(A very personal view on) non-commutative Gröbner bases for Weyl, shift and their homogenized algebras

Viktor Levandovskyy

RWTH Aachen, Germany
08.11.2007, RWTH

Plan of Attack

Roadmap

- monomial orderings on $\mathbb{K}[\mathbf{x}]$ and \mathbb{N}^{n}
- Gröbner bases in $\mathbb{K}[\mathbf{x}]$
- Weyl, shift and homogenized algebras
- generalized framework: G-algebras
- left Gröbner bases in G-algebras
- different notations concerning GB
- application: GK dimension

Preliminaries: Monomials and Monoideals

Let \mathbb{K} be a field and R be a commutative ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. R is infinite dimensional over \mathbb{K}, the \mathbb{K}-basis of R consists of $\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \mid \alpha_{i} \in \mathbb{N}\right\}$. We call such elements monomials of R.
There is $1-1$ correspondence

$$
\operatorname{Mon}(R) \ni x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\alpha \in \mathbb{N}^{n}
$$

\mathbb{N}^{n} is a monoid with the neutral element $\overline{0}=(0, \ldots, 0)$ and the only operation + . A subset $S \subseteq \mathbb{N}^{n}$ is called a (additive) monoid ideal (monoideal), if $\forall \alpha \in S, \forall \beta \in \mathbb{N}^{n}$ we have $\alpha+\beta \in S$.

Lemma (Dixon, 1913)

Every monoideal in \mathbb{N}^{n} is finitely generated. That is, for any $S \subseteq \mathbb{N}^{n}$ there exist $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}^{n}$, such that $S=\mathbb{N}^{n}\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$.

Orderings

Definition

(1) a total ordering \prec on \mathbb{N}^{n} is called a well-ordering, if
$\forall F \subseteq \mathbb{N}^{n}$ there exists a minimal element of F,
in particular $\forall a \in \mathbb{N}^{n}, 0 \prec a$
(2) an ordering \prec is called a monomial ordering on R, if

$$
\begin{aligned}
& \forall \alpha, \beta \in \mathbb{N}^{n} \alpha \prec \beta \Rightarrow x^{\alpha} \prec x^{\beta} \\
& \forall \alpha, \beta, \gamma \in \mathbb{N}^{n} \text { such that } x^{\alpha} \prec x^{\beta} \text { we have } x^{\alpha+\gamma} \prec x^{\beta+\gamma} .
\end{aligned}
$$

(3) Any $f \in R \backslash\{0\}$ can be written uniquely as $f=c x^{\alpha}+f^{\prime}$, with $c \in \mathbb{K}^{*}$ and $x^{\alpha^{\prime}} \prec x^{\alpha}$ for any non-zero term $c^{\prime} x^{\alpha^{\prime}}$ of f^{\prime}. We define $\operatorname{lm}(f)=x^{\alpha}$, the leading monomial of f $\operatorname{lc}(f)=c, \quad$ the leading coefficient of f lex $(f)=\alpha, \quad$ the leading exponent of f.

Gröbner Basis: Preparations

From now on, we assume that a given ordering is a well-ordering.

Definition

We say that monomial x^{α} divides monomial x^{β}, if $\alpha_{i} \leq \beta_{i} \forall i=1 \ldots n$. We use the notation $x^{\alpha} \mid x^{\beta}$.

It means that x^{β} is reducible by x^{α}, that is $\beta \subset \mathbb{N}^{n}\langle\alpha\rangle$. Equivalently, there exists $\gamma \in \mathbb{N}^{n}$, such that $\beta=\alpha+\gamma$. It also means that $x^{\beta}=\boldsymbol{x}^{\alpha} \boldsymbol{x}^{\gamma}$.

Definition

Let \prec be a monomial ordering on $R, I \subset R$ be an ideal and $G \subset I$ be a finite subset. G is called a Gröbner basis of I, if $\forall f \in I \backslash\{0\}$ there exists a $g \in G$ satisfying $\operatorname{Im}(g) \mid \operatorname{Im}(f)$.

Characterizations of Gröbner Bases

Definition

Let S be any subset of R.

- We define a monoideal of leading exponents $\mathcal{L}(S) \subseteq \mathbb{N}^{n}$ to be a \mathbb{N}^{n}-monoideal $\mathcal{L}(S)=\mathbb{N}^{n}\langle\alpha| \exists s \in S$, lex $\left.(s)=\alpha\right\rangle$, generated by the leading exponents of elements of S.
- $L(S)$, the span of leading monomials of S, is defined to be the \mathbb{K}-vector space, spanned by the set $\left\{x^{\alpha} \mid \alpha \in \mathcal{L}(S)\right\} \subseteq R$.

Equivalences

- G is a Gröbner basis of $I \Leftrightarrow \forall f \in I \backslash\{0\}$ there exists a $g \in G$ satisfying $\operatorname{Im}(g) \mid \operatorname{Im}(f)$,
- G is a Gröbner basis of $I \Leftrightarrow L(G)=L(I)$ as \mathbb{K}-vector spaces,
- G is a Gröbner basis of $I \Leftrightarrow \mathcal{L}(G)=\mathcal{L}(I)$ as \mathbb{N}^{n}-monoideals.

Weyl and shift algebras

Let \mathbb{K} be a field and R be a commutative ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\text { Weyl } D=D(R)=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n} \mid\left\{\partial_{j} x_{i}=x_{i} \partial_{j}+\delta_{i j}\right\}\right\rangle
$$

The \mathbb{K}-basis of D is

$$
\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} \ldots \partial_{n}^{\beta_{n}} \mid \alpha_{i} \geq 0, \beta_{j} \geq 0\right\}
$$

Shift $S=S(R)=\mathbb{K}\left\langle y_{1}, \ldots, y_{n}, s_{1}, \ldots, s_{n} \mid\left\{s_{j} y_{i}=y_{i} s_{j}+\delta_{i j} \cdot s_{j}\right\}\right\rangle$.
The \mathbb{K}-basis of S is

$$
\left\{y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} \ldots y_{n}^{\alpha_{n}} s_{1}^{\beta_{1}} s_{2}^{\beta_{2}} \ldots s_{n}^{\beta_{n}} \mid \alpha_{i} \geq 0, \beta_{j} \geq 0\right\}
$$

Weyl and shift algebras under homogenization

Let w be the weight vector $\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right), u_{i}+v_{i} \geq 0$.
Assigning weights u_{i} to x_{i} and v_{i} to ∂_{i}, we introduce a new commutative variable h and homogenize the relation into $\partial_{j} x_{j}=x_{j} \partial_{j}+h^{u_{j}+v_{j}}$.

$$
D_{w}^{(h)}(R)=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}, \mathbf{h} \mid\left\{\partial_{j} x_{i}=x_{i} \partial_{j}+\delta_{i j} \mathbf{h}^{u_{i}+v_{j}}\right\}\right\rangle
$$

The \mathbb{K}-basis of D is

$$
\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} \ldots \partial_{n}^{\beta_{n}} \mathbf{h}^{\gamma} \mid \alpha_{i} \geq 0, \beta_{j} \geq 0, \gamma \geq 0\right\}
$$

Assigning weights u_{i} to y_{i} and v_{i} to s_{i}, we introduce a new commutative variable h and homogenize the relation into $s_{j} y_{i}=y_{i} s_{j}+\delta_{i j} \cdot s_{j} h^{u_{j}}$.

$$
S_{w}^{(h)}(R)=\mathbb{K}\left\langle y_{1}, \ldots, y_{n}, s_{1}, \ldots, s_{n}, \mathbf{h} \mid\left\{s_{j} y_{i}=y_{i} s_{j}+\delta_{i j} \cdot s_{j} \mathbf{h}^{u_{j}}\right\}\right\rangle
$$

The \mathbb{K}-basis of S is

$$
\left\{y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} \ldots y_{n}^{\alpha_{n}} s_{1}^{\beta_{1}} s_{2}^{\beta_{2}} \ldots s_{n}^{\beta_{n}} \mathbf{h}^{\gamma} \mid \alpha_{i} \geq 0, \beta_{j} \geq 0, \gamma \geq 0\right\}
$$

Yet another homogenization

Let w be the weight vector $\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)$, such that
$u_{i}+v_{i}=0$, in other words $u_{i}=-w_{i}, v_{i}=w_{i}$.
Since we need nonnegative weights for Gröbner basis, we do the following. We introduce a new commutative variable h and homogenize the relation into $\partial_{j}\left(x_{j} h^{w_{j}}\right)=\left(x_{j} h^{w_{j}}\right) \partial_{j}+h^{w_{j}}$. In what follows, we denote $x_{j} h^{w_{j}}$ by x_{j}, it has weight 0 .

The examples before suggest a more general framework.

Computational Objects

Suppose we are given the following data
(1) a field \mathbb{K} and a commutative ring $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$,
(2) a set $C=\left\{c_{i j}\right\} \subset \mathbb{K}^{*}, 1 \leq i<j \leq n$
(3) a set $D=\left\{d_{i j}\right\} \subset R, \quad 1 \leq i<j \leq n$

Assume, that there exists a monomial well-ordering \prec on R such that

$$
\forall 1 \leq i<j \leq n, \operatorname{Im}\left(d_{i j}\right) \prec x_{i} x_{j} .
$$

The Construction

To the data (R, C, D, \prec) we associate an algebra

$$
A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n} \mid\left\{x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}\right\} \forall 1 \leq i<j \leq n\right\rangle
$$

PBW Bases and G-algebras

Define the (i, j, k)-nondegeneracy condition to be the polynomial
$N D C_{i j k}:=c_{i k} c_{j k} \cdot d_{i j} x_{k}-x_{k} d_{i j}+c_{j k} \cdot x_{j} d_{i k}-c_{i j} \cdot d_{i k} x_{j}+d_{j k} x_{i}-c_{i j} c_{i k} \cdot x_{i} d_{j k}$.

Theorem (Levandovskyy)
$A=A(R, C, D, \prec)$ has a PBW basis $\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right\}$ if and only if

$$
\forall 1 \leq i<j<k \leq n, \quad N D C_{i j k} r e d u c e s \text { to } 0 \text { w.r.t. relations }
$$

Easy Check $N D C_{i j k}=x_{k}\left(x_{j} x_{i}\right)-\left(x_{k} x_{j}\right) x_{i}$.

Definition

An algebra $A=A(R, C, D, \prec)$, where nondegeneracy conditions vanish, is called a G-algebra (in n variables).

G-algebras

We call A a G-algebra of Lie type, if the relations of A are of the form $\left\{x_{j} x_{i}=x_{i} x_{j}+d_{i j}\right\} \forall 1 \leq i<j \leq n$ and the conditions above hold.

Theorem (Properties of G-algebras)

Let A be a G-algebra in n variables. Then

- A is left and right Noetherian,
- A is an integral domain,
- the Gel'fand-Kirillov dimension over \mathbb{K} is $\operatorname{GK} . \operatorname{dim}(A)=n$,
- the global homological dimension $\mathrm{gl} . \operatorname{dim}(A) \leq n$,
- the Krull dimension $\operatorname{Kr} \cdot \operatorname{dim}(A) \leq n$.

Gröbner Bases for Modules I

Let $S \subseteq R^{r}$ be a left submodule of the free module R^{r}. Then, it is given via its generators (vectors of R^{r}), or via a matrix with r rows.

Definition

- $x^{\alpha} e_{i}$ divides $x^{\beta} e_{j}$, iff $i=j$ and $x^{\alpha} \mid x^{\beta}$.
- Let \prec be a monomial module ordering on $R^{r}, I \subset R$ be a submodule and $G \subset I$ be a finite subset. G is called a Gröbner basis of I, if $\forall f \in I \backslash\{0\}, \quad \exists g \in G$ satisfying $\operatorname{lm}(g) \mid \operatorname{Im}(f)$.

Denote $\mathbb{N}_{r}:=\{1,2, \ldots, r\} \subset \mathbb{N}$. The action of \mathbb{N}^{n} on $\mathbb{N}_{r} \times \mathbb{N}^{n}$, given by $\gamma:(i, \alpha) \mapsto(i, \alpha+\gamma)$ makes $\mathbb{N}_{r} \times \mathbb{N}^{n}$ an \mathbb{N}^{n}-monoideal (wrt addition).

Definition. Let S be any subset of R.

- We define a monoideal of leading exponents $\mathcal{L}(S) \subseteq \mathbb{N}_{r} \times \mathbb{N}^{n}$ to be a \mathbb{N}^{n}-monoideal $\mathcal{L}(S)=\mathbb{N}^{n}\left\langle(i, \alpha) \mid \exists s \in S, \leq(s)=x^{\alpha} e_{i}\right\rangle$.
- $L(S)$, the span of leading monomials of S, is defined to be the \mathbb{K}-vector space, spanned by the set $\left\{x^{\alpha} e_{i} \mid(i, \alpha) \in \mathcal{L}(S)\right\} \subseteq R^{r}$.

Gröbner Bases for Modules II

G is a Gröbner basis of $/ \Leftrightarrow$

- $\forall f \in I \backslash\{0\}$ there exists a $g \in G$ satisfying $\operatorname{Im}(g) \mid \operatorname{Im}(f)$,
- $L(G)=L(I)$ as \mathbb{K}-vector spaces,
- $\mathcal{L}(G)=\mathcal{L}(I)$ as \mathbb{N}^{n}-monoideals.

A subset $S \subset R^{r}$ is called minimal, if $0 \notin S$ and $\operatorname{Im}(s) \notin L(S \backslash\{s\})$ for all $s \in S$.

A subset $S \subset R^{r}$ is called reduced, if $0 \notin S$, and if for each $s \in S$, s is reduced with respect to $S \backslash\{s\}$, and, moreover, $s-\operatorname{lc}(s) \operatorname{lm}(s)$ is reduced with respect to S.

It means that for each $s \in S \subset R^{r}, \operatorname{Im}(s)$ does not divide any monomial of every element of S except itself.

Gröbner Bases for Modules III

Definition

Denote by \mathcal{G} the set of all finite ordered subsets of R^{r}.
(1) A map NF : $R^{r} \times \mathcal{G} \rightarrow R^{r}, \quad(f, G) \mapsto \mathrm{NF}(f \mid G)$, is called a left normal form on R^{r} if, for all $f \in R^{r}, G \in \mathcal{G}$,
(i) $N F(0 \mid G)=0$,
(ii) $\operatorname{NF}(f \mid G) \neq 0 \Rightarrow \operatorname{Im}(\operatorname{NF}(f \mid G)) \notin L(G)$,
(iii) $f-\mathrm{NF}(f \mid G) \in{ }_{R}\langle G\rangle$.

NF is called a reduced \mathbf{n}. \mathbf{f}. if $\mathrm{NF}(f \mid G)$ is reduced wrt G.
(2) Let $G=\left\{g_{1}, \ldots, g_{s}\right\} \in \mathcal{G}$. A representation of $f \in R$,

$$
f-\mathrm{NF}(f \mid G)=\sum_{i=1}^{s} a_{i} g_{i}, \quad a_{i} \in R
$$

satisfying $\operatorname{Im}\left(\sum_{i=1}^{s} a_{i} g_{i}\right) \geq \operatorname{Im}\left(a_{i} g_{i}\right)$ for all $i=1 \ldots s$ such that $a_{i} g_{i} \neq 0$ is called a left standard representation of f (wrt G).

Normal Form: Properties

Let A be a G-algebra.

Lemma

Let $I \subset A^{r}$ be a left submodule, $G \subset I$ be a Gröbner basis of I and $\mathrm{NF}(\cdot \mid G)$ be a left normal form on A^{r} with respect to G.
(1) For any $f \in A^{r}$ we have $f \in I \Longleftrightarrow \operatorname{NF}(f \mid G)=0$.
(2) If $J \subset A^{r}$ is a left submodule with $I \subset J$, then $L(I)=L(J)$ implies $I=J$. In particular, G generates I as a left A-module.
(3) If $\mathrm{NF}(\cdot \mid G)$ is a reduced left normal form, then it is unique.

Buchberger's Criterion Theorem

Let A be a G-algebra of Lie type.

Definition

Let $f, g \in A^{r}$ with $\operatorname{Im}(f)=x^{\alpha} e_{i}$ and $\operatorname{Im}(g)=x^{\beta} e_{j}$. Set $\gamma=\mu(\alpha, \beta)$, $\gamma_{i}:=\max \left(\alpha_{i}, \beta_{i}\right)$ and define the left s-polynomial of (f, g) to be $\operatorname{LeftSpoly}(f, g):=x^{\gamma-\alpha} f-\frac{\mathrm{lc}(f)}{\mathrm{lc}(g)} x^{\gamma-\beta} g$ if $i=j$ and 0 otherwise.

For a general G-algebra the formula for spoly is more involved.

Theorem

Let $I \subset A^{r}$ be a left submodule and $G=\left\{g_{1}, \ldots, g_{s}\right\}, g_{i} \in I$. Let $\operatorname{LeftNF}(\cdot \mid G)$ be a left normal form on A^{r} w.r.t G. Then the following are equivalent:
(1) G is a left Gröbner basis of I,
(2) $\operatorname{LeftNF}(f \mid G)=0$ for all $f \in I$,
(3) each $f \in I$ has a left standard representation with respect to G,
(4) $\operatorname{LeftNF}\left(\operatorname{LeftSpoly}\left(g_{i}, g_{j}\right) \mid G\right)=0$ for $1 \leq i, j \leq s$.

Left Normal Form: Algorithm

$\operatorname{LEFTNF}(f, G)$

- Input: $f \in A^{r}, G \in \mathcal{G}$;
- Output: $h \in A^{r}$, a left normal form of f with respect to G.
- $h:=f$;
- while $\left((h \neq 0)\right.$ and $\left.\left(G_{h}=\{g \in G: \operatorname{Im}(g) \mid \operatorname{Im}(h)\} \neq \emptyset\right)\right)$
choose any $g \in G_{h}$;
$h:=\operatorname{LeftSpoly}(h, g)$;
- return h;

Buchberger's Gröbner Basis Algorithm

Let \prec be a fixed well-ordering on the G-algebra A.

GröbnerBasis(G,LeftNF)

- Input: Left generating set $G \in \mathcal{G}$
- Output: $S \in \mathcal{G}$, a left Gröbner basis of $I=A\langle G\rangle \subset A^{r}$.
- $S=G$;
- $P=\{(f, g) \mid f, g \in S\} \subset S \times S$;
- while ($P \neq \emptyset$)
choose $(f, g) \in P$;
$P=P \backslash\{(f, g)\} ;$
$h=\operatorname{LeftNF}(\operatorname{LeftSpoly}(f, g) \mid S)$;
if $(h \neq 0)$
$P=P \cup\{(h, f) \mid f \in S\} ;$
$S=S \cup h ;$
- return S;

Criteria for detecting useless critical pairs

Let A be an associative \mathbb{K}-algebra. We use the following notations:
$[a, b]:=a b-b a$, a commutator or a Lie bracket of $a, b \in A$. $\forall a, b, c \in A$ we have $[a, b]=-[b, a]$ and $[a b, c]=a[b, c]+[a, c] b$. The following result is due to Levandovskyy and Schönemann (2003).

Generalized Product Criterion

Let A be a G-algebra of Lie type (that is, all $c_{i j}=1$). Let $f, g \in A$.
Suppose that $\operatorname{Im}(f)$ and $\operatorname{Im}(g)$ have no common factors, then $\operatorname{spoly}(f, g) \rightarrow\{f, g\}[f, g]$.

The following classical criterion generalizes to G-algebras.

Chain Criterion

If $\left(f_{i}, f_{j}\right),\left(f_{i}, f_{k}\right)$ and $\left(f_{j}, f_{k}\right)$ are in the set of pairs P, denote $\operatorname{lm}\left(f_{\nu}\right)=x^{\alpha_{\nu}}$. If $x^{\alpha_{j}} \mid \operatorname{lcm}\left(x^{\alpha_{i}}, x^{\alpha_{k}}\right)$ holds, then we can delete $\left(f_{i}, f_{k}\right)$ from P.

Gel'fand-Kirillov dimension

Let R be an associative \mathbb{K}-algebra with generators x_{1}, \ldots, x_{m}.

A degree filtration

Consider the vector space $V=\mathbb{K} x_{1} \oplus \ldots \oplus \mathbb{K} x_{m}$.
Set $V_{0}=\mathbb{K}, V_{1}=\mathbb{K} \oplus V$ and $V_{n+1}=V_{n} \oplus V^{n+1}$.
For any fin. gen. left R-module M, there exists a fin.-dim. subspace $M_{0} \subset M$ such that $R M_{0}=M$.
An ascending filtration on M is defined by $\left\{H_{n}:=V_{n} M_{0}, n \geq 0\right\}$.

Definition

The Gel'fand-Kirillov dimension of M is defined to be

$$
\text { GK. } \operatorname{dim}(M)=\lim \sup _{n \rightarrow \infty} \log _{n}\left(\operatorname{dim}_{\mathbb{K}} H_{n}\right)
$$

Gel'fand-Kirillov Dimension: Examples

Let deg $x_{i}=1$, consider filtrations up to degree d. We have $V_{d}=\{f \mid \operatorname{deg} f=d\}$ and $V^{d}=\{f \mid \operatorname{deg} f \leq d\}$.

Lemma

Let A be a \mathbb{K}-algebra with PBW basis $\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \mid \alpha_{i} \geq 0\right\}$. Then $\mathrm{GK} . \operatorname{dim}(A)=n$.

Proof.

$\operatorname{dim} V_{d}=\binom{d+n-1}{n-1}, \operatorname{dim} V^{d}=\binom{d+n}{n}$. Thus $\binom{d+n}{n}=\frac{(d+n) \ldots(d+1)}{n!}=\frac{d^{n}}{n!}+$ I.o.t, so we have GK. $\operatorname{dim}(A)=\lim \sup _{d \rightarrow \infty} \log _{d}\binom{d+n}{n}=n$.
$T=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
$\operatorname{dim} V_{d}=n^{d}, \operatorname{dim} V^{d}=\frac{n^{d+1}-1}{n-1}$.
Since $\frac{n^{d+1}-1}{n-1}>n^{d}$, we are dealing with so-caled exponential growth. In particular, $\log _{d} n^{d}=d \log _{d} n=\frac{d}{\log _{n} d} \rightarrow \infty, d \rightarrow \infty$. Hence, GK. $\operatorname{dim}(T)=\infty$.

Gel'fand-Kirillov Dimension for Modules

There is an algorithm by Gomez-Torrecillaz et.al., which computes Gel'fand-Kirillov dimension for finitely presented modules over G-algebras.

GKDIm(F)

Let A be a G-algebra in variables x_{1}, \ldots, x_{n}.

- Input: Left generating set $F=\left\{f_{1}, \ldots, f_{m}\right\} \subset A^{r}$
- Output: $k \in \mathbb{N}, k=\operatorname{GK} . \operatorname{dim}\left(A^{r} / M\right)$, where $M={ }_{A}\langle F\rangle \subseteq A^{r}$.
- $G=\operatorname{LeFtGRÖBNERBASIS}(F)=\left\{g_{1}, \ldots, g_{t}\right\}$;
- $L=\left\{\operatorname{lm}\left(g_{i}\right)=x^{\alpha_{i}} e_{s} \mid 1 \leq i \leq t\right\}$;
- $N=K\left[x_{1}, \ldots, x_{n}\right]\langle L\rangle$;
- return $\operatorname{Kr} . \operatorname{dim}\left(K\left[x_{1}, \ldots, x_{n}\right]^{r} / N\right)$;

Ring-theoretic Properties of Weyl and shift algebras

gl. $\operatorname{dim}(A)$, the global homological dimension of A

- $\mathrm{gl} \cdot \operatorname{dim}(S)=2 n$,
- if char $\mathbb{K}=0, \operatorname{gl} . \operatorname{dim}(D)=n$,
- if char $\mathbb{K}=p>0, \operatorname{gl} . \operatorname{dim}(D)=2 n$.
$Z(A)=\{z \in A \mid z a=a z \forall a \in A\}$, the center of A
- if char $\mathbb{K}=0, Z(D)=Z(S)=\mathbb{K}$,
- if char $\mathbb{K}=p>0, Z(D)=\left\{x_{i}^{p}, \partial_{i}^{p}\right\}$.
- if char $\mathbb{K}=p>0, Z(S)=\left\{y_{i}^{p}-y_{i}, s_{i}^{p}\right\}$.

If char $\mathbb{K}=0, D(R)$ has no proper two-sided ideals. In $S(R), l_{\gamma}=s\left\langle\left\{s_{i}, y_{i}-\gamma_{i}\right\}\right\rangle_{s}$ is a family of such ideals for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{K}^{n}$.

Thank you for your attention!

RNTHAACHEN UNIVERSTY

\ll SINGULAR $_{\text {PLURal }}$

Please visit the SinguLAR homepage

- http://www.singular.uni-kl.de/

