Annihilator of a Power of a Polynomial

Viktor Levandovskyy

RWTH Aachen

22.11.2007, RWTH

Problem formulation

Given a ring $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, a polynomial $f \in R$ and a number $\alpha \in \mathbb{C}$. Compute the left ideal $\operatorname{Ann}\left(f^{\alpha}\right) \in D(R)$, where $D(R)$ is the Weyl algebra in $2 n$ variables $x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}$ subject to usual relations.

Preliminaries

We utilize a D-module structure of a left module in
$R\left[f^{s}\right]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}, \frac{1}{f}\right] \cdot f^{s}$.
The algorithm AnNFs computes a D-module structure on $R\left[f^{s}\right]$, that is a left ideal $I \subset D$, such that $R\left[f^{s}\right] \cong D / I$.

Algebraic Analysis

Indeed, for A a G-algebra of Lie type, $G r A$ is commutative and we have GK. $\operatorname{dim}_{A}(M)=G K . \operatorname{dim}_{G r A} L(M)=K r . \operatorname{dim}_{G r A} L(M)$.

Theorem (Weak FTAA, SST)

A proper left ideal in $D(R)=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n} \mid \ldots\right\rangle$ has
$G K$-dimension $\geq n$.
Let $I \subset D(R)$. Compute the left Gröbner basis of I with respect to the elimination ordering for ∂_{i} (a weight vector $(0, \ldots, 0,1, \ldots, 1)$). Then the characteristic ideal of l is the ideal in the commutative ring $\operatorname{GrD}(R)=\mathbb{K}\left[x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right]$, generated by the leading terms of I. The zero set of this ideal is called the characteristic variety.

Theorem (Strong FTAA, SST)

Let I be a proper left ideal in $D(R)=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n} \mid \ldots\right\rangle$.
Then every minimal prime of a char. ideal of I has dimension $\geq n$.

Multiplicatively Closed Ore Subsets

Let S be a multiplicatively closed (m.c.) subset of some algebra A, that is $1 \in S$ and $a, b \in S \Rightarrow a b \in S$. S is called an Ore set in A, if

$$
\forall s \in S, a \in A, \exists r \in S, b \in A \text { such that } a r=s b\left(s^{-1} a=b r^{-1}\right)
$$

Ore condition

$\forall s \in S, a \in A, \quad s A \cap a S \neq \emptyset$.
For an associative \mathbb{K}-algebra A and a m.c. subset S, we consider $S \times A$ and introduce the following equivalence relation \simeq on it: $(s, a) \simeq(r, b)$, if for some $x, y \in A, a x=b y, s x=r y$.

Ore localization

Then, $S \times A / \simeq$ is called an Ore localization of A w.r.t. S. It is often denoted by $A_{S}=\left\{s^{-1} a \mid s \in S, a \in A\right\}$.

Ann F^{s} Method: From Kashiwara to Malgrange

 Recall, that for $s \in \mathbb{K}, \operatorname{Ann}_{D(R)} f^{s}=\left\{a \in D(R) \mid a \bullet f^{s}=0\right\}$.
Theorem (Kashiwara 1981)

$D(R) / \operatorname{Ann}_{D(R)} f^{s}$ is a (regular) holonomic $D(R)$-module for any $s \in \mathbb{K}$.
Malgrange's construction for $f=f_{1} \cdots \cdots f_{p}$: consider the left ideal

$$
\begin{aligned}
& I_{f}:=\left\langle\left\{t_{j}-f_{j}, \sum_{j=1}^{p} \frac{\partial f_{j}}{\partial x_{i}} \partial t_{j}+\partial_{i}\right\}\right\rangle, 1 \leq j \leq p, 1 \leq i \leq n, \\
& I_{f} \subset \mathbb{K}\left\langle\left\{t_{j}, \partial t_{j}\right\} \mid\left[\partial t_{j}, t_{j}\right]=1\right\rangle \otimes_{\mathbb{K}} \mathbb{K}\left\langle\left\{x_{i}, \partial_{i}\right\} \mid\left[\partial_{i}, x_{i}\right]=1\right\rangle
\end{aligned}
$$

Theorem (1.)

The ideal of operators in $D[s]:=D(R) \otimes_{\mathbb{K}} \mathbb{K}[s]$, annihilating f^{s} equals to the image of the $I_{f} \cap D[t \cdot \partial t]$ under the substitution $t \cdot \partial t \mapsto-s-1$.

Proof: next slides.

Recall: Generalized Product Criterion

Let A be an associative \mathbb{K}-algebra. We use the following notations:
$[a, b]:=a b-b a$, a commutator or a Lie bracket of $a, b \in A$.
$\forall a, b, c \in A$ the following bracket identities hold

- $[a, b]=-[b, a]$, in particular $[a, a]=0$
- $[a b, c]=a[b, c]+[a, c] b$

Recall Levandovskyy and Schönemann, ISSAC 2003.

Generalized Product Criterion

Let A be a G-algebra of Lie type (that is, all relations are of the type $x_{j} x_{i}=x_{i} x_{j}+d_{i j}, \forall 1 \leq i<j \leq n$.
Let $f, g \in A$. Suppose that $\operatorname{Im}(f)$ and $\operatorname{Im}(g)$ have no common factors, then $\operatorname{spoly}(f, g) \rightarrow{ }_{\{f, g\}}[f, g]$.

Proving the Theorem, part I

Let $f=f_{1} \ldots f_{p}$ and let $g_{i}=\partial_{i}+\sum_{j} \frac{\partial f_{j}}{\partial x_{j}} \partial t_{j}$. A_{p+n} below stays for $D(R) \otimes_{\mathbb{K}} \mathbb{K}\left\langle\left\{t_{i}, \partial t_{i} \mid 1 \leq i \leq p\right\} \mid t_{i} \partial t_{i}=\partial t_{i} \cdot t_{i}+1\right\rangle$.

Lemma

$I_{f}=\left\langle\left\{t_{j}-f_{j},\left\{g_{i}\right\}\right\}, 1 \leq j \leq p, 1 \leq i \leq n\right\rangle \subset A_{p+n}$ is a maximal ideal, hence A_{p+n} / I_{f} is a simple module.

Proof.

Choose an ordering with $\left\{t_{i}, \partial_{i}\right\} \gg\left\{x_{i}, \partial t_{j}\right\}$. Running Buchberger's algorithm, we see that
$\operatorname{spoly}\left(g_{i}, g_{k}\right) \rightarrow\left[g_{i}, g_{k}\right]=\partial t_{j} \sum_{j}\left[\partial_{i}, \frac{\partial f_{j}}{\partial x_{k}}\right]+\partial t_{j} \sum_{j}\left[\frac{\partial f_{j}}{\partial x_{i}}, \partial_{k}\right]$. Since $\left[\partial_{i}, \frac{\partial f_{j}}{\partial x_{k}}\right]=\frac{\partial^{2} f_{j}}{\partial x_{i} x_{k}}$, the spoly $\left(g_{i}, g_{k}\right)$ reduces to zero.
$\operatorname{spoly}\left(t_{k}-f_{k}, g_{i}\right) \rightarrow\left[t_{k}-f_{k}, g_{i}\right]=\sum_{j} \frac{\partial f_{j}}{\partial x_{i}}\left[t_{k}, \partial t_{j}\right]-\left[f_{k}, \partial_{i}\right]=0$.
Hence, I_{f} is given in a Gröbner basis and its leading monomials are $\left\{t_{j}, \partial_{i}\right\}$. Thus, the GK. $\operatorname{dim}\left(A / I_{f}\right)=2(p+n)-(p+n)=p+n$, hence I_{f} is holonomic.

Proving the Theorem, part II

Consider the shift algebra $\mathbb{K}\left\langle s, E_{s} \mid E_{s} s=s E_{s}+E_{s}=(s+1) E_{s}\right\rangle$. The Mellin transform is an injective \mathbb{K}-algebra homomorphism $\mathbb{K}\left\langle s, E_{s}=s E_{s}+E_{s}\right\rangle \rightarrow \mathbb{K}\langle t, \partial t \mid t \cdot \partial t=\partial t \cdot t+1\rangle, \quad s \mapsto-t \partial t-1, E_{s} \mapsto t$. Its image is the subalgebra $\mathbb{K}\langle t \partial t, t \mid \ldots\rangle$.

Lemma

I_{f} is the annihilator of f^{s} in $D(R) \otimes_{\mathbb{K}} \mathbb{K}\left\langle\left\{t_{j}, \partial t_{j}\right\} \mid t_{j} \partial t_{j}=\partial t_{j} t_{j}+1\right\rangle$.

Proof.

The Mellin transform allows to supply $\mathbb{K}\left[\mathbf{s}, \mathbf{x}, f^{s}\right]$ with the following structure of $D(R) \otimes_{\mathbb{K}} \mathbb{K}\langle t, \partial t\rangle$-module ($p=1$ for simplicity):

$$
\begin{gathered}
x_{i} \bullet g(s, x) f^{s}=x_{i} g(s, x) f^{s}, \partial_{i} \bullet g(s, x) f^{s}=\frac{\partial g}{\partial x_{i}} f^{s}+s g(s, x) \frac{\partial f}{\partial x_{i}} f^{s-1}, \\
t \bullet g(s, x) f^{s}=g(s+1, x) f^{s+1}, \partial t \bullet g(s, x) f^{s}=-s g(s-1, x) f^{s-1} .
\end{gathered}
$$

Proving the Theorem, part III

Proof.

In particular, for $g=1$ and $p=1$ we have

$$
\begin{aligned}
x_{i} \bullet f^{s} & =x_{i} f^{s}, \partial_{i} \bullet f^{\mathcal{S}}=s \frac{\partial f}{\partial x_{i}} f^{s-1} \\
t \bullet f^{s} & =f^{s+1}, \partial t \bullet f^{s}=-s f^{s-1}
\end{aligned}
$$

Then $\left(t_{j}-f_{j}\right) \bullet f^{s}=0,\left(\sum_{j=1}^{p} \frac{\partial f_{j}}{\partial x_{i}} \partial t_{j}+\partial_{i}\right) \bullet f^{s}=0$.
Since by Lemma before I_{f} is a maximal ideal, it is the Ann f^{s}.

Ann F^{s} Algorithm in D-module Theory

Let $f=f_{1} \cdot \ldots \cdot f_{p}$.
The Ann F^{s} Algorithm, step I
Compute the preimage of the left ideal

$$
L=\left\langle\left\{t_{j}-f_{j}, \sum_{j=1}^{p} \frac{\partial f_{j}}{\partial x_{i}} \partial t_{j}+\partial_{i}\right\}\right\rangle, 1 \leq j \leq p, 1 \leq i \leq n
$$

in the subalgebra $\mathbb{K}\left[\left\{t_{j} \cdot \partial t_{j}\right\}\right]\left\langle\left\{x_{i}, \partial_{i} \mid\left[\partial_{i}, x_{i}\right]=1\right\}\right\rangle$ of

$$
\mathbb{K}\left\langle\left\{t_{j}, \partial t_{j}\right\} \mid\left[\partial t_{j}, t_{j}\right]=1\right\rangle \otimes_{\mathbb{K}} \mathbb{K}\left\langle\left\{x_{i}, \partial_{i}\right\} \mid\left[\partial_{i}, x_{i}\right]=1\right\rangle
$$

Moreover, in the preimage, $t_{j} \cdot \partial t_{j}$ will be replaced by $-s_{j}-1$ (algebraic Mellin transform), where s_{j} are new variables, commuting with $\left\{x_{k}, \partial_{k}\right\}$.

Ann F^{s} Algorithm in D-module Theory

Remember, $f=f_{1} \ldots \ldots f_{p}$.
The Ann F^{s} Algorithm, step II
Denote the result of step I by $L^{\prime} \in \mathbb{K}\left[\left\{s_{j}\right\}\right]\left\{\left\{x_{i}, \partial x_{i} \mid\left[\partial x_{i}, x_{i}\right]=1\right\}\right\rangle$. Compute the preimage of the left ideal $\left\langle L^{\prime}, f\right\rangle$ in the commutative subalgebra $\mathbb{K}\left[\left\{s_{j}\right\}\right]$.

If $p=1$, e.g. $f=f_{1}$, the output is a principal ideal. Its monic generator is called a global Bernstein-Sato polynomial $b(s)$.
There exists an operator $B \in D(R)$, such that $B \bullet f^{s+1}=b(s) \cdot f^{s}$.

Theorem (Kashiwara)

All roots of $b(s)$ are rational numbers.
Note, that $s+1$ always divides $b(s)$.

OT method for Step I

Oaku-Takayama method, 1999

$\left\{u_{j}, v_{j}, s_{j}\right\}$ commute with everything, $\left\{\left[\partial_{i}, x_{i}\right]=1,\left[\partial t_{j}, t_{j}\right]=1\right\}$.

$$
\mathbb{K}\left\langle t_{j}, \partial t_{j}, x_{i}, \partial_{i}, u_{j}, v_{j} \mid \ldots\right\rangle \supset\left\langle\left\{t_{j}-u_{j} f_{j}, \sum_{k=1}^{p} \frac{\partial f_{k}}{\partial x_{i}} u_{k} \partial t_{j}+\partial_{i}, u_{j} v_{j}-1\right\}\right\rangle
$$

1. Intersect the ideal with the subalgebra $\mathbb{K}\left\langle t_{j}, \partial t_{j}, x_{i}, \partial_{i} \mid \ldots\right\rangle$ i.e. eliminate $\left\{u_{j}, v_{j}\right\}$.
2. Intersect the result of p.1. with $\mathbb{K}\left[-t_{j} \partial t_{j}-1\right] \otimes_{\mathbb{K}} \mathbb{K}\left\langle x_{i}, \partial_{i} \mid \ldots\right\rangle$, replace $-t_{j} \partial t_{j}-1$ by s_{j}.
$p=1$

$$
\left\langle t-u f, u v-1,\left\{\frac{\partial f}{\partial x_{i}} u \partial t+\partial_{i}\right\}\right\rangle
$$

The total result lives in $\mathbb{K}\left\langle x_{i}, \partial_{i} \mid \ldots\right\rangle \otimes_{\mathbb{K}} \mathbb{K}[\{s\}]$

Given $\alpha \in \mathbb{C}$. Then we have the following:

Theorem (2.)

Let $f \in R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and α_{0} is the minimal integer root of the global b-function b(s) of f. If $\alpha \notin \alpha_{0}+1+\mathbb{N}_{0}$, then $\operatorname{Ann}_{D(R)} f^{\alpha}=\left.\operatorname{Ann}_{D(R)[s]}{ }^{f}\right|_{s=\alpha}$.

For the case, when $\alpha \in \alpha_{0}+1+\mathbb{N}_{0}$, we apply the Algorithm 3:
(1) Compute Ann $f^{s}=\left\{g_{1}(s), \ldots, g_{r}(s)\right\} \subset D(R)[s]$.
(2) Compute $b(s)$ of f; let $\alpha_{0}:=$ the minimal integer root of $b(s)$.
(3) Let $d=\alpha-\alpha_{0}$. If $d \leq 0$ output $\left\{g_{i}(\alpha)\right\}$ and stop.
(9) For $d \in \mathbb{Z}_{+}$, compute the generators $\left\{s^{(k)}\right\}$ of the module

$$
\operatorname{syz}\left(\left\{f^{d}, g_{1}\left(\alpha_{0}\right), \ldots, g_{r}\left(\alpha_{0}\right)\right\}\right) \subset D(R)^{r+1}
$$

(0) Output $\left\{g_{i}(\alpha)\right\} \cup\left\{s_{1}^{(k)}\right\}$, where $s_{1}^{(k)}$ is the 1 st component of $s^{(k)}$.

Examples with Singular:Plural

(1) (don't forget to) start Singular
(2) load the dmod.lib library by typing
> LIB "dmod.lib";
(3) define a commutative ring R and a polynomial F, e.g.
$>$ ring $R=0,(x, y, z), d p ; ~ p o l y F=x 3+y 3+z 3$;
(0) run the annfsot routine. It returns a ring, call it, say, S
> def $\mathrm{S}=\operatorname{annfsOT}(\mathrm{F})$; setring S ;
(0) in the ring S (= Weyl algebra of R), there are the following computed objects:
a) an ideal $L D$ (the desired D-module structure)
b) a list $B S$ containing the roots (with mult's) of Bernstein poly.
(0) If you wish to compute an s-parametric annihilator, run
> setring R; def $\mathrm{P}=$ Sannfsot (F); setring P ;
(3) in the output ring the ideal $L D$ is the parametric D-module structure

Examples

In the same way as on the previous slide you can see how the algorithms of Brianson-Maisonobe and LOT work.

- OT: annfsot, Sannfsot
- Brianson-Maisonobe, BM: annfsBM, SannfsBM
- LOT: annfsLot, SannfsLot
- Multivariate BM: annfsBMI
- All the relevant data at once: operatorBM

If you wish to see progress of each step of the algorithm, set before computation print level = 1; If you wish to see additionally all intermediate data, set printlevel $=2$;

Example Session

$x ; x^{4} ; x^{3}-y^{2} ; y^{5}+x y^{4}+x^{4}$ (a Reiffen curve), $x^{3}+y^{3}+z^{2} w(4$ variables), $\left(x^{3}+y^{2}\right) \cdot\left(x^{2}+y^{3}\right)$.

Non-genericity with Singular:Plural

Assume we have $F=x^{3}+y^{3}+z^{3}$ and we'd like to compute Ann F^{n} for $n \geq 1$. As we know from the example before, the minimal integer root is -2 . So, any $n \geq-1$ leads to the exceptional situation (Algorithm 3 instead of Theorem 2 above). Let us compute the structure of the annihilator for $n=3$.
(1) define a commutative ring R and a polynomial F, e.g.
$>$ ring $R=0,(x, y, z), d p ; ~ p o l y ~ F ~=~ x 3+y 3+z 3 ;$
(2) run the SannfsBM routine. It returns a ring, call it, say, S
$>$ def $S=\operatorname{SannfsBM}(F) ;$ setring S;
(3) in the ring $S=D(R)[s]$, there is an ideal $L D$ (s-parametric D-module structure)
> int $\mathrm{n}=3$; poly $\mathrm{F}=$ imap (R, F);
> ideal $I=$ annfspecial(LD,F,-2,n); I = groebner(I);
(9) the ideal I is the desired D-module structure of F^{3}.

Thank you for your attention!

Please visit the Singular homepage

- http://www.singular.uni-kl.de/
- there you find among others the online manual (with detailed documentation and examples for each command, procedure and library)

Integrals

For generic f, an integral $\int_{C} f(x, t)^{\alpha} t^{\gamma} d t$ satisfies a Gel'fand-Kapranov-Zelevinsky system [SST]. However, one needs to treat non-generic polynomials too.

Hypergeometric Integral

Consider $\quad F(\alpha ; x)=\int_{C} \prod_{i=1}^{p} f_{i}(x, t)^{\alpha_{i}} d t_{1} \cdots d t_{m}$,
where $\alpha_{i} \in \mathbb{K} \subseteq \mathbb{C}$ and \mathbb{C} is an m-cycle. The function $F(\alpha ; x)$ depends on the homology class of C. Let

$$
\begin{gathered}
D=\mathbb{K}\left\langle t_{1}, \ldots, t_{m}, \partial_{t_{1}}, \ldots, \partial_{t_{m}}, x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}\right| \\
\left.\partial_{t_{j}} t_{i}=t_{i} \partial_{t_{j}}+\delta_{i j}, \partial_{x_{j}} x_{i}=x_{i} \partial_{x_{j}}+\delta_{i j}\right\rangle
\end{gathered}
$$

Theorem (SST, Th. 5.5.1)

Let $I \subset D$ be a left ideal, annihilating the function $f_{\alpha}(x, t)=\prod_{i=1}^{p} f_{i}(x, t)^{\alpha_{i}}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m}\right]$. Then, the ideal

$$
J=\left(I+\left\langle\partial_{t_{1}}, \ldots, \partial_{t_{m}}\right\rangle_{D}\right) \cap \mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}} \mid \partial_{x_{j}} x_{i}=x_{i} \partial_{x_{j}}+\delta_{i j}\right\rangle
$$

annihilates the function $F(\alpha ; x)$.
The left ideal J is called the integral ideal of I with respect to t.

Note

In the Theorem, we have to intersect the sum of a left and a right ideals with a subalgebra. There are no general methods (only very specific, e.g. of Takayama) for treating this situation.

