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Introduction
INTRODUCTION AND NOTATIONS

BASIC NOTATIONS

@ C the field of the complex numbers.

C[s] the ring of polynomials in one variable over C.

R, = C[x1, ..., xn] the ring of polynomials in n variables.

e D,=C[xy,...,xn]{01,...,0n) the ring of C-linear differential
operators on R,, the n-th Weyl algebra:

oix; = x0; +1

D,[s| the ring of polynomials in one variable over D,,.
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Introduction

THE D,[s]-MODULE R,[s, 7] - f*

o Let f € R, be a non-zero polynomial.

@ By Ry[s, +] we denote the ring of rational functions of the
form
g(x;s)
fr
where g(x,s) € Ry[s] = C[xq, ..., Xn,s].

e We denote by M = R,[s, %] - £* the free Ry[s, %]—module of
rank one generated by the symbol 7°.

® Ry[s, 1] f* has a natural structure of left D,[s]-module.

1
) r°

0; fP=s—=-f° ¢ R,,[s,?
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Introduction
THE GLOBAL b-FUNCTION

THEOREM (Bernstein)

For every polynomial f € R, there exists a non-zero polynomial
b(s) € C[s] and a differential operator P(s) € D,[s] such that

Ps)F™ = b(s)® € Rils, 7] F*
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Introduction
THE GLOBAL b-FUNCTION

THEOREM (Bernstein)

For every polynomial f € R, there exists a non-zero polynomial
b(s) € C[s] and a differential operator P(s) € D,[s] such that

Ps)F™ = b(s)® € Rils, 7] F*

DEFINITION (Bernstein & Sato)

The set of all possible polynomials b(s) satisfying
the above equation is an ideal of C[s]. The monic
generator of this ideal is denoted by b¢(s) and
called the Bernstein-Sato polynomial of f.
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Introduction
THE LOCAL b-FUNCTION

Now assume that
o f € O=C{xy,...,x} is a convergent power series.

@ D, is the ring of differential operators with coefficients in O.
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Introduction
THE LOCAL b-FUNCTION

Now assume that
o f € O=C{xy,...,x} is a convergent power series.

@ D, is the ring of differential operators with coefficients in O.

THEOREM (Bjork & Kashiwara)

For every f € O there exists a non-zero polynomial b(s) € C|[s]
and a differential operator P(s) € D,|[s] such that

P(s)fs*t = b(s)f* € (’)[s,%]-fs.
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Introduction
THE LOCAL b-FUNCTION

Now assume that
o f € O=C{xy,...,x} is a convergent power series.

@ D, is the ring of differential operators with coefficients in O.

THEOREM (Bjork & Kashiwara)

For every f € O there exists a non-zero polynomial b(s) € C|[s]
and a differential operator P(s) € D,|[s] such that

P(s)fs*t = b(s)f* € (’)[s,%]-fs.

The monic polynomial in C[s] of lowest degree
which satisfies the above equation is denoted by
br.o(s) and called the local b-function of f.
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Introduction
SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.
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Introduction
SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

@ The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.
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Introduction
SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

@ The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

© The set {€2™ | b o(a) = 0} is a topological invariant of the
singularity ¥ = 0. (Malgrange).
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SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

@ The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

© The set {€2™ | b o(a) = 0} is a topological invariant of the
singularity ¥ = 0. (Malgrange).

@ The roots of the b-function are negative rational numbers of
the real interval (—n,0). (Kashiwara).
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Introduction
SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

@ The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

© The set {€2™ | b o(a) = 0} is a topological invariant of the
singularity ¥ = 0. (Malgrange).

@ The roots of the b-function are negative rational numbers of
the real interval (—n,0). (Kashiwara).

@ bro(s) is a divisor of b(s). If, for instance, f has 0 as its only
singularity, then bf o(s) = br(s).

J. Martin-Morales  (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction
SOME WELL-KNOWN PROPETIES OF THE b-FUNCTION

@ The b-function is always a multiple of (s + 1). The equality
holds if and only f is smooth.

@ The Bernstein-Sato polynomial is a non-complete analytic
invariant of the singularity f = 0.

© The set {€2™ | b o(a) = 0} is a topological invariant of the
singularity ¥ = 0. (Malgrange).

@ The roots of the b-function are negative rational numbers of
the real interval (—n,0). (Kashiwara).

@ bro(s) is a divisor of b(s). If, for instance, f has 0 as its only
singularity, then bf o(s) = br(s).

@ br(s) = lempecn(br p(s)) (Briangon-Maisonobe,
see also Mebkhout-Narvéez).
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ALGORITHMS FOR COMPUTING THE b-FUNCTION
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Introduction
ALGORITHMS FOR COMPUTING THE b-FUNCTION

@ Global b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-functions
and then apply the formula bs(s) = lempecn(br p(s)).
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Introduction
ALGORITHMS FOR COMPUTING THE b-FUNCTION

@ Global b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-functions
and then apply the formula bs(s) = lempecn(br p(s)).

o Non-isolated case: use the algorithm by Oaku and
Takayama based on Grobner bases in the ring of
differential operators.
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ALGORITHMS FOR COMPUTING THE b-FUNCTION

@ Global b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-functions
and then apply the formula bs(s) = lempecn(br p(s)).

o Non-isolated case: use the algorithm by Oaku and
Takayama based on Grobner bases in the ring of
differential operators.

@ Local b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-function.

J. Martin-Morales  (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Introduction
ALGORITHMS FOR COMPUTING THE b-FUNCTION

@ Global b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-functions
and then apply the formula bs(s) = lempecn(br p(s)).

o Non-isolated case: use the algorithm by Oaku and
Takayama based on Grobner bases in the ring of
differential operators.

@ Local b-function.

o Isolated case: use the algorithm implemented by Mathias
Schulze in SINGULAR for computing the local b-function.

o Non-isolated case: use the algorithm by Oaku and
Takayama based on Grobner bases in a local ring of
differential operators.
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ANOTHER IDEA FOR COMPUTING THE b-FUNCTION
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Algorithms
ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

@ Obtain an upper bound for bf(s): find B(s) € C[s] such that
b¢(s) divides B(s).
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ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

@ Obtain an upper bound for bf(s): find B(s) € C[s] such that
b¢(s) divides B(s).

@ Check whether «; is a root of the b-function.
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Algorithms
ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

@ Obtain an upper bound for bf(s): find B(s) € C[s] such that
b¢(s) divides B(s).

@ Check whether «; is a root of the b-function.
© Compute the multiplicity of a as a root of bs(s).
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Algorithms
ANOTHER IDEA FOR COMPUTING THE b-FUNCTION

@ Obtain an upper bound for bf(s): find B(s) € C[s] such that
b¢(s) divides B(s).

@ Check whether «; is a root of the b-function.
© Compute the multiplicity of a as a root of bs(s).

REMARK

@ There are some well-known methods to obtain
such B(s): Resolution of Singularities.

@ We need two algorithms.
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Algorithms
THE MAIN TRICK

o By definition, (annp,[5(f®) + (f)) N C[s] = (b¢(s)).
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THE MAIN TRICK

o By definition, (annp,[5(f®) + (f)) N C[s] = (b¢(s)).
o (annp, (%) + (F)) N C[s] + (s + ) = (br(s), s + @)
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o By definition, (annp,[5(f®) + (f)) N C[s] = (b¢(s)).
o (annp, (%) + (F)) NC[s] + (s + ) = (br(s), s + @)
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Algorithms
THE MAIN TRICK

o By definition, (annp,[5(f®) + (f)) N C[s] = (b¢(s)).
o (annp, (%) + (F)) NC[s] + (s + ) = (br(s), s + @)
N/

PROPOSITION

(annp,)(f°) + (f,s + @)) N C[s] = (bf(s),s + @)

B { (s+a) si bi(—a)=0
a C[s] otherwise
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Algorithms
THE MAIN TRICK

o By definition, (annp,[5(f®) + (f)) N C[s] = (b¢(s)).
o (annp, (%) + (F)) NC[s] + (s + ) = (br(s), s + @)
N/

PROPOSITION

(annp,)(f°) + (f,s + @)) N C[s] = (bf(s),s + @)

B { (s+a) si bi(—a)=0
a C[s] otherwise

COROLLARY

The following conditions are equivalent:
Q «a € Qs a root of be(—s).
Q annp,((f°) + (f,s + a) # Dy[s].
© annp,((f®)js=—a + (f) # D.
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Algorithms
ALGORITHM 1

Algorithm 1 (check whether a € Q is a root of the b-function)

Input: | = annp, (f*), f a polynomial in R,, a € Q;
Output: true if « is a root of br(—s), false otherwise;

Q J:=ls—_o+(f); >J C D,
@ G a reduced Grobner basis of J w.r.t. any term ordering;
Q if G # {1} then
return true
else

return false
end if
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Algorithms
WHAT ABOUT THE MULTIPLICITY 7

e By definition, (annp, )(®) + (f)) N C[s] = (br(s))-
o (annp,(s](f*)+(f))NC[s]+{q(s)) = (br(s), a(s)), a(s) € C[s]
N~
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Algorithms
WHAT ABOUT THE MULTIPLICITY 7

e By definition, (annp, )(®) + (f)) N C[s] = (br(s))-
o (annp,(s](f*)+(f))NC[s]+{q(s)) = (br(s), a(s)), a(s) € C[s]
N~

PROPOSITION

(annp,[5(F%) + (£, q(s))) N Cls] = (br(s), a(s))
= (ged(br(s), q(s)))
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Algorithms
WHAT ABOUT THE MULTIPLICITY 7

e By definition, (annp, )(®) + (f)) N C[s] = (br(s))-
o (annp,(s](f*)+(f))NC[s]+{q(s)) = (br(s), a(s)), a(s) € C[s]
N~

PROPOSITION

(annp,[5(F%) + (£, q(s))) N Cls] = (br(s), a(s))
= (ged(br(s), q(s)))

COROLLARY

@ m, the multiplicity of « as a root of bs(—s).
o Ji =annp, () + (f,(s + a) ™) C Dy[s].

The following conditions are equivalent:
QO m, > i
Q@ (s+a) ¢ J.
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Algorithms
ALGORITHM 2

Algorithm 2 (compute the multiplicity of « as a root of br(—s))

Input: /| = annp, (f°), f a polynomial in R,, a in Q;
Output: m,, the multiplicity of « as a root of bs(—s);

for i =0to ndo
Q J:=1+(f,(s+a)*l); > Ji C Dy[s]
@ G a reduced Grobner basis of J w.r.t. any term ordering;

© r normal form of (s + )’ with respect to G;

Q if r =0 then >r=0<+= (s+a) €
my, = i; break > leave the for block
end if
end for
return mg,
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Algorithms

REMEMBER THE IDEA FOR COMPUTING bs(s)

@ Obtain an upper bound for bs(s): find B(s) € C[s] such that
br(s) divides B(s).

d

B(s) = [[(s — ai)™.

i=1

@ Check whether «; is a root of the b-function.
© Compute its multiplicity m;.

What about the first step ?
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Applications
APPLICATIONS

Let us see the following applications:
© Computations of the b-functions via embedded resolutions.

@ Computations of the b-function of deformation of singularities.

@ An algorithm for computing the minimal integral root of bs(s)
without computing the whole Bernstein-Sato polynomial.
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Applications
RESOLUTION OF SINGULARITIES

Let f € O be a convergent power series, f : A C C" — C.
Assume that f(0) = 0, otherwise bro(s) = 1.
Let ¢ : Y — A be an embedded resolution of {f = 0}.

If F=fo,then F~1(0) is a normal crossing divisor.
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Applications
RESOLUTION OF SINGULARITIES

Let f € O be a convergent power series, f : A C C" — C.
Assume that f(0) = 0, otherwise bro(s) = 1.
Let ¢ : Y — A be an embedded resolution of {f = 0}.

If F=fo,then F~1(0) is a normal crossing divisor.

THEOREM (Kashiwara).

There exists an integer k > 0 such that b¢(s) is a divisor of the
product be(s)br(s+1)--- br(s + k).
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Applications

EXAMPLE

o Let us consider f = y? — x3 € C{x,y}.
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Applications

EXAMPLE

o Let us consider f = y? — x3 € C{x,y}.

xcc? e (X)CY
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Applications
EXAMPLE

o Let us consider f = y? — x3 € C{x,y}.

xce X)) CY
¥
0 e 6
2 3 1
e From Kashiwara, the possible roots of bs(—s) are:
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Applications
EXAMPLE

o Let us consider f = y? — x3 € C{x,y}.

E, E, E4
xcc? e (X)CY

2 3 1

@ Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bs(s), all of them with multiplicity one.
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Applications
EXAMPLE

Using this method we have computed the
b-function of f = (xz + y)(x* + y° + xy*) which
is a non-isolated singularity.
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Applications
TOPOLOGICALLY EQUIVALENT SINGULARITIES

o Let f, g be two topologically equivalent singularities.
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Applications
TOPOLOGICALLY EQUIVALENT SINGULARITIES

o Let f, g be two topologically equivalent singularities.

@ Assume that bf(s) is known.
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Applications
TOPOLOGICALLY EQUIVALENT SINGULARITIES

o Let f, g be two topologically equivalent singularities.
@ Assume that bf(s) is known.

o Since the set {e?™® | bs(a) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (—n,0), one
can find an upper bound for bg(s).
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Applications
TOPOLOGICALLY EQUIVALENT SINGULARITIES

o Let f, g be two topologically equivalent singularities.
@ Assume that bf(s) is known.

o Since the set {e?™® | bs(a) = 0} is a topological invariant of
the singularity f = 0 and every root belongs to (—n,0), one
can find an upper bound for bg(s).

@ Then we use algorithms 1 and 2 for computing bg(s).
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Applications

EXAMPLE

o Let f =x*+y®and g =x* +y° + xy*.
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Applications

EXAMPLE

o Let f =x*+y®and g =x* +y° + xy*.
@ f and g are topologically equivalent because they have the
same Puiseux pairs.
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Applications

EXAMPLE

o Let f =x*+y®and g =x* +y° + xy*.

@ f and g are topologically equivalent because they have the
same Puiseux pairs.

@ The following numbers are the roots of bs(—s), all of them
with multiplicity one.

9 13 7 17 9 19 21 11 23 13 27 31
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Applications

EXAMPLE

o Let f =x*+y®and g =x* +y° + xy*.

@ f and g are topologically equivalent because they have the
same Puiseux pairs.

@ The following numbers are the roots of bs(—s), all of them
with multiplicity one.

9 13 7 17 9 19 21 11 23 13 27 31

@ The possible roots of bg(—s) are:

9 13 7 17 9 19 21 11 23 13 27 31
207 207 102 20 107 207 207 10° 207 10’ 20’ 20

29 33 17 37 19 39 1 1 3 3 7 11
2020 10720 107 207 207 10° 20> 107 207 20°
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Applications

EXAMPLE

o Let f =x*+y®and g =x* +y° + xy*.

@ f and g are topologically equivalent because they have the
same Puiseux pairs.

@ The following numbers are the roots of bs(—s), all of them
with multiplicity one.

9 13 7 17 9 19 21 11 23 13 27 31

@ The possible roots of bg(—s) are:
9 13 7 17 9 19 21 11 23 13 27 31
207 207 107 207 107 207 207 107 207 107 20 20°
29 33 17 37 19 39 1 1 3 3 7 11

@ Using algorithms 1 and 2, we have proved that the numbers in
red are the roots of bg(—s), all of them with multiplicity one.
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Applications

EXAMPLE

Using this method we have computed the
Bernstein polynomial for g = z* + x%y® + x®y*z.
We chose f = z* + x®y5 which is topologically
equivalent to g.
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Applications

THE MINIMAL INTEGRAL ROOT OF b¢(s)

EXAMPLE

Let us consider the following example:

J. Martin-Morales  (jorge@unizar.es) Enhancing the classical algorithm by Oaku. Applications



Applications

THE MINIMAL INTEGRAL ROOT OF b¢(s)

EXAMPLE

Let us consider the following example:

X1 X2 X3 X4
e A=| x5 x5 Xx7 Xg
X9 X10 X11 X12
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Applications

THE MINIMAL INTEGRAL ROOT OF b¢(s)

EXAMPLE

Let us consider the following example:
X1 X2 X3 Xa
e A=| x5 x5 Xx7 Xg
X9 X10 X11 X12

@ A; determinant of the minor resulting from deleting the i-th
column of A, i =1,2,3,4.
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Applications

THE MINIMAL INTEGRAL ROOT OF b¢(s)

EXAMPLE

Let us consider the following example:

X1 X2 X3 Xa
e A=| x5 x5 Xx7 Xg
X9 X10 X11 X12

@ A; determinant of the minor resulting from deleting the i-th
column of A, i =1,2,3,4.

o F =NA1AA3A, € C[Xl, e 7X12].
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Applications

THE MINIMAL INTEGRAL ROOT OF b¢(s)

EXAMPLE

Let us consider the following example:

X1 X2 X3 Xa
e A=| x5 x5 Xx7 Xg
X9 X10 X11 X12

@ A; determinant of the minor resulting from deleting the i-th
column of A, i =1,2,3,4.

o F =NA1AA3A, € C[Xl, e 7X12].
From Kashiwara, the possible integral roots of bs(—s) are
11,10,9,8,7,6,5,4,3,2, 1.

Using the algorithm 1, we have proved that the
minimal integral root of bs(s) is —1.
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dmod.lib

dmod.lib JOINT WORK WITH V. LEVANDOVSKYY

At the moment the SINGULAR library dmod.1ib for algebraic
D-modules contains the following main procedures:

® Sannfs: computes a system of generators of annpg(f°).

. (1)
e Sannfslog: computes a system of generators of ann;(f®).

[s]

@ SannfsParam: computes a system of generators of
annps (f°) when f has parameters.

@ checkRoot

@ annfs

@ operator: computes P(s) such that P(s)f**t! = bs(s)f*.

@ isHolonomic: checks whether a module given by a

presentation is holonomic.
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dmod.lib

THANK YOU VERY MUCH!

J. Martin-Morales (jorge@unizar.es)

Department of Mathematics
University of Zaragoza

Seminar on D-modules
Aachen, January 8, 2008
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