Using computer algebra system Singular::Plural for computations in
noncommutative polynomial algebras

V. Levandovskyy
Fachbereich Mathematik, Univer&itKaiserslautern, Germany.
levandov@mathematik.uni-kl.de

H. Sclonemann
Fachbereich Mathematik, UnivergitKaiserslautern, Germany.
hannes@mathematik.uni-kl.de

http://www.singular.uni-kl.de/plural

Introduction

The aim of this poster is to demonstrate different aspects (from theoretical background to practical
ness) of the algorithms, implemented in the computer algebra systeUSAR::PLURAL (or just RLURAL for
short). You can regard it as a one-page introduction to the system. More detailed information and packs:
download you can find at our homepauép://www.singular.uni-kl.de/plural

1

2 Computational Objects

2.1 Algebras
LetK be afield. Consider an algebfia= K(z1, ..., 2y | xj2; = ¢jjri0,+d;; Vi < j ) withd;; € A, ¢;; € K",
It Is calleda G—algebra(in n variables) if the following conditions hold:

1) There exists a monomial well-orderirg, such that' 7 < j Im(d;;) <4 z;x;,
2) Nondegeneracy conditiorage fulfilled, thatisv 1 <i: < j <k <n
Cikcjk : dz'jlljk — xkd@'j + Cjk : xjdik — Cij dik‘xj + djkilii — CyGik ZCZ'CZ]']{ = 0.
A GG R-algebrais a factor ofGG—algebra im variables by a proper two—sided ideal.

Commutative rings in BIGULAR provide us with the information on the ground fieldl, variables
(r1,...,zy) and the monomial ordering.. As a set of data(z—algebra is represented iInPRAL as an ex-
tension of the data typeng by the two strictly upper-triangulat x n matricesC' = (c;;) andD = (d;;) with
entries as in the definition.

Theorem 1.[3] Let A be aG—algebra inn variables. Then
e A has a Poincag—Birkhoff-Witt (PBW) basis bas{s
e A Is noetherian,

a1, 09
1:13‘2 ..

" | a; € NU{0}},
e A Is an integral domain,
e ¢l.dim A <n.

Example 2.G R—algebras
e cOmmutative and quasi—commutative polynomial algebras
e algebras of solvable type, PBW algebras, some iterated Ore extensions
¢ universal enveloping algebras of finite dimensional Lie algebras
e positive (resp. negative) parts of quantized enveloping algebras
e many quantum algebras and nonstandard quantum deformations
e eyl algebras and most of various flavors of their quantized versions
e Witten's deformation ot/ (sl,), Smith algebras and conformalh—algebras
¢ Clifford algebras, exterior algebras; some diffusion algebras and many more

Using the library'center.lib" (V.Levandovskyy, O.Motsak, 2003, to appear) we are able to comput
the central elements éf—algebras up to given degree. The next version of the library will feature an algorith
computing a minimal generating set of the center up to given degree. The functionality of the library allowe
compute the central element of the degree 6 in the algébya) (as far as we know, it has never been compu
before). We give more details in the section 3.1.

2.2 ldeals and modules

The data typedeal corresponds to a left ideal in tieR—algebra. Some procedures likeostd
an ideal in the argument as a set of two—sided generators.

The data typenodule corresponds to the left submodule of a free module of finite rank Gveralgebra.

With the help of RURAL we are able to compute Gloner bases of modules with respect to a wide variety
monomial orderings (commargtd ), what is especially useful for performing the elimination. The harg
problems, known to us, are elimination problems. We have the built-in comalenihate , which chooses
an elimination ordering heuristically. It is also possible to construct an elimination ordering "by hands”
defining an algebra and use the commatdl for solving the sophisticated elimination problems.

Interpret

The functionality of RURAL Iincludes also computations of modules of syzygies (comnsgnd and several
kinds of free resolutions (commandses , mres andminres ). In addition to the commanéliminate
there will be more functions liketersect for basic operations with modules.

3 Applications

3.1 Magic numbers inU((g»)

The universal enveloping algebra of the smallest exceptional Lie algé&lpra is generated by the 14 vari
ableszy,zo,...,%6,y1,y2, - -, Y6, ha, hg (We denoter| = xq,x9 = xg,y1 = T—_q,y2 = T_g) Subject to
numerous relations which we do not list here.

Figure 1: The root system @b, generated by the simple roatsandj3
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The centelZ (U(go)) = K[Zy, Zg|, generated by the polynomiats and Zg of degree 2 and 6 respectivel;

The first one is easy to write dow#, = :Elyl+3$2y2+x3y3+x4y4+3x5y5+3$6y6+ha+3h@h5+3h%—5h&—9h5,

but the second onegj; = 4x1x%y1y§ + - —240hq — 480h 3, consists of 754(!) monomials. We publish its explic
form on our homepage as well as other big objects appearing in our examples.

Using the standardlRIRAL library lieA.lib

LIB "lieA.lib";
def UG2=g2();
setring UG2,;

you can set up/(go) overQ in a fast and simple way:

==>

/l characteristic : 0O

/] number of vars : 14
// block 1 : ordering dp
I : names X(1) x(2) x(3) x(4) x(5) x(6) y(1) y(2) y(3) y(4) y(5) y(6) Ha Hb
/[ block 2 : ordering C

Il
Il
I
Il

noncommutative relations:
X(2)Xx(1)=x(1)*x(2)-x(3)

Hby(6)=y(6)*Hb-y(6)

Consider the two—sided ide&) generated by th&? power of the image of the shortest positive racsf the

usegplgebrag,; and compute the left ®bner basis of, using a proprietary algorithm for it.

/0
est for(j=i;j<:6;j++) {C[I,j]zl,}

ideal 1=x(1)"3;

3g§gl$@qm("twostd", );

size(D);

==> 106
As we see, it consists of 106 elements. Now we will check whether the mddule- U(gy)/I is finite—

dimensional and if it so, we compute Ksbase.

vdim(l);

—==> 50 // so, M is finite--dimensional module

kbase(l);

=== 17 X1, X2,X3,X4,X5,X6,Y1,¥2, Y3, Y4, Y5, Y6, h(m h/jy X1X6, X1Ye6, th()za thﬁa XQhOM XShOM X3h/37 X3Ys, X4h()47 X4hf37 X4aYa,

X5hﬁ) X5Y37 X6h/37 X6y17 y1hom y1h[))7 Y1Y67 y2hom Yma y3h/37 y4h0z7 Y4h[37 Y5h/37 YGhﬂ? h()/hﬁv h(2)57 h?b

x1h,hg, x3h,hg, X4h%, yih.hg, yshohg, y4h%, h@h% (We show the output in LaTeX form for better readability)

It is time to compute the first syzygy modulez(7) of I and look on its size

module S=syz(l);
size(S); /I size() returns the number of generators

—=> 3244

We would like to check what kind of connection exists between central elements and the ioeialis compute
the normal forms o/, andZ; with respect td.

NF(Z2,1);
—==> 2%y, + 2h2 + 6h,hg + 7h? — 2h, — 3hg
NF(Z6,));

==>0 [/Z6 lies in | !

We have designed an algorithm for computing the intersection of an ideal with the subalgebra. Using
we obtain that/ N Z(U(go)) is equal to the idea¢222 — 649, Zg). In particular, the centeZ (U(go)/1) of the

factor—algebrd/(go)/I equalsK[Zo)/(Z5 — 67Z5) X K @ K - NF(Zy, I).

3.2 Combined computations

While working in mixed commutative and noncommutative setting, it is quite comfortable to use all the
commutative functionality of SIGULAR ([2]). It is in particular useful in problems, involving sequences of non-
commutative preprocessings and commutative postprocessings. We illustrate this by computing one—dimensic
representations of the algebr(agzog).

The Fairlie—OdesskKii a|geb@é<503) ([1]) is an associative unital algebra with generating eleménts,,
I3 and defining relationg!/2 111y — ¢ Y210, = I3,  ¢*/2105 — ¢ Y20, = I,  ¢Y210 — ¢ Y215 = Do,
whereq # 0, £1, iIs a complex number, calletkeformation parameterin the limit¢ — 1, the aIgebreUé(sog)
reduces to the enveloping algelirésos). All of these algebras are, of course;algebras.

Lemma 3.Let A be aG-algebra overK, generated byry,...,x,. Thena = (ay,...,a,) € K" is a one—
dimensional representation &f if and only if the idealn, := (x; — ay, ...,z — ay) IS proper inA.

e all
m fo
d é?
tefy!

' From the lemma it becomes clear how to compute all the one—dimensional representations of a given algel
|%W IS the RURAL code for computing such representationifgtsog) In three cases. We equip every case

U
th the string, setting value of minimal polynomial fer= Q2 in the RLURAL language.

A) Ué(ﬁﬁg); there is no string witlminpoly sinceq Is a free parameter,

B) U/(s03); minpoly=Q"4+Q2+1;  thatisq is a3"¢ primitive root of unity;

C) Uy(s03); minpoly=Q-1;  simulates the limity — 1.

ring r=(0,Q),(11,12,13,a,b,c),dp; // here Q"2=q

minpoly=...; // here goes the string from one of the above cases
matrix C[6][6]; matrix D[6][6]; Int I,j;

c]zr(izl;i<6;i++)

}

whlle2]=Q2; C[1,3]=1/Q2; C[2,3]=Q2;

y

D[1,2]=-Q*13; D[1,3]=1/Q*12; D[2,3]=-Q*I1;

system("PLURAL",C,D);

option(redSB); option(redTail); // any output will be completely reduced
iIdeal pRep=I1-a,l2-b,|3-c;

iIdeal Rep=eliminate(pRep,I1*12*13); // now Rep is in K[a,b,C]

LIB "primdec.lib";

list Lrep=minAssChar(Rep);
for (i=1;i<=size(Lrep);i++)
{Lrepl[i]=simplify(Lrep[i],1);}
Lrep;

I/ we need the minimal associated primes

Note, that all the cases share the same trivial presentg@xjon)) which we ignore below.

1/2 . . . .
A) Lett = %. There are four nontrivial one—dimensional representations :

Rep; = {( (—1)it, (—1)7¢, (— 1) ) 1<i<j<4).

1/2_ . . . . .
_ 2% 1. There are eight nontrivial one—dimensional representations:
3

Rep; = {( (— 1)t (=1 tm, (—1) 8, ) 1<i<j<4 m=12)

C) There are no nontrivial one—dimensional representations.

4 Remarks on Implementation
The authors have written an article [4] about the systemHAL. Here are the crucial points to mention:

. e We use generalized "Product” and "Chain” criteria in Buchberger’s algorithm

e various flavors ofjeobucketg[5]) are used for the reduction, multiplication and other operations

It o PLURAL will become a dynamical module fon$GULAR

The authors would like to acknowledge the support provided by the Deutsche Forschungsgemeinschaft (DF

References

[1] Havlicek, M. and Klimyk, A. and Posta, S. Central elements of the algebj#s,,) and U,(isom).
arxiv. math. QA/991113@999.

[2] Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O. ; Lossen, C. aimt&uoann, H.A SIN-
GULAR Introduction to Commutative Algebr@pringer, 2002.

[3] Levandovskyy, V. PBW Bases, Non—-Degeneracy Conditions and Applications.
Lenzing, H., editorProceedings of the ICRA X conferenteappeatr.

In Buchweitz, R.-O. an

[4] Levandovskyy V.; Schnemann, H. Plural — a computer algebra system for noncommutative polynomial al-
gebras. InProc. of the International Symposium on Symbolic and Algebraic Computation (ISSAGTIA)
Press, 2003.

[5] T. Yan. The geobucket data structure for polynomidlssymbolic ComputatiQi25(3):285-294, March 1998.



