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Problem formulation

Given aring R = C|[x, ..., Xn|, a polynomial f € R and a number
a € C. Compute the left ideal Ann(f*) € D(R), where D(R) is the Weyl
algebra in 2n variables xy, ..., Xn, 01, . .., On subject to usual relations.

Preliminaries
We utilize a D-modulql structure of a left module in
R[f%] .= C[xq, ..., Xn, 7] - fS.

The algorithm ANNFS computes a D—module structure on R[f®], that is
aleftideal / C D, such that R[f%] = D/I.

v
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Algebraic Analysis

Indeed, for A a G-algebra of Lie type, GrA is commutative and we have
GK.dima(M) = GK.dimgs L(M) = Kr.dimg,a L(M).
Theorem (Weak FTAA, SST)

A proper left ideal in D(R) = K(xX1,...,Xn,01,...,0n| ...) has
GK-—dimension > n.

Let / ¢ D(R). Compute the left Grobner basis of / with respect to the
elimination ordering for 9; (a weight vector (0,...,0,1,...,1)). Then
the characteristic ideal of / is the ideal in the commutative ring
GrD(R) = K[x,...,Xn, 01, ...,0n], generated by the leading terms of /.
The zero set of this ideal is called the characteristic variety.

Theorem (Strong FTAA, SST)

Let | be a proper left ideal in D(R) = K(X1,...,Xn,01,...,0n | ...).
Then every minimal prime of a char. ideal of | has dimension > n.
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Multiplicatively Closed Ore Subsets

Let S be a multiplicatively closed (m.c.) subset of some algebra A, that
isteSandabe S= abe S. Siscalled an Ore set in A, if

Vse S,ac A JreS,be Asuchthatar=sb (s 'a=br ).

Ore condition
Vsc S,ac A sAnaS+#\0. J

For an associative K—algebra A and a m.c. subset S, we consider
S x A and introduce the following equivalence relation ~ on it:
(s,a) ~(r,b), if for some x,y € A, ax = by, sx = ry.

Then, S x A/ ~ is called an Ore localization of Aw.r.t. S.

Ore localization
It is often denoted by As = {s~'a|s € S,ac Al. J
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Ann F° Method: From Kashiwara to Malgrange
Recall, that for s € K, Annpg) f* = {ac D(R) | ae f* = 0}.

Theorem (Kashiwara 1981)
D(R)/ Annpg) f* is a (regular) holonomic D(R)—module for any s € K. J
Malgrange’s construction for f = f; - -- - - fp : consider the left ideal

P
o= ({t— 2(713%3} A<j<pi<i<n,

lr CK{t, 0t} | [0, 4] = 1) ox K({X;, 9;} | [0, x] = 1)

Theorem (1.)

The ideal of operators in D[s] := D(R) ®x K[s|, annihilating f° equals
to the image of the Ir N D[t - dt] under the substitution t - 9t — —s — 1.

Proof: next slides.



Recall: Generalized Product Criterion

Let A be an associative K—algebra. We use the following notations:
[a, b] := ab — ba, a commutator or a Lie bracket of a,b € A.
Va, b, c € A the following bracket identities hold

@ [a,b] = —[b, a], in particular [a,a] =0

@ [ab,c] = a[b, c] + [a, c]b

Recall Levandovskyy and Schénemann, ISSAC 2003.

Generalized Product Criterion

Let A be a G—algebra of Lie type (that is, all relations are of the type
XiXj = XiX; + djj, V1 < i <j<n.

Let f, g € A. Suppose that Im(f) and Im(g) have no common factors,
then spoly(f, 9) —1.qy [f, 9]-
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Proving the Theorem, part I
Letf=fi-...-fpandletg, =9+ 3, dx 81‘, Ap+n below stays for
D(R) ®k K({t,,at, |1 <i<p}|tot = ot -t + 1).

Lemma

lr = {ti — ,{9i}},1 <j<p,1<i<n) C Apynis amaximal ideal,
hence Ap+n/ I is a simple module.

Proof.
Choose an ordering with {#;, 9;} > {x;, dt;}. Running Buchberger’s
algorithm, we see that

f
spoly(gi,gk) [9i, 9] = Ot; z,[a,,g;kwat, Z,[axf,ak] Since
[8,,% = 6xxk the spoly(g;, gk) reduces to zero.

spoly(tk — fx, 9i) — [tk — Tk, 9i] = >_; a*,{,[fkval}'] — [, 01 = 0.

Hence, I is given in a Grobner basis and its leading monomials are
{t;,0;}. Thus, the GK.dim(A/ls) = 2(p+ n) — (p + n) = p + n, hence I
is holonomic. O

v
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Proving the Theorem, part I
Consider the shift algebra K(s, Es | Ess = SEs + Es = (s + 1)Es).
The Mellin transform is an injective K—algebra homomorphism

Its image is the subalgebra K(tot, t | ...).

Lemma
It is the annihilator of f° in D(R) @k K{{t;, 0t;} | t;0t; = otit; +1).

Proof.

The Mellin transform allows to supply K[s, X, 5] with the following
structure of D(R) @k K(t, 9t)—module (p = 1 for simplicity):

xi o g(s,x)f* = x;g(s, x)f°, 9; e g(s,x)f° = %fs + sg(s, x)g—;f51,
1 )
teg(s, x)fS=g(s+1,x), dteg(s,x)fS = —sg(s—1,x)fs 1.

[]
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Proving the Theorem, part lli

Proof.
In particular, for g = 1 and p = 1 we have

of fs—1

X,.fS_X,fS a,.fs_s 5
OXi

tefS=ft" OtefS=—_sf5".

o)

o
Then (t; — f) e f$ = 0, (j; a_x,atf +0)ef*=0.
Since by Lemma before I is a maximal ideal, it is the Ann 5. O
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Ann F* Algorithm in D-module Theory

Letf="»f-...-f.
The Ann F3 Algorithm, step |
Compute the preimage of the left ideal
P of
L=({t—fy 2o+ }),1<j<pi<i<n
i

X
J=1 0

in the subalgebra K [{1; - 9t;}] ({X;,0; | [0, xj] = 1}) of

K({t, 0t} | 19, 4] = 1) @ K({x:, O3} | [0, ] = 1)

v

Moreover, in the preimage, t; - 9t; will be replaced by —s; — 1 (algebraic
Mellin transform), where s; are new variables, commuting with {x, dx}.
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Ann F* Algorithm in D-module Theory

Remember, f = fi - ... f,.

The Ann F3 Algorithm, step Il

Denote the result of step | by L' € K[{s;}]{{x;, 0x; | [0x;, x;] = 1}).
Compute the preimage of the left ideal (L', f) in the commutative
subalgebra K[{s;}].

If p=1,e.g. f =f;, the output is a principal ideal. Its monic generator
is called a global Bernstein—Sato polynomial b(s).
There exists an operator B € D(R), such that B e f$t1 = p(s) - f5.

Theorem (Kashiwara)
All roots of b(s) are rational numbers. }

Note, that s + 1 always divides b(s).
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OT method for Step |
Oaku-Takayama method, 1999
{u;, v;, s} commute with everything, {[9;, x;] = 1,[0t, ] = 1}.

K(tj,atj,X,‘,ai, Ui, vj | : {tj ujf}vz ukat]+alauj‘/j_1}>

1. Intersect the ideal with the subalgebra K(t;, 0t;, x;,0; | ... ) i.e.
eliminate {u;, v;}.

2. Intersect the result of p.1. with K[-#;0f; — 1] ®x K(X;,0; | ...) ,
replace —10t; — 1 by s;.

p=1

1,{— of uot + 0;})
OX;

The total result lives in K(x;,0; | ...) @k K[{s}]

(t—uf,uv —

Viktor Levandovskyy (RWTH) AnnFs 22.11.2007, RWTH

12/19



Given « € C. Then we have the following:

Theorem (2.)

Letf € R=C|xq,...,Xn| and «q is the minimal integer root of the
global b-function b(s) of f. If « & oy + 1 + Ny, then
AnnD(R) f* = AnnD(R)[s] fs |s:a-

For the case, when o € ag + 1 + Ny, we apply the Algorithm 3:

@ Compute Ann ¥ = {g1(s),...,9-(s)} € D(R)[s].

© Compute b(s) of f; let o := the minimal integer root of b(s).
©Q Letd =a— ap. If d <0 output {g;(a)} and stop.

Q For d € Z,, compute the generators {s(%)} of the module

syz( {f?,91(x),...,gr(a0)} ) € D(R)™*"

© Output {g;(e)} U {s{¥}, where s{¥) is the 1st component of (%),
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Examples with SINGULAR:PLURAL

© (don'’t forget to ) start SINGULAR

© load the dmod. 1ib library by typing

> LIB "dmod.lib";

© define a commutative ring R and a polynomial F, e.g.

> ring R = 0, (x,y,2),dp; poly F = x3+y3+z3;
© runthe annfsOT routine. It returns aring, call it, say, S
> def S = annfsOT (F); setring S;

@ inthering S (= Weyl algebra of R), there are the following
computed objects:
a) an ideal LD (the desired D-module structure)
b) a list BS containing the roots (with mult’s) of Bernstein poly.
Q@ If you wish to compute an s-parametric annihilator, run
> setring R; def P = SannfsOT (F); setring P;
@ in the output ring the ideal LD is the parametric D-module
structure
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Examples

In the same way as on the previous slide you can see how the
algorithms of Brianson—Maisonobe and LOT work.

@ OT: annfsOT, SannfsOT

@ Brianson—Maisonobe, BM: annfsBM, SannfsBM

@ LOT: annfsLOT, SannfsLOT

@ Multivariate BM: ann fsBMT

@ All the relevant data at once: operatorBM
If you wish to see progress of each step of the algorithm, set before

computation printlevel = 1;. If you wish to see additionally all
intermediate data, set printlevel = 2;.

Example Session
x; x* x3 — y2; y® + xy* + x* (a Reiffen curve), x3 + y3 + z2w (4
variables), (x® + y2) - (x? + y3).
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Non-genericity with SINGULAR:PLURAL

Assume we have F = x3 + y® + z% and we'd like to compute Ann F" for
n > 1. As we know from the example before, the minimal integer root
is —2. So, any n > —1 leads to the exceptional situation (Algorithm 3
instead of Theorem 2 above). Let us compute the structure of the
annihilator for n = 3.

@ define a commutative ring R and a polynomial F, e.g.

> ring R = 0, (x,y,2),dp; poly F = x3+y3+z3;

© run the sannfsBM routine. It returns a ring, call it, say, S

> def S = SannfsBM(F); setring S;

© inthering S = D(R)[s], there is an ideal LD (s-parametric
D-module structure)

> int n = 3; poly F = imap(R,F);
> ideal I = annfspecial(LD,F,-2,n); I = groebner(I);
Q the ideal / is the desired D-module structure of F3.
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Thank you for your attention! J

Please visit the SINGULAR homepage
@ http://www.singular.uni-k1l.de/
@ there you find among others the online manual (with detailed

documentation and examples for each command, procedure and
library)
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Integrals

For generic f, an integral [, f(x, t)*t"dt satisfies a
Gel'fand—Kapranov—Zelevinsky system [SST]. However, one needs to
treat non—generic polynomials too.

Hypergeometric Integral
P
Consider F(a;x):/Hf,-(x, t)¥dt; - - - ditm,
Cizy

where a; € K C C and C is an m—cycle. The function F(«a; x) depends
on the homology class of C. Let

D:K<t‘|,...,tm,at1,...,atm,x1,...,Xn,aX1,...,axn‘

81‘] h = t;atj + (5,'/', 8)(/X,' = X,'axj ol (5,}')
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Theorem ( SST, Th. 5.5.1)

Let I C D be a left ideal, annihilating the function
fo(x, ) = TI7_ fi(x, ), f € K[X1,..., Xn, t1, ..., tm]. Then, the ideal

J: (/"—<at1,...,atm>D)mK<X1,...,Xn’6X1,...,8Xn | 8X/XI:XI8X/+6I]>

annihilates the function F(c; x).

The left ideal J is called the integral ideal of / with respect to t.

Note

In the Theorem, we have to intersect the sum of a left and a right
ideals with a subalgebra. There are no general methods (only very
specific, e.g. of Takayama) for treating this situation.
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