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What is computer algebraic Analysis?

Algebraization as a Trend
Algebra: Ideas, Concepts, Methods, Abstractions

Computer algebra works with algebraic concepts in a
(semi-)algorithmic way at three levels:

1 Theory: Methods of Algebra in a constructive way

2 Algorithmics: Algorithms (or procedures) and their
Correctness, Termination and Complexity results (if possible)

3 Realization: Implementation, Testing, Benchmarking,
Challenges; Distribution, Lifecycle, Support and
software-technical aspects
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What is computer-algebraic Analysis?

Algebraic Analysis

1 As a notion, it arose in 1958 in the group of Mikio Sato
(Japan)

2 Main objects: systems of linear partial DEs, generalized
functions

3 Main idea: study systems and generalized functions in a
coordinate-free way (i. e. by using modules, sheaves,
categories, localizations, homological algebra, . . . )

4 Keywords: D-Modules, (sub-)holonomic D-Modules, regular
resp. irregular holonomic D-Modules

5 Interplay: singularity theory, special functions, . . . .

Other ingredients: symbolic algorithmic methods for discrete resp.
continuous problems (like symbolic summation, symbolic
integration etc.)
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Some big names in Computer-algebraic Analysis

W. Gröbner and B. Buchberger: Gröbner bases and
constructive ideal/module theory

O. Ore: Ore Extension and Ore Localization

I. M. Gel’fand and A. Kirillov: GK-Dimension

B. Malgrange: M. isomorphism, M. ideal, . . .

J. Bernstein, M. Sato, M. Kashiwara et al.: D-Modules theory

. . .
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Partial classification of operator algebras
Ore Localisation and its recognition
The complete annihilator program

Operator algebras: partial Classification

Let K be a computable field, that is (+,−, ·, :) can be performed
algorithmically.
Moreover, let F be a K -vector space (”function space”).

Let x be a local coordinate in F . It induces a K -linear map
X : F → F , i. e. X (f ) = x · f for f ∈ F .
Moreover, let ox : F → F be a K -linear map.
Then, in general, ox ◦ X 6= X ◦ ox , that is
ox(x · f ) 6= x · ox(f ) for f ∈ F .

The non-commutative relation between ox and X can be often
read off by analyzing the properties of ox like, for instance, the
product rule.
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Classical examples: Weyl algebra

Let f : C→ C be a differentiable function and ∂(f (x)) := ∂f
∂x .

Product rule tells us that ∂(x f (x)) = x ∂(f (x)) + f (x), what is
translated into the following relation between operators

(∂ ◦ x − x ◦ ∂ − 1) (f (x)) = 0.

The corresponding operator algebra is the 1st Weyl algebra

D1 = K 〈x , ∂ | ∂x = x∂ + 1〉.
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Classical examples: shift algebra

Let g be a sequence in discrete argument k and s is the shift
operator s(g(k)) = g(k + 1). Note, that s is multiplicative.

Thus s(kg(k)) = (k + 1)g(k + 1) = (k + 1)s(g(k)) holds.

The operator algebra, corr. to s is the 1st shift algebra

S1 = K 〈k , s | sk = (k + 1)s = ks + s〉.

Intermezzo

For a function in differentiable argument x and in discrete
argument k the natural operator algebra is

A = D1 ⊗K S1 = K 〈x , k , ∂x , sk | ∂xx = x∂x + 1, skk = ksk + sk ,

xk = kx , xsk = skx , ∂xk = k∂x , ∂xsk = sk∂x〉.
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Examples form the q-World

Let k ⊂ K be fields and q ∈ K ∗.
In q-calculus and quantum algebras three situations are common
for a fixed k: (a) q ∈ k, (b) q is a root of unity over k , and
(c) q is transcendental over k and k(q) ⊆ K .

Let ∂q(f (x)) = f (qx)−f (x)
(q−1)x be a q-differential operator.

The corr. operator algebra is the 1st q-Weyl algebra

D
(q)
1 = K 〈x , ∂q | ∂qx = q · x∂q + 1〉.

The 1st q-shift algebra corresponds to the q-shift operator
sq(f (x)) = f (qx):

Kq[x , sq] = K 〈x , sq | sqx = q · xsq〉.

VL Trends in CAAN



Operator algebras, partial classification
Dimensions and purity

Partial classification of operator algebras
Ore Localisation and its recognition
The complete annihilator program

Two frameworks for bivariate operator algebras

Algebra with linear (affine) relation

Let q ∈ K ∗ and α, β, γ ∈ K . Define

A(1)(q, α, β, γ) := K 〈x , y | yx − q · xy = αx + βy + γ〉

Because of integration operator I(f (x)) :=
∫ x

0 f (t)dt, obeying
the relation I x − x I = −I2 we need yet more general framework.

Algebra with nonlinear relation

Let N ∈ N and c0, . . . , cN , α ∈ K . Then A(2)(q, c0, . . . , cN , α) is
K 〈x , y | yx − q · xy =

∑n
i=1 ciy

i + αx + c0〉 or
K 〈x , y | yx − q · xy =

∑n
i=1 cix

i + αy + c0〉.
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Theorem (L.–Koutschan–Motsak, 2011)

A(1)(q, α, β, γ) = K 〈x , y | yx − q · xy = αx + βy + γ〉,
where q ∈ K ∗ and α, β, γ ∈ K
is isomorphic to the 5 following model algebras:

1 K [x , y ],

2 the 1st Weyl algebra D1 = K 〈x , ∂ | ∂x = x∂ + 1〉,
3 the 1st shift algebra S1 = K 〈x , s | sx = xs + s〉,
4 the 1st q-commutative algebra Kq[x , s] = K 〈x , s | sx = q · xs〉,
5 the 1st q-Weyl algebra D

(q)
1 = K 〈x , ∂ | ∂x = q · x∂ + 1〉.
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Theorem (L.–Makedonsky–Petravchuk, unpublished)

For N ≥ 2 and c0, . . . , cN , α ∈ K , A(2)(q, c0, . . . , cN , α)
= K 〈x , y | yx − q · xy =

∑N
i=1 ciy

i + αx + c0〉 is isomorphic to . . .

1 Kq[x , s] or D
(q)
1 , if q 6= 1,

2 S1 = K 〈x , s | sx = xs + s〉, if q = 1 and α 6= 0,

3 K 〈x , y | yx = xy + f (y)〉, where f ∈ K [y ] with deg(f ) = N, if
q = 1 and α = 0.

K 〈x , y | yx = xy + f (y)〉 ∼= K 〈z ,w | wz = zw + g(w)〉 if and
only if ∃λ, ν ∈ K ∗ and ∃µ ∈ K , such that g(t) = νf (λt + µ)
(in particular deg(f ) = deg(g)).
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Example: Legendre’s differential equation

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0

x is differentiable with ∂x as corr. operator

if n ∈ Z, n is discretely shiftable with sn as corr. op.

then there is a recursive formula of Bonnet (order 2 in sn)

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.
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Example: Legendre’s differential equation

O := K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

From the system of equations

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0,

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.

one obtains the matrix P ∈ O2×1; thus M = O/O1×2P and[
(x2 − 1)∂2

x + 2x∂x − n(1 + n)
(n + 2)s2

n − (2n + 3)xsn + n + 1

]
• Pn(x) =

[
0
0

]
.

With the help of Gröbner bases: a minimal generating set of the
left ideal P contains a compatibility condition

(n + 1)sn∂x − (n + 1)x∂x − (n + 1)2 ≡ (n + 1)(sn∂x − x∂x + n + 1).
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Solutions and Malgrange isomorphism

Let F be K -vector space and a left O-module, then

SolO(P,F) := {f ∈ Fm×1 : Pf = 0}.

Malgrange Isomorphism

There exists an isomorphism of abelian groups (and K -vector
spaces)

HomO(M,F) = HomO(O1×m/O1×`P,F) ∼= SolO(P,F),

(φ : M → F) 7→ (φ(e1), . . . , φ(em)) ∈ Fm×1 .
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Question: What is better to use in modeling: operator algebras
with constant or with polynomial coefficients?

Answer: with polynomial coefficients.

Theorem (Zerz–L.–Schindelar, 2011)

Let K = R, pi ∈ K [x1, . . . , xn]` and V = Kp1 + · · ·+ Kpm. Let O
be the n-th Weyl algebra and AnnO(V ) ⊂ O be the minimal left
ideal of equations, having p1, . . . , pm as solutions. Then

SolO( O/AnnO(V ), C∞(R`)) = V .
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Ore Localization

Let A be a Noetherian domain and
S a multiplicatively closed set in A, where 0 6∈ S .

A commutative implies the existence of S−1A.
A non-commutative: if S is an Ore set in A, ∃ S−1A.

Ore condition

For all s1 ∈ S , r1 ∈ A there exist s2 ∈ S , r2 ∈ A, such that

r1s2 = s1r2, that is s−1
1 r1 = r2s−1

2 .
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The Ore localization of A w.r.t S is a Ring AS := S−1A together
with an injective homomorphism φ : A→ AS , such that

(i) for all s ∈ S φ(s) is a unit in AS ,

(ii) for all f ∈ AS , ∃a ∈ A, s ∈ S s. t. f = φ(s)−1φ(a).

Example

Let S = A∗ := A \ {0}. Then S−1A ∼= Quot(A).

If K ( S ( A∗, then A→ AS → Quot(A),

For any S , S−1A is an A-module (not finitely generated),

in general A is not an S−1A-module.

S−1 gives rise to a functor A-mod → S−1A-mod.
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Polynomial or rational Coefficients?

With Ore localization we can recognize, that

K (X )[∂1;σ1, δ1] · · · [∂m;σm, δm] ∼= (K [X ]\{0})−1K 〈X , ∂1, . . . , ∂m | . . .〉

and the functor S−1 connects categories of modules.

Algorithmic aspects

Algorithmic computations over S−1A can be replaced completely
with computations over A.
Keywords: integer strategy, fraction-free strategy.
For instance, a Gröbner basis theory over A induces a Gröbner
basis theory over S−1A.

There are implementations for the rational localization
K (X )〈∂1, . . .〉.
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Polynomial or rational Coefficients?

Let A be a K -algebra and S ⊂ A a mult. closed Ore set in A.
Moreover, let

M ∼= An/AmP, a finitely presented left A-module,

F a left A-module,

F̃ a left S−1A-module.

S−1M ∼= (S−1A)n/(S−1A)mP.

SolA(M, F̃) ∼= SolS−1A(S−1M, F̃),

Assume F̃ ⊂ F as left A-modules. Then

SolA(M, F̃) ⊆ SolA(M,F),
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Let G ⊂ F be function spaces, i. e. K -vector spaces and left
O-modules over a fixed operator algebra O.

Let f ∈ F , then AnnFO f := {p ∈ O : pf = 0 ∈ F} is the
annihilator of f , which is a left ideal in O.

Let I ( O be an ideal and suppose, that dimK (G) <∞.
I is called the complete annihilator of G over O, if the following
properties hold:
”most powerful”: if ∀g ∈ G rg = 0 for r ∈ O, then r ∈ I
”unfalsified”: SolO(O/I , F) = G.
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The complete annihilator program

There exists no general algorithm, which can compute the
complete annihilator program of f over O (where O is an algebra
with polynomial coefficients).

Therefore one investigates some classes of f and develops special
methods for the classes.

One of successes is computational D-module theory, where
among other one can compute the complete annihilators of

f (x, s) = f1(x1, . . . , xn)s1 ·. . .·fm(x1, . . . , xm)sm , fi (x) ∈ K [x1, . . . , xn]

over O =
n⊗

i=1

KK 〈xi , ∂i | ∂ixi = xi∂i + 1〉 ⊗K K [s1, . . . , sm]

in an algorithmic way. There are implementations.
VL Trends in CAAN
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Some computational D-module theory

Let Dn(K ) = K 〈x1, . . . , xn, ∂1, . . . , ∂n | ∂jxi = xi∂j + δij〉 be the
n-th Weyl algebra and Dn[s] = Dn ⊗K K [s].

Theorem (J. Bernstein, 1971/72)

Let f (x) ∈ C[x1, . . . , xn]. Then there exist

an operator P(s) ∈ Dn ⊗C C[s],

a monic polynomial 0 6= bf (s) ∈ C[s] of the smallest degree
(called the global Bernstein-Sato polynomial),

such that for arbitrary s the following functional equation holds

P(s) • f s+1 = bf (s) · f s .

Let AnnD[s](f s) = {Q(s) ∈ D[s] | Q(s) • f s = 0} ⊂ D[s] be the
annihilator, then P(s)f − bf (s) ∈ AnnD[s](f s) holds.
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Dimensions

Generalized Krull dimension is called Krull-Rentschler-Gabriel
dimension; not algorithmic

global homological dimension (of an algebra) resp. projective
dimension (of a module); for modules: algorithmic (relatively
expensive), implemented

Gel’fand-Kirillov Dimension; algorithmic (relatively cheap),
implemented; plays the role of Krull dimension in
non-commutative case.
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GK dimension and its properties

Let A be a K -algebra, generated by x1, . . . , xm.

Degree filtration

Let V = Kx1 ⊕ . . .⊕ Kxm be a vector space.
Set V0 = K , V1 = K ⊕ V and Vk+1 = Vk ⊕ V k+1.
Let M0 ⊂ M, dimK M0 <∞ and AM0 = M.
An ascending filtration on M is defined via {Hd := VdM0, d ≥ 0}.

The Gel’fand-Kirillov dimension of M is defined as follows

GKdim(M) = lim sup
d→∞

logd(dimK Hd)
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Gel’fand-Kirillov-Dimension: examples

Let deg xi := 1, Vd := {f | deg f = d} and V d := {f | deg f ≤ d}.

Lemma

Let A be a K -algebra and a domain. If the standard filtration on A
is compatible with the PBW Basis {xα | α ∈ Nm}, then
GKdim(A) = m.

dim Vd =

(
d + m − 1

m − 1

)
, dim V d =

(
d + m

m

)
.

Thus
(d+m

m

)
= (d+m)...(d+1)

m! = dm

m! + . . . and

GKdim(A) = lim supd→∞ logd

(
d + m

m

)
= m.
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Gel’fand-Kirillov-Dimension: examples and properties

GKdim(K 〈x1, . . . , xn〉) =∞ for n ≥ 2.
GKdim(K [[x1, . . . , xn]]) =∞ for n ≥ 1, when |K | =∞.

Properties

GKdim M = sup{GKdim(N) : N ∈ A−mod , N ⊆ M},
GKdim A = sup{GKdim(S) : S ⊆ A, S fin. gen. subalgebra}

Over G -algebras (and even more) there are algorithms and
implementations for the computation of the GK dimension of
finitely presented modules.
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Elimination and dimension

Lemma

Let I ⊂ A be a left ideal and S ⊂ A be a finitely generated
subalgebra. Then

I ∩ S = 0 implies GKdim A/I ≥ GKdim S,

GKdim A/I < GKdim S implies I ∩ S 6= 0.

Recall: Bernstein’s inequality

Let A be the n-th Weyl algebra over K with char K = 0 (thus
GKdim(A) = 2n) and 0 6= M be an A-module, then GKdim M ≥ n.
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Elimination and dimension

Classically: for a function f , AnnO f ∩ K [x1, . . . , xn] = 0. Hence
GKdimO/AnnO f ≥ n.

Proposition

Let O =
⊗n

i=1 Oi , Oi = K 〈xi , oi | . . .〉. Moreover, let I ⊂ O and
GKdimO/I = m. Then for any finitely generated subalgebra
S ⊂ O of GK dimension ≥ m + 1 one has I ∩ S 6= 0.

Application: For I such that GKdimO/I = n we guarantee that
2n − (n + 1) = n − 1 variables can be eliminated from I , for
instance

all but one operators,

all but one coordinate variables.
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Elimination, dimension and localization

Suppose that I , S ⊂ O are such that

S is an Ore set in O (so S−1O exists)

S−1OI 6= S−1O (i. e. I is proper in the localized algebra).

Then I ∩ S = 0, what implies GKdimO/I ≥ GKdim S .

Note, that for every J ∈ S−1O there exists I ∈ O such that
S−1OI = S−1OJ. In general

GKdim S−1O/S−1OL ≥ GKdimO/L.
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Dimension function

Let A be a Noetherian algebra. A dimension function δ assigns a
value δ(M) to each finitely generated A-module M and satisfies
the following properties:

(i) δ(0) = −∞.

(ii) If 0→ M ′ → M → M ′′ → 0 is exact sequence, then
δ(M) ≥ sup{δ(M ′), δ(M ′′)} with equality if the sequence is
split.

(iii) If P is a (two-sided) prime ideal with PM = 0 and M is a
torsion module over A/P, then δ(M) ≤ δ(A/P)− 1.

generalized Krull dimension is an exact dimension function

Gel’fand-Kirillov dimension is a dimension function, not
always exact
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Purity w.r.t dimension function

Let A be a K -algebra and δ a dimension function on A-mod.
A module M 6= 0 is δ-pure, if ∀0 6= N ⊆ M, δ(N) = δ(M).

Purity is a useful weakening of the concept of simplicity of a
module.

Unlike simplicity, the purity (w.r.t a dimension function) is
algorithmically decidable over many common algebras.

M. Barakat, A. Quadrat: Algorithms for the computation of the
purity filtration of a module with δ = homological co-grade; there
are several implementations.
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Purity with respect to a dimension function

Lemma (L.)

Let A be a K -algebra and δ a dimension function on A-mod.
Moreover, let 0 6= M1,M2 ⊂ N be two δ-pure modules with
δ(M1) = δ(M2). Then

the set of δ-pure submodules (of the same dimension) of a module
is a lattice, i. e.

1 M1 ∩M2 is either 0 or it is δ-pure with δ(M1 ∩M2) = δ(M1),

2 M1 + M2 is δ-pure with δ(M1 + M2) = δ(M1).
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Identities, Elimination, Purity Filtration

Consider the mixed system, annihilating Legendre polynomials

O = K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

M = O/P,

P = 〈(x2−1)∂2
x + 2x∂x −n(1 + n), (n + 2)s2

n − (2n + 3)xsn + n + 1,

(n + 1)(sn∂x − x∂x + n + 1)〉.

GKdimO = 4, GKdim M = 2, t(M) = M = O/P.
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M,

M3
∼= O/〈n + 1, sn, ∂x〉 with GKdim M3 = 1.

What are the solutions g(n, x) of this system?

Since ∂x(g) = 0, one has g(n, x) = g(n).
however, g(n) should not be identically zero:
in case n ∈ {−1, 0, 1, . . .}, one can select g(−1) ∈ K arbitrary
(step of the jump function).

Localization

The ideal 〈n + 1, sn〉 is two-sided and maximal. Hence the
submodule M3 vanishes under any Ore localization in K 〈n, sn . . .〉,
for instance when n invertible or sn invertible (then s−1

n is present
and therefore should n ∈ Z hold).
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M.
The pure part of GK dimension 2 is t(M)/M3

∼=

O/〈(x2− 1)∂2
x + 2x∂x − n(1 + n), (n + 2)S2

n − (2n + 3)xSn + n + 1,

(1− x2)∂x + (n + 1)Sn − (n + 1)x〉.

For further investigations of M over localizations w.r.t. n or Sn one
should then take the simplified equations.

Elimination leads to new identities

The elimination property guarantees, that 1 arbitrary variable can
be eliminated; so one gets for instance

(n + 1)(n + 2) ·
(
(S2

n − 1)∂x − (2n + 3)Sn

)
• Pn(x) = 0,

(1− x2) ·
(
(S2

n − 2xSn + 1)∂x − Sn)
)
• Pn(x) = 0.
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The hypergeometric series is defined for |z | < 1 and −c /∈ N0 as
follows:

2F1(a, b, c ; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

We derive two annihilating ideals from 2F1(a, b, c; z):

Ja which does not contain a,

Jc which does not contain c ,

and analyze corresponding modules for purity.
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Case Ja

The ideal in O = K [b, c , z ]〈sb, sc , ∂z | . . .〉 is generated by:

bcSb − czDz − bc

bSbSc − bSc + cSc − c

bSb2 − zSbDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

bzSbDz − z2Dz2 − bzDz − bSbDz + zDz2 − bSb + bDz + b + Dz

Let M = Ma = O/Ja. Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M5 = M4 ( M3 = M2 = M1 = M, where

M/M5
∼= O/〈bSb− zDz − b, zDzSc + cSc − c〉, GKdim M/M5 = 4
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The purity filtration of M = t(M)

. . . and

M5
∼= O/〈c ,Sb, b + 1, zDz − Dz − 1〉, GKdim M5 = 2.

The solutions can be read off:

δc,0 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K
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Case Jc

The ideal in O = K [a, b, z ]〈sa, sb, ∂z | . . .〉 is generated by:

aSa− bSb − a + b

bSb2 − SbzDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

abSb − azDz − ab + bSb − zDz − b

bSbzDz − z2Dz2 − bSbDz − bzDz + zDz2 − bSb + bDz + b + Dz

Let M = Mc = O/Jc . Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M6 = M5 = M4 ( M3 = M2 = M1 = M, where

M/M6
∼= O/〈bSb − zDz − b, aSa− zDz − a〉, GKdim M/M6 = 4.
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The purity filtration of M = t(M)

. . . and

M6
∼= O/〈Sb, b + 1,Sa, a + 1, zDz − Dz − 1〉, GKdim M6 = 2.

The solutions:

δa,−1 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K
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Software

D-modules and algebraic analysis:

kan/sm1 by N. Takayama et al.

D-modules package in Macaulay2 by A. Leykin and H. Tsai

Risa/Asir by M. Noro et al.

OreModules package suite for Maple by D. Robertz,
A. Quadrat et al.

Singular:Plural with a D-module suite; by V. L. et al.

holonomic and D-finite functions:

Groebner, Ore algebra, Mgfun, ... by F. Chyzak

HolonomicFunctions by C. Koutschan

Singular:Locapal (under development) by V. L. et al.
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Thanks for your attention!

http://www.singular.uni-kl.de/
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