(A very personal view on) non-commutative Gröbner bases for Weyl, shift and their homogenized algebras

Viktor Levandovskyy

RWTH Aachen, Germany

08.11.2007, RWTH

Plan of Attack

Roadmap

- monomial orderings on $\mathbb{K}[\mathbf{x}]$ and \mathbb{N}^n
- Gröbner bases in $\mathbb{K}[\mathbf{x}]$
- Weyl, shift and homogenized algebras
- generalized framework: G-algebras
- left Gröbner bases in G-algebras
- different notations concerning GB
- application: GK dimension

Preliminaries: Monomials and Monoideals

Let \mathbb{K} be a field and R be a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$. R is infinite dimensional over \mathbb{K} , the \mathbb{K} -basis of R consists of $\{x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n} \mid \alpha_i \in \mathbb{N}\}$. We call such elements **monomials** of R. There is 1–1 correspondence

$$\mathsf{Mon}(R) \ni x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n) = \alpha \in \mathbb{N}^n.$$

 \mathbb{N}^n is a monoid with the neutral element $\overline{0} = (0, ..., 0)$ and the only operation +. A subset $S \subseteq \mathbb{N}^n$ is called a (additive) **monoid ideal** (monoideal), if $\forall \alpha \in S, \forall \beta \in \mathbb{N}^n$ we have $\alpha + \beta \in S$.

Lemma (Dixon, 1913)

Every monoideal in \mathbb{N}^n is finitely generated. That is, for any $S \subseteq \mathbb{N}^n$ there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{N}^n$, such that $S = {}_{\mathbb{N}^n} \langle \alpha_1, \ldots, \alpha_m \rangle$.

(日)

Orderings

Definition

a total ordering ≺ on Nⁿ is called a well–ordering, if
 ∀F ⊆ Nⁿ there exists a minimal element of F, in particular ∀ a ∈ Nⁿ, 0 ≺ a

an ordering ≺ is called a monomial ordering on *R*, if
 ∀α, β ∈ Nⁿ α ≺ β ⇒ x^α ≺ x^β

 $\forall \alpha, \beta, \gamma \in \mathbb{N}^n \text{ such that } x^{\alpha} \prec x^{\beta} \text{ we have } x^{\alpha+\gamma} \prec x^{\beta+\gamma}.$

Any f ∈ R \ {0} can be written uniquely as f = cx^α + f', with c ∈ K* and x^{α'} ≺ x^α for any non-zero term c'x^{α'} of f'. We define lm(f) = x^α, the leading monomial of f lc(f) = c, the leading coefficient of f lex(f) = α, the leading exponent of f.

-

Gröbner Basis: Preparations

From now on, we assume that a given ordering is a **well-ordering**.

Definition

We say that monomial x^{α} **divides** monomial x^{β} , if $\alpha_i \leq \beta_i \quad \forall i = 1 \dots n$. We use the notation $x^{\alpha} \mid x^{\beta}$.

It means that x^{β} is **reducible** by x^{α} , that is $\beta \subset \mathbb{N}^n \langle \alpha \rangle$. Equivalently, there exists $\gamma \in \mathbb{N}^n$, such that $\beta = \alpha + \gamma$. It also means that $x^{\beta} = x^{\alpha} x^{\gamma}$.

Definition

Let \prec be a monomial ordering on R, $I \subset R$ be an ideal and $G \subset I$ be a finite subset. *G* is called a **Gröbner basis** of *I*, if $\forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $\text{Im}(g) \mid \text{Im}(f)$.

(日)

Characterizations of Gröbner Bases

Definition

Let S be any subset of R.

- We define a monoideal of leading exponents L(S) ⊆ Nⁿ to be a Nⁿ-monoideal L(S) = Nⁿ⟨α | ∃s ∈ S, lex(s) = α⟩, generated by the leading exponents of elements of S.
- *L*(*S*), the span of leading monomials of *S*, is defined to be the *K*−vector space, spanned by the set {*x^α* | *α* ∈ *L*(*S*)} ⊆ *R*.

Equivalences

- G is a Gröbner basis of I ⇔ ∀ f ∈ I \ {0} there exists a g ∈ G satisfying lm(g) | lm(f),
- *G* is a Gröbner basis of $I \Leftrightarrow L(G) = L(I)$ as \mathbb{K} -vector spaces,
- *G* is a Gröbner basis of $I \Leftrightarrow \mathcal{L}(G) = \mathcal{L}(I)$ as \mathbb{N}^n -monoideals.

(日)

Weyl and shift algebras

Let \mathbb{K} be a field and R be a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$.

Weyl
$$D = D(R) = \mathbb{K}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \mid \{\partial_j x_i = x_i \partial_j + \delta_{ij}\}\rangle.$$

The \mathbb{K} -basis of D is

$$\{x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n}\partial_1^{\beta_1}\partial_2^{\beta_2}\ldots \partial_n^{\beta_n} \mid \alpha_i \ge 0, \beta_j \ge 0\}$$

Shift $S = S(R) = \mathbb{K}\langle y_1, \ldots, y_n, s_1, \ldots, s_n \mid \{s_j y_i = y_i s_j + \delta_{ij} \cdot s_j\}\rangle$.

The \mathbb{K} -basis of S is

$$\{y_1^{\alpha_1}y_2^{\alpha_2}\dots y_n^{\alpha_n}s_1^{\beta_1}s_2^{\beta_2}\dots s_n^{\beta_n} \mid \alpha_i \ge 0, \beta_j \ge 0\}$$

- 1

イロト イポト イヨト イヨト

Weyl and shift algebras under homogenization

Let *w* be the weight vector $(u_1, \ldots, u_n, v_1, \ldots, v_n)$, $u_i + v_i \ge 0$. Assigning weights u_i to x_i and v_i to ∂_i , we introduce a new commutative variable *h* and homogenize the relation into $\partial_i x_i = x_i \partial_i + h^{u_i + v_j}$.

$$\mathcal{D}_{w}^{(h)}(\mathcal{R}) = \mathbb{K}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n, \mathbf{h} \mid \{\partial_j x_i = x_i \partial_j + \delta_{ij} \mathbf{h}^{u_i + v_j}\} \rangle.$$

The \mathbb{K} -basis of D is

$$\{x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}\partial_1^{\beta_1}\partial_2^{\beta_2}\dots \partial_n^{\beta_n}\mathbf{h}^{\gamma} \mid \alpha_j \ge \mathbf{0}, \beta_j \ge \mathbf{0}, \gamma \ge \mathbf{0}\}$$

Assigning weights u_i to y_i and v_i to s_i , we introduce a new commutative variable *h* and homogenize the relation into $s_j y_i = y_i s_j + \delta_{ij} \cdot s_j h^{u_j}$.

$$S^{(h)}_{w}(R) = \mathbb{K}\langle y_1, \ldots, y_n, s_1, \ldots, s_n, \mathbf{h} \mid \{s_j y_i = y_i s_j + \delta_{ij} \cdot s_j \mathbf{h}^{u_j}\} \rangle.$$

The \mathbb{K} -basis of S is

$$\{\boldsymbol{y}_1^{\alpha_1}\boldsymbol{y}_2^{\alpha_2}\dots\boldsymbol{y}_n^{\alpha_n}\boldsymbol{s}_1^{\beta_1}\boldsymbol{s}_2^{\beta_2}\dots\boldsymbol{s}_n^{\beta_n}\boldsymbol{h}^{\gamma} \mid \alpha_i \geq \boldsymbol{0}, \beta_j \geq \boldsymbol{0}, \gamma \geq \boldsymbol{0}\}$$

Yet another homogenization

Let *w* be the weight vector $(u_1, \ldots, u_n, v_1, \ldots, v_n)$, such that $u_i + v_i = 0$, in other words $u_i = -w_i$, $v_i = w_i$.

Since we need nonnegative weights for Gröbner basis, we do the following. We introduce a new commutative variable *h* and homogenize the relation into $\partial_j(x_j h^{w_j}) = (x_j h^{w_j})\partial_j + h^{w_j}$. In what follows, we denote $x_j h^{w_j}$ by x_j , it has weight 0.

The examples before suggest a more general framework.

Computational Objects

Suppose we are given the following data

• a field \mathbb{K} and a commutative ring $R = \mathbb{K}[x_1, \ldots, x_n]$,

② a set
$$C = \{c_{ij}\} \subset \mathbb{K}^*, \ 1 \leq i < j \leq n$$

3 a set
$$D = \{d_{ij}\} \subset R$$
, $1 \le i < j \le n$

Assume, that there exists a monomial well–ordering \prec on R such that

$$\forall 1 \leq i < j \leq n, \ \operatorname{Im}(d_{ij}) \prec x_i x_j.$$

The Construction

To the data (R, C, D, \prec) we associate an algebra

$$\mathbf{A} = \mathbb{K} \langle \mathbf{x}_1, \dots, \mathbf{x}_n \mid \{ \mathbf{x}_j \mathbf{x}_i = \mathbf{c}_{ij} \mathbf{x}_i \mathbf{x}_j + \mathbf{d}_{ij} \} \ \forall 1 \le i < j \le n \rangle$$

-

PBW Bases and *G***–algebras**

Define the (i, j, k)-nondegeneracy condition to be the polynomial

 $NDC_{ijk} := c_{ik}c_{jk} \cdot d_{ij}x_k - x_kd_{ij} + c_{jk} \cdot x_jd_{ik} - c_{ij} \cdot d_{ik}x_j + d_{jk}x_i - c_{ij}c_{ik} \cdot x_id_{jk}.$

Theorem (Levandovskyy) $A = A(R, C, D, \prec)$ has a PBW basis $\{x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}\}$ if and only if

 $\forall 1 \le i < j < k \le n$, NDC_{ijk} reduces to 0 w.r.t. relations

Easy Check $NDC_{ijk} = x_k(x_jx_i) - (x_kx_j)x_i$.

Definition

An algebra $A = A(R, C, D, \prec)$, where nondegeneracy conditions vanish, is called **a** *G***-algebra** (in *n* variables).

G-algebras

We call *A* a *G*–algebra of Lie type, if the relations of *A* are of the form $\{x_jx_i = x_ix_j + d_{ij}\} \forall 1 \le i < j \le n$ and the conditions above hold.

Theorem (Properties of *G***–algebras)**

Let A be a G-algebra in n variables. Then

- A is left and right Noetherian,
- A is an integral domain,
- the Gel'fand–Kirillov dimension over \mathbb{K} is GK. dim(A) = n,
- the global homological dimension gl. dim $(A) \leq n$,
- the Krull dimension $Kr.dim(A) \leq n$.

-

Gröbner Bases for Modules I

Let $S \subseteq R^r$ be a left submodule of the free module R^r . Then, it is given via its generators (vectors of R^r), or via a matrix with *r* rows.

Definition

•
$$x^{\alpha}e_i$$
 divides $x^{\beta}e_j$, iff $i = j$ and $x^{\alpha} \mid x^{\beta}$.

Let ≺ be a monomial module ordering on R^r, I ⊂ R be a submodule and G ⊂ I be a finite subset. G is called a Gröbner basis of I, if ∀ f ∈ I ∖ {0}, ∃g ∈ G satisfying Im(g) | Im(f).

Denote $\mathbb{N}_r := \{1, 2, ..., r\} \subset \mathbb{N}$. The action of \mathbb{N}^n on $\mathbb{N}_r \times \mathbb{N}^n$, given by $\gamma : (i, \alpha) \mapsto (i, \alpha + \gamma)$ makes $\mathbb{N}_r \times \mathbb{N}^n$ an \mathbb{N}^n -monoideal (wrt addition).

Definition. Let *S* **be any subset of** *R*.

- We define a monoideal of leading exponents L(S) ⊆ N_r × Nⁿ to be a Nⁿ-monoideal L(S) = Nⁿ⟨(i, α) | ∃s ∈ S, ≤ (s) = x^αe_i⟩.
- L(S), the span of leading monomials of S, is defined to be the K−vector space, spanned by the set {x^αe_i | (i, α) ∈ L(S)} ⊆ R^r.

Gröbner Bases for Modules II

G is a Gröbner basis of $l \Leftrightarrow$

• $\forall f \in I \setminus \{0\}$ there exists a $g \in G$ satisfying $Im(g) \mid Im(f)$,

- L(G) = L(I) as \mathbb{K} -vector spaces,
- $\mathcal{L}(G) = \mathcal{L}(I)$ as \mathbb{N}^n -monoideals.

A subset $S \subset R^r$ is called **minimal**, if $0 \notin S$ and $\text{Im}(s) \notin L(S \setminus \{s\})$ for all $s \in S$.

A subset $S \subset R^r$ is called **reduced**, if $0 \notin S$, and if for each $s \in S$, s is reduced with respect to $S \setminus \{s\}$, and, moreover, s - lc(s) lm(s) is reduced with respect to S.

It means that for each $s \in S \subset R^r$, Im(s) does not divide any monomial of every element of *S* except itself.

<ロ> <同> <同> < 同> < 日> < 同> < ○<</p>

Gröbner Bases for Modules III

Definition

Denote by G the set of all finite ordered subsets of R^r .

• A map NF : $R^r \times \mathcal{G} \to R^r$, $(f, G) \mapsto NF(f|G)$, is called a **left** normal form on R^r if, for all $f \in R^r$, $G \in \mathcal{G}$,

(i)
$$\mathsf{NF}(0 | G) = 0$$
,
(ii) $\mathsf{NF}(f | G) \neq 0 \Rightarrow \mathsf{Im}(\mathsf{NF}(f|G)) \notin L(G)$,
(iii) $f - \mathsf{NF}(f | G) \in {}_{R}\langle G \rangle$.

NF is called a **reduced n. f.** if NF(f|G) is reduced wrt G.

2 Let $G = \{g_1, \ldots, g_s\} \in \mathcal{G}$. A representation of $f \in R$,

$$f - \mathsf{NF}(f \mid G) = \sum_{i=1}^{s} a_i g_i, \ a_i \in R,$$

satisfying $\operatorname{Im}(\sum_{i=1}^{s} a_i g_i) \ge \operatorname{Im}(a_i g_i)$ for all $i = 1 \dots s$ such that $a_i g_i \ne 0$ is called a **left standard representation** of *f* (wrt *G*).

Normal Form: Properties

Let A be a G-algebra.

Lemma

Let $I \subset A^r$ be a left submodule, $G \subset I$ be a Gröbner basis of I and NF($\cdot|G$) be a left normal form on A^r with respect to G.

- For any $f \in A^r$ we have $f \in I \iff NF(f \mid G) = 0$.
- 2 If $J \subset A^r$ is a left submodule with $I \subset J$, then L(I) = L(J) implies I = J. In particular, G generates I as a left A–module.
- If NF($\cdot|G$) is a reduced left normal form, then it is unique.

-

Buchberger's Criterion Theorem

Let A be a G-algebra of Lie type.

Definition

Let $f, g \in A^r$ with $\operatorname{Im}(f) = x^{\alpha} e_i$ and $\operatorname{Im}(g) = x^{\beta} e_j$. Set $\gamma = \mu(\alpha, \beta)$, $\gamma_i := \max(\alpha_i, \beta_i)$ and define the left **s–polynomial** of (f, g) to be LeftSpoly $(f, g) := x^{\gamma-\alpha} f - \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} x^{\gamma-\beta} g$ if i = j and 0 otherwise.

For a general *G*-algebra the formula for spoly is more involved.

Theorem

Let $I \subset A^r$ be a left submodule and $G = \{g_1, \ldots, g_s\}$, $g_i \in I$. Let LeftNF($\cdot | G$) be a left normal form on A^r w.r.t G. Then the following are equivalent:

- G is a left Gröbner basis of I,
- 2 LeftNF(f|G) = 0 for all $f \in I$,

③ each $f \in I$ has a left standard representation with respect to G,

• LeftNF(LeftSpoly(g_i, g_j)|G) = 0 for $1 \le i, j \le s$.

Left Normal Form: Algorithm

Leftnf(f, G)

- Input : $f \in A^r$, $G \in \mathcal{G}$;
- Output: $h \in A^r$, a left normal form of f with respect to G.
- *h* := *f*;
- while $((h \neq 0) \text{ and } (G_h = \{g \in G : \operatorname{Im}(g) | \operatorname{Im}(h)\} \neq \emptyset))$ choose any $g \in G_h$; $h := \operatorname{LeftSpoly}(h, g)$;

• return *h*;

э.

Buchberger's Gröbner Basis Algorithm

Let \prec be a fixed well-ordering on the *G*-algebra *A*.

GRÖBNERBASIS(G,LEFTNF)

- Input: Left generating set $G \in \mathcal{G}$
- Output: $S \in G$, a left Gröbner basis of $I = {}_{A}\langle G \rangle \subset A^{r}$.

```
• S = G;
```

•
$$P = \{(f,g)|f,g \in S\} \subset S \times S;$$

• while
$$(P \neq \emptyset)$$

choose $(f,g) \in P$;
 $P = P \smallsetminus \{(f,g)\};$
 $h = \text{LEFTNF}(\text{LeftSpoly}(f,g)|S);$
if $(h \neq 0)$
 $P = P \cup \{(h,f)|f \in S\};$
 $S = S \cup h;$

• return S;

э.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Criteria for detecting useless critical pairs

Let *A* be an associative \mathbb{K} -algebra. We use the following notations: [a, b] := ab - ba, a *commutator* or a *Lie bracket* of $a, b \in A$. $\forall a, b, c \in A$ we have [a, b] = -[b, a] and [ab, c] = a[b, c] + [a, c]b. The following result is due to Levandovskyy and Schönemann (2003).

Generalized Product Criterion

Let *A* be a *G*–algebra of Lie type (that is, all $c_{ij} = 1$). Let $f, g \in A$. Suppose that Im(f) and Im(g) have no common factors, then $spoly(f,g) \rightarrow_{\{f,g\}} [f,g]$.

The following classical criterion generalizes to *G*-algebras.

Chain Criterion

If (f_i, f_j) , (f_i, f_k) and (f_j, f_k) are in the set of pairs *P*, denote $\text{Im}(f_{\nu}) = x^{\alpha_{\nu}}$. If $x^{\alpha_j} | \text{Icm}(x^{\alpha_i}, x^{\alpha_k})$ holds, then we can delete (f_i, f_k) from *P*.

・ロッ ・ 『 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

Gel'fand-Kirillov dimension

Let *R* be an associative \mathbb{K} -algebra with generators x_1, \ldots, x_m .

A degree filtration

Consider the vector space $V = \mathbb{K}x_1 \oplus \ldots \oplus \mathbb{K}x_m$. Set $V_0 = \mathbb{K}$, $V_1 = \mathbb{K} \oplus V$ and $V_{n+1} = V_n \oplus V^{n+1}$. For any fin. gen. left *R*-module *M*, there exists a fin.-dim. subspace $M_0 \subset M$ such that $RM_0 = M$. An ascending filtration on *M* is defined by $\{H_n := V_n M_0, n \ge 0\}$.

Definition

The **Gel'fand–Kirillov dimension** of *M* is defined to be

$$\mathsf{GK}.\operatorname{dim}(M) = \lim \sup_{n \to \infty} \log_n(\operatorname{dim}_{\mathbb{K}} H_n)$$

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Gel'fand–Kirillov Dimension: Examples

Let deg $x_i = 1$, consider filtrations up to degree d. We have $V_d = \{f \mid \deg f = d\}$ and $V^d = \{f \mid \deg f \leq d\}$.

Lemma

Let A be a \mathbb{K} -algebra with PBW basis $\{x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n} \mid \alpha_i \ge 0\}$. Then GK. dim(A) = n.

Proof.

dim
$$V_d = \binom{d+n-1}{n-1}$$
, dim $V^d = \binom{d+n}{n}$. Thus $\binom{d+n}{n} = \frac{(d+n)\dots(d+1)}{n!} = \frac{d^n}{n!} +$
l.o.t, so we have GK. dim $(A) = \limsup_{d\to\infty} \log_d \binom{d+n}{n} = n$.

 $T = \mathbb{K}\langle x_1, \dots, x_n \rangle$ dim $V_d = n^d$, dim $V^d = \frac{n^{d+1}-1}{n-1}$. Since $\frac{n^{d+1}-1}{n-1} > n^d$, we are dealing with so-caled **exponential growth**. In particular, $\log_d n^d = d \log_d n = \frac{d}{\log_n d} \to \infty$, $d \to \infty$. Hence, GK. dim $(T) = \infty$.

Gel'fand–Kirillov Dimension for Modules

There is an algorithm by Gomez-Torrecillaz et.al., which computes Gel'fand–Kirillov dimension for finitely presented modules over *G*-algebras.

$\mathbf{GKDIM}(F)$

Let *A* be a *G*-algebra in variables x_1, \ldots, x_n .

- Input: Left generating set $F = \{f_1, \ldots, f_m\} \subset A^r$
- Output: $k \in \mathbb{N}$, k = GK. dim (A^r/M) , where $M = {}_A\langle F \rangle \subseteq A^r$.
- $G = \text{LeftGröbnerBasis}(F) = \{g_1, \dots, g_t\};$
- $L = \{ Im(g_i) = x^{\alpha_i} e_s \mid 1 \le i \le t \};$

•
$$N = {}_{K[x_1,\ldots,x_n]} \langle L \rangle;$$

• return Kr. dim $(K[x_1,\ldots,x_n]^r/N);$

-

Ring-theoretic Properties of Weyl and shift algebras

gl. dim(A), the global homological dimension of A

- gl. dim(S) = 2n,
- if char $\mathbb{K} = 0$, gl. dim(D) = n,
- if char $\mathbb{K} = p > 0$, gl. dim(D) = 2n.

 $Z(A) = \{z \in A \mid za = az \ \forall a \in A\}$, the center of A

- if char $\mathbb{K} = 0$, $Z(D) = Z(S) = \mathbb{K}$,
- if char $\mathbb{K} = p > 0$, $Z(D) = \{x_i^p, \partial_i^p\}$.
- if char $\mathbb{K} = p > 0$, $Z(S) = \{y_i^p y_i, s_i^p\}$.

If char $\mathbb{K} = 0$, D(R) has no proper two–sided ideals. In S(R), $I_{\gamma} = {}_{S}\langle \{s_{i}, y_{i} - \gamma_{i}\} \rangle_{S}$ is a family of such ideals for $\gamma = (\gamma_{1}, \dots, \gamma_{n}) \in \mathbb{K}^{n}$.

Thank you for your attention!

RWITHAACHEN UNIVERSITY

SINGULAR PLURAL

Please visit the SINGULAR homepage

• http://www.singular.uni-kl.de/

Viktor Levandovskyy	(RWTH)
---------------------	--------

・ 同 ト ・ ヨ ト ・ ヨ