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Introduction

De�nition

K an algebraically closed �eld of characteristic 0

D = K[x]〈∂〉 Weyl algebra in one variable

De�nition

For L ∈ D, de�ne Cl(L) := K(x)〈∂〉L ∩D, the Weyl closure of the

operator L

De�nition

For I E D, de�ne Cl(I) := Cl(L), where L is the generator of K(x)〈∂〉L
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Introduction

Motivation

Let V (L) be the solution space of L in a neighbourhood of a

nonsingular point λ. Then

Cl(L) = annD(V (L))

Cl(L)/DL ≤ D/DL is the submodule of elements with �nite support

on K.
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Introduction

Goals

Compute the local closure Clλ(L) of a di�erantial operator L

Compute the initial ideal inλ(Clλ(L)) of Clλ(L) with respect to the

order �ltration.

Compute the global closure Cl(L) of a di�erential operator L

Compute the initial ideal in(Cl(L)) of Cl(L) with respect to the

order �ltration.
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Local Closure

De�nition

De�nition

The local closure Clλ(L) of L ∈ D at the point x = λ is the ideal

Clλ(L) = K[x, (x− λ)−1]〈∂〉L ∩D

Thomas Bächler (LBfM) Weyl closure of a di�erential operator 8 / 29



Local Closure Algorithm

Algorithm

Input: L = pn(x)∂n + · · ·+ p0(x) ∈ D

Rewrite L as

L =
∑s

i=r ζiqi((x− λ)∂) ζi =

{
∂−i i ≤ 0
(x− λ)i i > 0

with qi ∈ K[θ] and qr 6= 0

Determine m as the maximum integer root of qr if it is > 0, otherwise
(or if qr has no integer roots) set m = 0. m is called the critical

exponent.

If m + r < 0, set B = {}. Otherwise, compute a basis B of the kernel

of the Matrix (Rλ(L)i,j)0≤i≤m,0≤j≤m+r with

Rλ(L)i,j =

{
qj−i(i) i ≥ j
j(j − 1) . . . (i + 1)qj−i(i) i < j

For each v ∈ B, set pv =
∑m+r

i=0 vi∂
i

Output: Set of generators of Clλ(L): {L, (x− λ)−1pvL|v ∈ B}
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Local Closure Algorithm

Example

Consider the operator

L = x2(x− 1)(x− 3)∂2 − (6x3 − 20x2 + 12x)∂ + (12x2 − 32x + 12)

at the point x = 0:

Rewrite L as

(3θ2 − 15θ + 12) + x(−4θ2 + 24θ − 32) + x2(θ2 − 7θ + 12)

with θ = x∂, thus r = 0

qr(θ) = q0(θ) = 3θ2 − 15θ + 12 = 3(t− 1)(t− 4)
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Local Closure Algorithm

Example

Determine a set of generators for the kernel of the
(m + 1)× (m + r + 1) = 5× 5 Matrix

0BBB@
q0(0) q1(0) 2q2(0) 6q3(0) 24q4(0)

q−1(1) q0(1) 2q1(1) 6q2(1) 24q3(1)
q−2(2) q−1(2) q0(2) 3q1(2) 12q2(2)
q−3(3) q−2(3) q−1(3) q0(3) 4q1(3)
q−4(4) q−3(4) q−2(4) q−1(4) q0(4)

1CCCA =

0BBB@
12 −32 24 0 0
0 0 −24 36 0
0 0 −6 0 24
0 0 0 −6 16
0 0 0 0 0

1CCCA

in this case B = {B1 := (8, 3, 0, 0, 0)T , B2 := (0, 9, 12, 8, 3)T } and

set pB1 = 3∂ + 8, pB2 = 3∂4 + 8∂3 + 12∂2 + 9∂.
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Local Closure Algorithm

Example

We can now write down a set of generators for C0(L):

C0(L) = 〈L,
1

x
pB1L,

1

x
pB2L〉

with

L = x2(x− 1)(x− 3)∂2 − (6x3 − 20x2 + 12x)∂
+(12x2 − 32x + 12)

1
xpB1L = (3x3 − 12x2 + 9x)∂3 + (8x3 − 38x2 + 48x− 18)∂2

−(48x2 − 142x + 72)∂ + (96x− 184)

1
xpB2L = (3x3 − 12x2 + 9x)∂6 + (8x3 − 2x2 − 60x + 36)∂5

+(12x3 − 56x)∂4 + (9x3 − 12x2 − 69x + 56)∂3

−(18x2 + 72x− 138)∂2 − (54x− 216)∂ + 216
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Local Closure Initial Ideal

De�nition

De�nition

For T = pn(x)∂n + · · ·+ p0(x) ∈ D de�ne the initial as

inλ(T ) := (x− λ)ordλ(pn)∂n ∈ K[x, ∂]

where ordλ(f) is the order of vanishing of f at the point x = λ

De�nition

For I E D, de�ne the initial ideal as

inλ(I) := 〈inλ(T )|T ∈ I〉K E K[x, ∂]

Note that the initial ideal is an ideal of the commutative ring K[x, ∂]!
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Local Closure Initial Ideal

Calculating the initial ideal

Theorem (without proof)

Let V ≤ ker
(
D/(x− λ)D

◦L−→ D/(x− λ)D

)
be a linear subspace, let

{f0(∂), . . . , fs(∂)} be a basis of V with the property that

deg(fi) < deg(fi+1) for all i and let I(V ) E D be the left ideal generated

by
{
L, (x− λ)−1vL|v ∈ V

}
. Then

inλ(I(V )) = D{inλ(L), (x− λ)−(i+1)∂deg(fi)−iinλ(L)|0 ≤ i ≤ s}

Recall that Clλ(L) = I(V ) if

V = ker
(
D/(x− λ)D

◦L−→ D/(x− λ)D

)
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Local Closure Initial Ideal

Example

Recall the previous example: We already computed the basis

{pB1 = 3∂ + 8, pB2 = 3∂4 + 8∂3 + 12∂2 + 9∂}, thus the initial ideal of

Cl0(L) is

in0(Cl0(L)) = 〈in0(L), x−1∂in0(L), x−2∂3in0(L)〉 = 〈x2∂2, x∂3, ∂6〉
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Global Closure Properties of the global closure

Properties of the global closure

Lemma

Let L = pn(x)∂n + · · ·+ p0(x) and let p(x) =
√

pn(x) be the squarefree

part of pn. Then

Cl(L) = K[x, p−1]〈∂〉L ∩D

We will use this Lemma to proove the following theorem:

Theorem

Let L = pn(x)∂n + · · ·+ p0(x) and let {λ1, . . . , λk} be the distinct roots

of pn. Then

Cl(L) = Clλ1(L) + . . . Clλk
(L)
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Global Closure Properties of the global closure

Proof of the Lemma

Write T ∈ Cl(L) as T = SL, S ∈ K(x)〈∂〉, with

S =
1

h(x)
(gm(x)∂m + · · ·+ g0(x))

Thus one can write

T =
1

h(x)
(gm(x)∂m + · · ·+ g0(x))(pn(x)∂n + · · ·+ p0(x))
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Global Closure Properties of the global closure

Proof of the Lemma

By expanding the right hand side, one gets that h(x) divides all of the
following terms:

gm(x)pn(x)
gm(x)(. . . ) + gm−1(x)pn(x)
gm(x)(. . . ) + gm−1(x)(. . . ) + gm−2(x)pn(x)
...

gm(x)(. . . ) + · · ·+ g0(x)pn(x)

Factor h(x) = a(x)b(x) such that gcd(a(x), pn(x)) = 1 and
√

b(x)|p(x).

Then a(x) divides gi(x) for all i. Thus we can write S as b(x)−1S̃ with

S̃ ∈ D. This implies T = b(x)−1S̃L ∈ K[x, p−1]〈∂〉L ∩D.
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Global Closure Algorithms for calculating the global closure

Weyl closure of L, assuming knowledge of singular points

Input: L = pn(x)∂n + · · ·+ p0(x), {λ1, . . . , λt} the distinct roots of

pn(x).

Local Closures: Let Si be the set of generators of Clλi
(L), 1 ≤ i ≤ t.

Output: Set of generators of Cl(L): ∪t
i=1Si

Disadvantage: All roots of pn(x) must be known!
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Global Closure Algorithms for calculating the global closure

Weyl closure of L without knowledge of singular points

Input: L = pn(x)∂n + · · ·+ p0(x) ∈ Q[x]〈∂〉,
p(x) =

√
pn(x) =

∏t
k=1 fk(x) with fk(x) irreducible over Q[x]

For each 1 ≤ k ≤ t, let θα = (x− α)∂ and rewrite L as

L =
∑sk

i=rk
ζiqi(θα) ∈ (Q[α]/fk(α))[x]〈∂〉 ζi =

{
∂−i i ≤ 0
(x− α)i i > 0

For each 1 ≤ k ≤ t, set mk to the k-th critical exponent, that is the

largest integer root of qrk
or 0. Set m := maxk{mk + rk}

Let W := 〈xi∂j |0 ≤ i ≤ deg(p), 0 ≤ j ≤ m〉K ≤ D/p(x)D. Compute

a basis B of

ker(W
◦L−→ D/p(x)D)

Output: A set {L, p(x)−1vL|v ∈ B} of generators of Cl(L)
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Global Closure Algorithms for calculating the global closure

Example

Consider L = (x3 + 2)∂ − 3x2. x3 + 2 is already irreducible in Q[x], thus
we write

L = (((x− α) + α)3 + 2)∂ − 3((x− α) + α)2

= (3α2θα − 3α2) + (x− α)(3αθα − 6α) + (x− α)2(θα − 3)

The only and thus maximum integer root of q0(θ) = 3α2(θ − 1) is
obviously 1, thus we set m = r + 1 = 0 + 1 = 1. We now compute

ker

(
〈1, x, x2, ∂, x∂, x2∂〉K

◦L−→ D/
(x3 + 2)D

)
which is the span of {∂ + x2, x∂ − 2, x2∂ − 2x}. We can now write down

the generators of Cl(L).

Thomas Bächler (LBfM) Weyl closure of a di�erential operator 25 / 29



Global Closure Initial Ideal

De�nition

De�nition

Let T = pn(x)∂n + · · ·+ p0(x) and I E D, de�ne

in(0,1)(T ) := pn(x)∂n ∈ K[x, ∂]

in(0,1)(I) := 〈in(0,1)(T )|T ∈ I〉K E K[x, ∂]
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Global Closure Initial Ideal

Calculating the initial ideal

Theorem (without proof)

Let L = pn(x)∂n + · · ·+ p0(x) ∈ K[x]〈∂〉 and let {λ1, . . . , λk} be the

distinct roots of pn(x). For each 1 ≤ k ≤ t, let

Vk ≤ ker
(
D/(x− λk)D

◦L−→ D/(x− λk)D

)
be a linear subspace with a

basis {fk,0, . . . , fk,sk
} with the property deg(fk,i) < deg(fk, i + 1).

Furthermore, let

I := I(V1) + · · ·+ I(Vt) = D{L, (x− λk)
−1vL|v ∈ Vk, 1 ≤ k ≤ t}

Then

inλk
(I) = inλk

(I(Vk))

in(0,1)(I) =
〈(∏t

k=1(x− λk)
jk

)
∂m|(x− λk)

jk∂m ∈ inλk
(I)

〉
Recall that I = Cl(I) if Vk = ker

(
D/(x− λk)D

◦L−→ D/(x− λk)D

)
for

all k.
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Global Closure Initial Ideal

The end.

You may wake up and go home now!
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