
Localization

Markus Lange-Hegermann

Introduction

This talk deals with localisation of holonomic Weyl algebra modules and their lo-
calisation. Consider left modules an d left ideals for this talk. Instead of the talks
before we will localise a general holonomic module and not the polynomial ring. It
will follow algorithms given by [6] and [5, D-modules and Cohomology of Varieties].
Note that there is a more general algorithm in [4]. It is planned to implement this
algorithm in Singular ([2],[1])

1 Notation. For this talk let Rn := K[x] := K[x1, .., xn] the polynomial ring in n
indeterminates and let Dn := R〈∂〉 := Rn〈∂1, .., ∂n〉 be the n-th Weyl algebra over a
computable field K of characteristic 0 contained in C.

2 Motivation. Let f ∈ Rn and M a holonomic (left) Dn-module. Since M is
cyclic, M ∼= Dn/I for a left ideal I = 〈P1, .., Pr〉 in Dn. Our goal is to compute
M [f−1] := Rn[f−1]⊗Rn M , i.e. to find generators and relations. As mentioned above,
the algorithm can be generalised to the case, where M only needs to be holonomic on
Kn \V(f). This would allows us, to get rid of the non-holonomic locus by ”localising
it away” and go on computing with a holonomic module.

Since this module is holonomic again, we need to find a generator fa ⊗ 1 and its
annihilator. First call this generator f s⊗ 1⊗ 1 ∈ f s⊗K Rn[f−1, s]⊗Rn M . Here f s is
used as abstract generator, that behaves as the factor f s under all operations of the
Weyl algebra Dn. Now the algorithm will work in two steps:

1. Compute J I(f s) := AnnDn[s](f
s ⊗ 1⊗ 1).

2. Compute a suitable number a ∈ K for substituting s by a.

On the above modules let x operate by left multiplication on the right factor (this
is equivalent to left or right multiplication on the middle factor), let s operate on the
middle factor and let ∂ operate by product rule. Since f s is just a symbol, the action
three factors of ∂i on the tensor product works the following way:

∂i • (f s⊗ g(x, s)

fk
⊗Q) = f s⊗ sg(x, s)fi

fk+1
⊗Q+f s⊗∂i(

g(x, s)

fk
)⊗Q+f s⊗ g(x, s)

fk
⊗∂iQ

1



Here fi := df
dxi

.

1 The Annihilator

3 Remark. The way of proceding here is quite similar to the case of M = Rn seen
two weeks ago, but one has to consider that holonomic M in the general setting
complicates matters. Before the annihilator of M = Rn was given by 〈∂〉 and now
it is given by I. But the same changes to the generators of the new annihilator are
done by the ringautomorphism φ introduced later.

4 Remark. Since it is quite hard to compute J I(f s), we will extend Dn[s] to a new
algebra Dn+1 := Dn〈t, ∂t〉 to compute J I

n+1(f
s) := AnnDn+1(f

s ⊗ 1 ⊗ 1) and then
”intersect” this algebra with Dn[s]. But first we need to define the action of Dn+1

on f s ⊗K Rn[f−1, s] ⊗Rn M . In short t acts by shifting s up by one and ∂t acts by
shifting s down by one and a differential factor. More formally we have:

t • (f s ⊗ g(x, s)

fk
⊗Q) := f s ⊗ g(x, s + 1)f

fk
⊗Q

∂t • (f s ⊗ g(x, s)

fk
⊗Q) := f s ⊗ −sg(x, s− 1)

fk+1
⊗Q

Note that this actually defines a module structure and that −∂tt acts by s (so Dn[s] ↪→
Dn+1).

5 Remark. Let φ : Dn+1−̃→Dn+1 : xi 7→ xi, t 7→ t − f, ∂i 7→ ∂i + fi∂t, ∂t 7→ ∂t be a
ring automorphism. It is clear, that this map is invertible.

Short computation on the relations: [xi, ∂i + fi∂t] = [xi, ∂i], [t − f, ∂t] = [t, ∂t],
[∂i + fi∂t, ∂t] = 0 etc.

Now a lemma that gives concrete generators for J I
n+1(f

s):

6 Lemma. Let I be f -saturated. Then J I
n+1(f

s) =Dn+1 〈φ(I), t− f〉 holds.
Proof:

”⊇” For P ∈ I write P as polynom in the ∂i’s with coefficents in Rn. Then it holds,
that φ(P (∂)) = P (∂ + fi∂t). With above definition it is easy to check, that:

(∂i + fi∂t) • (f s ⊗ 1⊗ 1) = (f s ⊗ 1⊗ ∂i)

and so also
φ(P (∂)) • (f s ⊗ 1⊗ 1) = f s ⊗ 1⊗ P (∂)

holds. Further we get:

t • (f s ⊗ 1⊗ 1) = (f s ⊗ f ⊗ 1) = f • (f s ⊗ 1⊗ 1)

So t− f is included in the annihilator.

2



”⊆” Now let Q• (f s⊗1⊗1) = 0. f − t is contained in the annihilator, hence we can
asume that all powers of t in Q are substituted by f . So write Q in the form

Q =
∑
α,β

∂α
t xβQα,β(∂1 + f1∂t, .., ∂n + fn∂t)

for Qα,β ∈ K[y]. Then, as seen in ”⊇”, it holds that:

Q • (f s ⊗ 1⊗ 1) =
∑
α,β

∂α
t • (f s ⊗ 1⊗ xβQα,β(∂))

Let α be the largest α with nonzero Qα,β in above representaion of Q. We claim,
that: ∑

β

xβQα,β(∂1 + f1∂t, .., ∂n + fn∂t) ∈ φ(I)

Then by induction over α also Q ∈ φ(I) and we are finished. To prove this,
observe that in the term∑

β

xβQα,β(∂1+f1∂t, .., ∂n+fn∂t)•(f s⊗1⊗1) = f s⊗sα + LOT (s)

fα
⊗(

∑
β

xβQα,β(∂))

sα cannot be reduced by lower summmands of Q in α. So already

f s ⊗ sα

fα
⊗ (

∑
β

xβQα,β(∂))

has to vanish. Since I is f -saturated and no other factor than f could ”pass”
the right tensor product, this implies, that

(
∑

β

xβQα,β(∂)) ∈ I ⇔
∑

β

xβQα,β(∂1 + f1∂t, .., ∂n + fn∂t) ∈ φ(I)

Now identify Dn[−∂tt] ⊂ Dn+1 with Dn[s] and - to finish the task of this section
- compute:

J I(f s) = J I
n+1(f

s) ∩Dn[s] = J I
n+1(f

s) ∩Dn[−∂tt]

For this give an algorithm due to Oaku [3] that computes the intersection of any
left ideal J of Dn+1 with Dn[−∂tt]:

3



7 Algorithm. Input: Left ideal I of Dn+1

Output: J = I ∩Dn[s] = I ∩Dn[−∂tt]
On Dn+1 define the weight vector w by w(t) = 1, w(∂t) = −1, w(xi) = w(∂i) = 0.

Then extend this weights to Dn+1[y1, y2] by w(y1) = 1, w(y2) = −1.
Now homogenize the generators of I by y1 according to the weight vector w.
Compute a Gröbner basis J̃ of this homogenized ideal and 1 − y1y2 eliminating

y1 and y2. Note that the resulting generators are also homogenous w.r.t. w, since
the input and all relations of the ring are homogenous. So, even though there are
negative weights, the Buchberger algorithm works.

Take all elements of J̃ not having y1 or y2 and multiply them (from the left)
with appropriate powers of t and ∂t to give them a w-degree of 0. Return these
elements.

Combining the above lemma and algorithm yields a method to compute J I(f s)
for f -saturated I.

2 The Generator

This sections aims at finding an appropriate number a for substituting s. As main tool
for this use the Berstein(-Sato) polynomial. This polynomial needs to be redefined
for this situation:

8 Definition. Let the Bernstein polynomial bI
f (s) ∈ K[s] be the monic generator for

the ideal of all elements b ∈ K[s], such that there exists a Q(s) ∈ Dn[s] with:

b(s) • (f s ⊗ 1⊗ 1) = Q(s) • (f s ⊗ f ⊗ 1) = Q(s)f • (f s ⊗ 1⊗ 1)

For bI
f (s) fix QI

f (s) as the operator with above properties.

9 Remark. As always with the Bernstein polynomial the idea ist, that
QI

f (s)

bI
f (s)

is some

kind of inverse for f under certain circumstances.
In the case of M = Rn it is known, that bf (s) factors over the rationals with

negative roots. In the general case there are counterexamples to this, compare [5,
D-modules and Cohomology of Varieties, 3.10].

10 Algorithm. Input: f ∈ Rn and f -saturated holonomic ideal I E Dn

Output: bI
f (s)

Compute the (unique) monic generator of Dn[s]〈f, J I(f s)〉 ∩K[s] by computing a
Gröbner basis of Dn[s]〈f, J I(f s)〉 with an order eliminating the xi and ∂i. Here J I(f s)
can be computed by means of section 1.
Proof:

4



By definition of bI
f (s) it holds that bI

f (s) • (f s ⊗ 1⊗ 1) = (QI
f (s)f) • (f s ⊗ 1⊗ 1)

for a QI
f (s) ∈ Dn[s]. So bI

f (s) is also an element of

Dn[s]〈f〉+ AnnDn[s](f
s ⊗ 1⊗ 1) =Dn[s] 〈f〉+Dn[s]〈J I(f s)〉 =Dn[s] 〈f, J I(f s)〉

This implies a theorem which will only partly be proven here. It allows us to
connect the Berstein polynomial bI

f (s) and the exponents by means of finding integer
roots of bI

f (s).

11 Theorem. If M = Dn/I is holonomic and a ∈ K∗, such that no element of
{a− 1, a− 2, ..} is a root of bI

f (s), then we have

fa ⊗K Rn[f−1]⊗Rn M ∼= Dn • (fa ⊗ 1⊗ 1) ∼= (Dn[s]/J I(f s))|s=a

as Dn-modules.
Proof: (partly/1. isomorphism)

For the first isomorphism we get

bI
f (s) • (f s ⊗ 1⊗ 1) = QI

f (s)f • (f s ⊗ 1⊗ 1) | (−∂t) ·
⇒ sbI

f (s− 1) • (f s ⊗ f−1 ⊗ 1) = sQI
f (s− 1) • (f s ⊗ 1⊗ 1)

from definition of bI
f (s) and QI

f . Since bI
f (a− 1) 6= 0, we can substitute s by a and

invert bI
f (a− 1) to get:

fa ⊗ f−1 ⊗ 1 = (bI
f (a− 1))−1QI

f (a− 1) • (fa ⊗ 1⊗ 1)

So at least all powers of f are generated. Now let Q be a monomial in K[∂1, .., ∂n] of
degree m. Assume that all such monomials of degree smaller than m can be generated
and let Q′ be such that ∂iQ

′ = Q and with a P ′ such that P ′•(fa⊗1⊗1) = fa⊗fk⊗Q′

for any fixed k ∈ Z. But then it holds, that:

fa ⊗ fk ⊗Q = ∂iP
′ • (fa ⊗ 1⊗ 1)− fa ⊗ fi(a + k)fk−1 ⊗Q′

By induction over m we can get any monomial Q.
The first isomorphism follows, because one can add up these monomials and mul-

tiply them with elements of Rn by definition of the action of Dn.

12 Remark. Now one takes a as the smallest negative integer root of bI
f (s). If no

such number exists, then set a := −1. With these choices the prerequisite of the last
theorem are fulfilled.

5



Conclusion

Now the part to compute the localisation are assembled:

13 Algorithm. Input: f ∈ Rn, M = Dn/I holonomic and f -saturated
Output: J E Dn (by generators) and a ∈ Z with Rn[f−1]⊗Rn M ∼= Dn/J , where

Rn[f−1]⊗Rn M is generated by fa ⊗ 1.
Determine J I(f s) as in section 1.
Determine bI

f (s) as in section 2.
Find the smallest integer root a of bI

f (s) using rational factorisation or by testing
(there are bounds depending on coeffcients for roots of a polynomial). If no such root
exisits, set a := −1.

Replace s by a in each generator of J I(f s) and return these elements (calling them
J) together with a.

References

[1] V. Levandovskyy G.-M. Greuel and H. Schönemann. Singular::Plural
2.1. A Computer Algebra System for Noncommutative Polynomial Al-
gebras, Centre for Computer Algebra, University of Kaiserslautern, 2003.
http://www.singular.uni-kl.de/plural.

[2] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Al-
gebra System for Polynomial Computations, Centre for Computer Algebra, Uni-
versity of Kaiserslautern, 2005. http://www.singular.uni-kl.de.

[3] T. Oaku and N. Takayama. An algorithm for de rham cohomology groups of the
complement of an affine variety via 89 d-module computation, 1998.

[4] Toshinori Oaku, Nobuki Takayama, and Uli Walther. A localization algorithm for
d-modules. Journal of Symbolic Computation, 29(4-5):721–728, 2000.

[5] Bernd Sturmfels. Computations in Algebraic Geometry with Macaulay 2. Springer,
October 2001.

[6] U. Walther. Algorithmic computation of local cohomology modules and the co-
homological dimension of algebraic varieties.

6


