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Abstract. In this paper we present new algorithms for non–commutative

Gröbner ready algebras, which enable one to perform advanced opera-
tions with ideals and modules. In spite of the big interest in algorithmic

treatment of related problems, preimage of ideal and central character

decomposition were not discussed before.
An important algorithm for computation of the kernel of a homomor-

phism of left modules is described in the form, optimized for perfor-

mance. We present these algorithms together with their implementa-
tion in computer algebra system Singular:Plural and detailed appli-

cations.
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Introduction

Non–commutative algebras with PBW basis admitting a Gröbner bases theory,
quite similar to the one in the commutative case, appeared as a class in the
1980’s and have been studied until now under different names: G–algebras ([2,12]),
algebras of solvable type ([10,14]), Poincaré–Birkhoff–Witt (or, shortly, PBW)
algebras ([3,4]). Teo Mora treated them in [15,16] without giving a special name.

After many important works and several implementations, the interest grew
— reflected by the appearance of two recent books, namely by H. Li ([14], 2002)
and by J. Bueso et.al. ([3], 2003) on the subject. Both books feature many inter-
esting applications of Gröbner bases, related in particular to the ring theory and
to the representation theory of algebras, but such an important question as the
algorithmic treatment of morphisms between G–algebras was not discussed at all.

Especially great role is played by two commutative subalgebras - a center
and a Gel’fand–Zetlin subalgebra. In the representation theory there are many
constructions involving them and there is a big need for, in particular, intersection
of modules with such subalgebras.
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We are going to present corresponding algorithms and applications to-
gether with the efficient implementation in the computer algebra system Sin-
gular:Plural ([13]). Note, that at present no other computer algebra sys-
tem features such non–commutative functionality as we provide with the Singu-
lar:Plural and only a few systems can be compared with our rich collection of
commutative procedures.

1. G–algebras and Morphisms of Algebras

Let K be a field and R = K[x1, . . . , xn] be a commutative polynomial ring in n
variables. Suppose there is a well–ordering < on R and two sets of data: C =
{cij} ⊂ K∗ and D = {dij} ⊂ R (here 1 ≤ i < j ≤ n).

If ∀ i < j, lm(dij) < xixj (by lm(f) we denote the leading monomial of f
with respect to the given ordering), we can associate to the data (R,<,C,D) a
non–commutative algebra

A = K〈x1, . . . , xn | ∀ i < j xjxi = cijxixj + dij〉.

We say that the algebra A has a PBW basis, if the K–basis of A is {xα | α ∈
Nn}. A construction above does not guarantee us this property in general.

For 1 ≤ i < j < k ≤ n we define the non–degeneracy condition for (i, j, k) to
be the polynomial

NDCijk = cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk.

Theorem 1. ([12]). Let A be as before. Then algebra A has a PBW basis if and
only if 1 ≤ i < j < k ≤ n, NDCijk = 0.

We say, that algebra A is a G–algebra, if it satisfies the condition of the
previous theorem.

Theorem 2. ([12]). Let A be a G–algebra. Then

1) A is left and right noetherian,
2) A is an integral domain,
3) A has left and right quotient rings.

Let T be a proper two–sided ideal in the G–algebra A. Then the factor algebra
B = A/T is well–defined; we call such algebras GR–algebras. Note, that tensor
products over a field and taking an opposite algebra operations are invariant with
respect to GR–algebras.

The framework of GR–algebras provides a common roof for many interesting
algebras. For example, universal enveloping algebras of finite dimensional Lie
algebras, many quantum groups, some iterated Ore extensions ([10]) and many
important algebras, associated to operators ([5]) are GR–algebras.

A finite Gröbner bases theory exists in GR–algebras and it is well investi-
gated, although it is not as complete as the contemporary books on commutative
Gröbner bases show ([8]). We will not even sketch the theory of Gröbner bases in
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this article, directing the reader to [3,13,14]. However, we use several notations
from the Gröbner bases theory: NF(X | G) denotes a normal form of an object
(polynomial or a module) X with respect to the set G, and Syz(M) denotes a
module of syzygies of a module M .

Let A and B be associative K–algebras. Recall, that a map ψ : A → B is
defined by its values on generators {xi} of A, that is ψ : xi 7→ pi, {p1, . . . , pn} ⊂ B.
ψ is called a (homo)morphism of K–algebras, if ∀x, y ∈ A

• ψ(1) = 1, ψ(x+ y) = ψ(x) + ψ(y),
• ψ(xy) = ψ(x)ψ(y).

Let GR denote the category of GR–algebras and G be its subcategory of G–
algebras. We denote by Mor(A,B) (respectively Mor(A,B)) the set of morphisms
between A,B ∈ G (respectively A,B ∈ GR).

Let A,B ∈ G. Suppose there are proper two–sided ideals TA ⊂ A, TB ⊂ B,
already given as two–sided Gröbner bases and there are GR–algebras A = A/TA
and B = B/TB .

Starting with the map ψ : A→ B, we define the induced map Ψ : A → B by
setting Ψ(ā) := ψ(a), where we can choose a = NF(ā | TA) as a representative
for ā ∈ A.

Remark 3. On the contrary to the commutative case, not every map of GR–
algebras is a morphism.

Define the obstruction polynomials oij := ψ(xjxi)−ψ(xj)ψ(xi) and the ideal
of obstructions of ψ to be Oψ := 〈{oij |1 ≤ i < j ≤ n}〉 ⊆ B. Respectively, the
ideal of obstructions of Ψ is OΨ = BOψ/TB ⊆ B. Following the definition, we see
that

• ψ ∈ Mor(A,B)⇔ Oψ = 〈0〉 ⊂ B,
• Ψ ∈ Mor(A,B)⇔ Oψ = 〈0〉 ⊂ B ⇔ NF(Oψ | TB) = 0.

For each G–algebra A, there are several natural commutative subalgebras.

• Z(A) := {z ∈ A | za = az ∀ a ∈ A} is the center of A ([6]);
• if there exists a Cartan subalgebra H(A) ([6]), it is commutative;
• from two previous subalgebras, we can construct a bigger subalgebra
CZ(A) := H(A)⊗K Z(A);
• Gel’fand–Zetlin subalgebra GZ(A) ([7]), if it exists.

Note, that if both CZ(A) and GZ(A) exist, then GZ(A) ⊇ CZ(A) ⊃ Z(A)
holds. Ovsienko ([18]) proved, that if GZ(A) exists, it is the biggest commutative
subalgebra of A. Note, that the construction of Gel’fand–Zetlin subalgebra has
not been yet completely algorithmized.

On the contrary, there is a general algorithm for computing the center of a
GR–algebra up to a given degree. Recently it has been implemented in Singu-
lar:Plural ([17]); we used it for computations of examples below.
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2. Morphisms from Commutative Algebras to GR–algebras

Let A = K[y1, . . . , ym], TA ⊂ A be an ideal and A = A/TA be a commutative
GR–algebra. Let B = K〈x1, . . . , xn | xjxi = cijxixj +dij ,∀j > i〉 be a G–algebra,
TB ⊂ B be a two–sided ideal and B = B/TB be a GR–algebra.

For polynomials a, b we use the notation [a, b] = ab− ba.
Let F = {f1, . . . , fm} ⊂ B be the set of pairwise commuting polynomials.

Consider a map of K–algebras A φ−→ B, φ : yi 7→ fi ∈ B. Then, according to the
Remark 3, such φ is always a morphism.

Suppose there is an ideal J ⊂ B. In this section we present an algorithm for
computation of the preimage of an ideal under such map.

2.1. Algorithm for Computing a Preimage

Let us describe the structure of E = A⊗K B. Let E = A⊗K B be the algebra in
variables {xi ⊗ 1 | 1 ≤ i ≤ n} and {1 ⊗ yj | 1 ≤ j ≤ m}, which we identify with
{xi} and {yj} respectively. Then E is a G–algebra

E = K〈y1, . . . , ym, x1, . . . , xn | [yk, y`] = [yk, xi] = 0, xjxi = cijxixj + dij〉,

with indices ∀ 1 ≤ k, ` ≤ m,∀ 1 ≤ i < j ≤ n.
If TA and TB were given as two–sided Gröbner bases, their images in E under

canonical inclusions keep this property. Hence, the ideal TE = TA + TB is a
two–sided ideal, given in its two–sided Gröbner basis. Then E ∼= E/TE is a GR–
algebra. We denote such construction as E = E(A,B) in the sequel and identify
A and B with corresponding admissible subalgebras of E .

Theorem 4. Let A = K[y1, . . . , ym]/TA, B ∈ GR, Φ ∈ Mor(A,B) and J ⊂ B be a
left ideal. Let IΦ be a left ideal 〈{yi − φ(yi) | 1 ≤ i ≤ m}〉 ⊂ E(A,B). Then

Φ−1(J ) = (Iφ + J ) ∩ A.

Proof. 1. Consider some polynomial p =
∑
α∈N

cαy
α ∈ A with all but finite number

of cα are zero. For 0 ≤ k ≤ n we define polynomials

qk =
∑
α∈N

cα

(
k∏
i=1

yαii

)(
n∏

i=k+1

φ(yi)αi
)
.

One has q0 = Φ(p), qn = p and qk − qk+1 ∈ IΦ for 0 ≤ k ≤ n− 1. Then

p = qn +
n−1∑
k=0

(qk − qk+1) ∈ IΦ

and hence ∀p ∈ A, p− Φ(p) ∈ IΦ.
2. Since fi commute pairwise, we have IΦ ∩ J ⊆ IΦ ∩ B = 0. Hence, the sum

of ideals is a direct sum and (IΦ + J ) ∩ B = J .
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3. For any q ∈ (IΦ +J )∩A we can present Φ(q) as a sum q+Φ(q)−q. Hence,
Φ(q) ∈ (IΦ + J ) ∩ B = J and inclusion Φ−1(J ) ⊃ (IΦ + J ) ∩ A follows.

Let p ∈ Φ−1(J ). Again one has p = p − Φ(p) + Φ(p) ∈ (IΦ + J ) ∩ A. This
completes the proof.

The computational part of the theorem is formulated in the following al-
gorithm. We need two subalgorithms, described in details in the article [13]:
TwoSidedGröbnerBasis(ideal I): computes a two–sided Gröbner basis of a
given set of generators;
Eliminate(module M, subalgebra S): computes the intersection of a module
M with the subalgebra S, generated by a subset of the set of variables. This is
done by computing a Gröbner basis with the special ”elimination” ordering (cf.
[8]). Note, that this operation is quite complicated in general, requiring most of
computing time in the algorithm which follows.

We may take J ⊂ B as input instead of its reduced form J = NF(J + TB |
TB), since not the summands separately but the sum J + TB is used within the
algorithm.

From now on, for an ideal I and a two–sided ideal TA, we denote NF(I+TA |
TA) simply by ”I mod TA”.

Algorithm 1 PreimageInCommutativeAlgebra(A,B, J,Φ);
Input 1: A = K[y1, . . . , ym], TA ⊂ A an ideal; . A
Input 2: B (G–algebra), TB ⊂ B (two–sided ideal); . B
Input 3: J ⊂ B (left ideal); . J
Input 4: {Φ(yi)} ⊂ B (pairwise commuting polynomials); . Φ
Output: Φ−1(J ).

TB = TwoSidedGröbnerBasis(TB);
E = A⊗K B; TE = TA + TB ; E = E/TE ; . E = E(A,B)
IΦ = {yi − Φ(yi) | 1 ≤ i ≤ m};
P = TB + IΦ + J ; . P ⊂ E
P = Eliminate(P,B); . P = P ∩A
P = NF(TA + P | TA);
return P ; . Φ−1(J ) = (TA + (TB + IΦ + J) ∩A) mod TA;

2.2. Kernel of a map

Since ker(Φ) = Φ−1(〈0〉), with this theorem one can compute the kernel of a map
between commutative and non–commutative G–algebras using the formula

ker(Φ) = (TA + (TB + IΦ) ∩A) mod TA.

For the rest of this section, let A be a G–algebra with the set of pairwise
commuting polynomials f1, . . . , fk ∈ A.
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2.3. Algebraic Dependency of Elements

Speaking on the algebraic dependency of non–commuting polynomials, one usu-
ally think on polynomials in the free algebra. However, if {fi} pairwise commute,
the dependency could be expressed by a polynomial from the commutative ring.
We will say that {f1, . . . , fk} are algebraically dependent, if they are pairwise
commutative and there exists a non–zero polynomial g ∈ K[y1, . . . , yk] such that
g(f1, . . . , fk) = 0.

Define a morphism ϕ : K[y1, . . . , yk]→ A, ϕ(yi) = fi.
Then any g ∈ ker(ϕ)\{0} defines an algebraic relation between the f1, . . . , fk.

In particular, f1, . . . , fk are algebraically independent if and only if ker(ϕ) = 0.
Hence, the check for dependency is computable, since ker(ϕ) could be computed
with the formula of 2.2.

Example 5. The Fairlie–Odesskii algebra U ′q(so3) ([1]) is an associative unital
algebra with generating elements I1, I2, I3 and defining relations

q1/2I1I2−q−1/2I2I1 = I3, q1/2I2I3−q−1/2I3I2 = I1, q1/2I3I1−q−1/2I1I3 = I2,

where q 6= 0,±1, is a complex number, called deformation parameter. In the limit
q → 1, the algebra U ′q(so3) reduces to the enveloping algebra U(so3). Both algebras
are, of course, G–algebras.

Recall, that the p–th Chebyshev polynomial of the first kind is defined to be

Tp(x) =
p

2

[p/2]∑
k=0

(−1)k(p− k − 1)!
k!(p− 2k)!

(2x)p−2k,

where [p/2] is an integral part of p/2. For example, T1(x) = x, T2(x) = 2x2 −
1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

Consider the algebra U ′q(so3). At arbitrary q, the algebra U ′q(so3) has central
element C = −q1/2(q−q−1)I1I2I3 +qI2

1 +q−1I2
2 +qI2

3 , which generates the center
of U ′q(so3) when q is not a root of unity.

Let q be a p–th primitive root of unity (p > 2), that is qp = 1, qp
′ 6= 1,

1 ≤ p′ < p. Then elements Ck = 2 Tp
(
Ik(q − q−1)/2

)
, k = 1, 2, 3, where Tp(x) is

Chebyshev polynomial, are also central in U ′q(so3).
Using the algorithm from 2.3, we compute the polynomial, describing the al-

gebraic dependency between C, C1, C2 and C3. Let fn ∈ K[C,C1, C2, C3] be such,
that fn(C,C1, C2, C3) = 0 for q be the n–th primitive root of unity. We use
Q = q1/2 below to simplify the presentation.

Then, f3 = (1−2Q)C3 +(Q+1)C2−243C1C2C3 +9(1−2Q)(C2
1 +C2

2 +C2
3 ),

f4 = C4 − C2 − 8C2(C1 + C2 + C3)− 1024C1C2C3 + 16(C1− C2− C3)2,
f5 = C5 + Q(3Q2 − 4Q + 3)C4 + (3Q3 − 8Q2 + 8Q − 3)C3 − (3Q2 − 5Q +

3)C2 − 625(3Q3 +Q2 + 2Q− 1)C1C2C3 − 25(C2
1 + C2

2 + C2
3 ) and so on.

We should note that despite the simplicity of the algorithm, revealing an
algebraic dependency with the method above is one of the hardest computational
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problems we have ever encountered. In the example above it took us a lot of time
and memory to obtain needed elements. We use examples like above further as a
very good benchmark test for computer algebra systems.

We hope there could exist other methods for finding dependencies which have
lower complexity than the Gröbner basis algorithm we use. We will report on
further progress in this area.

2.4. Subalgebra Membership

Suppose we are given f ∈ A. How can we check whether it belongs to the subal-
gebra S, generated by pairwise commuting f1, . . . , fk?

If f does not commute with all fi, it can not belong to S. Hence, our first
task is to ensure that f commutes with every fi.

Then, we have two following possibilities to perform further check and to
compute the polynomial, describing the dependency of f on {f1, . . . , fk}.

1. We define a map ψ : K[y0, . . . , yk] → A, y0 7→ f , yi 7→ fi and compute
ker(ψ) with the Algorithm 1. Then we take an ordering <0 with y0 greater than
everything containing y1, . . . , yk on K[y0, . . . , yk] and compute the Gröbner basis
G of ker(ψ) ∈ K[y0, . . . , yk] with respect to <0. G contains an element g with the
leading monomial lm(g) = y0 if and only if f ∈ K[f1, . . . , fk]. The polynomial f ,
written in terms of f1, . . . , fk, is then g − lc(g) lm(g).

2. We define a map φ : K[y1, . . . , yk] → A, yi 7→ fi and a left ideal Iφ =
〈y1 − f1, . . . , yk − fk〉 ⊂ K[y1, . . . , yk] ⊗K A like in the algorithm. We compute
a Gröbner basis G of Iφ with respect to the elimination ordering for x1, . . . , xn.
Then we check whether the NF(f | G) does not involve any variable from A. This
happens if and only if f ∈ K[f1, . . . , fk]. The formula for f as a polynomial in
f1, . . . , fk is just the normal form polynomial.

Example 6. Let us continue with the example 5. There arises a very natural ques-
tion: since there is an algebraic dependency, could one of the known generators
of the center C, C1, C2 and C3 belong to the subalgebra, generated by the other
three?

We have checked it with the second method above, and obtained a negative an-
swer. Note, that in comparison to finding the dependency explicitly, this procedure
is much easier and requires less resources.

Our implementation of the algorithms above in Singular:Plural was useful
for treating the general situation, exploring several conjectures, posed in [1]. In
the work [9] Iorgov used the explicit form of dependency polynomials and finally
showed, that there is a general formula for the dependency, which is moreover
expressed in terms of Chebyshev polynomials.

Klimyk and Iorgov posed a conjecture that {C,C1, C2, C3} is a minimal gen-
erating set of the center.

2.5. Intersection of Modules with Commutative Subalgebras

Suppose we have an ideal I ⊂ A. In order to compute the intersection of I
with S, we set up the map K[y1, . . . , yk]

ϕ−→ A, ϕ(yi) = fi and compute its
kernel K = ker(ϕ) with the Algorithm 1. Then ϕ induces a monomorphism
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K[y1, . . . , yk]/K
ϕ−→ A. Let K[y1, . . . , yk]/K ⊃ J = ϕ−1(I) be the preimage of I.

Since the algorithm guarantees that J is given in Gröbner basis {g1, . . . , gs}, we
finish with the computation of the Gröbner basis of I∩S = 〈ϕ(g1), . . . , ϕ(gs)〉 ⊂ A.

Example 7. (Weight vectors with respect to Gel’fand–Zetlin subalgebra)
Consider A = U(sl(3,K)) for char K = 0. That is, A is the algebra over

K, generated by {xα, xβ , xγ , yα, yβ , yγ , hα, hβ} subject to relations [xα, xβ ] =
xγ , [xα, yα] = hα, [xα, yγ ] = −yβ , [xα, hα] = −2xα, [xα, hβ ] = xα, [xβ , yβ ] =
hβ , [xβ , yγ ] = yα, [xβ , hα] = xβ , [xβ , hβ ] = −2xβ , [xγ , yα] = −xβ , [xγ , yβ ] =
xα, [xγ , yγ ] = hα + hβ , [xγ , hα] = −xγ , [xγ , hβ ] = −xγ , [yα, yβ ] = −yγ , [yα, hα] =
2yα, [yα, hβ ] = −yα, [yβ , hα] = −yβ , [yβ , hβ ] = 2yβ , [yγ , hα] = yγ , [yγ , hβ ] = yγ .

With the help of Singular:Plural and its library center.lib we compute
the central elements of U(sl3), which we denote by p4 and p5:

p4 = 3xαyα + 3xβyβ + 3xγyγ + h2
α + hαhβ + h2

β − 3hα − 3hβ,
p5 = 27xγyαyβ + 27xαxβyγ + 9xαyαhα − 18xβyβhα + 9xγyγhα + 2h3

α +
18xαyαhβ − 9xβyβhβ − 9xγyγhβ + 3h2

αhβ − 3hαh2
β − 2h3

β − 36xαyα + 18xβyβ −
9xγyγ − 12h2

α − 3hαhβ + 6h2
β + 18hα.

Let p3 = h2
α + 4xαyα − 2hα be the central element of the subalgebra of A,

generated by xα, yα, hα (it is isomorphic to U(sl2)). Let, moreover, p1 = hα and
p2 = hβ be the generators of the Cartan subalgebra of A. Then B1 = Z(A)
is generated by the {p4, p5}. Let B2 be the Gel’fand-Zetlin subalgebra GZ(A),
generated by {p1, p2, p3, p4, p5}.

Consider the natural maps φi : Bi → A. We want to compute Ii := φ−1
i (I) for

certain left ideals I, what will give us the central (i = 1) and the Gel’fand–Zetlin
(i = 2) characters of cyclic modules, for which I is the annihilator of a generator.
In fact, one of the nice properties of Gel’fand–Zetlin subalgebra implies that it
suffices to compute the Gel’fand–Zetlin character of a module, since the central
character will be obtained from it.

1. First of all we perform the computations of kernels and obtain kerφ1 =
kerφ2 = 0. (It is no longer true if char K > 0 since then there appear additional
generators in the center).

2. Consider the parametric ideal I = 〈xα, xβ , hα − a, hβ − b〉. Then

I2 =
〈
p1 − a, p2 − b, p3 − a2 − 2a,
p4 − a2 − ab− b2 − 3a− 3b,
p5 − 2a3 − 3a2b+ 3ab2 + 2b3 − 6a2 + 3ab+ 12b2 + 18b

〉
.

Moreover, the fourth and the fifth polynomials of I2 generate I1. Note that both
ideals I1, I2 are maximal in corresponding algebras and parametric parts of p4, p5

are indecomposable polynomials in a, b.
3. Now, let us take another ideal I = 〈xβ , xγ , hα − a, hβ − b〉. Then

I2 =
〈
p1 − a, p2 − b,
3p3 − 4p4 + (a+ 2b)(a+ 2b+ 6),
3(a+ 2b+ 2)p4 − p5 − (a+ 2b)(a+ 2b+ 3)(a+ 2b+ 6)

〉
.

The fourth polynomial of I2 generates I1. Let c = a + 2b. Then the parametric
parts of p = (p1, p2, p3, p4, p5) form a one–parameter family, depending on t (we
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choose t = p3 here):(
a, b, 4

3 t−
1
3c(c+ 6), t, 3(c+ 2)t+ c(c+ 3)(c+ 6)

)
.

3. Kernel of a Homomorphism of Modules

3.1. Syzygies and Homomorphisms of Free Modules

Let K be a field and A be a G–algebra.
A free A–module An could be viewed both as a left and a right A–module.

For a vector v ∈ An (respectively a matrix M) we denote by vt (resp. M t) a
transposed vector (resp. matrix). Consider two free left A–modules Am, An with
canonical bases {εi} and {ej} respectively. Any left homomorphism φ is given by
its values on generators:

φ : Am =
m⊕
i=1

Aεi −→ An =
n⊕
j=1

Aej , εi 7−→ Φi,

or, equivalently, by a matrix Φ ∈ An×m with columns Φi. Then, the image of φ
is a submodule of An, generated by the columns of a matrix Φ. In the sequel, a
submodule of a free module and a homomorphism will be presented by a matrix,
the columns of which constitute the generating set of a module.

Recall, that a syzygy of a k–tuple (f1, . . . , fk), fi ∈ An is such a k–tuple
(s1, . . . , sk), si ∈ A, that

∑
i sifi = 0.

Consider the kernel of the homomorphism above. Let I = A〈Φ1, . . . ,Φk〉 be
a left submodule of An. Then φ surjects onto I and Syz(I) := Kerφ is called the
(first) module of syzygies of I with respect to the set of generators {Φ1, . . . ,Φk}.
Easy computations ensure that the isomorphism class of Syz(I) as of A–module
does only depend on the isomorphism class of I, in particular, it is independent
of the set of generators.

There are several methods for computing syzygy modules ([3,8,10]), which
we do not discuss here in details. However, it is worth to note that computation
of syzygy module involves Gröbner bases. Implementations of different efficient
methods are available in Singular:Plural.

3.2. Modulo Algorithm

Let A be a G–algebra, T be a proper two–sided ideal T ⊂ A, already given in its
two–sided Gröbner basis {t1, . . . , tp} ⊂ A and there is a GR–algebra A = A/T .

For a left ideal J = A〈g1, . . . , gp〉 we denote byMs(J) ⊂ As a left submodule,
generated by the columns of the matrix J ⊗ Is×s.

We denote by In×n an n× n identity matrix.

Suppose there are left submodules U ∈ Am =
m⊕
i=1

Aei, V = A〈v1, . . . , vk〉 ⊂ An

and left A–modules M = Am/U and N = An/V .
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Consider a homomorphism of left A–modules

φ : Am/U −→ An/V ei 7−→ Φi,

given by the matrix Φ ∈ An×m. We are interested in the computation of the
kernel of φ.

Then As = (A/T )s ∼= As/Ms(T ) as A–modules. Defining U ′ := U +Mm(T )
and V ′ := V +Mn(T ), we consider the homomorphism of A–modules

ψ : Am
Φ−→ An/V ′. Then Kerφ = (Kerψ) mod U ′.

Let g =
∑m
i=1 giei ∈ Am and Mn(T ) = A〈m1, . . . ,mpn〉. Such g belongs to

the Kerψ if and only if ψ(g) ∈ V ′, that is there exist {hi}, {rj} ⊂ A, such that

m∑
i=1

giΦi +
k∑
l=1

hlvl +
pn∑
j=1

rjmj = 0.

Let S := Syz({Φ, V,Mn(T )}) ⊂ Am+k+pn. Then the previous equality means
that (g1, . . . , gm, h1, . . . , hk, r1, . . . , rpn) ∈ S. Then Kerψ = S ∩ ⊕mi=1Aei. The
latter intersection can be computed with standard ”elimination of components”
technique ([8,21]).

Computing with S directly as above, we get much overhead (since we do not
really need all syzygies of {Φ, V,Mn(T )} but only those, which are relevant to
the Φ part). The next Lemma, inspired by Schönemann ([21]), avoids such extra
computations and therefore is used in current implementation.

Lemma 8. Let φ : M → N be a left A–module homomorphism as before. Define
the matrix

Y =
(

Φ V Mn(T )
Im×m 0 0

)
⊂ A(n+m)×(m+k+pn).

Let Z = Y ∩
n+m
⊕

i=n+1
Aei and U ′ = U +Mm(T ), then

Kerφ = NF(Z + U ′ | U ′) ⊆M.

Further, we refer to this algorithm as to Modulo (in Singular:Plural, the
command modulo is used for it and we just keep the tradition). For A, ψ,Φ, V as
above, the kernel of ψ is computed by executing modulo(Φ, V ).

Example 9 (kernel of a module homomorphism). Let A = U(sl2) = K〈e, f, h |
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f〉. Let I be the two–sided ideal, given in its
two–sided Gröbner basis {h2− 1, fh− f, eh+ e, f2, 2ef −h− 1, e2} and A = A/I.
Indeed A is finite–dimensional with the basis {1, e, f, h}.

Consider endomorphisms τ : A → A and let us compute their kernels.
For non–zero k ∈ K, ker(τ : 1 7→ e+ k) = ker(τ : 1 7→ f + k) = 0.
For k2 6= 1, ker(τ : 1 7→ h+ k) = 0.
ker(τ : 1 7→ e) = ker(τ : 1 7→ h+ 1) = A〈e, h− 1〉.
ker(τ : 1 7→ f) = ker(τ : 1 7→ h− 1) = A〈f, h+ 1〉.



V. Levandovskyy / On Preimages of Ideals in Certain Non–commutative Algebras 11

3.3. Applications

With the help of an algorithm Modulo we can solve some useful problems.

2nd Isomorphism Theorem. Let M1,M2 ∈ A` be two left submodules. By the
classical theorem, we have M1/(M1 ∩M2) ∼= (M1 +M2)/M2.

Illustrating the situation with the diagram Ak M1−→ A` M2←− Am, we see that
indeed, M1/(M1 ∩M2) ∼= A`/Kerφ, where φ : Ak M1−→ A`/M2.

The presentation matrix for M1/(M1 ∩M2) equals Kerφ and hence can be
computed by Modulo(M1,M2).

Intersect Many Submodules via Modulo. We can compute the intersection
of a finite set of submodules with the Modulo algorithm in an efficient manner,
generalizing [21].

Proposition 10. Let A be a GR–algebra and {Mi = A〈f i1, . . . , f iNi〉 ⊂ A
r, i ≤ m}

be the finite set of submodules. Assume, that each Mi is actually a submodule of
Ani , where ni ≤ ni+1 ≤ r. Consider the left homomorphism of A–modules

φ : Am −→ An1/M1 ⊕ · · · ⊕ Anm/Mm, ei 7→ Ini×ni .

Then
m
∩
i=1
Mi can be computed by

Modulo(

 In1×n1

...
Inm×nm

 ,

M1 . . . 0
...

. . .
...

0 . . . Mm

).

4. Central Character Decomposition of the Module

Decompositions of modules are of big interest for many branches of algebra. In
the non–commutative case, especially in the representation theory, a particularly
important role is played by the decomposition by central characters. The algo-
rithmic treatment of this problem goes back to [11], which we follow.

For the whole section we assume K to be algebraically closed.
Let A be a G–algebra and C be a finitely generated commutative subalgebra

of A. Denote by C∗ = Hom(C,K) the set of maximal ideals of C.

Definition 11. Let M be a finite generated A-module and χ ∈ C∗.

• The χ–weight subspace of M with respect to C is defined to be

Mχ = {v ∈M | ∀c ∈ C, (c− χ(c))v = 0} .

• The generalized χ–weight subspace of M with respect to C is defined to be

Mχ =
{
v ∈M | ∃n(v) ∈ N,∀c ∈ C, (c− χ(c))n(v)v = 0

}
.
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• We will say that M possesses a weight decomposition (resp. generalized
weight decomposition) if

M =
⊕
χ∈C∗

Mχ (resp. M =
⊕
χ∈C∗

Mχ).

• SuppCM = {χ ∈ C∗|Mχ 6= 0} is called a support of M with respect to C.
• We will say that M possesses a finite (generalized) weight decomposition

with respect to C if M possesses a (generalized) weight decomposition, and
its support is finite.

One can determine, whether a given element m ∈ M belongs to Mχ (resp.
Mχ) for some χ ∈ C by analyzing the ideal AnnMA m ∩ C ⊂ C. The last can be
computed by the Theorem 4.

Let us now concentrate our attention on computing generalized weight decom-
position and Zariski closure of the support with respect to the center Z = Z(A)
of A. In this case the subspaces Mχ and Mχ are submodules for any χ ∈ Z∗,
what should not be true, for example, for Gel’fand–Zetlin subalgebras. The gen-
eralized weight decomposition with respect to the center will be called the central
character decomposition.

Lemma 12. Let A be a GR–algebra and M ∼= AN/IM for a left submodule IM ⊂
AN . We define a module

JM :=
N⋂
j=1

AnnMA ej .

Then Z(A) ∩ JM = Z(A) ∩AnnAM holds.

Proof. Note, that if IM is an ideal, JM = IM and AnnAM ⊂ IM . In general, we
have JM ⊃ AnnAM too, hence Z(A) ∩ JM ⊃ Z(A) ∩ AnnAM . Now, suppose
z ∈ Z(A) ∩ JM .

∀v ∈M, ∃{aj} ⊂ A such that v =
N∑
j=1

ajej . Then zv =
N∑
j=1

ajzej = 0,

and hence, z ∈ AnnAM .

Using Nullstellensatz we obtain a corollary, describing the set SuppZM in
terms of ideal JM ∩ Z(A), which can be computed with the Algorithm 1.

Corollary 13. Let A be a G–algebra and M be an A–module. Let, moreover, I ⊂
K[x1, . . . , xn] be an ideal and V (I) ⊂ AnK denotes the set of zeros of I. Then the
Zariski closure of SuppZM equals V (JM ∩ Z(A)).

To proceed with the discussion of algorithm for computation of Mχ, notions
of central quotient ideal and central quotient module are needed. These notions
are quite different from the usual ([3,8]) quotient ideals. We denote the central
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quotient by (I : J) instead of (I :Z J), since classical quotients will not appear in
the sequel.

Definition 14. Let I ⊂ AN be a left submodule and Z = Z(A) be a center of A.

• For z ∈ Z the left submodule (I : z) := {v ∈ AN | zv ∈ I}.
• For an ideal I ⊂ Z the submodule I : I is defined to be

(I : I) := {v ∈ AN | zv ∈ I for all z ∈ I}.

• The submodule I : z∞ is defined to be lim−→
n∈N

I : zn.

• The submodule I : I∞ is called a central saturation of I by I and
is defined to be lim−→

n∈N
I : In.

The usefulness of central quotient modules in our context is indicated by the
following proposition.

Proposition 15. Let A be a G–algebra and M be an A–module. Suppose M pos-
sesses a finite central character decomposition and | SuppZM |= s. If s = 1, we
have M ∼= Mχ. Otherwise,

Mχ ∼= AN/(IM : I∞χ ), where Iχ =
⋂

ψ∈SuppZ M
ψ 6=χ

kerψ.

Proof. By assumption, M =
⊕
ψ∈Z∗

Mψ. Define a left submodule

Iχ =
∑

ψ∈Z∗\{χ}

Mψ + IM ⊂ AN .

Obviously Mχ ∼= AN/Iχ. One has to show that IM : I∞χ = Iχ.
Since SuppZM is finite, there exists such n ∈ N, that for all ψ ∈ SuppZM

holds (kerψ)nMψ = 0. For all x ∈ Iχ one has Inχx ∈ I. Thus Iχ ⊂ IM : I∞χ .
Taking x ∈ AN \Iχ, we see that the image v of x in Mχ ∼= AN/Iχ is non–zero.

Suppose x ∈ IM : I∞χ , then there exists such m ∈ N, that Imχ x ∈ IM . Hence we
have also Imχ v = 0, what contradicts the definition of Iχ.

The computation of a central quotient is much easier than the computation
of a classical quotient module (see, for example, [3]).

Lemma 16. Let A be a GR–algebra, z ∈ Z(A) be a central element in A and
let F ⊂ AN be a left submodule, generated by {f1, . . . , fm}. Then the central
quotient (F : z) ⊆ AN is generated by the first N components of generators of
the syzygy module Syz(ze1, . . . , zeN , f1, . . . , fm) and hence, can be computed by
Modulo(z · IN×N , F ).
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Proof. Let ā = (a1, . . . , aN+m) ∈ Syz(ze1, . . . , zeN , f1, . . . , fm) ⊂ AN+m. Then

N∑
i=1

zaiei = −
m∑
i=1

ai+Nfi.

Hence, the tuple (a1, . . . , aN ) is an element of (F : z) if and only if

ā ∈ Syz(ze1, . . . , zeN , f1, . . . , fm).

We can also compute the annihilator of an element of a module:

Lemma 17. Let m ∈M = AN/IM , and IM be a left submodule of AN , generated
by {m1, . . . ,mk}, then AnnMA (m) is the left ideal generated by the first components
of generators of the syzygy module Syz(m,m1, . . . ,mk) ⊆ Ak+1 and hence, could
be computed by Modulo(m, IM ).

Proof.

∀a = (a0, a1, . . . , ak) ∈ Syz(m,m1, . . . ,mk), a0m+
k∑
i=1

aimi = 0,

hence a0m = 0 mod IM .

The advantage of the situation we are in is indicated by the lemma, which
follows from the fact that I is an ideal in the center of A.

Lemma 18. Let {c1, . . . , cn} be the Gröbner basis of I ⊂ Z, then

(I : I) =
n⋂
i=1

(I : ci).

In the following algorithms we formalize the described approach.
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Algorithm 2 CentralSaturation(M,T );

Input : M , a left AN–submodule, T , an ideal in Z(A);
Output: S, a left AN–submodule; . S = M : T∞

function CentralQuotient(M,T )
Int s := size(T );
Matrix E := IdentityMatrix(s);
for i=1 to s do

N [i] := Modulo(T [i] · E,M);
end for
S := IntersectManyModules(N [1], . . . , N [s]);
return S;

end function

Module Q := 0;
Ideal T := GröbnerBasis(T );
S := M ;
repeat

Q := CentralQuotient(S, T );
S := CentralQuotient(Q,T );

until (S == Q)
return S;

Proof. (of Algorithm 2).
Termination: The algorithm CentralQuotient clearly terminates. As for Cen-

tralSaturation, we see that due to the obvious property (I : I) : I = I : I2,
one has an increasing sequence I : I ⊂ I : I2 ⊂ . . . of submodules in AN . It
stabilizes by the Noetherian property of A, so the computation of the I : I∞ will
be finished after a finite number of steps.
Correctness: Lemmata 16, 18 imply the correctness of CentralQuotient.

In algorithms we have used the following auxiliary procedures:

• Setring(ring A): sets the ring A active;
• Ann(module M , vector v): the annihilator of v in M (Lemma 17);
• IntersectManyModules(module P1, . . . , Pm) (Proposition 10);
• MinAssPrimes(ideal I): minimal associated prime ideals for the zero–

dimensional ideal I ⊂ K[z]; (see [20]).

All of them are implemented in Singular:Plural.
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Algorithm 3 CentralCharDecomposition(A,Z,M);
Input 1: A, a G–algebra;
Input 2: Z = {Z1, . . . , Zm} ⊂ A, generators of Z(A);
Input 3: IM , a left AN–submodule; . M ∼= AN/IM
Output: R, a list of pairs {(χ, Iχ)}.

Initring K[z] := K[z1, . . . , zm];
Initmap φ : K[z]→ A; φ(zi) = Zi;
Setring A;
for i=1 to N do

P [i] := Ann(M, ei); . ei is the i–th basis vector of AN

end for
JM := IntersectManyModules(P [1], . . . , P [N ]);
Setring K[z];
Jz := PreimageInCommutativeAlgebra(K[z], A, JM , φ);
if (Dim (Jz) > 0) then

ErrorMessage = ”There is no finite decomposition”;
return ERROR;

else
List L0 := MinAssPrimes(Jz);

end if
Setring A;
List L := φ(L0); Int s = Size(L); List S;
for i=1 to s do

P := IntersectManyModules(L[1], . . . , L[̂i], . . . , L[s]);
S[i] := TwoSidedGröbnerBasis(P );

end for
List R;
for i=1 to s do

R[i][1] := S[i];
R[i][2] := CentralSaturation(IM , S[i]);

end for
return R;

Algorithms 2 and 3 have been recently implemented by the author in the
Singular:Plural library ncdecomp.lib ([19]); all the examples from the article
have been computed with this implementation.

Example 19. Let us continue with the example 7.
The central support of the parametric module M = A/I, I = 〈xα, xβ , hα −

a, hβ − b〉 equals χ1 = 〈p4 − a2 − ab− b2 − 3a− 3b, p5 − 2a3 − 3a2b+ 3ab2 + 2b3 −
6a2 + 3ab+ 12b2 + 18b〉, a maximal ideal in K[p4, p5] for any value of parameters
a, b. Hence, M ∼= Mχ1 .

As for the parametric module M ′ = A/I, I = 〈xβ , xγ , hα − a, hβ − b〉, we
have SuppZM ′ = 〈3(a+2b+2)p4−p5−(a+2b)(a+2b+3)(a+2b+6)〉 ⊂ K[p4, p5],
an ideal of dimension 1 for any value of parameters a, b. Hence, there exists no
finite central decomposition.
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Example 20. Let A = U(sl2) (cf. Example 9). Consider a set of generators S =
{e3, f3, h3 − 4h} ⊂ A and two ideals therein: IL, a left ideal and IT , a two–sided
ideal, both generated by S. Gröbner basis computations show IL ⊃ IT .

We draw our attention at two finite–dimensional modules:
ML = U(sl2)/IL (of dimension 15) and
MT = U(sl2)/IT (of dimension 10).
Intersection with the center of A, generated by the polynomial 4ef + h2 − 2h,

gives us the following supports:
SuppZML = {z, z − 8, z − 24} and SuppZMT = {z, z − 8}.
Then, MT = M

(z)
T ⊕M (z−8)

T = U(sl2)/m ⊕ U(sl2)/I9 and
ML = M

(z)
L ⊕M (z−8)

L ⊕M (z−24)
L = U(sl2)/m ⊕ U(sl2)/I9 ⊕ U(sl2)/I5.

Here, we used the ideals m = 〈e, f, h〉, I5 = 〈e3, f3, ef − 6, h〉 and
I9 = 〈4ef+h2−2h−8, h3−4h, e3, f3, fh2−2fh, eh2+2eh, f2h−2f2, e2h+2e2〉.

The K–dimensions of corresponding modules are 1, 5, 9 respectively.
Note, that modules U(sl2)/m and U(sl2)/I5 are simple modules, whereas

U(sl2)/I9 is a sum of three following 3–dimensional simple modules
U(sl2)/〈e2, f2, ef − 2, h〉 ⊕ U(sl2)/〈e, f3, h− 2〉 ⊕ U(sl2)/〈e3, f, h+ 2〉.

Conclusion and Future Work

An algorithm, computing a preimage of an ideal under the map between a com-
mutative and a non–commutative GR–algebra (Algorithm 1) is a building block
for the whole family of algorithms, like algebraic dependency of pairwise commut-
ing polynomials (2.3), membership of a polynomial in a commutative subalgebra
(2.4) and central character decomposition (Algorithm 3). The latter uses an al-
gorithm for computation of the kernel of a homomorphism of modules (Lemma
8), which has its own applications.

We hope that nontrivial examples, computed and described in details, help to
understand both attractivity and computational complexity of treated problems.
More applications like the investigation of singularities of polynomials, describ-
ing algebraic dependency of generators of the center (in particular, this is quite
interesting in universal enveloping algebras of Lie algebras over fields of positive
characteristic) can be effectively supported by proposed methods.

One of advantages of our implementation in Singular:Plural is that this
computer algebra system is freely distributed. One can download it together with
its libraries and detailed documentation from http://www.singular.uni-kl.de.

Concerning the preimage of modules under a general morphism between two
GR–algebras, the situation is more complicated; we are investigating it further
and hope to report on progress in future publications. It requires the development
of tools for handling opposite algebras together with the effective treatment of
bimodules.
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