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This report is largely based on the book [1] from chapter 2.7 to 2.9 and will deal with the
hamming weight enumerator of a binary code. We will first draw a conclusion about the specific
case when the code is of length 24 and self-dual doubly even. We will also consider the relationship
between the theta function of the corresponding lattice and the hamming weight enumerator of the
code. Next we will give a specific example of the binary self-dual doubly even code of length 24
and a lattice with certain property. In the end, we will prove the famous MacWilliams Identity
Theorem and Gleason’s Theorem using what we have learnt about modular form.

1 Introduction
We have dealt mainly with lattices in the previous two lectures. Now we will discuss the rela-
tionship between lattices and codes. So the first step is to construct a bridge between these two.
Throughout the report, we will only discuss the binary case.
Before discussing further the codes, let us recall some results from the theta function and modular
form, which we simply state without proof.
Let Γ⊂Rn be a lattice. We define q = e2πiτ, for τ ∈H.
The theta function ϑΓ of the lattice Γ is defined as

ϑΓ(τ) := ∑
x∈Γ

q
1
2 (x·x)

We recall the main theorem on even unimodular lattice

Theorem 1.1. Let Γ be an even unimodular lattice in Rn. Then

1. n ≡ 0 (mod 8)

2. ϑΓ is a modular form of weight n
2
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Proposition 1.2. Let Γ⊂Rn be a lattice, then ϑΓ(−1
τ
) = (τi )

n
2 1

vol(Rn/Γ)
ϑΓ∗(τ)

Definition 1.3. Let k ∈Z, k even, k > 2. The series

Gk(τ) = ∑
(m,n)∈Z2

(m,n) 6=(0,0)

1
(mτ+n)k

is called the Eisenstein series of index k. The normalized Eisenstein series is defined as

Ek(τ) := 1
2ζ(k)

Gk(τ)

where ζ(k) is the Riemann ζ-function

We define
∆ := 1

1728
(E3

4 − E2
6)

The ∆ function has the following form:

Proposition 1.4.

∆= q
∞∏

r=1
(1− qr)24

Definition 1.5. The set of modular forms of weight k is a C-vector space, and is denoted as Mk.
M0

k denotes the C-vector space of cusp forms of weight k.

Theorem 1.6.

1. Mk = 0 for k odd, for k < 0 and for k = 2

2. M0 =C, M0
0 = 0 and for k = 4, 6, 8, 10, M0

k = 0, Mk = C ·Ek

3. Multiplication by ∆= 1
1728 (E3

4 −E2
6) defines an isomorphism of Mk−12 onto M0

k

Corollary 1.7. The algebra M of mdular forms is isomorphic to the polynomial algebra C[E4,E6].

Proposition 1.8. Let Γ be an even unimodular lattice in R8. Then Γ is isomorphic to E8. And the
theta function

ϑΓ = E4

We consider first the standard Zn lattices and define the canonical projection onto Fn
2

ρ :Zn → Fn
2 , x 7→ x̄

For a binary (n,k,d)-code C. Since |F
n
2

C = 2n−k|, we have | Zn

ρ−1(C) = 2n−k|. In particular ρ−1(C) is a

lattice in Rn. By defining ΓC := 1p
2
ρ−1(C). We will state the following proposition without proof.

Proposition 1.9. Let C be a linear code.

1. C ⊂ C⊥, if and only if ΓC is an integral Lattice
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2. C is doubly even if and only if ΓC is an even Lattice.

3. C is self-dual if and only if ΓC is a unimodular Lattice.

Lemma 1.10. Let C ⊂ Fn
2 be a binary linear code.Then

Γ∗C =ΓC⊥

We recall some definitions from the coding theory

Definition 1.11. Let C ⊂ Fn
2 a (n,k,d)-code.

1. Let c ∈C, the Hamming weight is defined as wt(c) := |{ i|c(i)= 1 }|.
2. The Hamming weight enumerator of C is a polynomial of Z[X ,Y ] defined as:

WC(X ,Y ) := ∑
c∈C

X n−wt(c)Y wt(c)

=
i=n∑
i=0

A i X n−iY i

where A i denotes the number of codewords of weight i in C

Remark 1.12. i) We recognize 〈,〉 as the inner product of vectors. For simplicity of notation, we
will denote 〈u,v〉 as u · v, if it is clear in context that we are having a scalar product of two
vectors. For the latter case, if we have two identical vectors u, we will abuse the notation u2.

ii) For the brevity, we will simply call the hamming weight enumerator as weight enumerator in
the following discussion.

Example 1.13. For the Hamming code H ⊂ F7
2 with the generator matrix:

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


and the weight enumerator:

WH(X ,Y )= X7 +7X4Y 3 +7X3Y 4 +Y 7

By considering the control matrix, we can see that the minimum distance is 3. So A2 = 0. We
could see that 17 ∈ H, where 17 denotes the all-one vector. Consequently, the complement of every
codeword is also a codeword in H. So A i = A7−i. Thus A5 = 0. Given A0 = A7 = 1, A3 = A4, and∑i=7

i=0 = |H| = 16, we obtainn that A3 = A4 = 7
In this case, it’s also convenient to find the generator matrix of its dual code.0 1 1 1 1 0 0

1 0 1 1 0 1 0
1 1 0 1 0 0 1


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And we can find that the weight enumerator is

WH⊥(X ,Y )= X7 +7X3Y 4 +Y 7

By adding an extra parity bit in the generator matrix of H, we obtained the extended Hamming
code H̃.
The weight enumerator is

WH̃(X ,Y )= X8 +14X4Y 4 +Y 8

Based on the lecture of theta series and modular forms, we have learned the following propo-
sition.

Proposition 1.14. Let C ⊂ Fn
2 be a self-dual doubly even code. Then n ≡ 0 (mod 8)

Proof. Using the theorem 1.1 and proposition 1.9

We now want to prove a relationship between A8 and A4 for the special case n = 24 and C
self-dual and doubly even.

Proposition 1.15. Let n = 24. C ⊂ F24
2 a self-dual doubly even code, and let WC(X ,Y ) be the

Hamming weight enumerator. Then we obtain A i = 0, if i 6≡ 0 (mod 4) and A8 = 759−4A4

Proof. Since C is self-dual doubly even, it follows that the theta function of ΓC is a modular form
of weight n

2 .

ϑΓC =
∞∑

r=0
ar qr

where ar denotes the number of elements x = 1p
2
(c+2y) ∈ΓC, c ∈C, y ∈Z24, with x2 = 2r.

The proof comprises of three part:

1. express a1,a2 as polynomial in A4, A8 respectively

2. By using the following lemma 1.16, 1.17, find an equation of a1 and a2

3. substituting the equation we derived in 1 into the equation derived in 2.

In this proof, we perform the first step, i.e. find the relationship between a1,a2 and A4, A8.
For further analysis, it’s helpful to note that:

x2 = 1
2

(c + 2y)2 =
24∑
i=1

(ci + 2yi)2 (1.15.1)

For a1, we deduce that
a1 = 24 ·2 + A4 ·16 (1.15.2)

It can be understood as following:
Note firstly that from (1.15.1), we need solve:

24∑
i=1

(ci + 2yi)2 != 4 (1.15.3)
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The possible cases are following: a) if c = 024, where 024 denotes the zero vector in F24
2 , then since

(±2)2 = 4. We can choose one position to fill ±2 and 0 elsewhere. This gives 24 ·2 choices
b) if wt(c)= 4, then at the support (see definition 2.8) of c, y can be chosen −1 or 0 and 0 elsewhere.
This gives 24 · A4 choices. Since for other cases, (1.15.3) would be impossible. These are the only
two possible cases. Combining the result, we prove consequently (1.15.2).
For a2, we perform the similar analysis. First, we know that

24∑
i=1

(ci + 2yi)2 != 8 (1.15.4)

There are three cases:
a) c = 024, then since (±2)2 + (±2)2 = 8, we have

(24
2

) ·22 choices for the yi.
b) wt(c)= 4, then y could choose 1 or 0 at the support of c and choose ±1 at another position where
c is 0, since (±1)2 + (±1)2 + (±1)2 + (±1)2 + (±2)2 = 8. This gives A4 ·24 ·20 ·2.
c) wt(c)= 8, then y could only choose −1 or 0 at the support of c. This gives A8 ·28.
These are the only possible cases. Combining these results, it follows that

a2 = 28A8 + 16A4 ·20 ·2 +
(
24
2

)
·4 (1.15.5)

We state the following lemma without proof.

Lemma 1.16. Let f be a modular form of weight 12 and

f (τ)=
∞∑

r=0
ar qr

its power series expansion in q. Then

a2 =−24a1 +196560a0

Proposition 1.17. Let Γ⊂R24 be an even unimodular lattice. Then

a2 = 196560−24a1

Proof. We know that from theorem 1.1, the theta function ϑΓ is a modular form of weight 12. We
now use lemma 1.16 combining the fact that a0 = 1 for ϑΓ

We now combine the proposition 1.17 to complete the proof of proposition 1.15.

Example 1.18. 1. We consider the direct sum of extended Hamming code C = H̃
⊕

H̃
⊕

H̃ ⊂ F24
2 .

Since H̃ is self-dual, so is the direct sum. Hence C is self-dual doubly even code with dimen-
sion 12.

WC(X ,Y )= (X8 +14X4Y 4 +Y 8)3

= X24 + 42X20Y 4 + 591X16Y 8 + . . .

Since 591 = 759 - 168. It conforms with what proposition 1.15 asserts.
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2. consider the extended Golay code G̃ (see section 2 and 3). G̃ is a self-dual doubly even code
with minimum distance 8. It follows that

A8 = 759

which we will see in section 2

Proposition 1.15 and 1.17 raises the question whether there exists code C with A4 = 0 and
lattice where a1 = 0. We will answer that question in the next section.

2 The Golay Code and the Leech Lattice
In this section, we will discuss a particular type of codes, the golay codes. We will show that there
exists a unique doubly even linear code G̃ ⊂ F24

2 with A4 = 0. The following discussion on designs
is largely based on chapter 4, section 3 of [2].
We shall first introduce some definitions.

Definition 2.1.

1. A set with t elements is called a t-set, a subset of a given set with t elements is called a
t-subset

2. Let V be a v-set and each element is called a point. Let D be a collection of distinct k-
subset. Every such k-subset is called a block. If for any t-subset T, there are exactly λ

k-subsets B from S, s.t, T ⊂ B then D is called a t-(v,k,λ) design. We sometimes simply
call it a t-design.

3. A t-(v,k,1) design is called a Steiner System, denoted as S(t,k,v)

Example 2.2. The projective plane of order 2 is a 2-(7,3,1) design, hence a S(2,3,7) Steiner
System

Before we begin with the proofs, let us discuss some properties of the t-design.

Lemma 2.3. If D be a t-design. Then D is also a s-design, for 0≤ s ≤ t

Proof. Let D be a t-(v,k,λ) design. Let S be a s-subset, we count the pairs (T,B) with the
property, that S ⊂ T ⊂ B, with T a t-subset and B a block of D. We denote λs as the number of
blocks in D which contains S. We want to show that λs is independent of the set S, but only
depends on the size of the set. For each

(v−s
t−s

)
choices of T that contains S, we have λ blocks B

which contains T. In another way, for each of the λs block that contains S, there are
(k−s

t−s
)

choices
for T. So we obtain:

λs

(
k− s
t− s

)
=λ

(
v− s
t− s

)

⇒ λs =
λ

(v−s
t−s

)(k−s
t−s

) (2.3.1)

In particular λs is only dependent on the size of the subsets. So that D is a s-design
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Corollary 2.4. Let D be a t-(v,k,λ)design. Then D has b blocks, where

b = λ
(v

t
)(k

t
)

Let us denote λ0 as b (total number of blocks) and λ1 as r (total number of blocks containg a
given point)
Before proving the next lemma, we need a another fact from linear algebra.

Lemma 2.5. Let I be the identity matrix in M := Rn×n Let J ∈ M be the matrix with all entries
equal to 1, and k ∈R∗\{− 1

n }, then A := I +kJ is invertible.

Proof. Since (kJ)2 = k2nJ we can conclude that the minimal polynomial of A is:

µA(x) := (x−1)(x−1− (kn))

In particular µA(0) 6= 0, so A is invertible.

Lemma 2.6. In a 2-(v,k,λ) design with b = v, k = r, any two blocks have exactly λ common
points.

Proof. Let I, J have the same meaning as in the previous lemma for n = v.
We first note that λ 6= r, since λ denotes the number of blocks that contain two given points and r
denotes the number of blocks that contain one given point. In particular r >λ
We define the characteristic vectors of the blocks as the rows of a b×v matrix M. That is

Mi, j =
{

1, if block i contains the point j
0, otherwise

Denote the i-th block as Bi, and the j-th point as v j, 1 ≤ i ≤ b,1 ≤ j ≤ v Now we have the two
equations:

v∑
j=1

Mi, j = |{v |v ∈ Bi}| (2.6.1)

b∑
i=1

Mi, j =
∣∣{i |v j ∈ Bi}

∣∣ (2.6.2)

Based on these two equations, we can translate the condition that any block contains k points and
that any point lies in r blocks in view of k = r into following:

MJ = kJ = rJ = JM

Meanwhile, if we denote M = (w1|w2| . . . |wv), it follows that:

wt
jwi =

∣∣{i |v j ∈ Bi ∧vi ∈ Bi}
∣∣ (2.6.3)

∧= “Number of blocks that contain both vi and v j”
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If we denote

M =


u1
u2
...

ub


Then it follows that:

uiut
j =

∣∣{vi |vi ∈ Bi ∧vi ∈ B j}
∣∣ (2.6.4)

∧= “Number of points that both block Bi and B j contains”

The condition that we have a 2-(v,k,λ) design, i.e. any pair of points lies in λ blocks can be
expressed based on (2.6.3) as follows:

M tM = (r−λ)I +λJ

We see that r−λ> 0 so that we can apply (Lemma 2.5). In particular M is invertible.
Since M commutes with J and M t = ((r−λ)I +λJ)M−1, M also commutes with M t and thus:

MM t = (r−λ)I +λJ

Based on (2.6.4) we see that any two blocks have exactly λ points in common.

Proposition 2.7. There is only one 2-(11,5,2)design

Proof. We conclude in this case according to (2.3.1):

b = 2
(11

2

)(5
2

) = 11= v

r = 2
(11−1

2−1

)(5−1
2−1

) = 5

Therefore, we can apply Lemma 2.6 and it follows that any two blocks have 2 common points.
w.l.o.g we choose the characteristic vector of the first block as (11111000000). The remaining
blocks correspond to the 2-subsets of the first five points.
we can choose the second row as (11000111000) and the following 4 rows can be chosen in the
similar way. For the 6-th row, there are two choices, namely (01100010011) or (01100001101).
And the rest are uniquely determined.
We obtain for the first choice the matrix:

1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0
1 0 1 0 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1 1
0 1 0 1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 0 1 0 1
0 0 1 1 0 1 0 1 0 0 1
0 0 1 0 1 0 1 1 1 0 0


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For the second choice of the matrix, we just interchange the column 4 and 5 , 7 and 8, and 9 and
10 and the corresponding rows. In other words, it’s just the same matrix, when we renumerate
the points appropriately.

Now let us come back to codes and discuss the relationship between design and codes.
Let G̃ be a binary code of length n.
First we define Sd := {c |wt(c)= d, c ∈ G̃} as the set of codes of G̃, s.t the weight of the codes equals
d

Definition 2.8. Let x, y two binary words of length n

1. The sphere around x with radius r is denoted as B(x, r) with respect to the usual hamming
distance.

2. The support of x is the set of positions in which x has no zero entries.

3. We say that x covers y, if the support y is a subset of x

4. We say that Sd holds a t-(n,d,λ) design, if the support of the codewords of Sd form the
blocks of a t-(n,d,λ)design. In other words, for any t-set T, there are exactly λ words in
Sd s.t the codes has 1 in position given by T

Lemma 2.9. Let G̃ be a perfect binary (n, M,d)-code. Then the set Sd of all codewords of mini-
mum distances d holds a Steiner system S(t+1,d,n), where d = 2t+1

Proof. Since G̃ is perfect, so all the spheres B(c, t) are disjoint with one another. So given a
binary word x of length t+1, it must be included exclusively in one sphere, say B(c, t). Now, since
wt(c)≤ wt(x)+d(c, x)= t+1+ t = d, so we deduce that c ∈ Sd. The cardinality of the intersection of
support of these two words is thus:

2wt(x∩ c)= wt(x)+wt(c)−d(x, c)≥ 2t+2
⇒ wt(x∩ c)≥ t+1

So c covers x.
Now if there is another c̃ ∈ Sd that also covers x. Then the weight must satisfy:

wt(c̃)≥ wt(x∩ c̃)+d(x, c̃)≥ 2t+2= d+1

which is impossible.
So Sd is a t 1-(n,d,1)design, hence S(t+1,d,n) Steiner System

Corollary 2.10. Let G̃ be a perfect binary (n, M,d)-code. Let Ad denotes the number of words of
G̃ with weight d. Then

Ad =
( n
t+1

)( d
t+1

)
Proof. Using Collary 2.4 and Lemma 2.9
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Example 2.11. For hamming (7,4,3)-code. We obtain

A3 =
(7
2

)(3
2

) = 7

Before we discuss the main theorem, it’s helpful to recall that for two vectors u,v in Fn
2 :

d(u,v)=wt(u)+wt(v)−2〈u,v〉 (2.11.1)

We come to the main theorem in this section.

Theorem 2.12. Let G̃ be a binary (24,212,8)-code containing 0. Then G̃ is a up to equivalence
the only one doubly even self-dual linear (24,12,8)-code. We call G̃ the extended Golay code

Proof. Let G̃ be such a code. We first punctuate a position of each code word and denote the
resulted code as G. This code has minimum distance 7 or 8. So it is a (23,212,7)-code or
(23,212,8)-code. No matter the minimum distance is 7 or 8, the sphere B(c,3) are disjoint from
each other for all codes c ∈G.
We show that the minimum distance is 7. Indeed:

212 · (1+
(
23
1

)
+

(
23
2

)
+

(
23
3

)
)= 223

In particular, this argument shows that the spheres B(c,3) covers the space F23
2 and it follows

that the minimum distance is 7. (otherwise, there are “leak points” at the middle of the distance
between these two points and these points are not covered, contradictory to the full packing) and
G is perfect.

Since 0 ∈G, A0 = 1 , using Collary 2.10, we obtain A7 = (23
4 )

(7
4)

.

To calculate A8, we know that the number of vectors of weight 5 in F23
2 are given by

(23
5

)
and they

may lie in the spheres of codes with weights 7 or 8. So we conclude that:

A8 =
(23

5

)− A7
(7
5

)(8
5

) = 506

Using the same idea, we could easily infer that

Ak =
B( k

k−3

) , for 8≤ k ≤ 23 (2.12.1)

where B stands for

B :=
(

23
k−3

)
− { Ak−6 ·

(
23− (k−6)

3

)
+ Ak−5 ·

(
23− (k−5)

2

)

+ Ak−4 ·
[

(k−4) ·
(
23− (k−4)

2

)
+ (23− (k−4))

]

+ Ak−3 · [ (k−3) · (23− (k−3))]+ Ak−2 ·
[

(k−2)+
(
k−2

2

)
· (23− (k−2))

]

+ Ak−1 ·
(
k−1

2

)
}
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we obtain thus the following weight counts:

A9 =
(23

6

)− (A7 · (7+16 · (7
5

)
)+ A8 ·

(8
6

)
)(9

6

) = 0

A10 =
(23

7

)− (A7 · (1+7 ·16)+ A8 · (8+15 · (8
2

)
))(10

7

) = 0

A11 =
(23

8

)− (A7 · (16+7 · (16
2

)
)+ A8 · (1+8∗15))(11

8

) = 1288

A12 =
(23

9

)− (A7 ·
(16

2

)+ A8 · (15+8 · (15
2

)
)+ A11 ·

(11
2

)
)(12

9

) = 1288

A13 =
(23
10

)− (A7 ·
(16

3

)+ A8 ·
(15

2

)+ A11 · (11+ (11
2

) ·12)+ A12 ·
(12

2

)
)(13

10

) = 0

A14 =
(23
11

)− (A8 ·
(15

3

)+ A11 · (1+11 ·12)+ A12 · (12+ (12
2

) ·11))(14
11

) = 0

A15 =
(23
12

)− (A11(12+11 · (12
2

)
)+ A12 · (1+12 ·11))(15

12

) = 506

A16 =
(23
13

)− (A11 ·
(12

2

)+ A12 · (11+12 · (11
2

)
))(16

13

) = 253

A17 = . . .= 0
...

A22 = . . .= 0

A23 =
(23
20

)(23
20

) = 1

Now if G̃ contains a codeword of weight w which is not divisible by 4, then by puncturing the G̃
appropriately, we will obtain codeword of weight w or w−1 not equal to 0 or -1 (mod 4), which
contradicts the weight enumerator coefficients calculated above. So we conclude that G̃ is doubly
even and we infer that the weight enumerator coefficients for G̃

A0 = A24 = 1, A8 = A16 = 759, A12 = 2576

In particular all the distances between two codewords are divisible by 4. We deduce from 2.11.1
that for all u,v ∈ G̃, 〈u,v〉 ∈ 2Z, and it follows in this case that G̃ ⊂ G̃⊥. But since G̃⊥ is a linear
subspace of dimensions 24 - dim〈G̃〉 ≤ 12. It follows that 〈G̃〉 has less than 212 elements. Since
G̃⊂ 〈G̃〉 we follow from the cardinality of G̃ that G̃= G̃⊥ and G̃ is linear.
Now we prove the uniqueness of such codes.
Consider a codeword u of weight 12 in G̃ and since A24 = 1, we have another codeword ū s.t
u+ ū = 124 where 124 stands for the all-one vector in F24

2 . Let us denote G̃u as the subspace when
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we puncture all the positions of G̃ given by the support of u. Define the function πu as the canonical
projection. We deduce that for c ∈ G̃, both c and c+u will be projected to the same image. Since
c is arbitrarily chosen, it follow that |G̃u| ≤ 212

2 = 211. Now if there are two different codewords
x, y ∈ G̃ s.t πu(c)=πu(y) and x− y= v 6= u. Then we know that u covers v and v ∈ G̃ so wt(v)≥ 8. It
follows that d(u,v) ≤ 4, contradicting the fact that the minimum distance is 8. So G̃u has exactly
211 elements hence a linear subspace of dimension 11.
For all the codes v ∈ G̃u, Let x ∈ G̃ s.t πu(x) = v. It follows that wt(v) = x · ū ∈ 2Z since x, ū ∈ G̃ and
G̃ is doubly even. It follows that G̃u is of word length 12, dimension 11, and every codeword is of
even length. So by arranging the columns of the codeword appropriately, the generator matrix of
G̃is of the form:

G :=
[

111 1 0 011

A (011)t (111)t I11

]

where I11 is the 11×11 identity matrix and ak denotes a row vector of length k and every entry
is a. Since G̃ has minimum distance 8, we deduce that each row of the matrix G has weight ≥ 8.
The matrix A has consequently two properties:

1. each row has weight ≥ 6

2. every two rows have distance ≥ 6

We claim that actually in both properties the equality holds.
First equality: take for example, G1,− and G2,−. It follows that d(G1,−,G2,−) = d(111, A1,−)+3 ≥ 8.
So wt(A1,−) ≤ 6. Combining the property 1, wt(A1,−) = 6. Similarly, all the row of A must have
weight 6.
Second equality: since G̃ is doubly even and linear, 4 |d(G i,−,G j,−), for 1 ≤ i, j ≤ 12. Using the
equality in property 1, it follows that d(A i,−, A j,−) ∈ {6,10}. If d(A i,−, A j,−)= 10, then it follows that
d(111, A i,−−A j,−)= 1, and hence d(G1,−,G i,−−G j,−)= 4, contradicting the fact that G̃ has minimum
weight 8. So equality holds.
Now, we only need to prove the uniqueness. We resort to proposition 2.7.
The idea is to prove that the submatrix A in G is up to column and corresponding row permutation
unique. We define B := J11−A, where J is the 11×11 matrix with all entries 1. Then wt(Bi,−)= 5,
for all 1≤ i ≤ 11. And d(Bi,−,B j,−)= 6. Using 2.11.1, it follows wt(Bi,−∩B j,−)= 2. We define a set of
eleven elements P and a collection D of eleven 5-subset of P. For clarity, we denote each element
of P as point, and each element of D as block. Note it is not a coincidence with the definition 2.1,
since we will see D is actually a design. We identify B as the incidence matrix of the collection
D. It follows that BJ = 5J. Since every two blocks of D has exactly two points in common and
|P| = |D|, there is a bijection between M := {D|D ⊂D, |D| = 2} and N := {T|T ⊂ P, |T| = 2} by defining

φ : M → N, {B1,B2 } 7→ B1
⋂

B2

So it follows that every 2-subset of points is contained in exactly two blocks. So D is a
2-(11,5,2)design.
Applying proposition 2.7, we find that B is unique up to renumbering of points. Hence the code G̃
is unique up to equivalence.

12
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Figure 2.12.1: icosahedron

We now want to construct such a code. For that purpose, let us consider the regular icosahedron
as a graph. Let A be the adjacency matrix of this graph. By numbering the 12 vertices as shown
in the figure 2.12.1. We define the entry of A as:

A i, j =
{

1, if there is an edge between point i and point j
0, otherwise

It follows that A has the form:

A =



0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 1 1 0 0 0 1 0
1 1 0 1 0 0 1 1 0 0 0 0
1 0 1 0 1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0 1 1 0 0
1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1 0 0 1 1
0 0 1 1 0 0 1 0 1 0 0 1
0 0 0 1 1 0 0 1 0 1 0 1
0 0 0 0 1 1 0 0 1 0 1 1
0 1 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0


More over, define B := J12 − A. Then it follows that

BtB = I12 ∈ F12×12
2 . (2.12.2)

It follows that the column vector B−,i = u+vi,where u = J12−,i and v = A−,i:

(u+vi)t(u+v j)= utu+ut(vi +v j)+vt
iv j

= 12+a+b

Now by observing the figure 2.12.1, it follows that vi + v j ∈ {10,6}, vt
iv j ∈ {2,0} ∈ Z, in particular,

all the three terms above are 0 in F2. So the row of the matrix G := (I12B) generate the the
(24,12,8)-code G̃.
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Proof. The generated code is certainly linear, of length 24 and has dimension 12. The only thing
to prove is the minimum distance.
By observing the matrix of G we find that each row of G has weight 8, in particular divisable by
4. So using (2.11.1), we deduce that G̃ is doubly even.
Observing that G tG = I24, it follows that G̃ is self-dual.
For the linear combination of more than three rows of G we will see at least four 1s on the first 12
position. By using (2.12.2) it is impossible that all the entries on the right half of the 12 position
of codeword are complete 0. (otherwise B would have nontrivial kernel which contradicts the fact
that B is invertible). In particular every such combination creates codeword with codeword ≥ 5,
hence at least 8. So the only case to consider is the linear combination of two or three vectors.
On reconsidering the icosahedron, from which the adjacency matrix A is derived, we could make
a similar interpretation of B, that is

Bi, j =
{

0, there is an edge between point i and point j
1, otherwise

And for the sum ci, j := Bi,−+B j,− of two row vectors of B

ci, j(k)=
{

1, there is an edge from point i or j to k, but not both
0, otherwise

The possible results are {6,10 }. With two 1s on the left 12 positions, the weights are {8,12 }.
Similarly, for the sum of three vectors vi ,v j and vk, there is a 1 at position l if vertice l is connected
to exactly two of the three or none of the three. the possible results are {5,9 }. With three 1s on
the left 12 poisitions, the weights are {8,12 }.

Now we want to construct an even unimodular lattice with a1 = 0, i.e., does not contains roots,
using the extended golay code G̃. We recall that ρ : Z24 → F24

2 defines a canonical projection and
the corresponding lattice of the G̃ is ΓG̃ := 1p

2
ρ−1(G̃). We denote Γ := ρ−1(G̃) .

The goal is to construct a lattice which contains no roots based on Γ. We recall that an element x
in a lattice is called a root if and only if x2 = 2. We want to construct a lattice of the form 1p

2
Γ1, for

some sublattice Γ1 of Γ, so we want to find a lattice which contains no elements of squared length
4, i.e. x2 = 4.
For every element x of Γ, x = c+2y, for c ∈ G̃, y ∈Z24.
It’s instructive to consider a1 of the theta function for ΓG̃ first. We know according to (1.15.2) that:

a1 = 48

We know from the proof of proposition 1.15, that all the vectors which contribute to a1 is of the
form (±2)1023, where the notation akb j means a vector in whose entry a appears k times and b j
times. We want to get rid of these 48 vectors, so that we could have no roots in the lattice.
We define

α :Γ→ F2

x 7→ 1
2

∑
xi (mod 2)
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We note that since all the codewords in G̃ has weight divisable by 4:

1
2

∑
xi ≡

∑
yi (mod 2)

In particular all the roots in ΓG̃ will be mapped to 1.
So by defining A :=α−1(0), we obtain a sublattice which contains no roots of ΓG̃.
We define N :=α−1(1) and O := A

⋃
(1

2124 +N).

Proposition 2.13. O is a lattice and every element has squared length divisable by 4

Proof. For simplicity of notation, we define M = 1
2124 +N

Note first that M is symmetric, since given v ∈ M, then v = 1
2124 + c+2y , c ∈ G̃, y ∈Z24 with

∑
yi

odd.

−v =−1
2

124 − c−2y

=−1
2

124 − c−2(y+124)+224

= 1
2

124 + (124 − c)︸ ︷︷ ︸
∈G̃,

since124∈G̃

−2 ỹ ∈ M

To prove that O is a lattice, we only need to prove that O is closed under addition. Since A is as
kernel of a homomorphism automatically a additive group, we only need to check the following
two cases:

i) u ∈ A, v ∈ M, then u = e+2r, e ∈ G̃, r ∈Z24 with
∑

r i even and v = 1
2124 + c+2y , c ∈ G̃, y ∈Z24

with
∑

yi odd. Then u+v = 1
2124+ c̃+2 ỹ, for some c̃ ∈ G̃ and ỹ ∈Z24 with

∑
ỹi odd. So u+v ∈ M

ii) u ∈ M, v ∈ M, then u = 1
2124 + e+2r, e ∈ G̃, r ∈ Z24 with

∑
r i odd and v = 1

2124 + c+2y , c ∈ G̃,
y ∈Z24 with

∑
yi odd. Then

u+v =
∈G̃︷ ︸︸ ︷

124 + c + e +2(r + y)
= c̃ + 2 ỹ ∈ A

for some c̃ ∈ G̃ and ỹ ∈Z24 with
∑

ỹi even. So u+v ∈ A,

To prove the property of squared length. We consider first the vector in A.
Let v = c+2y ∈ A, c ∈ G̃, y ∈Z24 with

∑
yi even.

v2 =∑
(ci +2yi)2

≡∑
ci (mod 4)

≡wt(c) (mod 4)
≡ 0 (mod 4)
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Now let v = 1
2124 + c+2y ∈ M , c ∈ G̃, y ∈Z24 with

∑
yi odd.

v2 =∑
(
1
2
+ ci +2yi)2

≡∑
(1/4+ ci + ci +2yi) (mod 4)

≡ 6+2wt(c)+2
∑

yi (mod 4)
≡ 0 (mod 4)

Remark 2.14. We know from theorem of homomorphism that A has index 2 in Γ and it follows
that A also has index 2 in O

We are now able to construct the Leech lattice

Definition 2.15. The Leech lattice is defined as

Λ24 := 1p
2

(
A

⋃
(
1
2

124 +N)
)

Lemma 2.16. The lattice Λ24 is well-defined and is an even unimodular lattice, which contains
no roots.

Proof. It follows from proposition 2.13, that Λ24 is a indeed a lattice (so well-defined) and it’s even.
To prove unimodularity:
We know from remark 2.14, that A has index 2 in O, so A1 := 1p

2
A is a sublattice with index 2 in

ΓG̃. Note that A1 also has index 2 in Λ24.

vol(R24/Λ24) · |Λ24/A1| = vol(R24/A1) = vol(R24/ΓG̃) · |ΓG̃/A1|

it follows that
vol(R24/Λ24) = vol(R24/ΓG̃) = 1

So Λ24 is unimodular.

3 The MacWilliams Identity and Gleason’s Theorem
We have till now studied the theta function of the lattices and the weight enumerator of the bi-
nary codes. In addition, we have learned there is a relationship between the binary codes and the
corresponding lattices. We will study in this section first the relevance between the theta function
and the weight enumerator, then we will prove the MacWilliams Identity and Gleason’s Theorem
using the properties of theta functions.
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We consider first two functions: Let A(τ) denote the theta function of the lattice Γ=p
2Z, i.e.

A(τ)= ∑
x∈Γ

q
1
2 x·x

= ∑
x∈Z

qx·x

= ∑
x∈2Z

q
1
4 (x·x) (3.0.1)

= 1+2q+2q4 +2q9 + . . .

Consider another function:
B(τ) := ∑

x∈2Z+1
q

1
4 (x·x) (3.0.2)

Note that B(τ) is not a theta function of a lattice, since the constant term is not 0. By adding the
two functions together, it follows that

A(τ)+B(τ)= ∑
x∈Z

q
1
4 (x·x) = ∑

x∈ 1p
2
Z

q
1
2 x·x = ∑

x∈Γ∗
q

1
2 (x·x) (3.0.3)

So the sum of the two functions is the theta function of the dual lattice of Γ. Using proposition 1.2,
it follows :

A(−1
τ

)= (
τ

i
)1/2 1p

2
(A(τ)+B(τ)). (3.0.4)

By replacing the τ into −1
τ
, we obtain from (3.0.4)

A(τ)= [A(−1
τ

)+B(−1
τ

)]
1p
2

(
1

−τi
)

1
2

⇒ B(−1
τ

)=
p

2

(− 1
τi )

1
2

A(τ) − (
τ

i
)1/2 1p

2
(A(τ)+B(τ))

= (
τ

i
)

1
2

1p
2

(A(τ)−B(τ)) (3.0.5)

When we consider A and B as two variables, and consider now the “rotation by 45◦ followed by a
reflection”,i.e.

Q := 1p
2

[
1 1
1 −1

]
in the (A,B)-plane. For simplicity of notation we identify A as (A,0)t and B as (0,B)t, then it
follows that:

QA = 1p
2

(A+B)

QB = 1p
2

(A−B)

We can find that the following homogeneous polynomial in A and B of degree 24 is invariant under
such transformation by elementary algebra.

A4B4 (A2 −B2)4 (A2 +B2)4 = A4B4 (A4 −B4)4

For simplicity, we define g := A4 B4 (A4 − B4)4 and p := X4Y 4 (X4 −Y 4)4 ∈C[X ,Y ]hom,24
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Proposition 3.1. g(−1
τ
)= τ12 g(τ)

Proof. We deduce that:

g(−1
τ

)= A(−1
τ

)4B(−1
τ

)4 (A(−1
τ

)4 −B(−1
τ

)4)4

= ((
τ

i
)

1
2 Q A)4((

τ

i
)

1
2 Q B)4 (((

τ

i
)

1
2 Q A)4 − ((

τ

i
)

1
2 Q B)4)4

= (
τ

i
)12 p(QA,QB)

= τ12 p(A,B)= τ12 g(τ)

Since A is invariant under the transformation τ 7→ τ+1 and so does B4, it follows that A4 B4 (A4−
B4)4 is invariant under this transformation.
Combining these two results, we deduce that A4 B4 (A4 − B4)4 is a modular form of weight 12.

Proposition 3.2.

g := A4 B4 (A4 − B4)4 = 16∆ = 16 q
∞∏

n=1
(1− qn)24

Proof. Since the constant term of B is zero, so is the constant term of g. It follows that g is a cusp
form of weight 12.
According to theorem 1.6, g = k∆ for a k ∈C. We could determine k by looking at the coefficient of
the term of the first order.
Since

B(τ)= 2q
1
4 + 2q

9
4 + 2q

25
4 + . . .

So, it follows that
B(τ)4 = 16q + high order terms

As a result
A4 B4 (A4 − B4)4 = 16q + high order terms

So, we deduce that A4 B4 (A4 − B4)4 = 16∆

Proposition 3.3. Let C ⊂ Fn
2 be a binary linear code with Hamming weight enumerator WC(X ,Y )

. Then
ϑΓC =WC(A,B)

Proof. Let c ∈C, and let ρ :Zn → Fn
2 be the canonical reduction modulo 2 projection. Then∑

x∈ 1p
2
ρ−1(c)

q
1
2 (x·x) = ∑

x∈ρ−1(c)
q

1
4 (x·x)

= ∑
(y1,y2,...,yn)∈Zn

q
1
4

∑n
i=1(ci+2yi)2

=
n∏

i=1
(
∑
y∈Z

q
1
4 (ci+2y)2)
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Since

∑
y∈Z

q
1
4 (ci+2y)2)=

{∑
y∈Z qy2

, if ci = 0∑
y∈Z q

1
4 (1+2y)2 , if ci = 1

=
{

A, if ci = 0
B, if ci = 1

It follows that ∑
x∈ 1p

2
ρ−1(c)

q
1
2 (x·x) = An−wt(c) Bwt(c)

The rest follows by summing over all the codewords in C

Example 3.4. For the extended Hamming code H̃ the weight enumerator is of the form:

WH̃(X ,Y )= X8 +14X4Y 4 +Y 8

We know that the corresponding lattice ΓH̃ is E8 . Thus it follows in consideration of proposition
1.8

ϑΓH̃
= E4 = A8 +14A4B4 +B8

We are now able to prove the MacWilliams identity.

Theorem 3.5. Let C ⊂ Fn
2 be a binary (n,k,d)-code . Then

WC⊥(X ,Y )= 1
2k WC(X +Y , X −Y )

Proof. We observe first that

WC(A(−1
τ

),B(−1
τ

))=ϑΓC(−1
τ

) (by proposition 3.3)

= (
τ

i
)

n
2

1

2
n
2 −k

ϑΓ∗C(τ) (by proposition 1.2)

= (
τ

i
)

n
2

1

2
n
2 −k

ϑΓC⊥ (τ) (by Lemma 1.10)

= (
τ

i
)

n
2

1

2
n
2 −k

WC⊥(A(τ),B(τ)) (by proposition 3.3)

Since the weight enumerator is a homogeneous polynomial, and by the transformation formula
(3.0.4), (3.0.5). We obtain

WC(A(−1
τ

),B(−1
τ

))= (
τ

i
)

n
2

1

2
n
2

WC(A(τ) + B(τ), A(τ) − B(τ))

Thus
WC⊥(A,B)= 1

2k WC(A + B, A − B)
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We only need to prove that A and B are algebraically independent. But recall that from corollary
1.7, all the modular forms is generated by the E4 and E6 (as algebra). This implies that the
modular form with weight divisable by 4 is generated by E4 and ∆ . But recall example 3.4 and
proposition 3.2:

E4 = A8 +14A4B4 +B8

∆= 1
16

A4B4(A4 −B4)4

It follows that A and B are algebraically independent and we are done.

Example 3.6. Let’s now reexamine the example 1.13. We obtain the weight enumerator of H

WH(X ,Y )= X7 +7X4Y 3 +7X3Y 4 +1

Now we use MacWilliams Identity to caculate the weight enumerator of the dual code. We obtain

WH⊥(X ,Y )= 1
24 WH(X +Y , X −Y )

= X7 +7X3Y 4 +Y 7

which is the exact result we obtained in the previous example

Corollary 3.7. If C ⊂ Fn
2 is a self-dual code, then

WC(X ,Y )=WC(
X +Yp

2
,
X −Yp

2
)

Proof. Since C is self-dual, it is a (n, n
2 ,d)-code . Since C = C⊥, it follows by using MacWilliams

Identity

WC(X ,Y )= 1

2
n
2

WC(X +Y , X −Y )

=WC(
X +Yp

2
,
X −Yp

2
) (WC(X ,Y ) is homogen of degree n)

Another important theorem is the Gleason Theorem, which characterizes the hamming weight
enumerator of a binary doubly self-dual even code.

Theorem 3.8. Let C ⊂ Fn
2 be a doubly even self-dual code. Then the Hamming weight enumerator

WC(X ,Y ) is a polynomial in

φ :=WH̃(X ,Y )= X8 +14X4Y 4 +Y 8

and
ξ := X4Y 4 (X4 −Y 4)4
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Proof. We consider the function WC(A,B), where A and B are defined in (3.0.1) and (3.0.2). We
have seen in proposition 3.3, that

ϑΓC =WC(A,B)

Since C is doubly even and self-dual, it follows from proposition 1.9, that ΓC is even and unimod-
ular. The theorem 1.1 can be applied. We deduce that WC(A,B) is a modular form of weight n

2 and
n
2 ≡ 0 (mod 4).
We have seen in the proof of theorem 3.5, that the algebra of modular form of weight divisable
by 4 is generated as algebra by E4 and ∆. Hence, WC(A,B) is generated by A4 B4 (A4 − B4)4 and
A8 +14A4B4 +B8. Replace A and B as X and Y .

Example 3.9. As an application of Gleason Theorem, we would like to calculate the hamming
weight enumerator of the extended Golay code G̃.
We have known from section 2, that G̃ is self-dual and doubly even. So according to Gleason
Theorem, WG̃(X ,Y ) ∈Z[φ,ρ] (since all the coefficients must be integer).
Since WG̃(X ,Y ) is homogeneous of degree 24, and the leading coefficient of X24 is 1, it follows that:

WG̃(X ,Y )=φ3 +k ·ξ, for some k ∈Z

To determine the value of k, we can make use of the fact that A4 = 0 in G̃. So it follows that

14 ·3 + k = 0 ⇒ k = −42

Thus, the hamming weight enumerator of G̃ is

WG̃(X ,Y )= (X8 + 14X4Y 4 + Y 8)3 − 42X4Y 4 (X4 − Y 4)4

4 Outlook
Now we want to pose the question that given a certain n = 24m+8k, k = 0,1,2 how much can we
achieve such that given C ⊂ Fn

2 be a doubly even self-dual code, the minimum distance is as large
as possible.
With the help of theorem 3.8, the weight enumerator of C is given by

WC =
m∑

j=0
b jφ

3(m− j)+k ξ j, b j ∈C

Now we can choose the coefficients of b j, such that A4l = 0, for l = 1, . . . ,m (it’s possible, by solving
m equations in m variables). Then the possibly non-zero coefficient A4m+4 is uniquely determined
by b j, which we denote by A∗

4m+4 . The code with such property is called an extremal code. An
extremal code has thus minimum distance at least 4m+4. It can be shown that the minimum
distance is 4m+4 by showing that A∗

4m+4 6= 0 for all m ≥ 1, details see chapter 19, section 5 of [3]
But this m cannot be large, since it is shown by Mallows, that for m sufficiently large, n = 24m

A∗
4m+8 < 0
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One knows that for n ≤ 64, and some n > 72, there exists extremal doubly even self-dual code. It
is still unknown whether this is true for n = 72.
There are also similar results for lattices. Let Γ be an even unimodular lattice in Rn, n = 24+8k ,
k = 0,1,2. We know from the proof of theorem 3.5, that we can write the theta function of Γ as:

ϑΓ =
m∑

j=0
b jE

3(m− j)+k
4 ∆ j, b j ∈C

With the analog argument, we can find coefficients, such that we can cancel all the first 2m+1
term up to the constant term, i.e.

ϑΓ(τ)= 1 + a∗
2m+2q2m+2 + . . .

Such lattice is called an extremal lattice. One can also show that m can not be too large. It is worth
noting that our dear Prof. Nebe has proven in 2010 the existence of an extremal even unimodular
lattice in R72
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