EnHANCING THE CLASSICAL ALGORITHM BY OAKU FOR THE COMPUTATION OF BERNSTEIN-SATO POLYNOMIALS

Jorge Martín-Morales

Department of Mathematics
University of Zaragoza
Seminar on D-modules
Aachen, January 8, 2008

Introduction and notations

BASIC NOTATIONS

- \mathbb{C} the field of the complex numbers.
- $\mathbb{C}[s]$ the ring of polynomials in one variable over \mathbb{C}.
- $R_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ the ring of polynomials in n variables.
- $D_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ the ring of \mathbb{C}-linear differential operators on R_{n}, the n-th Weyl algebra:

$$
\partial_{i} x_{i}=x_{i} \partial_{i}+1
$$

- $D_{n}[s]$ the ring of polynomials in one variable over D_{n}.

The $D_{n}[s]$-MODULE $R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s}$

- Let $f \in R_{n}$ be a non-zero polynomial.
- By $R_{n}\left[s, \frac{1}{f}\right]$ we denote the ring of rational functions of the form

$$
\frac{g(\mathbf{x}, s)}{f^{r}}
$$

where $g(\mathbf{x}, s) \in R_{n}[s]=\mathbb{C}\left[x_{1}, \ldots, x_{n}, s\right]$.

- We denote by $M=R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s}$ the free $R_{n}\left[s, \frac{1}{f}\right]$-module of rank one generated by the symbol f^{s}.
- $R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s}$ has a natural structure of left $D_{n}[s]$-module.

$$
\partial_{i} \cdot f^{s}=s \frac{\partial f}{\partial x_{i}} \frac{1}{f} \cdot f^{s} \quad \in \quad R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s}
$$

The global b-FUNCTION

Theorem (Bernstein)

For every polynomial $f \in R_{n}$ there exists a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in D_{n}[s]$ such that

$$
P(s) f^{s+1}=b(s) f^{s} \quad \in \quad R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s}
$$

The global b-FUNCTION

Theorem (Bernstein)

For every polynomial $f \in R_{n}$ there exists a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in D_{n}[s]$ such that

$$
P(s) f^{s+1}=b(s) f^{s} \quad \in \quad R_{n}\left[s, \frac{1}{f}\right] \cdot f^{s} .
$$

Definition (Bernstein \& Sato)

The set of all possible polynomials $b(s)$ satisfying the above equation is an ideal of $\mathbb{C}[s]$. The monic generator of this ideal is denoted by $b_{f}(s)$ and called the Bernstein-Sato polynomial of f.

The local b-FUNCTION

Now assume that

- $f \in \mathcal{O}=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ is a convergent power series.
- \mathcal{D}_{n} is the ring of differential operators with coefficients in \mathcal{O}.

The local b-FUNCTION

Now assume that

- $f \in \mathcal{O}=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ is a convergent power series.
- \mathcal{D}_{n} is the ring of differential operators with coefficients in \mathcal{O}.

Theorem (Björk \& Kashiwara)

For every $f \in \mathcal{O}$ there exists a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in \mathcal{D}_{n}[s]$ such that

$$
P(s) f^{s+1}=b(s) f^{s} \quad \in \mathcal{O}\left[s, \frac{1}{f}\right] \cdot f^{s}
$$

The local b-FUNCTION

Now assume that

- $f \in \mathcal{O}=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ is a convergent power series.
- \mathcal{D}_{n} is the ring of differential operators with coefficients in \mathcal{O}.

Theorem (Björk \& Kashiwara)

For every $f \in \mathcal{O}$ there exists a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in \mathcal{D}_{n}[s]$ such that

$$
P(s) f^{s+1}=b(s) f^{s} \quad \in \quad \mathcal{O}\left[s, \frac{1}{f}\right] \cdot f^{s}
$$

Definition

The monic polynomial in $\mathbb{C}[s]$ of lowest degree which satisfies the above equation is denoted by $b_{f, 0}(s)$ and called the local b-function of f.

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.
(2) The Bernstein-Sato polynomial is a non-complete analytic invariant of the singularity $f=0$.

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.
(2) The Bernstein-Sato polynomial is a non-complete analytic invariant of the singularity $f=0$.
(3) The set $\left\{e^{2 \pi i \alpha} \mid b_{f, 0}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$. (Malgrange).

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.
(2) The Bernstein-Sato polynomial is a non-complete analytic invariant of the singularity $f=0$.
(3) The set $\left\{e^{2 \pi i \alpha} \mid b_{f, 0}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$. (Malgrange).
(9) The roots of the b-function are negative rational numbers of the real interval $(-n, 0)$. (Kashiwara).

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.
(2) The Bernstein-Sato polynomial is a non-complete analytic invariant of the singularity $f=0$.
(3) The set $\left\{e^{2 \pi i \alpha} \mid b_{f, 0}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$. (Malgrange).
(9) The roots of the b-function are negative rational numbers of the real interval $(-n, 0)$. (Kashiwara).
(5) $b_{f, 0}(s)$ is a divisor of $b_{f}(s)$. If, for instance, f has 0 as its only singularity, then $b_{f, 0}(s)=b_{f}(s)$.

SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

(1) The b-function is always a multiple of $(s+1)$. The equality holds if and only f is smooth.
(2) The Bernstein-Sato polynomial is a non-complete analytic invariant of the singularity $f=0$.
(3) The set $\left\{e^{2 \pi i \alpha} \mid b_{f, 0}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$. (Malgrange).
(9) The roots of the b-function are negative rational numbers of the real interval $(-n, 0)$. (Kashiwara).
(5) $b_{f, 0}(s)$ is a divisor of $b_{f}(s)$. If, for instance, f has 0 as its only singularity, then $b_{f, 0}(s)=b_{f}(s)$.
(0) $b_{f}(s)=\operatorname{lcm}_{p \in \mathbb{C}^{n}}\left(b_{f, p}(s)\right)$ (Briançon-Maisonobe, see also Mebkhout-Narváez).

Algorithms for computing The b-FUNCTION

Algorithms for computing The b-Function

(1) Global b-function.

- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-functions and then apply the formula $b_{f}(s)=\operatorname{lcm}_{p \in \mathbb{C}^{n}}\left(b_{f, p}(s)\right)$.

Algorithms for computing The b-FUNCTION

(1) Global b-function.

- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-functions and then apply the formula $b_{f}(s)=\operatorname{lcm}_{p \in \mathbb{C}^{n}}\left(b_{f, p}(s)\right)$.
- Non-isolated case: use the algorithm by Oaku and Takayama based on Gröbner bases in the ring of differential operators.

Algorithms for computing The b-FUNCTION

(1) Global b-function.

- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-functions and then apply the formula $b_{f}(s)=\operatorname{lcm}_{p \in \mathbb{C}^{n}}\left(b_{f, p}(s)\right)$.
- Non-isolated case: use the algorithm by Oaku and Takayama based on Gröbner bases in the ring of differential operators.
(2) Local b-function.
- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-function.

Algorithms for computing The b-FUNCTION

(1) Global b-function.

- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-functions and then apply the formula $b_{f}(s)=\operatorname{lcm}_{p \in \mathbb{C}^{n}}\left(b_{f, p}(s)\right)$.
- Non-isolated case: use the algorithm by Oaku and Takayama based on Gröbner bases in the ring of differential operators.
(2) Local b-function.
- Isolated case: use the algorithm implemented by Mathias Schulze in Singular for computing the local b-function.
- Non-isolated case: use the algorithm by Oaku and Takayama based on Gröbner bases in a local ring of differential operators.

ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

(1) Obtain an upper bound for $b_{f}(s)$: find $B(s) \in \mathbb{C}[s]$ such that $b_{f}(s)$ divides $B(s)$.

$$
B(s)=\prod_{i=1}^{d}\left(s-\alpha_{i}\right)^{m_{i}}
$$

ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

(1) Obtain an upper bound for $b_{f}(s)$: find $B(s) \in \mathbb{C}[s]$ such that $b_{f}(s)$ divides $B(s)$.

$$
B(s)=\prod_{i=1}^{d}\left(s-\alpha_{i}\right)^{m_{i}}
$$

(2) Check whether α_{i} is a root of the b-function.

ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

(1) Obtain an upper bound for $b_{f}(s)$: find $B(s) \in \mathbb{C}[s]$ such that $b_{f}(s)$ divides $B(s)$.

$$
B(s)=\prod_{i=1}^{d}\left(s-\alpha_{i}\right)^{m_{i}}
$$

(2) Check whether α_{i} is a root of the b-function.
(3) Compute the multiplicity of α as a root of $b_{f}(s)$.

ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

(1) Obtain an upper bound for $b_{f}(s)$: find $B(s) \in \mathbb{C}[s]$ such that $b_{f}(s)$ divides $B(s)$.

$$
B(s)=\prod_{i=1}^{d}\left(s-\alpha_{i}\right)^{m_{i}}
$$

(2) Check whether α_{i} is a root of the b-function.
(3) Compute the multiplicity of α as a root of $b_{f}(s)$.

Remark

- There are some well-known methods to obtain such $B(s)$: Resolution of Singularities.
- We need two algorithms.

The main Trick

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.

The main Trick

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle s+\alpha\rangle=\left\langle b_{f}(s), s+\alpha\right\rangle$

The main Trick

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle s+\alpha\rangle=\left\langle b_{f}(s), s+\alpha\right\rangle$

The main Trick

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle s+\alpha\rangle=\left\langle b_{f}(s), s+\alpha\right\rangle$

Proposition

$$
\begin{aligned}
& \left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f, s+\alpha\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s), s+\alpha\right\rangle \\
& =\left\{\begin{array}{cl}
\langle s+\alpha\rangle & \text { si } b_{f}(-\alpha)=0 \\
\mathbb{C}[s] & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The main Trick

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}(f s)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle s+\alpha\rangle=\left\langle b_{f}(s), s+\alpha\right\rangle$

Proposition

$$
\begin{aligned}
& \left.\quad \operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f, s+\alpha\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s), s+\alpha\right\rangle \\
& \quad=\left\{\begin{array}{cl}
\langle s+\alpha\rangle & \text { si } \\
\quad b_{f}(-\alpha)=0 \\
\mathbb{C}[s] & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Corollary

The following conditions are equivalent:
(1) $\alpha \in \mathbb{Q}$ is a root of $b_{f}(-s)$.
(2) $\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f, s+\alpha\rangle \neq D_{n}[s]$.
(8) $\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)_{\mid s=-\alpha}+\langle f\rangle \neq D$.

Algorithm 1

Algorithm 1 (check whether $\alpha \in \mathbb{Q}$ is a root of the b-function)
Input: $I=\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right), f$ a polynomial in $R_{n}, \alpha \in \mathbb{Q}$;
Output: true if α is a root of $b_{f}(-s)$, false otherwise;
(1) $J:=l_{\mid s=-\alpha}+\langle f\rangle$; $\triangleright J \subseteq D_{n}$
(2) G a reduced Gröbner basis of J w.r.t. any term ordering;
(3) if $G \neq\{1\}$ then

return true

else
return false end if

What about the multiplicity ?

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle q(s)\rangle=\left\langle b_{f}(s), q(s)\right\rangle, \quad q(s) \in \mathbb{C}[s]$

What about the multiplicity ?

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle q(s)\rangle=\left\langle b_{f}(s), q(s)\right\rangle, \quad q(s) \in \mathbb{C}[s]$

Proposition

$$
\begin{aligned}
\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)\right. & +\langle f, q(s)\rangle) \cap \mathbb{C}[s]=\left\langle b_{f}(s), q(s)\right\rangle \\
& =\left\langle\operatorname{gcd}\left(b_{f}(s), q(s)\right)\right\rangle
\end{aligned}
$$

What about the multiplicity ?

- By definition, $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]=\left\langle b_{f}(s)\right\rangle$.
- $\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\langle f\rangle\right) \cap \mathbb{C}[s]+\langle q(s)\rangle=\left\langle b_{f}(s), q(s)\right\rangle, \quad q(s) \in \mathbb{C}[s]$

Proposition

$$
\begin{aligned}
\left(\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)\right. & +\langle f, q(s)\rangle) \cap \mathbb{C}[s]=\left\langle b_{f}(s), q(s)\right\rangle \\
& =\left\langle\operatorname{gcd}\left(b_{f}(s), q(s)\right)\right\rangle
\end{aligned}
$$

Corollary

- m_{α} the multiplicity of α as a root of $b_{f}(-s)$.
- $J_{i}=\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right)+\left\langle f,(s+\alpha)^{i+1}\right\rangle \subseteq D_{n}[s]$.

The following conditions are equivalent:
(1) $m_{\alpha}>i$.
(2) $(s+\alpha)^{i} \notin J_{i}$.

Algorithm 2

Algorithm 2 (compute the multiplicity of α as a root of $b_{f}(-s)$)
Input: $I=\operatorname{ann}_{D_{n}[s]}\left(f^{s}\right), f$ a polynomial in R_{n}, α in \mathbb{Q};
Output: m_{α}, the multiplicity of α as a root of $b_{f}(-s)$;
for $i=0$ to n do
(1) $J:=I+\left\langle f,(s+\alpha)^{i+1}\right\rangle ; \quad \triangleright J_{i} \subseteq D_{n}[s]$
(2) G a reduced Gröbner basis of J w.r.t. any term ordering;
(3) r normal form of $(s+\alpha)^{i}$ with respect to G;
(4) if $r=0$ then $m_{\alpha}=i ; \quad$ break
end if
end for
return m_{α}

REMEMBER THE IDEA FOR COMPUTING $b_{f}(s)$

(1) Obtain an upper bound for $b_{f}(s)$: find $B(s) \in \mathbb{C}[s]$ such that $b_{f}(s)$ divides $B(s)$.

$$
B(s)=\prod_{i=1}^{d}\left(s-\alpha_{i}\right)^{m_{i}}
$$

(2) Check whether α_{i} is a root of the b-function.
(3) Compute its multiplicity m_{i}.

What about the first step ?

Applications

Let us see the following applications:
(1) Computations of the b-functions via embedded resolutions.
(2) Computations of the b-function of deformation of singularities.
(3) An algorithm for computing the minimal integral root of $b_{f}(s)$ without computing the whole Bernstein-Sato polynomial.

Resolution of Singularities

- Let $f \in \mathcal{O}$ be a convergent power series, $f: \Delta \subseteq \mathbb{C}^{n} \rightarrow \mathbb{C}$.
- Assume that $f(0)=0$, otherwise $b_{f, 0}(s)=1$.
- Let $\varphi: Y \rightarrow \Delta$ be an embedded resolution of $\{f=0\}$.
- If $F=f \circ \varphi$, then $F^{-1}(0)$ is a normal crossing divisor.

Resolution of Singularities

- Let $f \in \mathcal{O}$ be a convergent power series, $f: \Delta \subseteq \mathbb{C}^{n} \rightarrow \mathbb{C}$.
- Assume that $f(0)=0$, otherwise $b_{f, 0}(s)=1$.
- Let $\varphi: Y \rightarrow \Delta$ be an embedded resolution of $\{f=0\}$.
- If $F=f \circ \varphi$, then $F^{-1}(0)$ is a normal crossing divisor.

Theorem (Kashiwara).

There exists an integer $k \geq 0$ such that $b_{f}(s)$ is a divisor of the product $b_{F}(s) b_{F}(s+1) \cdots b_{F}(s+k)$.

- Let us consider $f=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$.

EXAMPLE

- Let us consider $f=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$.

EXAMPLE

- Let us consider $f=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$.

- From Kashiwara, the possible roots of $b_{f}(-s)$ are:

$$
\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1, \frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{11}{6} .
$$

ExAMPLE

- Let us consider $f=y^{2}-x^{3} \in \mathbb{C}\{x, y\}$.

- From Kashiwara, the possible roots of $b_{f}(-s)$ are:

$$
\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1, \frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{11}{6} .
$$

- Using algorithms 1 and 2, we have proved that the numbers in red are the roots of $b_{f}(s)$, all of them with multiplicity one.

ExAMPLE

Example

Using this method we have computed the b-function of $f=(x z+y)\left(x^{4}+y^{5}+x y^{4}\right)$ which is a non-isolated singularity.

TOPOLOGICALLY EQUIVALENT SINGULARITIES

- Let f, g be two topologically equivalent singularities.

TOPOLOGICALLY EQUIVALENT SINGULARITIES

- Let f, g be two topologically equivalent singularities.
- Assume that $b_{f}(s)$ is known.

TOPOLOGICALLY EQUIVALENT SINGULARITIES

- Let f, g be two topologically equivalent singularities.
- Assume that $b_{f}(s)$ is known.
- Since the set $\left\{e^{2 \pi i \alpha} \mid b_{f}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$ and every root belongs to ($-n, 0$), one can find an upper bound for $b_{g}(s)$.

TOPOLOGICALLY EQUIVALENT SINGULARITIES

- Let f, g be two topologically equivalent singularities.
- Assume that $b_{f}(s)$ is known.
- Since the set $\left\{e^{2 \pi i \alpha} \mid b_{f}(\alpha)=0\right\}$ is a topological invariant of the singularity $f=0$ and every root belongs to ($-n, 0$), one can find an upper bound for $b_{g}(s)$.
- Then we use algorithms 1 and 2 for computing $b_{g}(s)$.

EXAMPLE

- Let $f=x^{4}+y^{5}$ and $g=x^{4}+y^{5}+x y^{4}$.

EXAMPLE

- Let $f=x^{4}+y^{5}$ and $g=x^{4}+y^{5}+x y^{4}$.
- f and g are topologically equivalent because they have the same Puiseux pairs.

EXAMPLE

- Let $f=x^{4}+y^{5}$ and $g=x^{4}+y^{5}+x y^{4}$.
- f and g are topologically equivalent because they have the same Puiseux pairs.
- The following numbers are the roots of $b_{f}(-s)$, all of them with multiplicity one.

$$
\frac{9}{20}, \frac{13}{20}, \frac{7}{10}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{21}{20}, \frac{11}{10}, \frac{23}{20}, \frac{13}{10}, \frac{27}{20}, \frac{31}{20}
$$

ExAMPLE

- Let $f=x^{4}+y^{5}$ and $g=x^{4}+y^{5}+x y^{4}$.
- f and g are topologically equivalent because they have the same Puiseux pairs.
- The following numbers are the roots of $b_{f}(-s)$, all of them with multiplicity one.

$$
\frac{9}{20}, \frac{13}{20}, \frac{7}{10}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{21}{20}, \frac{11}{10}, \frac{23}{20}, \frac{13}{10}, \frac{27}{20}, \frac{31}{20}
$$

- The possible roots of $b_{g}(-s)$ are:

$$
\begin{aligned}
& \frac{9}{20}, \frac{13}{20}, \frac{7}{10}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{21}{20}, \frac{11}{10}, \frac{23}{20}, \frac{13}{10}, \frac{27}{20}, \frac{31}{20}, \\
& \frac{29}{20}, \frac{33}{20}, \frac{17}{10}, \frac{37}{20}, \frac{19}{10}, \frac{39}{20}, \frac{1}{20}, \frac{1}{10}, \frac{3}{20}, \frac{3}{10}, \frac{7}{20}, \frac{11}{20} .
\end{aligned}
$$

ExAMPLE

- Let $f=x^{4}+y^{5}$ and $g=x^{4}+y^{5}+x y^{4}$.
- f and g are topologically equivalent because they have the same Puiseux pairs.
- The following numbers are the roots of $b_{f}(-s)$, all of them with multiplicity one.

$$
\frac{9}{20}, \frac{13}{20}, \frac{7}{10}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{21}{20}, \frac{11}{10}, \frac{23}{20}, \frac{13}{10}, \frac{27}{20}, \frac{31}{20}
$$

- The possible roots of $b_{g}(-s)$ are:

$$
\begin{aligned}
& \frac{9}{20}, \frac{13}{20}, \frac{7}{10}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{21}{20}, \frac{11}{10}, \frac{23}{20}, \frac{13}{10}, \frac{27}{20}, \frac{31}{20}, \\
& \frac{29}{20}, \frac{33}{20}, \frac{17}{10}, \frac{37}{20}, \frac{19}{10}, \frac{39}{20}, \frac{1}{20}, \frac{1}{10}, \frac{3}{20}, \frac{3}{10}, \frac{7}{20}, \frac{11}{20} .
\end{aligned}
$$

- Using algorithms 1 and 2 , we have proved that the numbers in red are the roots of $b_{g}(-s)$, all of them with multiplicity one.

ExAMPLE

ExAMPLE

Using this method we have computed the Bernstein polynomial for $g=z^{4}+x^{6} y^{5}+x^{5} y^{4} z$. We chose $f=z^{4}+x^{6} y^{5}$ which is topologically equivalent to g.

The minimal integral root of $b_{f}(s)$

Example

Let us consider the following example:

The minimal integral root of $b_{f}(s)$

Example

Let us consider the following example:

- $A=\left(\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12}\end{array}\right)$

The minimal integral root of $b_{f}(s)$

Example

Let us consider the following example:

- $A=\left(\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12}\end{array}\right)$
- Δ_{i} determinant of the minor resulting from deleting the i-th column of $A, i=1,2,3,4$.

The minimal integral root of $b_{f}(s)$

Example

Let us consider the following example:

- $A=\left(\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12}\end{array}\right)$
- Δ_{i} determinant of the minor resulting from deleting the i-th column of $A, i=1,2,3,4$.
- $f=\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4} \in \mathbb{C}\left[x_{1}, \ldots, x_{12}\right]$.

The minimal integral Root of $b_{f}(s)$

Example

Let us consider the following example:

- $A=\left(\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12}\end{array}\right)$
- Δ_{i} determinant of the minor resulting from deleting the i-th column of $A, i=1,2,3,4$.
- $f=\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4} \in \mathbb{C}\left[x_{1}, \ldots, x_{12}\right]$.

From Kashiwara, the possible integral roots of $b_{f}(-s)$ are

$$
11,10,9,8,7,6,5,4,3,2,1
$$

Using the algorithm 1, we have proved that the minimal integral root of $b_{f}(s)$ is -1 .

dmod.lib Joint work with V. Levandovskyy

At the moment the Singular library dmod.lib for algebraic D-modules contains the following main procedures:

- Sannfs: computes a system of generators of $\operatorname{ann}_{D[s]}\left(f^{s}\right)$.
- Sannfslog: computes a system of generators of ann ${ }_{D[s]}^{(1)}\left(f^{s}\right)$.
- SannfsParam: computes a system of generators of $\operatorname{ann}_{D[s]}\left(f^{s}\right)$ when f has parameters.
- checkRoot
- annfs
- operator: computes $P(s)$ such that $P(s) f^{s+1}=b_{f}(s) f^{s}$.
- isHolonomic: checks whether a module given by a presentation is holonomic.

Thank you very much!

J. Martín-Morales (jorge@unizar.es)

Department of Mathematics
University of Zaragoza
Seminar on D-modules
Aachen, January 8, 2008

