Hom(M, N) for holonomic D-modules M and N

Moritz Schröer and Kristina Schindelar

24.01.2008

Notations

- \bullet $K \subseteq \mathbb{C}$ subfield
- \bullet $K[\underline{x}] := K[x_1, \dots, x_n]$
- $\bullet K[\underline{\partial}] := K[\partial_1, \dots, \partial_n]$
- $D := K[\underline{x}] \langle \underline{\partial} \rangle$
- M and N holonomic D-modules.
- $\tau : D \to D$ the standard transposition.

• Hom $(M, K[\underline{x}])$

- Hom $(M, K[\underline{x}])$
- Hom $(M, K[\underline{x}][f^{-1}])$

- Hom $(M, K[\underline{x}])$
- Hom $(M, K[\underline{x}][f^{-1}])$
- \bullet Hom(M,N)

The algorithm is based on the proof of the following theorem.

Theorem (BJÖRK, 1979)

Let M and N be holonomic left D-modules. Then

$$\operatorname{Ext}_D^i(M,N) \cong \operatorname{Tor}_{n-i}^D(\operatorname{Ext}_D^n(M,D),N).$$

Proof: Let the following be a free resolution of M

$$X^{\bullet}: \quad \mathbf{0} \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_{\mathbf{0}}} D^{r_{\mathbf{0}}} \to M \to \mathbf{0}$$

Proof: Let the following be a free resolution of M

$$X^{\bullet}: \quad \mathbf{0} \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_{\mathbf{0}}} D^{r_{\mathbf{0}}} \to M \to \mathbf{0}$$

Applying the Hom functor to the sequence induces a complex of right D-modules $\operatorname{Hom}_D(X^{\bullet}, D)$:

$$0 \leftarrow \underbrace{(D^{r_{-a}})^T}_{degree\ a} \stackrel{M_{-a+1}\cdot}{\longleftarrow} (D^{r_{-1}})^T \stackrel{M_0\cdot}{\longleftarrow} (D^{r_0})^T \leftarrow 0$$

Proof: Let the following be a free resolution of M

$$X^{\bullet}: \quad \mathbf{0} \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_{\mathbf{0}}} D^{r_{\mathbf{0}}} \to M \to \mathbf{0}$$

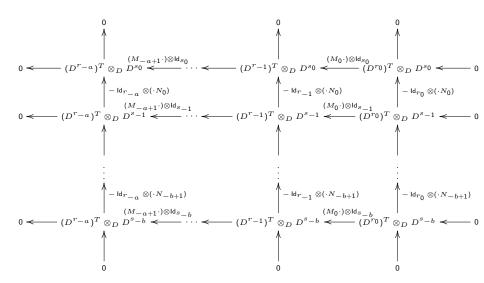
Applying the Hom functor to the sequence induces a complex of right D-modules $\operatorname{Hom}_D(X^{\bullet}, D)$:

$$0 \leftarrow \underbrace{(D^{r_{-a}})^T}_{degree\ a} \stackrel{M_{-a+1}\cdot}{\longleftarrow} \cdots \leftarrow (D^{r_{-1}})^T \stackrel{M_0\cdot}{\longleftarrow} (D^{r_0})^T \leftarrow 0$$

Since $\operatorname{Hom}_D(D^r,D)\otimes_D N\cong \operatorname{Hom}_D(D^r,N)$, we obtain $\operatorname{Hom}_D(X^\bullet,D)\otimes_D N\cong \operatorname{Hom}_D(X^\bullet,N)$. But the cohomology groups of this complex are exactly $\operatorname{Ext}_D^i(M,N)$.

We replace N by a free resolution Y^{\bullet} to obtain the following double complex:

We replace N by a free resolution Y^{\bullet} to obtain the following double complex:



Using a result from the theory of spectral sequences we get that the cohomology of the total complex equals the cohomology of the complex

$$\mathbf{0} \longleftarrow \operatorname{Hom}_D(D^{r_{-a}}, N) \overset{\operatorname{Hom}_D(M_{-a+1}\cdot, N)}{\longleftarrow} \cdots \overset{\operatorname{Hom}_D(M_0\cdot, N)}{\longleftarrow} \operatorname{Hom}_D(D^{r_0}, N) \longleftarrow \mathbf{0} \ .$$

The cohomologies of this sequence are the $\operatorname{Ext}_D^i(M,N)$.

With a similar argumentation as above the cohomology of the total complex also equals the cohomology of the complex

$$0 \longrightarrow \operatorname{Ext}^n_D(M,D) \otimes_D D^{s-b} \longrightarrow \cdots \xrightarrow{\operatorname{Id}_{\operatorname{Ext}^n_D}(M,D) \otimes (\cdot N_0)} \operatorname{Ext}^n_D(M,D) \otimes_D D^{s_0} \longrightarrow 0$$

With a similar argumentation as above the cohomology of the total complex also equals the cohomology of the complex

$$0 \longrightarrow \operatorname{Ext}^n_D(M,D) \otimes_D D^{s-b} \longrightarrow \cdots \xrightarrow{\operatorname{Id} \operatorname{Ext}^n_D(M,D) \otimes (\cdot N_0)} \operatorname{Ext}^n_D(M,D) \otimes_D D^{s_0} \longrightarrow 0$$

By definition the cohomology groups of this complex are the ${\rm Tor}_D^j({\rm Ext}_D^n(M,D),N)$, which concludes the proof.

q.e.d.

Polynomial solutions

Suppose the left D-module M given by $M:=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ for $L_1,\ldots,L_{r_1}\in D^{r_0}$. Our aim is to construct the vector space $\mathrm{Hom}_D(M,K[x])$. These homomorphisms can be identified with the subset of $K[x]^{r_0}$ of all elements that are annihilated by $L_1,\ldots,L_{r_1}\in D^{r_0}$.

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Output: The polynomial solutions $R \in K[x]^{r_0}$ of the system of differential equations given by $\{L_i \bullet R = 0 \mid 1 \le i \le r_1\}$.

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Output: The polynomial solutions $R \in K[x]^{r_0}$ of the system of differential equations given by $\{L_i \bullet R = 0 \mid 1 \le i \le r_1\}$.

(1) Compute a free resolution X^{\bullet} of M of length n+1 and let the map between D^{r-i-1} and D^{r-i} be given by the matrix M_{-i} .

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Output: The polynomial solutions $R \in K[x]^{r_0}$ of the system of differential equations given by $\{L_i \bullet R = 0 \mid 1 \le i \le r_1\}$.

- (1) Compute a free resolution X^{\bullet} of M of length n+1 and let the map between D^{r-i-1} and D^{r-i} be given by the matrix M_{-i} .
- (2) Build the complex $\tau(\operatorname{Hom}_D(X^{\bullet}, D))$ (of left D-modules).

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Output: The polynomial solutions $R \in K[x]^{r_0}$ of the system of differential equations given by $\{L_i \bullet R = 0 \mid 1 \le i \le r_1\}$.

- (1) Compute a free resolution X^{\bullet} of M of length n+1 and let the map between D^{r-i-1} and D^{r-i} be given by the matrix M_{-i} .
- (2) Build the complex $\tau(\operatorname{Hom}_D(X^{\bullet}, D))$ (of left D-modules).
- (3) Let $\pi_n \colon D^{s_{-n}} \to \ker(\cdot \tau(M_{-n}))$ be a surjection and find the pre-image $\tau(P) := \pi_n^{-1}(\operatorname{im}(\cdot \tau(M_{-n+1})))$.

Input: $\{L_1,\ldots,L_{r_1}\}\subseteq D^{r_0}$ such that $M=D^{r_0}/D\cdot\{L_1,\ldots,L_{r_1}\}$ is holonomic.

Output: The polynomial solutions $R \in K[x]^{r_0}$ of the system of differential equations given by $\{L_i \bullet R = 0 \mid 1 \le i \le r_1\}$.

- (1) Compute a free resolution X^{\bullet} of M of length n+1 and let the map between D^{r-i-1} and D^{r-i} be given by the matrix M_{-i} .
- (2) Build the complex $\tau(\operatorname{Hom}_D(X^{\bullet}, D))$ (of left D-modules).
- (3) Let $\pi_n \colon D^{s_{-n}} \to \ker(\cdot \tau(M_{-n}))$ be a surjection and find the pre-image $\tau(P) := \pi_n^{-1}(\operatorname{im}(\cdot \tau(M_{-n+1})))$. We define the map

$$\tilde{\pi} : D^{s_{-n}} \to \ker(\cdot \tau(M_{-n})) / \operatorname{im}(\cdot \tau(M_{-n+1})) :$$

$$x \mapsto \pi_n(x) + \operatorname{im}(\cdot \tau(M_{-n+1})),$$

whose kernel is exactly P. So we get a presentation $D^{s-n}/\tau(P) \cong \tau(\operatorname{Ext}_D^n(M,D))$.

(4) Compute the derived integration module

$$H^0((D/\{\partial_1,\ldots,\partial_n\}\cdot D\otimes_D^L(D^{s-n}/\tau(P))[n])$$

using the integration algorithm.

(4) Compute the derived integration module

$$H^0((D/\{\partial_1,\ldots,\partial_n\}\cdot D\otimes_D^L(D^{s_{-n}}/\tau(P))[n])$$

using the integration algorithm. We get

- (i) A \tilde{V} -adapted free resolution E^{\bullet} of $D^{s_{-n}}/\tau(P)$ of length n+1.
- (ii) Elements $g_1, \ldots, g_k \in D^{s_0}$ whose images modulo $\operatorname{im}(\tau(K[\underline{x}]) \otimes E^{\bullet})$ form a K-basis for

$$H^{0}((D/\{\partial_{1},\ldots,\partial_{n}\}\cdot D\otimes_{D}^{L}(D^{s_{-n}}/\tau(P))[n])$$

$$\cong H^{0}(D/\{\partial_{1},\ldots,\partial_{n}\}\cdot D\otimes_{D}E^{\bullet})$$

(4) Compute the derived integration module

$$H^0((D/\{\partial_1,\ldots,\partial_n\}\cdot D\otimes_D^L(D^{s_{-n}}/\tau(P))[n])$$

using the integration algorithm. We get

- (i) A \tilde{V} -adapted free resolution E^{\bullet} of $D^{s_{-n}}/\tau(P)$ of length n+1.
- (ii) Elements $g_1, \ldots, g_k \in D^{s_0}$ whose images modulo $\operatorname{im}(\tau(K[\underline{x}]) \otimes E^{\bullet})$ form a K-basis for

$$H^{0}((D/\{\partial_{1},\ldots,\partial_{n}\}\cdot D\otimes_{D}^{L}(D^{s_{-n}}/\tau(P))[n])$$

$$\cong H^{0}(D/\{\partial_{1},\ldots,\partial_{n}\}\cdot D\otimes_{D}E^{\bullet})$$

(5) Lift the map π_n to a chain map $\pi_{\bullet} \colon E^{\bullet} \to \tau(\mathsf{Hom}_D(X^{\bullet}, D))$ and denote the maps by $\pi_i \colon D^{s_{-i}} \to D^{r_{-i}}$.

(6) Evaluate $\{\tau(\pi_0(g_1)), \dots, \tau(\pi_0(g_k))\}\subseteq (D/D\cdot\{\partial_1, \dots, \partial_n\})^{r_0}$ and write $\{R_1(\underline{x}), \dots, R_n(\underline{x})\}$ for these elements understood in $K[\underline{x}]^{r_0}$.

- (6) Evaluate $\{\tau(\pi_0(g_1)), \dots, \tau(\pi_0(g_k))\} \subseteq (D/D \cdot \{\partial_1, \dots, \partial_n\})^{r_0}$ and write $\{R_1(\underline{x}), \dots, R_n(\underline{x})\}$ for these elements understood in $K[\underline{x}]^{r_0}$.
- (7) Return $\{R_1(\underline{x}), \ldots, R_n(\underline{x})\}.$

Example:

Let n=2 and $M:=D/_D\langle u,v\rangle$ where

$$u = x_1 \partial_1 + 2x_2 \partial_2 - 5$$
 and $v = \partial_1^2 - \partial_2$.

Example:

Let n=2 and $M:=D/_D\langle u,v\rangle$ where

$$u = x_1 \partial_1 + 2x_2 \partial_2 - 5$$
 and $v = \partial_1^2 - \partial_2$.

We resolve the module M by

$$X^{\bullet}: \qquad 0 \longrightarrow D^{1} \xrightarrow{\left(\begin{array}{cc} -v & u+2 \\ \end{array}\right)} D^{2} \xrightarrow{\left(\begin{array}{cc} u \\ v \end{array}\right)} D^{1} \longrightarrow M \longrightarrow 0.$$

Example:

Let n=2 and $M:=D/_D\langle u,v\rangle$ where

$$u = x_1 \partial_1 + 2x_2 \partial_2 - 5$$
 and $v = \partial_1^2 - \partial_2$.

We resolve the module M by

$$X^{\bullet}: \qquad 0 \longrightarrow D^{1} \xrightarrow{\begin{pmatrix} -v & u+2 \end{pmatrix}} D^{2} \xrightarrow{\begin{pmatrix} u \\ v \end{pmatrix}} D^{1} \longrightarrow M \longrightarrow 0.$$

On the other hand $K[x_1, x_2]$ can be resolved by the KOSZUL-complex

$$\mathcal{K}^{\bullet}: \qquad 0 \longrightarrow D \xrightarrow{\cdot \left(\begin{array}{cc} \partial_{1} & \partial_{2} \end{array}\right)} D^{2} \xrightarrow{\cdot \left(\begin{array}{cc} \partial_{2} \\ -\partial_{1} \end{array}\right)} D^{1} \longrightarrow K[x_{1}, x_{2}] \longrightarrow 0.$$

By applying Hom(-, D) to X^{\bullet} we get the complex

$$0 \longleftarrow D^{1} \stackrel{\left(\begin{array}{cc} -v & u+2 \end{array}\right)}{\longleftarrow} D^{2} \stackrel{\left(\begin{array}{c} u \\ v \end{array}\right)}{\longleftarrow} D^{1} \longleftarrow M \stackrel{\longleftarrow}{\longleftarrow} 0.$$

By applying Hom(-, D) to X^{\bullet} we get the complex

$$0 \longleftarrow D^1 \stackrel{\left(\begin{array}{cc} -v & u+2 \end{array}\right)}{\longleftarrow} D^2 \stackrel{\left(\begin{array}{c} u \\ v \end{array}\right)}{\longleftarrow} D^1 \stackrel{\longleftarrow}{\longleftarrow} M \stackrel{\longleftarrow}{\longleftarrow} 0.$$

The complex

$$\operatorname{Ext}_D^2(M,D) \longleftarrow D^1 \stackrel{\left(\begin{array}{ccc} -v & u+2 \end{array} \right)}{\longleftarrow} D^2 \stackrel{\left(\begin{array}{c} u \\ v \end{array} \right)}{\longleftarrow} D^1 \longleftarrow M \stackrel{\left(\begin{array}{c} u \\ v \end{array} \right)}{\longleftarrow} 0$$

is exact.

$$K[x_1,x_2] \xleftarrow{\cdot \left(\begin{array}{c} -v & u+2 \\ v \end{array} \right)} K[x_1,x_2]^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} K[x_1,x_2]$$

$$Ext_D^2(M,D) \xleftarrow{\cdot \left(\begin{array}{c} -v & u+2 \\ -\partial_1 \end{array} \right)} A_2 \xrightarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} D^1 \xrightarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} A_2 \xrightarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} A_3 \xrightarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} A_3 \xrightarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} A_3 \xrightarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_2 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_3 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array} \right)} A_4 \xrightarrow{\cdot \left(\begin{array}{c} \partial_1 \\ -\partial_1 \end{array}$$

$$K[x_1,x_2] \xleftarrow{\cdot \left(\begin{array}{c} -v & u+2 \end{array} \right)} K[x_1,x_2]^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} K[x_1,x_2]$$

$$Ext_D^2(M,D) \xleftarrow{\cdot \left(\begin{array}{c} -v & u+2 \end{array} \right)} D^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} D^1$$

$$\vdots \underbrace{\left(\begin{array}{c} u \\ v \end{array} \right)} C(-v & u+2 \end{array} D^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} D^1$$

$$\vdots \underbrace{\left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} C(-v & u+2 \end{array} D^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} C(-v & u+2 \end{array} D^2$$

$$\vdots \underbrace{\left(\begin{array}{c} u \\ v \end{array} \right)} C(-v & u+2 \end{array} D^2 \xleftarrow{\cdot \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)} C(-v & u+2 \end{array} D^2$$

$$\vdots \underbrace{\left(\begin{array}{c} u \\ v \end{array} \right)} C(-v & u+2 \end{array} D^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} D^2$$

$$\vdots \underbrace{\left(\begin{array}{c} u \\ v \end{array} \right)} C(-v & u+2 \end{array} D^2 \xleftarrow{\cdot \left(\begin{array}{c} u \\ v \end{array} \right)} D^2$$

where

$$A_1 = \left(\begin{array}{ccc} -v & u+2 & 0 & 0 \\ 0 & 0 & -v & u+2 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \otimes \left(\begin{array}{ccc} -v & u+2 \end{array}\right)$$

$$A_{2} = \begin{pmatrix} \partial_{2} & 0 \\ 0 & \partial_{2} \\ -\partial_{1} & 0 \\ 0 & -\partial_{1} \end{pmatrix} = \begin{pmatrix} \partial_{2} \\ -\partial_{1} \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} u & 0 \\ v & 0 \\ 0 & u \\ 0 & v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} u \\ v \end{pmatrix}$$

$$A_{4} = \begin{pmatrix} \partial_{1} & 0 & \partial_{2} & 0 \\ 0 & \partial_{1} & 0 & \partial_{2} \end{pmatrix} = \begin{pmatrix} \partial_{1} & \partial_{2} \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

With the integration algorithm we obtain the cohomology at the left D^1 in the last row of the augmented complex, which in this case is one-dimensional and spanned by

$$L_{1,0} = -\big(2x_1^5x_2 - 40x_1^3x_2^2 + 120x_1x_2^3\big)\partial_1 - \big(x_1^6 - 30x_1^4x_2 + 180x_1^2x_2^2 - 120x_2^3\big).$$

With the integration algorithm we obtain the cohomology at the left D^1 in the last row of the augmented complex, which in this case is one-dimensional and spanned by

$$L_{1,0} = -(2x_1^5x_2 - 40x_1^3x_2^2 + 120x_1x_2^3)\partial_1 - (x_1^6 - 30x_1^4x_2 + 180x_1^2x_2^2 - 120x_2^3).$$

By first mapping $L_{1,0}$ with \cdot (∂_1 ∂_2), then taking the preimage we get $L_{1,1} \in D^4$ and repeating this we obtain

$$(x_1^5 - 20x_1^3x_2 + 60x_1x_2^2) = L_{1,2} \in D^1.$$

With the integration algorithm we obtain the cohomology at the left D^1 in the last row of the augmented complex, which in this case is one-dimensional and spanned by

$$L_{1,0} = -(2x_1^5x_2 - 40x_1^3x_2^2 + 120x_1x_2^3)\partial_1 - (x_1^6 - 30x_1^4x_2 + 180x_1^2x_2^2 - 120x_2^3).$$

By first mapping $L_{1,0}$ with \cdot (∂_1 ∂_2), then taking the preimage we get $L_{1,1} \in D^4$ and repeating this we obtain

$$(x_1^5 - 20x_1^3x_2 + 60x_1x_2^2) = L_{1,2} \in D^1.$$

The residue class of this element spans the space of polynomial solutions.

Rational solutions

Rational solutions

Now we consider the module $N[f^{-1}] = N \otimes_{K[\underline{x}]} K[\underline{x}][f^{-1}].$

Rational solutions

Now we consider the module $N[f^{-1}] = N \otimes_{K[\underline{x}]} K[\underline{x}][f^{-1}]$. The isomorphism from the first theorem we have seen earlier specializes to

$$\begin{split} \operatorname{Ext}^i_D(M,K[\underline{x}][f^{-1}]) &\cong \operatorname{Tor}^D_{n-i}(\operatorname{Ext}^n_D(M,D),K[\underline{x}][f^{-1}]) \\ &\cong \operatorname{Tor}^D_{n-i}(\operatorname{Ext}^n_D(M,D)[f^{-1}],K[\underline{x}]) \\ &\cong \operatorname{Tor}^D_{n-i}(D/\{\partial_1,\ldots,\partial_n\}\cdot D,\tau(\operatorname{Ext}^n_D(M,D))[f^{-1}]) \end{split}$$

Algorithm for computing dimensions of rational solution spaces Input: ${\cal M}$

Input: M

Output: dimensions of $\operatorname{Ext}_D^i(M, K[\underline{x}][f^{-1}])$

Input: MOutput: dimensions of $\operatorname{Ext}_D^i(M, K[x][f^{-1}])$

We use the above isomorphism.

① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.

Input: M

Output: dimensions of $\operatorname{Ext}_D^i(M, K[\underline{x}][f^{-1}])$

We use the above isomorphism.

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- ② Compute $\tau(\operatorname{Ext}_D^n(M,D))$.

Input: M

Output: dimensions of $\operatorname{Ext}_D^i(M,K[\underline{x}][f^{-1}])$

We use the above isomorphism.

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- 2 Compute $\tau(\operatorname{Ext}_D^n(M,D))$.
- **3** Compute the localization $\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}].$

Output: dimensions of $\operatorname{Ext}_D^i(M,K[\underline{x}][f^{-1}])$

We use the above isomorphism.

Input: M

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- **2** Compute $\tau(\operatorname{Ext}_D^n(M,D))$.
- 3 Compute the localization $\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}].$
- 4 Use the integration algorithm to compute the derived integration $\operatorname{Tor}_{n-i}^D(D/\{\partial_1,\dots,\partial_n\}\cdot D, \tau(\operatorname{Ext}_D^n(M,D))[f^{-1}])$

Output: dimensions of $\operatorname{Ext}_D^i(M,K[\underline{x}][f^{-1}])$

We use the above isomorphism.

Input: M

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- **2** Compute $\tau(\operatorname{Ext}_D^n(M,D))$.
- **3** Compute the localization $\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}].$
- 4 Use the integration algorithm to compute the derived integration $\operatorname{Tor}_{n-i}^D(D/\{\partial_1,\dots,\partial_n\}\cdot D,\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}])$
- Seturn the dimensions.

Input: M

Output: dimensions of $\operatorname{Ext}_D^i(M, K[\underline{x}][f^{-1}])$

We use the above isomorphism.

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- 2 Compute $\tau(\operatorname{Ext}_D^n(M,D))$.
- **3** Compute the localization $\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}].$
- 4 Use the integration algorithm to compute the derived integration $\operatorname{Tor}_{n-i}^D(D/\{\partial_1,\ldots,\partial_n\}\cdot D,\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}])$
- Seturn the dimensions.

Omitting the first and third step, the algorithm specializes to an algorithm for computing the dimension of $\operatorname{Ext}_D^i(M,K[\underline{x}])$.

Input: M

Output: dimensions of $\operatorname{Ext}_D^i(M, K[\underline{x}][f^{-1}])$

We use the above isomorphism.

- ① Compute a polynomial f vanishing on the codimension 1 component of the singular locus of M.
- 2 Compute $\tau(\operatorname{Ext}_D^n(M,D))$.
- **3** Compute the localization $\tau(\operatorname{Ext}_D^n(M,D))[f^{-1}].$
- 4 Use the integration algorithm to compute the derived integration $\operatorname{Tor}_{n-i}^D(D/\{\partial_1,\dots,\partial_n\}\cdot D, \tau(\operatorname{Ext}_D^n(M,D))[f^{-1}])$
- Seturn the dimensions.

Omitting the first and third step, the algorithm specializes to an algorithm for computing the dimension of $\operatorname{Ext}^i_D(M,K[\underline{x}])$. With some slight modifications the algorithm for computing $\operatorname{Hom}(M,K[\underline{x}])$ in the polynomial case can also be applied in this situation.

Assumptions:

M and N are holonomic D-modules. Let D_x be the n-th WEYL algebra on the variables x_1, \ldots, x_n and derivations $\partial_1, \ldots, \partial_n, D_y$ the n-th WEYL algebra on y_1, \ldots, y_n with derivations $\delta_1, \ldots, \delta_n$.

Assumptions:

M and N are holonomic D-modules. Let D_x be the n-th WEYL algebra on the variables x_1,\ldots,x_n and derivations $\partial_1,\ldots,\partial_n,\,D_y$ the n-th WEYL algebra on y_1,\ldots,y_n with derivations δ_1,\ldots,δ_n . If X and Y are D_x - respectively D_Y -modules, let $X\boxtimes Y$ denote the exterior product. As an additive group this equals tensor product of X and Y regarded as a $D_{2n}\cong D_x\otimes D_y$ module.

Assumptions:

M and N are holonomic D-modules. Let D_x be the n-th WEYL algebra on the variables x_1, \ldots, x_n and derivations $\partial_1, \ldots, \partial_n, D_n$ the *n*-th WEYL algebra on y_1, \ldots, y_n with derivations $\delta_1, \ldots, \delta_n$. If X and Y are D_x - respectively D_Y -modules, let $X \boxtimes Y$ denote the exterior product. As an additive group this equals tensor product of X and Y regarded as a $D_{2n} \cong D_x \otimes D_y$ module.

By μ we define the isomorphism

$$\mu \colon D_{2n} \to D_{2n} \colon \left\{ \begin{array}{ccc} x_i \mapsto \frac{1}{2}x_i - \delta_i & \partial_i \mapsto \frac{1}{2}y_i + \partial_i \\ y_i \mapsto \frac{1}{2}x_i - \delta_i & \delta_i \mapsto \frac{1}{2}y_i - \partial_i \end{array} \right\}_{i=1}^n,$$

and let Δ and Λ be the following right D_{2n} -modules

$$\Delta := D_{2n}/(\{x_i - y_i, \partial_i + \delta_i \mid 1 \le i \le n\} \cdot D_{2n})$$

$$\Lambda := D_{2n}/(x_1 D_{2n} + \dots + x_n D_{2n} + y_1 D_{2n} + \dots + y_n D_{2n})$$

$$\Delta := D_{2n}/(\{x_i - y_i, \partial_i + \delta_i \mid 1 \le i \le n\} \cdot D_{2n})$$

$$\Lambda := D_{2n}/(x_1D_{2n} + \dots + x_nD_{2n} + y_1D_{2n} + \dots + y_nD_{2n})$$

We have already seen that

$$\operatorname{Ext}_D^i(M,N) \cong \operatorname{Tor}_{n-i}^D(\operatorname{Ext}_D^n(M,D),N)$$

$$\Delta := D_{2n}/(\{x_i - y_i, \partial_i + \delta_i \mid 1 \le i \le n\} \cdot D_{2n})$$

$$\Lambda := D_{2n}/(x_1D_{2n} + \dots + x_nD_{2n} + y_1D_{2n} + \dots + y_nD_{2n})$$

We have already seen that

$$\operatorname{Ext}_D^i(M,N) \cong \operatorname{Tor}_{n-i}^D(\operatorname{Ext}_D^n(M,D),N)$$

and also use the isomorphism

$$\operatorname{\mathsf{Tor}}^D_{n-i}(M',N) \cong \operatorname{\mathsf{Tor}}^{D_{2n}}_{n-i}(D_{2n}/\{x_i-y_i,\partial_i+\delta_i\mid 1\leq i\leq n\}\cdot D_{2n},\tau(M')\boxtimes N).$$

$$\Delta := D_{2n}/(\{x_i - y_i, \partial_i + \delta_i \mid 1 \le i \le n\} \cdot D_{2n})$$

$$\Lambda := D_{2n}/(x_1D_{2n} + \dots + x_nD_{2n} + y_1D_{2n} + \dots + y_nD_{2n})$$

We have already seen that

$$\operatorname{Ext}_D^i(M,N) \cong \operatorname{Tor}_{n-i}^D(\operatorname{Ext}_D^n(M,D),N)$$

and also use the isomorphism

$$\operatorname{Tor}_{n-i}^D(M',N) \cong \operatorname{Tor}_{n-i}^{D_{2n}}(D_{2n}/\{x_i-y_i,\partial_i+\delta_i\mid 1\leq i\leq n\}\cdot D_{2n},\tau(M')\boxtimes N).$$

Combining those two and setting $M' = \operatorname{Ext}_D^n(M, D)$ one obtains

$$Ext_D^i(M,N) \cong$$

$$\mathsf{Tor}_{D-i}^{D_{2n}}(D_{2n}/\{x_i-y_i,\partial_i+\delta_i\,|\,1\leq i\leq n\}\cdot D_{2n},\tau(\mathsf{Ext}_D^n(M,D))\boxtimes N).$$

Input: Presentations $M = D^{r_0}/M_0$ and $N = D^{s_0}/N_0$ of holonomic left D-modules.

Input: Presentations $M = D^{r_0}/M_0$ and $N = D^{s_0}/N_0$ of holonomic left D-modules.

Output: A basis for $Hom_D(M, N)$.

Input: Presentations $M = D^{r_0}/M_0$ and $N = D^{s_0}/N_0$ of holonomic left D-modules.

Output: A basis for $Hom_D(M, N)$.

(1) Compute finite free resolutions X^{\bullet} and Y^{\bullet} of M and N, say

$$X^{\bullet}: \quad 0 \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_0} D^{r_0} \to M \to 0$$

$$Y^{\bullet}: \quad 0 \to D^{s_{-b}} \xrightarrow{\cdot N_{-b+1}} \cdots \longrightarrow D^{s_{-1}} \xrightarrow{\cdot N_0} D^{s_0} \to N \to 0$$

Input: Presentations $M = D^{r_0}/M_0$ and $N = D^{s_0}/N_0$ of holonomic left D-modules.

Output: A basis for $Hom_D(M, N)$.

(1) Compute finite free resolutions X^{\bullet} and Y^{\bullet} of M and N, say

$$X^{\bullet}: \quad 0 \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_0} D^{r_0} \to M \to 0$$

$$Y^{\bullet}: \quad 0 \to D^{s_{-b}} \xrightarrow{\cdot N_{-b+1}} \cdots \longrightarrow D^{s_{-1}} \xrightarrow{\cdot N_0} D^{s_0} \to N \to 0$$

Dualize X^{\bullet} and apply the standard transposition to obtain

$$\tau(\mathsf{Hom}_D(X^{\bullet},D)) \colon 0 \leftarrow D^{r_{-a}} \overset{\cdot \tau(M_{-a+1})}{\longleftarrow} \cdots \leftarrow D^{r_{-1}} \overset{\cdot \tau(M_0)}{\longleftarrow} D^{r_0} \leftarrow 0$$

Input: Presentations $M = D^{r_0}/M_0$ and $N = D^{s_0}/N_0$ of holonomic left D-modules.

Output: A basis for $Hom_D(M, N)$.

(1) Compute finite free resolutions X^{\bullet} and Y^{\bullet} of M and N, say

$$X^{\bullet}: \quad 0 \to D^{r_{-a}} \xrightarrow{\cdot M_{-a+1}} \cdots \longrightarrow D^{r_{-1}} \xrightarrow{\cdot M_0} D^{r_0} \to M \to 0$$

$$Y^{\bullet}: \quad 0 \to D^{s_{-b}} \xrightarrow{\cdot N_{-b+1}} \cdots \longrightarrow D^{s_{-1}} \xrightarrow{\cdot N_0} D^{s_0} \to N \to 0$$

Dualize X^{\bullet} and apply the standard transposition to obtain

$$\tau(\mathsf{Hom}_D(X^{\bullet},D)) \colon 0 \leftarrow D^{r_{-a}} \overset{\cdot \tau(M_{-a}+1)}{\longleftarrow} \cdots \leftarrow D^{r_{-1}} \overset{\cdot \tau(M_0)}{\longleftarrow} D^{r_0} \leftarrow 0$$

(2) Build the double complex $\tau(\operatorname{Hom}_D(X^{\bullet}, D)) \boxtimes Y^{\bullet}$ (of left D_{2n} -modules) and let

$$Z^{\bullet}: 0 \leftarrow D_{2n}^{t_a} \stackrel{\cdot T_{a-1}}{\leftarrow} \cdots \leftarrow D_{2n}^{t_0} \leftarrow \cdots \leftarrow D_{2n}^{t_{-b}} \leftarrow 0$$

be its total complex.

$$D_{2n}^{t_k} = \bigoplus_{i-j=k} D^{r_{-i}} \boxtimes D^{s_{-j}}$$

$$D_{2n}^{t_k} = \bigoplus_{i-j=k} D^{r_{-i}} \boxtimes D^{s_{-j}}$$

(3) Let $\pi_n : D_{2n}^{u_n} \to \ker(\cdot \mu(T_n))$ be a surjection and find the pre-image $P := \pi_n^{-1}(\operatorname{im}(\cdot \mu(T_{n-1}))).$

$$D_{2n}^{t_k} = \bigoplus_{i-j=k} D^{r_{-i}} \boxtimes D^{s_{-j}}$$

- (3) Let $\pi_n: D_{2n}^{u_n} \to \ker(\cdot \mu(T_n))$ be a surjection and find the pre-image $P:=\pi_n^{-1}(\operatorname{im}(\cdot \mu(T_{n-1}))).$
- (4) The restriction algorithm yields
 - (i) A *V*-adapted free resolution E^{\bullet} of $D_{2n}^{u_n}/P$ of length n+1.

$$D_{2n}^{t_k} = \bigoplus_{i-j=k} D^{r_{-i}} \boxtimes D^{s_{-j}}$$

- (3) Let $\pi_n: D_{2n}^{u_n} \to \ker(\cdot \mu(T_n))$ be a surjection and find the pre-image $P:=\pi_n^{-1}(\operatorname{im}(\cdot \mu(T_{n-1}))).$
- (4) The restriction algorithm yields
 - (i) A *V*-adapted free resolution E^{\bullet} of $D_{2n}^{u_n}/P$ of length n+1.
 - (ii) Elements $g_1, \ldots, g_k \in D_{2n}^{u_0}$ that form a basis for

$$H^{0}((D/\{\underline{x},\underline{y}\}\cdot D\otimes_{D_{2n}}^{L}(D_{2n}^{u_{n}}/P))[n])$$

$$\cong H^{0}(D/\{\underline{x},\underline{y}\}\cdot D\otimes_{D_{2n}}E^{\bullet})$$

$$D_{2n}^{t_k} = \bigoplus_{i-j=k} D^{r_{-i}} \boxtimes D^{s_{-j}}$$

- (3) Let $\pi_n: D_{2n}^{u_n} \to \ker(\cdot \mu(T_n))$ be a surjection and find the pre-image $P:=\pi_n^{-1}(\operatorname{im}(\cdot \mu(T_{n-1}))).$
- (4) The restriction algorithm yields
 - (i) A V-adapted free resolution E^{\bullet} of $D_{2n}^{u_n}/P$ of length n+1.
 - (ii) Elements $g_1, \ldots, g_k \in D_{2n}^{u_0}$ that form a basis for

$$H^{0}((D/\{\underline{x},\underline{y}\}\cdot D\otimes_{D_{2n}}^{L}(D_{2n}^{u_{n}}/P))[n])$$

$$\cong H^{0}(D/\{\underline{x},\underline{y}\}\cdot D\otimes_{D_{2n}}E^{\bullet})$$

(5) Lift π_n to a chain map $\pi_{\bullet} \colon E^{\bullet} \to \mu(Z^{\bullet})$ with $\pi_i \colon D_{2n}^{u_i} \to D_{2n}^{t_i}$.

(6) Evaluate $\{L_1 = \mu^{-1}(\pi_0(g_1)), \dots, L_k = \mu^{-1}(\pi_0(g_k))\}$ and write each L_i as

$$\sum_{j} L_{i,j} \in \bigoplus_{j} D^{r_{-j}} \boxtimes D^{s_{-j}} = D_{2n}^{t_0}$$

according to the direct sum.

(6) Evaluate $\{L_1 = \mu^{-1}(\pi_0(g_1)), \dots, L_k = \mu^{-1}(\pi_0(g_k))\}$ and write each L_i as

$$\sum_{j} L_{i,j} \in \bigoplus_{j} D^{r_{-j}} \boxtimes D^{s_{-j}} = D_{2n}^{t_0}$$

according to the direct sum.Now re-express $L_{i,0}$ modulo $\{x_i-y_i,\partial_i+\delta_i\,|\,1\leq i\leq n\}\cdot D_{2n}\otimes_{D_{2n}}\big(D^{r_0}\boxtimes D^{s_0}\big)$, so that x_i and ∂_j do not appear in any component. Using the identification $D^{r_0}\boxtimes D^{s_0}\cong D^{s_0}_{2n}e_1\oplus\cdots\oplus D^{s_0}_{2n}e_{r_0}$, where $\{e_i\}$ forms the canonical D-basis for D^{r_0} , we then obtain an expression

$$L_{i,0} = l_{i,1}e_1 + \dots + l_{i,r_0}e_{r_0} \in (D_y)^{s_0}e_1 \oplus \dots \oplus (D_y)^{s_0}e_{r_0}.$$

(6) Evaluate $\{L_1 = \mu^{-1}(\pi_0(g_1)), \dots, L_k = \mu^{-1}(\pi_0(g_k))\}$ and write each L_i as

$$\sum_{j} L_{i,j} \in \bigoplus_{j} D^{r_{-j}} \boxtimes D^{s_{-j}} = D_{2n}^{t_0}$$

according to the direct sum.Now re-express $L_{i,0}$ modulo $\{x_i-y_i,\partial_i+\delta_i\,|\,1\leq i\leq n\}\cdot D_{2n}\otimes_{D_{2n}} (D^{r_0}\boxtimes D^{s_0})$, so that x_i and ∂_j do not appear in any component. Using the identification $D^{r_0}\boxtimes D^{s_0}\cong D^{s_0}_{2n}e_1\oplus\cdots\oplus D^{s_0}_{2n}e_{r_0}$, where $\{e_i\}$ forms the canonical D-basis for D^{r_0} , we then obtain an expression

$$L_{i,0} = l_{i,1}e_1 + \dots + l_{i,r_0}e_{r_0} \in (D_y)^{s_0}e_1 \oplus \dots \oplus (D_y)^{s_0}e_{r_0}.$$

Let $\{\overline{l_{i,1}},\ldots,\overline{l_{i,r_0}}\}$ be the images in $(D^{s_0}/N_0)\cong N$. Finally set $\varphi_i\in \operatorname{Hom}_D(M,N)$ to be the map induced by

$$e_j \mapsto \overline{l_{i,j}}$$
.

(7) Return $\{\varphi_1, \ldots, \varphi_k\}$.