
Introduction Algorithms Applications dmod.lib

Enhancing the classical algorithm by
Oaku for the computation of

Bernstein-Sato polynomials

Jorge Mart́ın-Morales

Department of Mathematics
University of Zaragoza

Seminar on D-modules
Aachen, January 8, 2008

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Introduction and notations

Basic notations

C the field of the complex numbers.

C[s] the ring of polynomials in one variable over C.

Rn = C[x1, . . . , xn] the ring of polynomials in n variables.

Dn = C[x1, . . . , xn]〈∂1, . . . , ∂n〉 the ring of C-linear differential
operators on Rn, the n-th Weyl algebra:

∂ixi = xi∂i + 1

Dn[s] the ring of polynomials in one variable over Dn.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The Dn[s]-module Rn[s, 1
f ] · f s

Let f ∈ Rn be a non-zero polynomial.

By Rn[s, 1
f ] we denote the ring of rational functions of the

form
g(x, s)

f r

where g(x, s) ∈ Rn[s] = C[x1, . . . , xn, s].

We denote by M = Rn[s, 1
f ] · f s the free Rn[s, 1

f ]-module of
rank one generated by the symbol f s .

Rn[s, 1
f ] · f s has a natural structure of left Dn[s]-module.

∂i · f s = s
∂f

∂xi

1

f
· f s ∈ Rn[s,

1

f
] · f s

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The global b-function

Theorem (Bernstein)

For every polynomial f ∈ Rn there exists a non-zero polynomial
b(s) ∈ C[s] and a differential operator P(s) ∈ Dn[s] such that

P(s)f s+1 = b(s)f s ∈ Rn[s,
1

f
] · f s .

Definition (Bernstein & Sato)

The set of all possible polynomials b(s) satisfying
the above equation is an ideal of C[s]. The monic
generator of this ideal is denoted by bf (s) and
called the Bernstein-Sato polynomial of f .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The global b-function

Theorem (Bernstein)

For every polynomial f ∈ Rn there exists a non-zero polynomial
b(s) ∈ C[s] and a differential operator P(s) ∈ Dn[s] such that

P(s)f s+1 = b(s)f s ∈ Rn[s,
1

f
] · f s .

Definition (Bernstein & Sato)

The set of all possible polynomials b(s) satisfying
the above equation is an ideal of C[s]. The monic
generator of this ideal is denoted by bf (s) and
called the Bernstein-Sato polynomial of f .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The local b-function

Now assume that

f ∈ O = C{x1, . . . , xn} is a convergent power series.

Dn is the ring of differential operators with coefficients in O.

Theorem (Björk & Kashiwara)

For every f ∈ O there exists a non-zero polynomial b(s) ∈ C[s]
and a differential operator P(s) ∈ Dn[s] such that

P(s)f s+1 = b(s)f s ∈ O[s,
1

f
] · f s .

Definition

The monic polynomial in C[s] of lowest degree
which satisfies the above equation is denoted by
bf ,0(s) and called the local b-function of f .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The local b-function

Now assume that

f ∈ O = C{x1, . . . , xn} is a convergent power series.

Dn is the ring of differential operators with coefficients in O.

Theorem (Björk & Kashiwara)

For every f ∈ O there exists a non-zero polynomial b(s) ∈ C[s]
and a differential operator P(s) ∈ Dn[s] such that

P(s)f s+1 = b(s)f s ∈ O[s,
1

f
] · f s .

Definition

The monic polynomial in C[s] of lowest degree
which satisfies the above equation is denoted by
bf ,0(s) and called the local b-function of f .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The local b-function

Now assume that

f ∈ O = C{x1, . . . , xn} is a convergent power series.

Dn is the ring of differential operators with coefficients in O.

Theorem (Björk & Kashiwara)

For every f ∈ O there exists a non-zero polynomial b(s) ∈ C[s]
and a differential operator P(s) ∈ Dn[s] such that

P(s)f s+1 = b(s)f s ∈ O[s,
1

f
] · f s .

Definition

The monic polynomial in C[s] of lowest degree
which satisfies the above equation is denoted by
bf ,0(s) and called the local b-function of f .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Some well-known propeties of the b-function

1 The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

2 The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

3 The set {e2πiα | bf ,0(α) = 0} is a topological invariant of the
singularity f = 0. (Malgrange).

4 The roots of the b-function are negative rational numbers of
the real interval (−n, 0). (Kashiwara).

5 bf ,0(s) is a divisor of bf (s). If, for instance, f has 0 as its only
singularity, then bf ,0(s) = bf (s).

6 bf (s) = lcmp∈Cn(bf ,p(s)) (Briançon-Maisonobe,
see also Mebkhout-Narváez).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithms for computing the b-function

1 Global b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-functions
and then apply the formula bf (s) = lcmp∈Cn(bf ,p(s)).

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in the ring of
differential operators.

2 Local b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-function.

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in a local ring of
differential operators.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithms for computing the b-function

1 Global b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-functions
and then apply the formula bf (s) = lcmp∈Cn(bf ,p(s)).

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in the ring of
differential operators.

2 Local b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-function.

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in a local ring of
differential operators.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithms for computing the b-function

1 Global b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-functions
and then apply the formula bf (s) = lcmp∈Cn(bf ,p(s)).

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in the ring of
differential operators.

2 Local b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-function.

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in a local ring of
differential operators.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithms for computing the b-function

1 Global b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-functions
and then apply the formula bf (s) = lcmp∈Cn(bf ,p(s)).

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in the ring of
differential operators.

2 Local b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-function.

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in a local ring of
differential operators.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithms for computing the b-function

1 Global b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-functions
and then apply the formula bf (s) = lcmp∈Cn(bf ,p(s)).

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in the ring of
differential operators.

2 Local b-function.

Isolated case: use the algorithm implemented by Mathias
Schulze in Singular for computing the local b-function.

Non-isolated case: use the algorithm by Oaku and
Takayama based on Gröbner bases in a local ring of
differential operators.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Another idea for computing the b-function

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute the multiplicity of α as a root of bf (s).

Remark

There are some well-known methods to obtain
such B(s): Resolution of Singularities.

We need two algorithms.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Another idea for computing the b-function

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute the multiplicity of α as a root of bf (s).

Remark

There are some well-known methods to obtain
such B(s): Resolution of Singularities.

We need two algorithms.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Another idea for computing the b-function

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute the multiplicity of α as a root of bf (s).

Remark

There are some well-known methods to obtain
such B(s): Resolution of Singularities.

We need two algorithms.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Another idea for computing the b-function

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute the multiplicity of α as a root of bf (s).

Remark

There are some well-known methods to obtain
such B(s): Resolution of Singularities.

We need two algorithms.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Another idea for computing the b-function

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute the multiplicity of α as a root of bf (s).

Remark

There are some well-known methods to obtain
such B(s): Resolution of Singularities.

We need two algorithms.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The main trick

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s) + 〈f 〉) ∩ C[s] + 〈s + α〉 = 〈bf (s), s + α〉

Proposition

(annDn[s](f
s) + 〈f , s + α〉) ∩ C[s] = 〈bf (s), s + α〉

=

{
〈s + α〉 si bf (−α) = 0

C[s] otherwise

Corollary

The following conditions are equivalent:

1 α ∈ Q is a root of bf (−s).

2 annDn[s](f
s) + 〈f , s + α〉 6= Dn[s].

3 annDn[s](f
s)|s=−α + 〈f 〉 6= D.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The main trick

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s) + 〈f 〉) ∩ C[s] + 〈s + α〉 = 〈bf (s), s + α〉

Proposition

(annDn[s](f
s) + 〈f , s + α〉) ∩ C[s] = 〈bf (s), s + α〉

=

{
〈s + α〉 si bf (−α) = 0

C[s] otherwise

Corollary

The following conditions are equivalent:

1 α ∈ Q is a root of bf (−s).

2 annDn[s](f
s) + 〈f , s + α〉 6= Dn[s].

3 annDn[s](f
s)|s=−α + 〈f 〉 6= D.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The main trick

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s) + 〈f 〉) ∩ C[s] + 〈s + α〉 = 〈bf (s), s + α〉

Proposition

(annDn[s](f
s) + 〈f , s + α〉) ∩ C[s] = 〈bf (s), s + α〉

=

{
〈s + α〉 si bf (−α) = 0

C[s] otherwise

Corollary

The following conditions are equivalent:

1 α ∈ Q is a root of bf (−s).

2 annDn[s](f
s) + 〈f , s + α〉 6= Dn[s].

3 annDn[s](f
s)|s=−α + 〈f 〉 6= D.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The main trick

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s) + 〈f 〉) ∩ C[s] + 〈s + α〉 = 〈bf (s), s + α〉

Proposition

(annDn[s](f
s) + 〈f , s + α〉) ∩ C[s] = 〈bf (s), s + α〉

=

{
〈s + α〉 si bf (−α) = 0

C[s] otherwise

Corollary

The following conditions are equivalent:

1 α ∈ Q is a root of bf (−s).

2 annDn[s](f
s) + 〈f , s + α〉 6= Dn[s].

3 annDn[s](f
s)|s=−α + 〈f 〉 6= D.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The main trick

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s) + 〈f 〉) ∩ C[s] + 〈s + α〉 = 〈bf (s), s + α〉

Proposition

(annDn[s](f
s) + 〈f , s + α〉) ∩ C[s] = 〈bf (s), s + α〉

=

{
〈s + α〉 si bf (−α) = 0

C[s] otherwise

Corollary

The following conditions are equivalent:

1 α ∈ Q is a root of bf (−s).

2 annDn[s](f
s) + 〈f , s + α〉 6= Dn[s].

3 annDn[s](f
s)|s=−α + 〈f 〉 6= D.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithm 1

Algorithm 1 (check whether α ∈ Q is a root of the b-function)

Input: I = annDn[s](f
s), f a polynomial in Rn, α ∈ Q;

Output: true if α is a root of bf (−s), false otherwise;

1 J := I|s=−α + 〈f 〉; . J ⊆ Dn

2 G a reduced Gröbner basis of J w.r.t. any term ordering;

3 if G 6= {1} then
return true

else
return false

end if

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

What about the multiplicity ?

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s)+〈f 〉)∩C[s]+〈q(s)〉 = 〈bf (s), q(s)〉, q(s) ∈ C[s]

Proposition

(annDn[s](f
s) + 〈f , q(s)〉) ∩ C[s] = 〈bf (s), q(s)〉

= 〈gcd(bf (s), q(s))〉

Corollary

mα the multiplicity of α as a root of bf (−s).

Ji = annDn[s](f
s) + 〈f , (s + α)i+1〉 ⊆ Dn[s].

The following conditions are equivalent:

1 mα > i .

2 (s + α)i /∈ Ji .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

What about the multiplicity ?

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s)+〈f 〉)∩C[s]+〈q(s)〉 = 〈bf (s), q(s)〉, q(s) ∈ C[s]

Proposition

(annDn[s](f
s) + 〈f , q(s)〉) ∩ C[s] = 〈bf (s), q(s)〉

= 〈gcd(bf (s), q(s))〉

Corollary

mα the multiplicity of α as a root of bf (−s).

Ji = annDn[s](f
s) + 〈f , (s + α)i+1〉 ⊆ Dn[s].

The following conditions are equivalent:

1 mα > i .

2 (s + α)i /∈ Ji .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

What about the multiplicity ?

By definition, (annDn[s](f
s) + 〈f 〉) ∩ C[s] = 〈bf (s)〉.

(annDn[s](f
s)+〈f 〉)∩C[s]+〈q(s)〉 = 〈bf (s), q(s)〉, q(s) ∈ C[s]

Proposition

(annDn[s](f
s) + 〈f , q(s)〉) ∩ C[s] = 〈bf (s), q(s)〉

= 〈gcd(bf (s), q(s))〉

Corollary

mα the multiplicity of α as a root of bf (−s).

Ji = annDn[s](f
s) + 〈f , (s + α)i+1〉 ⊆ Dn[s].

The following conditions are equivalent:

1 mα > i .

2 (s + α)i /∈ Ji .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Algorithm 2

Algorithm 2 (compute the multiplicity of α as a root of bf (−s) )

Input: I = annDn[s](f
s), f a polynomial in Rn, α in Q;

Output: mα, the multiplicity of α as a root of bf (−s);

for i = 0 to n do

1 J := I + 〈f , (s + α)i+1〉; . Ji ⊆ Dn[s]

2 G a reduced Gröbner basis of J w.r.t. any term ordering;

3 r normal form of (s + α)i with respect to G ;

4 if r = 0 then . r = 0⇐⇒ (s + α)i ∈ Ji

mα = i ; break . leave the for block
end if

end for
return mα

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Remember the idea for computing bf (s)

1 Obtain an upper bound for bf (s): find B(s) ∈ C[s] such that
bf (s) divides B(s).

B(s) =
d∏

i=1

(s − αi )
mi .

2 Check whether αi is a root of the b-function.

3 Compute its multiplicity mi .

What about the first step ?

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Applications

Let us see the following applications:

1 Computations of the b-functions via embedded resolutions.

2 Computations of the b-function of deformation of singularities.

3 An algorithm for computing the minimal integral root of bf (s)
without computing the whole Bernstein-Sato polynomial.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Resolution of Singularities

Let f ∈ O be a convergent power series, f : ∆ ⊆ Cn → C.

Assume that f (0) = 0, otherwise bf ,0(s) = 1.

Let ϕ : Y → ∆ be an embedded resolution of {f = 0}.
If F = f ◦ ϕ, then F−1(0) is a normal crossing divisor.

Theorem (Kashiwara).

There exists an integer k ≥ 0 such that bf (s) is a divisor of the
product bF (s)bF (s + 1) · · · bF (s + k).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Resolution of Singularities

Let f ∈ O be a convergent power series, f : ∆ ⊆ Cn → C.

Assume that f (0) = 0, otherwise bf ,0(s) = 1.

Let ϕ : Y → ∆ be an embedded resolution of {f = 0}.
If F = f ◦ ϕ, then F−1(0) is a normal crossing divisor.

Theorem (Kashiwara).

There exists an integer k ≥ 0 such that bf (s) is a divisor of the
product bF (s)bF (s + 1) · · · bF (s + k).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let us consider f = y2 − x3 ∈ C{x , y}.

ϕ

ϕ−1(X) ⊆ Y
E1 E2 E4

E3

2 3 1

6

X ⊆ C2

0

From Kashiwara, the possible roots of bf (−s) are:

1

6
,

1

3
,

1

2
,

2

3
,

5

6
, 1,

7

6
,

4

3
,

3

2
,

5

3
,

11

6
.

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bf (s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let us consider f = y2 − x3 ∈ C{x , y}.

ϕ

ϕ−1(X) ⊆ Y
E1 E2 E4

E3

2 3 1

6

X ⊆ C2

0

From Kashiwara, the possible roots of bf (−s) are:

1

6
,

1

3
,

1

2
,

2

3
,

5

6
, 1,

7

6
,

4

3
,

3

2
,

5

3
,

11

6
.

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bf (s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let us consider f = y2 − x3 ∈ C{x , y}.

ϕ

ϕ−1(X) ⊆ Y
E1 E2 E4

E3

2 3 1

6

X ⊆ C2

0

From Kashiwara, the possible roots of bf (−s) are:

1

6
,

1

3
,

1

2
,

2

3
,

5

6
, 1,

7

6
,

4

3
,

3

2
,

5

3
,

11

6
.

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bf (s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let us consider f = y2 − x3 ∈ C{x , y}.

ϕ

ϕ−1(X) ⊆ Y
E1 E2 E4

E3

2 3 1

6

X ⊆ C2

0

From Kashiwara, the possible roots of bf (−s) are:

1

6
,

1

3
,

1

2
,

2

3
,

5

6
, 1,

7

6
,

4

3
,

3

2
,

5

3
,

11

6
.

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bf (s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Example

Using this method we have computed the
b-function of f = (xz + y)(x4 + y5 + xy4) which
is a non-isolated singularity.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Topologically equivalent singularities

Let f , g be two topologically equivalent singularities.

Assume that bf (s) is known.

Since the set {e2πiα | bf (α) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (−n, 0), one
can find an upper bound for bg (s).

Then we use algorithms 1 and 2 for computing bg (s).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Topologically equivalent singularities

Let f , g be two topologically equivalent singularities.

Assume that bf (s) is known.

Since the set {e2πiα | bf (α) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (−n, 0), one
can find an upper bound for bg (s).

Then we use algorithms 1 and 2 for computing bg (s).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Topologically equivalent singularities

Let f , g be two topologically equivalent singularities.

Assume that bf (s) is known.

Since the set {e2πiα | bf (α) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (−n, 0), one
can find an upper bound for bg (s).

Then we use algorithms 1 and 2 for computing bg (s).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Topologically equivalent singularities

Let f , g be two topologically equivalent singularities.

Assume that bf (s) is known.

Since the set {e2πiα | bf (α) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (−n, 0), one
can find an upper bound for bg (s).

Then we use algorithms 1 and 2 for computing bg (s).

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let f = x4 + y5 and g = x4 + y5 + xy4.

f and g are topologically equivalent because they have the
same Puiseux pairs.

The following numbers are the roots of bf (−s), all of them
with multiplicity one.

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20

The possible roots of bg (−s) are:

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20 ,

29
20 ,

33
20 ,

17
10 ,

37
20 ,

19
10 ,

39
20 ,

1
20 ,

1
10 ,

3
20 ,

3
10 ,

7
20 ,

11
20 .

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg (−s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let f = x4 + y5 and g = x4 + y5 + xy4.

f and g are topologically equivalent because they have the
same Puiseux pairs.

The following numbers are the roots of bf (−s), all of them
with multiplicity one.

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20

The possible roots of bg (−s) are:

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20 ,

29
20 ,

33
20 ,

17
10 ,

37
20 ,

19
10 ,

39
20 ,

1
20 ,

1
10 ,

3
20 ,

3
10 ,

7
20 ,

11
20 .

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg (−s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let f = x4 + y5 and g = x4 + y5 + xy4.

f and g are topologically equivalent because they have the
same Puiseux pairs.

The following numbers are the roots of bf (−s), all of them
with multiplicity one.

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20

The possible roots of bg (−s) are:

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20 ,

29
20 ,

33
20 ,

17
10 ,

37
20 ,

19
10 ,

39
20 ,

1
20 ,

1
10 ,

3
20 ,

3
10 ,

7
20 ,

11
20 .

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg (−s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let f = x4 + y5 and g = x4 + y5 + xy4.

f and g are topologically equivalent because they have the
same Puiseux pairs.

The following numbers are the roots of bf (−s), all of them
with multiplicity one.

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20

The possible roots of bg (−s) are:

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20 ,

29
20 ,

33
20 ,

17
10 ,

37
20 ,

19
10 ,

39
20 ,

1
20 ,

1
10 ,

3
20 ,

3
10 ,

7
20 ,

11
20 .

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg (−s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Let f = x4 + y5 and g = x4 + y5 + xy4.

f and g are topologically equivalent because they have the
same Puiseux pairs.

The following numbers are the roots of bf (−s), all of them
with multiplicity one.

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20

The possible roots of bg (−s) are:

9
20 ,

13
20 ,

7
10 ,

17
20 ,

9
10 ,

19
20 ,

21
20 ,

11
10 ,

23
20 ,

13
10 ,

27
20 ,

31
20 ,

29
20 ,

33
20 ,

17
10 ,

37
20 ,

19
10 ,

39
20 ,

1
20 ,

1
10 ,

3
20 ,

3
10 ,

7
20 ,

11
20 .

Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg (−s), all of them with multiplicity one.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Example

Example

Using this method we have computed the
Bernstein polynomial for g = z4 + x6y5 + x5y4z .
We chose f = z4 + x6y5 which is topologically
equivalent to g .

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The minimal integral root of bf (s)
Example

Let us consider the following example:

A =

 x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


∆i determinant of the minor resulting from deleting the i-th
column of A, i = 1, 2, 3, 4.

f = ∆1∆2∆3∆4 ∈ C[x1, . . . , x12].

From Kashiwara, the possible integral roots of bf (−s) are

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bf (s) is −1.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The minimal integral root of bf (s)
Example

Let us consider the following example:

A =

 x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12



∆i determinant of the minor resulting from deleting the i-th
column of A, i = 1, 2, 3, 4.

f = ∆1∆2∆3∆4 ∈ C[x1, . . . , x12].

From Kashiwara, the possible integral roots of bf (−s) are

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bf (s) is −1.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The minimal integral root of bf (s)
Example

Let us consider the following example:

A =

 x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


∆i determinant of the minor resulting from deleting the i-th
column of A, i = 1, 2, 3, 4.

f = ∆1∆2∆3∆4 ∈ C[x1, . . . , x12].

From Kashiwara, the possible integral roots of bf (−s) are

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bf (s) is −1.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The minimal integral root of bf (s)
Example

Let us consider the following example:

A =

 x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


∆i determinant of the minor resulting from deleting the i-th
column of A, i = 1, 2, 3, 4.

f = ∆1∆2∆3∆4 ∈ C[x1, . . . , x12].

From Kashiwara, the possible integral roots of bf (−s) are

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bf (s) is −1.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

The minimal integral root of bf (s)
Example

Let us consider the following example:

A =

 x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


∆i determinant of the minor resulting from deleting the i-th
column of A, i = 1, 2, 3, 4.

f = ∆1∆2∆3∆4 ∈ C[x1, . . . , x12].

From Kashiwara, the possible integral roots of bf (−s) are

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bf (s) is −1.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

dmod.lib Joint work with V. Levandovskyy

At the moment the Singular library dmod.lib for algebraic
D-modules contains the following main procedures:

Sannfs: computes a system of generators of annD[s](f
s).

Sannfslog: computes a system of generators of ann
(1)
D[s](f

s).

SannfsParam: computes a system of generators of
annD[s](f

s) when f has parameters.

checkRoot

annfs

operator: computes P(s) such that P(s)f s+1 = bf (s)f s .

isHolonomic: checks whether a module given by a
presentation is holonomic.

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction Algorithms Applications dmod.lib

Thank you very much!

J. Mart́ın-Morales (jorge@unizar.es)

Department of Mathematics
University of Zaragoza

Seminar on D-modules
Aachen, January 8, 2008

J. Mart́ın-Morales (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications


	Introduction
	Algorithms
	Applications
	dmod.lib

