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Plan of Attack

Roadmap
monomial orderings on K[x] and Nn

Gröbner bases in K[x]

Weyl, shift and homogenized algebras
generalized framework: G-algebras
left Gröbner bases in G-algebras
different notations concerning GB
application: GK dimension
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Preliminaries: Monomials and Monoideals

Let K be a field and R be a commutative ring R = K[x1, . . . , xn].
R is infinite dimensional over K, the K–basis of R consists of
{xα1

1 xα2
2 . . . xαn

n | αi ∈ N}. We call such elements monomials of R.
There is 1–1 correspondence

Mon(R) 3 xα = xα1
1 xα2

2 . . . xαn
n 7→ (α1, α2, . . . , αn) = α ∈ Nn.

Nn is a monoid with the neutral element 0 = (0, . . . ,0) and the only
operation +. A subset S ⊆ Nn is called a (additive) monoid ideal
(monoideal), if ∀ α ∈ S, ∀ β ∈ Nn we have α+ β ∈ S.

Lemma (Dixon, 1913)
Every monoideal in Nn is finitely generated. That is, for any S ⊆ Nn

there exist α1, . . . , αm ∈ Nn, such that S = Nn〈α1, . . . , αm〉.
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Orderings

Definition
1 a total ordering ≺ on Nn is called a well–ordering, if

I ∀F ⊆ Nn there exists a minimal element of F ,
in particular ∀ a ∈ Nn, 0 ≺ a

2 an ordering ≺ is called a monomial ordering on R, if
I ∀α, β ∈ Nn α ≺ β ⇒ xα ≺ xβ

I ∀α, β, γ ∈ Nn such that xα ≺ xβ we have xα+γ ≺ xβ+γ .

3 Any f ∈ R \ {0} can be written uniquely as f = cxα + f ′, with
c ∈ K∗ and xα

′ ≺ xα for any non–zero term c′xα
′

of f ′. We define
lm(f ) = xα, the leading monomial of f
lc(f ) = c, the leading coefficient of f
lex(f ) = α, the leading exponent of f .
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Gröbner Basis: Preparations

From now on, we assume that a given ordering is a well-ordering.

Definition

We say that monomial xα divides monomial xβ, if αi ≤ βi ∀i = 1 . . . n.
We use the notation xα | xβ.

It means that xβ is reducible by xα, that is β ⊂ Nn〈α〉. Equivalently,
there exists γ ∈ Nn, such that β = α+ γ. It also means that xβ = xαxγ .

Definition
Let ≺ be a monomial ordering on R, I ⊂ R be an ideal and G ⊂ I be a
finite subset. G is called a Gröbner basis of I,
if ∀ f ∈ I r {0} there exists a g ∈ G satisfying lm(g) | lm(f ).
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Characterizations of Gröbner Bases

Definition
Let S be any subset of R.

We define a monoideal of leading exponents L(S) ⊆ Nn to be a
Nn–monoideal L(S) = Nn〈α | ∃s ∈ S, lex(s) = α〉, generated by
the leading exponents of elements of S.
L(S), the span of leading monomials of S, is defined to be the
K–vector space, spanned by the set {xα | α ∈ L(S)} ⊆ R.

Equivalences
G is a Gröbner basis of I ⇔ ∀ f ∈ I r {0} there exists a g ∈ G
satisfying lm(g) | lm(f ),
G is a Gröbner basis of I ⇔ L(G) = L(I) as K–vector spaces,
G is a Gröbner basis of I ⇔ L(G) = L(I) as Nn–monoideals.
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Weyl and shift algebras

Let K be a field and R be a commutative ring R = K[x1, . . . , xn].

Weyl D = D(R) = K〈x1, . . . , xn, ∂1, . . . , ∂n | {∂jxi = xi∂j + δij}〉.

The K–basis of D is

{xα1
1 xα2

2 . . . xαn
n ∂β1

1 ∂β2
2 . . . ∂βn

n | αi ≥ 0, βj ≥ 0}

Shift S = S(R) = K〈y1, . . . , yn, s1, . . . , sn | {sjyi = yisj + δij · sj}〉.

The K–basis of S is

{yα1
1 yα2

2 . . . yαn
n sβ1

1 sβ2
2 . . . sβn

n | αi ≥ 0, βj ≥ 0}
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Weyl and shift algebras under homogenization
Let w be the weight vector (u1, . . . ,un, v1, . . . , vn), ui + vi ≥ 0.
Assigning weights ui to xi and vi to ∂i , we introduce a new commutative
variable h and homogenize the relation into ∂jxj = xj∂j + huj+vj .

D(h)
w (R) = K〈x1, . . . , xn, ∂1, . . . , ∂n,h | {∂jxi = xi∂j + δijhui+vj}〉.

The K–basis of D is

{xα1
1 xα2

2 . . . xαn
n ∂β1

1 ∂β2
2 . . . ∂βn

n hγ | αi ≥ 0, βj ≥ 0, γ ≥ 0}

Assigning weights ui to yi and vi to si , we introduce a new commutative
variable h and homogenize the relation into sjyi = yisj + δij · sjhuj .

S(h)
w (R) = K〈y1, . . . , yn, s1, . . . , sn,h | {sjyi = yisj + δij · sjhuj}〉.

The K–basis of S is

{yα1
1 yα2

2 . . . yαn
n sβ1

1 sβ2
2 . . . sβn

n hγ | αi ≥ 0, βj ≥ 0, γ ≥ 0}
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Yet another homogenization

Let w be the weight vector (u1, . . . ,un, v1, . . . , vn), such that
ui + vi = 0, in other words ui = −wi , vi = wi .

Since we need nonnegative weights for Gröbner basis, we do the
following. We introduce a new commutative variable h and
homogenize the relation into ∂j(xjhwj ) = (xjhwj )∂j + hwj . In what
follows, we denote xjhwj by xj , it has weight 0.

The examples before suggest a more general framework.
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Computational Objects

Suppose we are given the following data
1 a field K and a commutative ring R = K[x1, . . . , xn],
2 a set C = {cij} ⊂ K∗, 1 ≤ i < j ≤ n
3 a set D = {dij} ⊂ R, 1 ≤ i < j ≤ n

Assume, that there exists a monomial well–ordering ≺ on R such that

∀1 ≤ i < j ≤ n, lm(dij) ≺ xixj .

The Construction
To the data (R,C,D,≺) we associate an algebra

A = K〈x1, . . . , xn | {xjxi = cijxixj + dij} ∀1 ≤ i < j ≤ n〉
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PBW Bases and G–algebras

Define the (i , j , k)–nondegeneracy condition to be the polynomial

NDCijk := cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk .

Theorem (Levandovskyy)

A = A(R,C,D,≺) has a PBW basis {xα1
1 xα2

2 . . . xαn
n } if and only if

∀ 1 ≤ i < j < k ≤ n, NDCijk reduces to 0 w.r.t. relations

Easy Check NDCijk = xk (xjxi)− (xkxj)xi .

Definition
An algebra A = A(R,C,D,≺), where nondegeneracy conditions
vanish, is called a G–algebra (in n variables).
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G–algebras

We call A a G–algebra of Lie type, if the relations of A are of the form
{xjxi = xixj + dij} ∀1 ≤ i < j ≤ n and the conditions above hold.

Theorem (Properties of G–algebras)
Let A be a G–algebra in n variables. Then

A is left and right Noetherian,
A is an integral domain,
the Gel’fand–Kirillov dimension over K is GK.dim(A) = n,
the global homological dimension gl.dim(A) ≤ n,
the Krull dimension Kr.dim(A) ≤ n.
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Gröbner Bases for Modules I
Let S ⊆ Rr be a left submodule of the free module Rr . Then, it is given
via its generators (vectors of Rr ), or via a matrix with r rows.

Definition

xαei divides xβej , iff i = j and xα | xβ.
Let ≺ be a monomial module ordering on Rr , I ⊂ R be a
submodule and G ⊂ I be a finite subset. G is called a Gröbner
basis of I, if ∀ f ∈ I r {0}, ∃g ∈ G satisfying lm(g) | lm(f ).

Denote Nr := {1,2, . . . , r} ⊂ N. The action of Nn on Nr × Nn, given by
γ : (i , α) 7→ (i , α+ γ) makes Nr × Nn an Nn–monoideal (wrt addition).

Definition. Let S be any subset of R.
We define a monoideal of leading exponents L(S) ⊆ Nr × Nn to
be a Nn–monoideal L(S) = Nn〈(i , α) | ∃s ∈ S, ≤ (s) = xαei〉.
L(S), the span of leading monomials of S, is defined to be the
K–vector space, spanned by the set {xαei | (i , α) ∈ L(S)} ⊆ Rr .
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Gröbner Bases for Modules II

G is a Gröbner basis of I ⇔
∀ f ∈ I r {0} there exists a g ∈ G satisfying lm(g) | lm(f ),
L(G) = L(I) as K–vector spaces,
L(G) = L(I) as Nn–monoideals.

A subset S ⊂ Rr is called minimal, if 0 6∈ S and lm(s) 6∈ L(S r {s}) for
all s ∈ S.

A subset S ⊂ Rr is called reduced, if 0 6∈ S, and if for each s ∈ S, s is
reduced with respect to S r {s}, and, moreover, s − lc(s) lm(s) is
reduced with respect to S.

It means that for each s ∈ S ⊂ Rr , lm(s) does not divide any monomial
of every element of S except itself.

Viktor Levandovskyy (RWTH) NC GB 08.11.2007, RWTH 14 / 25



Gröbner Bases for Modules III
Definition
Denote by G the set of all finite ordered subsets of Rr .

1 A map NF : Rr × G → Rr , (f ,G) 7→ NF(f |G), is called a left
normal form on Rr if, for all f ∈ Rr , G ∈ G,

(i) NF(0 | G) = 0,
(ii) NF(f | G) 6= 0 ⇒ lm

(
NF(f |G)

)
6∈ L(G),

(iii) f − NF(f | G) ∈ R〈G〉.

NF is called a reduced n. f. if NF(f |G) is reduced wrt G.
2 Let G = {g1, . . . ,gs} ∈ G. A representation of f ∈ R,

f − NF(f | G) =
s∑

i=1

aigi , ai ∈ R,

satisfying lm(
∑s

i=1 aigi) ≥ lm(aigi) for all i = 1 . . . s such that
aigi 6= 0 is called a left standard representation of f (wrt G).
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Normal Form: Properties

Let A be a G-algebra.

Lemma
Let I ⊂ Ar be a left submodule, G ⊂ I be a Gröbner basis of I and
NF(·|G) be a left normal form on Ar with respect to G.

1 For any f ∈ Ar we have f ∈ I ⇐⇒ NF(f | G) = 0.
2 If J ⊂ Ar is a left submodule with I ⊂ J, then L(I) = L(J) implies

I = J. In particular, G generates I as a left A–module.
3 If NF(·|G) is a reduced left normal form, then it is unique.
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Buchberger’s Criterion Theorem
Let A be a G-algebra of Lie type.

Definition

Let f ,g ∈ Ar with lm(f ) = xαei and lm(g) = xβej . Set γ = µ(α, β),
γi := max(αi , βi) and define the left s–polynomial of (f ,g) to be
LeftSpoly(f ,g) := xγ−αf − lc(f )

lc(g)x
γ−βg if i = j and 0 otherwise.

For a general G-algebra the formula for spoly is more involved.

Theorem
Let I ⊂ Ar be a left submodule and G = {g1, . . . ,gs}, gi ∈ I. Let
LeftNF(·|G) be a left normal form on Ar w.r.t G. Then the following are
equivalent:

1 G is a left Gröbner basis of I,
2 LeftNF(f |G) = 0 for all f ∈ I,
3 each f ∈ I has a left standard representation with respect to G,
4 LeftNF

(
LeftSpoly(gi ,gj)|G

)
= 0 for 1 ≤ i , j ≤ s.

Viktor Levandovskyy (RWTH) NC GB 08.11.2007, RWTH 17 / 25



Left Normal Form: Algorithm

LEFTNF(f ,G)

◦ Input : f ∈ Ar , G ∈ G;
◦ Output: h ∈ Ar , a left normal form of f with respect to G.

h := f ;
while ( (h 6= 0) and (Gh = {g ∈ G : lm(g) | lm(h)} 6= ∅) )

choose any g ∈ Gh;
h := LeftSpoly(h,g);

return h;
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Buchberger’s Gröbner Basis Algorithm
Let ≺ be a fixed well-ordering on the G-algebra A.

GRÖBNERBASIS(G,LEFTNF)

◦ Input: Left generating set G ∈ G
◦ Output: S ∈ G, a left Gröbner basis of I = A〈G〉 ⊂ Ar .

S = G;
P = {(f ,g)|f ,g ∈ S} ⊂ S × S;
while (P 6= ∅)

choose (f ,g) ∈ P;
P = P r {(f ,g)};
h = LEFTNF

(
LeftSpoly(f ,g)|S

)
;

if (h 6= 0)
P = P ∪ {(h, f )|f ∈ S};
S = S ∪ h;

return S;
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Criteria for detecting useless critical pairs

Let A be an associative K–algebra. We use the following notations:
[a,b] := ab − ba, a commutator or a Lie bracket of a,b ∈ A.
∀a,b, c ∈ A we have [a,b] = −[b,a] and [ab, c] = a[b, c] + [a, c]b.
The following result is due to Levandovskyy and Schönemann (2003).

Generalized Product Criterion
Let A be a G–algebra of Lie type (that is, all cij = 1). Let f ,g ∈ A.
Suppose that lm(f ) and lm(g) have no common factors, then
spoly(f ,g)→{f ,g} [f ,g].

The following classical criterion generalizes to G-algebras.

Chain Criterion
If (fi , fj), (fi , fk ) and (fj , fk ) are in the set of pairs P, denote lm(fν) = xαν .
If xαj | lcm(xαi , xαk ) holds, then we can delete (fi , fk ) from P.
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Gel’fand–Kirillov dimension

Let R be an associative K–algebra with generators x1, . . . , xm.

A degree filtration
Consider the vector space V = Kx1 ⊕ . . .⊕Kxm.
Set V0 = K, V1 = K⊕ V and Vn+1 = Vn ⊕ V n+1.
For any fin. gen. left R–module M, there exists a fin.–dim. subspace
M0 ⊂ M such that RM0 = M.
An ascending filtration on M is defined by {Hn := VnM0,n ≥ 0}.

Definition
The Gel’fand–Kirillov dimension of M is defined to be

GK.dim(M) = lim sup
n→∞

logn(dimK Hn)
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Gel’fand–Kirillov Dimension: Examples
Let deg xi = 1, consider filtrations up to degree d . We have
Vd = {f | deg f = d} and V d = {f | deg f ≤ d}.

Lemma
Let A be a K-algebra with PBW basis {xα1

1 xα2
2 . . . xαn

n | αi ≥ 0}. Then
GK.dim(A) = n.

Proof.

dim Vd =
(d+n−1

n−1

)
,dim V d =

(d+n
n

)
. Thus

(d+n
n

)
= (d+n)...(d+1)

n! = dn

n! +

l.o.t, so we have GK.dim(A) = lim supd→∞ logd
(d+n

n

)
= n.

T = K〈x1, . . . , xn〉

dim Vd = nd ,dim V d = nd+1−1
n−1 .

Since nd+1−1
n−1 > nd , we are dealing with so–caled exponential growth.

In particular, logd nd = d logd n = d
logn d →∞,d →∞.

Hence, GK.dim(T ) =∞.
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Gel’fand–Kirillov Dimension for Modules

There is an algorithm by Gomez-Torrecillaz et.al., which computes
Gel’fand–Kirillov dimension for finitely presented modules over
G-algebras.

GKDIM(F )

Let A be a G–algebra in variables x1, . . . , xn.
◦ Input: Left generating set F = {f1, . . . , fm} ⊂ Ar

◦ Output: k ∈ N, k = GK.dim(Ar/M), where M = A〈F 〉 ⊆ Ar .
G =LEFTGRÖBNERBASIS(F ) = {g1, . . . ,gt} ;
L = {lm(gi) = xαi es | 1 ≤ i ≤ t};
N = K [x1,...,xn]〈L〉;
return Kr.dim(K [x1, . . . , xn]

r/N);
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Ring-theoretic Properties of Weyl and shift
algebras

gl.dim(A), the global homological dimension of A

gl.dim(S) = 2n,
if char K = 0, gl.dim(D) = n,
if char K = p > 0, gl.dim(D) = 2n.

Z (A) = {z ∈ A | za = az ∀a ∈ A}, the center of A

if char K = 0, Z (D) = Z (S) = K,
if char K = p > 0, Z (D) = {xp

i , ∂
p
i }.

if char K = p > 0, Z (S) = {yp
i − yi , s

p
i }.

If char K = 0, D(R) has no proper two–sided ideals.
In S(R), Iγ = S〈{si , yi − γi}〉S is a family of such ideals for
γ = (γ1, . . . , γn) ∈ Kn.
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Thank you for your attention!

Please visit the SINGULAR homepage
http://www.singular.uni-kl.de/
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