}, 1 \leq i \leq p, 1 \leq i \leq n \rangle \subset A_{p+n}$ is a maximal ideal, hence A_{p+n}/I_f is a simple module.

Proof.

Choose an ordering with $\{t_i, \partial_i\} \gg \{x_i, \partial t_i\}$. Running Buchberger's algorithm, we see that

spoly
$$(g_i, g_k) \to [g_i, g_k] = \partial t_j \sum_j [\partial_i, \frac{\partial t_j}{\partial x_k}] + \partial t_j \sum_j [\frac{\partial t_j}{\partial x_i}, \partial_k]$$
. Since $[\partial_i, \frac{\partial t_j}{\partial x_i}] = \frac{\partial^2 t_j}{\partial x_i}$ the spoly (g_i, g_k) reduces to zero.

$$[\partial_i, \frac{\partial f_i}{\partial x_k}] = \frac{\partial^2 f_i}{\partial x_i x_k}$$
, the spoly (g_i, g_k) reduces to zero.

spoly
$$(t_k - f_k, g_i) \to [t_k - f_k, g_i] = \sum_j \frac{\partial f_j}{\partial x_i} [t_k, \partial t_j] - [f_k, \partial_i] = 0$$
.
Hence, I_f is given in a Gröbner basis and its leading monomials are

 $\{t_i, \partial_i\}$. Thus, the GK. dim $(A/I_f) = 2(p+n) - (p+n) = p+n$, hence I_f is holonomic.

Proving the Theorem, part II

Consider the shift algebra $\mathbb{K}\langle s, E_s \mid E_s s = sE_s + E_s = (s+1)E_s \rangle$. The Mellin transform is an injective \mathbb{K} -algebra homomorphism

$$\mathbb{K}\langle s, E_s = sE_s + E_s \rangle \to \mathbb{K}\langle t, \partial t \mid t \cdot \partial t = \partial t \cdot t + 1 \rangle, \quad s \mapsto -t \partial t - 1, \ E_s \mapsto t.$$
 Its image is the subalgebra $\mathbb{K}\langle t \partial t, t \mid \ldots \rangle$.

Lemma

 I_f is the annihilator of f^s in $D(R) \otimes_{\mathbb{K}} \mathbb{K} \langle \{t_j, \partial t_j\} \mid t_j \partial t_j = \partial t_j t_j + 1 \rangle$.

Proof.

The Mellin transform allows to supply $\mathbb{K}[\mathbf{s}, \mathbf{x}, f^s]$ with the following structure of $D(R) \otimes_{\mathbb{K}} \mathbb{K}\langle t, \partial t \rangle$ —module (p = 1 for simplicity):

$$x_i \bullet g(s,x)f^s = x_ig(s,x)f^s, \ \partial_i \bullet g(s,x)f^s = \frac{\partial g}{\partial x_i}f^s + sg(s,x)\frac{\partial f}{\partial x_i}f^{s-1},$$

$$t \bullet g(s, x)f^{s} = g(s+1, x)f^{s+1}, \ \partial t \bullet g(s, x)f^{s} = -sg(s-1, x)f^{s-1}.$$

Proving the Theorem, part III

Proof.

In particular, for g = 1 and p = 1 we have

$$x_i \bullet f^s = x_i f^s, \ \partial_i \bullet f^s = s \frac{\partial f}{\partial x_i} f^{s-1},$$

$$t \bullet f^{s} = f^{s+1}, \ \partial t \bullet f^{s} = -sf^{s-1}.$$

Then
$$(t_j - f_j) \bullet f^s = 0$$
, $(\sum_{i=1}^p \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i) \bullet f^s = 0$.

Since by Lemma before I_f is a maximal ideal, it is the Ann f^s .

Ann F^s Algorithm in D-module Theory

Let $f = f_1 \cdot \ldots \cdot f_p$.

The Ann F^s Algorithm, step I

Compute the preimage of the left ideal

$$L = \langle \{ t_j - f_j, \sum_{j=1}^p \frac{\partial f_j}{\partial x_i} \partial t_j + \partial_i \} \rangle, 1 \le j \le p, 1 \le i \le n$$

in the subalgebra $\mathbb{K}\left[\{t_j\cdot\partial t_j\}\right]\langle\{x_i,\partial_i\mid [\partial_i,x_i]=1\}\rangle$ of

$$\mathbb{K}\langle\{t_j,\partial t_j\}\mid [\partial t_j,t_j]=1\rangle\otimes_{\mathbb{K}}\mathbb{K}\langle\{x_i,\partial_i\}\mid [\partial_i,x_i]=1\;\rangle$$

Moreover, in the preimage, $t_j \cdot \partial t_j$ will be replaced by $-s_j - 1$ (algebraic Mellin transform), where s_j are new variables, commuting with $\{x_k, \partial_k\}$.

Ann F^s Algorithm in D-module Theory

Remember, $f = f_1 \cdot \ldots \cdot f_p$.

The Ann F^s Algorithm, step II

Denote the result of step I by $L' \in \mathbb{K}[\{s_j\}] \langle \{x_i, \partial x_i \mid [\partial x_i, x_i] = 1\} \rangle$. Compute the preimage of the left ideal $\langle L', f \rangle$ in the commutative subalgebra $\mathbb{K}[\{s_j\}]$.

If p = 1, e.g. $f = f_1$, the output is a principal ideal. Its monic generator is called a global Bernstein–Sato polynomial b(s).

There exists an operator $B \in D(R)$, such that $B \bullet f^{s+1} = b(s) \cdot f^s$.

Theorem (Kashiwara)

All roots of b(s) are rational numbers.

Note, that s + 1 always divides b(s).

OT method for Step I

Oaku-Takayama method, 1999

 $\{u_j, v_j, s_j\}$ commute with everything, $\{[\partial_i, x_i] = 1, [\partial t_j, t_j] = 1\}$.

$$\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i, \underline{u_j}, \underline{v_j} \mid \ldots \rangle \supset \langle \{t_j - \underline{u_j} f_j, \sum_{k=1}^{p} \frac{\partial f_k}{\partial x_i} \underline{u_k} \partial t_j + \partial_i, \underline{u_j} \underline{v_j} - \mathbf{1}\} \rangle$$

- 1. Intersect the ideal with the subalgebra $\mathbb{K}\langle t_j, \partial t_j, x_i, \partial_i \mid ... \rangle$ i.e. eliminate $\{u_i, v_i\}$.
- 2. Intersect the result of p.1. with $\mathbb{K}[-t_j\partial t_j-1]\otimes_{\mathbb{K}}\mathbb{K}\langle x_i,\partial_i\mid\ldots\rangle$, replace $-t_j\partial t_j-1$ by s_j .

$$p=1$$

$$\langle t - uf, uv - 1, \{ \frac{\partial f}{\partial x_i} u \partial t + \partial_i \} \rangle$$

The total result lives in $\mathbb{K}\langle x_i, \partial_i | \dots \rangle \otimes_{\mathbb{K}} \mathbb{K}[\{s\}]$

Given $\alpha \in \mathbb{C}$. Then we have the following:

Theorem (2.)

Let $f \in R = \mathbb{C}[x_1, \dots, x_n]$ and α_0 is the minimal integer root of the global b-function b(s) of f. If $\alpha \notin \alpha_0 + 1 + \mathbb{N}_0$, then $\operatorname{Ann}_{D(R)} f^{\alpha} = \operatorname{Ann}_{D(R)[s]} f^{s}|_{s=\alpha}$.

For the case, when $\alpha \in \alpha_0 + 1 + \mathbb{N}_0$, we apply the **Algorithm 3**:

- **①** Compute Ann $f^s = \{g_1(s), \dots, g_r(s)\} \subset D(R)[s]$.
- **2** Compute b(s) of f; let $\alpha_0 :=$ the minimal integer root of b(s).
- **3** Let $d = \alpha \alpha_0$. If $d \le 0$ output $\{g_i(\alpha)\}$ and stop.
- For $d \in \mathbb{Z}_+$, compute the generators $\{s^{(k)}\}$ of the module

$$\operatorname{syz}(\{f^d,g_1(\alpha_0),\ldots,g_r(\alpha_0)\})\subset D(R)^{r+1}$$

5 Output $\{g_i(\alpha)\} \cup \{s_1^{(k)}\}$, where $s_1^{(k)}$ is the 1st component of $s^{(k)}$.

Examples with SINGULAR: PLURAL

- (don't forget to) start SINGULAR
- 2 load the dmod.lib library by typing
 - > LIB "dmod.lib";
- \odot define a commutative ring R and a polynomial F, e.g.
- > ring R = 0, (x,y,z), dp; poly F = x3+y3+z3;
- run the annfsot routine. It returns a ring, call it, say, S
- > def S = annfsOT(F); setring S;
- in the ring S (= Weyl algebra of R), there are the following computed objects:
 - a) an ideal *LD* (the desired *D*-module structure)
 - b) a list BS containing the roots (with mult's) of Bernstein poly.
- If you wish to compute an s-parametric annihilator, run
- > setring R; def P = SannfsOT(F); setring P;
- in the output ring the ideal LD is the parametric D-module structure

Examples

In the same way as on the previous slide you can see how the algorithms of Brianson–Maisonobe and LOT work.

- OT: annfsOT, SannfsOT
- Brianson-Maisonobe, BM: annfsBM, SannfsBM
- LOT: annfsLOT, SannfsLOT
- Multivariate BM: annfsBMI
- All the relevant data at once: operatorBM

If you wish to see progress of each step of the algorithm, set before computation printlevel = 1;. If you wish to see additionally all intermediate data, set printlevel = 2;.

Example Session

x; x^4 ; $x^3 - y^2$; $y^5 + xy^4 + x^4$ (a Reiffen curve), $x^3 + y^3 + z^2w$ (4 variables), $(x^3 + y^2) \cdot (x^2 + y^3)$.

Non-genericity with SINGULAR: PLURAL

Assume we have $F = x^3 + y^3 + z^3$ and we'd like to compute Ann F^n for $n \ge 1$. As we know from the example before, the minimal integer root is -2. So, any $n \ge -1$ leads to the exceptional situation (Algorithm 3 instead of Theorem 2 above). Let us compute the structure of the annihilator for n = 3.

- define a commutative ring R and a polynomial F, e.g.
- > ring R = 0, (x,y,z), dp; poly F = x3+y3+z3;
- ② run the SannfsBM routine. It returns a ring, call it, say, S
- > def S = SannfsBM(F); setring S;
- in the ring S = D(R)[s], there is an ideal LD (s-parametric D-module structure)
- > int n = 3; poly F = imap(R,F);
- > ideal I = annfspecial(LD,F,-2,n); I = groebner(I);
- \bullet the ideal *I* is the desired *D*-module structure of F^3 .

Thank you for your attention!

Please visit the SINGULAR homepage

- http://www.singular.uni-kl.de/
- there you find among others the online manual (with detailed documentation and examples for each command, procedure and library)

Integrals

For generic f, an integral $\int_C f(x,t)^\alpha t^\gamma dt$ satisfies a Gel'fand–Kapranov–Zelevinsky system [SST]. However, one needs to treat non–generic polynomials too.

Hypergeometric Integral

Consider
$$F(\alpha; x) = \int_C \prod_{i=1}^p f_i(x, t)^{\alpha_i} dt_1 \cdots dt_m$$

where $\alpha_i \in \mathbb{K} \subseteq \mathbb{C}$ and C is an m-cycle. The function $F(\alpha; x)$ depends on the homology class of C. Let

$$D = \mathbb{K}\langle t_1, \dots, t_m, \partial_{t_1}, \dots, \partial_{t_m}, x_1, \dots, x_n, \partial_{x_1}, \dots, \partial_{x_n} \mid$$
$$\partial_{t_i} t_i = t_i \partial_{t_i} + \delta_{ij}, \partial_{x_i} x_i = x_i \partial_{x_i} + \delta_{ij} \rangle$$

Theorem (SST, Th. 5.5.1)

Let $I \subset D$ be a left ideal, annihilating the function $f_{\alpha}(x,t) = \prod_{i=1}^{p} f_{i}(x,t)^{\alpha_{i}}$, $f_{i} \in \mathbb{K}[x_{1},\ldots,x_{n},t_{1},\ldots,t_{m}]$. Then, the ideal

$$J = (I + \langle \partial_{t_1}, \ldots, \partial_{t_m} \rangle_D) \cap \mathbb{K} \langle x_1, \ldots, x_n, \partial_{x_1}, \ldots, \partial_{x_n} \mid \partial_{x_j} x_i = x_i \partial_{x_j} + \delta_{ij} \rangle$$

annihilates the function $F(\alpha; x)$.

The left ideal J is called the integral ideal of I with respect to t.

Note

In the Theorem, we have to intersect the sum of a left and a right ideals with a subalgebra. There are no general methods (only very specific, e.g. of Takayama) for treating this situation.