Invariant Theory, Finiteness and Degree Bounds

Yuexun Zhang

June 10, 2025

Notation 1. • $\Gamma \leq \operatorname{GL}(\mathbb{C}^n)$ denotes a finite matrix (sub)group.

- $\mathbf{x} = (x_1, \cdots, x_n)$ denotes *n* variables.
- $\mathbb{C}[\mathbf{x}]$ is defined as the ring of polynomials of complex coefficients in n variables.
- we define

$$\mathbb{C}[\mathbf{x}]^{\Gamma} = \{ p \in \mathbb{C}[\mathbf{x}] : \sigma \cdot p = p, \forall \sigma \in \Gamma \}$$

the **invariant subring** of $\mathbb{C}[\mathbf{x}]$ under the group operation of Γ .

Proposition 1. For every finite group $\Gamma \leq \operatorname{GL}(\mathbb{C}^n)$, the invariant ring $\mathbb{C}[\mathbf{x}]^{\Gamma}$ has *n* algebraically independent variables.

Definition 1. Given a finite matrix group $\Gamma \leq \operatorname{GL}(\mathbb{C}^n)$. The map

$$*: \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^{\Gamma}, p \mapsto p^* = \frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} \sigma \cdot p \tag{1}$$

is called **Reynold operator**.

Some basic properties of Reynold operator:

Proposition 2. 1. * is \mathbb{C} -linear, that is, $\forall f, g \in \mathbb{C}[\mathbf{x}], \forall \lambda, \kappa \in \mathbb{C} : (\lambda f + \kappa g)^* = \lambda f^* + \kappa g^*$.

2. $*|_{\mathbb{C}[\mathbf{x}]^{\Gamma}} = \mathrm{id}$, i.e. $\forall I \in \mathbb{C}[\mathbf{x}]^{\Gamma} : I^* = I$.

3. * is a $\mathbb{C}[\mathbf{x}]^{\Gamma}$ -module homomorphism, i.e $\forall p \in \mathbb{C}[\mathbf{x}], I \in \mathbb{C}[\mathbf{x}]^{\Gamma} : (pI)^* = p^*I$.

Theorem 1 (Hilbert's Finiteness Theorem). Every invariant ring $\mathbb{C}[\mathbf{x}]^{\Gamma}$ is finitely generated, i.e. there is a set of invariants $\{I_1, \dots, I_m\}$ generating $\mathbb{C}[\mathbf{x}]^{\Gamma}$.

Theorem 2 (Noether's degree bound). The invariant ring $\mathbb{C}[\mathbf{x}]^{\Gamma}$ of a finite matrix group has an algebra basis of at most $\binom{n+|\Gamma|}{n}$ invariants with a degree not exceeding the group order $|\Gamma|$.