Grundlagen aus der Algebra

Prof. Dr. Gabriele Nebe

1 Primkörper, Körpererweiterungen und Gradsatz

Definition 1.1. Sei K ein kommutativer Ring mit 1. K heißt genau dann Körper, wenn $(K \setminus \{0\}, \cdot)$ eine Gruppe ist.

Definition 1.2. Seien K, E Körper.

- (i) Das Paar (E/K) heißt Körpererweiterung, falls $K \subseteq E$ und \cdot_K , $+_K$ durch Einschränkung von \cdot_E , $+_E$ entstehen. K heißt dann Teilkörper von E, und E Erweiterungskörper von K.
- (ii) Die Körpererweiterung (E/K) heißt endlich, falls $[E:K] := dim_K E < \infty$. [E:K] heißt der Grad von E über K.

Beispiel. Sei K ein Körper und $f \in K[x]$ ein irreduzibles Polynom. Dann ist E := K[x]/(f) ein Körper und $K \hookrightarrow E, a \mapsto a\overline{1}$ eine Einbettung bezüglich der wir E als Körpererweiterung von K ansehen. Es ist $[E:K] = \operatorname{Grad}(f)$.

Satz 1.3. (Gradsatz) Seien E_1, E_2, E_3 Körper mit $E_1 \subseteq E_2 \subseteq E_3$. Dann gilt: $[E_3 : E_1] = [E_3 : E_2] \cdot [E_2 : E_1]$.

BEWEIS: Seien $[E_3:E_2]=n<\infty, [E_2:E_1]=m<\infty$. Sei weiter (e_1,\ldots,e_n) eine E_2 -Basis von E_3 und (f_1,\ldots,f_m) eine E_1 -Basis von E_2 Beh.: Dann ist $\mathcal{B}:=(e_1f_1,e_1f_2,\ldots,e_nf_m)$ eine E_1 -Basis von E_2 Bew.:

- (i) \mathcal{B} ist Erzeugendensystem: Sei $x \in E_3$. Dann existieren $\alpha_i \in E_2$, so dass $x = \sum_{i=1}^n \alpha_i e_i$. Also existieren $\alpha_{ij} \in E_1$, so dass $\alpha_i = \sum_{j=1}^m \alpha_{ij} f_j$. Daraus folgt $x = \sum_{i=1}^n \sum_{j=1}^m \alpha_{ij} e_i f_j$.
- (ii) \mathcal{B} ist linear unabhängig:

Sei
$$\alpha_{ij} \in E_1$$
, so dass $\sum_{i,j} \alpha_{ij} e_i f_j = 0$. Dann gilt: $\sum_{i=1}^n (\sum_{j=1}^m \alpha_{ij} f_j) e_i = 0$.

Da aber nun die e_i über E_2 linear unabhängig sind, muss für alle i gelten:

$$\sum_{i=1}^{m} \alpha_{ij} f_j = 0$$

Da auch die f_j linear unabhängig sind (über E_1), folgt $\alpha_{ij} = 0$ für alle i, j.

Ist nun $[E_3:E_2]$ oder $[E_2:E_1]$ unendlich so folgt sofort, dass $[E_3:E_1]=\infty$.

Beispiele 1.

a) $[K(x) : K] = \infty$

b) $[K(x):K(x^2)]=2$

Bemerkung 1.4. Sei R ein Integritätsbereich. $\psi : \mathbb{Z} \to R$ definiert durch $n \mapsto n \cdot 1$. Dann ist $Bild(\psi) \leq R$ ein Integritätsbereich, also $ker(\psi)$ ein Primideal in \mathbb{Z} . Also $ker(\psi) = (0)$ oder $ker(\psi) = (p)$ für eine Primzahl p. p heißt die Charakteristik von R, p = Char(R). Ist ψ injektiv, so setzen wir Char(R) = 0.

Bemerkung: Man sieht auch leicht "zu Fuß", dass $\ker(\psi)$ entweder 0 oder ein Primideal ist. Denn sei ψ nicht injektiv und $n \in \mathbb{N}$ minimal mit $n \cdot 1 = 0$. Ist n keine Primzahl, dann gibt es $n_1, n_2 \in \mathbb{N}_{>1}$ mit $n = n_1 n_2$. Dann ist aber $0 = n \cdot 1 = (n_1 \cdot 1)(n_2 \cdot 1)$. Da R nullteilerfrei ist, gilt $(n_1 \cdot 1) = 0$ oder $(n_2 \cdot 1) = 0$, was ein Widerspruch zur Minimalität von n ist.

Satz 1.5. Sei K ein Körper. Sei

$$K_0 := \bigcap \{L \mid L \text{ ist Teilk\"orper von } K\}$$

der Primkörper von K. Ist Char(K) = 0, so ist $K_0 \cong \mathbb{Q}$ isomorph zum Körper der rationalen Zahlen. Ist Char(K) = p > 0 eine Primzahl, so ist $K_0 \cong \mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.

BEWEIS: Klar ist K_0 ein Körper und $1 \in K_0$. Dann ist aber auch $1+1=2\cdot 1$ in K_0 und also mit den Bezeichnungen aus Bemerkung $1.4 \ \psi(\mathbb{Z}) \subset K_0$. Ist Char(K)=p>0, so ist $ker(\psi)=(p) \leq \mathbb{Z}$ ein maximales Ideal in \mathbb{Z} und $\psi(\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ ein Körper. Also ist $K_0=\psi(\mathbb{Z})$. Ist Char(K)=0, dann ist ψ injektiv und $\mathbb{Z} \hookrightarrow K_0$. Da K_0 ein Körper ist, hat ψ eine eindeutig bestimmte Fortsetzung $\tilde{\psi}:\mathbb{Q}=Quot(\mathbb{Z})\hookrightarrow K_0$. Also ist $K_0=\mathbb{Q}$ in diesem Fall.

Definition 1.6. Sei (E/K) eine Körpererweiterung.

- (i) Für beliebige $a_1, \ldots, a_n \in E$ bezeichnet $K(a_1, \ldots, a_n)$ den kleinsten Teilkörper von E, der K, a_1, \ldots, a_n enthält, und $R := K[a_1, \ldots, a_n]$ den kleinsten Teilring von E, der K, a_1, \ldots, a_n enthält,
- (ii) (E/K) heißt einfache Körpererweiterung, falls ein $a \in E$ existiert mit E = K(a).

Bemerkung:

$$K(a_1, \ldots, a_n) = Quot(K[a_1, \ldots, a_n]).$$

Insbesondere ist $K(x) = \{\frac{p(x)}{q(x)} \mid p, q \in K[x], q \neq 0\}$ der Körper der rationalen Funktionen.

Bemerkung 1.7. Sei E = K(a) einfache Körpererweiterung über K. Dann gilt entweder E = K[a] oder $E \cong K(x)$. Im 1.Fall heißt a algebraisch über K. Im 2.Fall heißt a transzendent über K.

BEWEIS: Sei $\varphi: K[x] \to K(a)$ der K-Algebrenhomomorphismus definiert durch $x \mapsto a$. Da K(a) nullteilerfrei ist, ist auch $Bild(\varphi)$ ein Integritätsring. Also ist $\ker(\varphi)$ ein Primideal in dem HauptidealbereichK[x].

- (i). $\ker(\varphi) \neq 0$. Dann ist $\ker(\varphi) = (m(x))$ für ein irreduzibles Polynom $m(x) \in K[x]$. (Es gilt m(a) = 0 in E und der normierte Erzeuger $\mu_{a,K}(x)$ von $\ker(\varphi)$ heißt das **Minimal-polynom** von a (über K).) Also ist $\ker(\varphi)$ ein maximales Ideal und daher $Bild(\varphi) = K[a]$ ein Körper, d.h. K[a] = K(a) = E.
- (ii). $\varphi: K[x] \longrightarrow E$ ist injektiv. Also ist $Bild(\varphi) \cong K[x]$ kein Körper, aber $Bild(\varphi) = K[a]$ und $E = Quot(K[a]) \cong K(x)$.

Übung: Sei L/K eine Körpererweiterung und $a \in L$ algebraisch über K. Dann ist K[a] ein endlich dimensionaler K-Vektorraum und $m_a : K[a] \to K[a], z \mapsto az$ eine K-linerare Abbildung. Es gilt $\mu_{a,K} = \mu_{m_a} = \chi_{m_a}$, d.h. das Minimalpolynom von a über K stimmt mit dem Minimalpolynom dieser linearen Abbildung überein. Es ist $(1, a, \ldots, a^{d-1})$ eine K-Basis von $K[a], d = \text{Grad}(\mu_{a,K})$.

2 Zerfällungskörper.

- **Definition 2.1.** (i) Seien E_1 und E_2 Körper. Ein Ringhomomorphismus $\varphi: E_1 \longrightarrow E_2$ heißt auch Körperhomomorphismus. Ein Körperisomorphismus $\varphi: E \longrightarrow E$ heißt Körperautomorphismus.
 - (ii) Seien (E_1/K) , (E_2/K) Körpererweiterungen. Ein K-Algebrenhomomorphismus $\varphi: E_1 \longrightarrow E_2$ heißt Körperhomomorphismus über K.
- (iii) $E_1 \underset{K}{\cong} E_2$, falls K-Algebrenisomorphismus zwischen E_1 und E_2 existiert.
- (iv) $\mathcal{A}ut(E) := \{ \varphi | \varphi : E \longrightarrow E \text{ ist K\"orperautomorphismus} \}$ $\mathcal{A}ut_K(E) = \mathcal{A}ut(E/K) := \{ \varphi | \varphi : E \longrightarrow E \text{ ist K\"orperautomorphismus \"uber } K \}$

Beachte: Körperhomomorphismen sind immer injektiv. Denn der Kern ist ein Ideal, also = 0 oder $= E_1$. Aber 1 wird unter Körperhomomorphismen auf 1 abgebildet, also ist 1 nicht im Kern, also Kern = 0.

Bemerkung 2.2. Sei $\psi: K \to K'$ ein Körperhomomorphismus. Dann gibt es genau einen Ringhomomorphismus $\tilde{\psi}: K[x] \to K'[x]$ der ψ fortsetzt, mit $\tilde{\psi}(x) = x$. Es gilt $\tilde{\psi}(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n \psi(a_i) x^i$.

Definition 2.3. Sei K ein Körper und $f(t) \in K[t]$.

(i) E heißt ein Wurzelkörper von f(t), falls (E/K) eine Körpererweiterung ist und ein $\xi \in E$ existiert $mit\ f(\xi) = 0$.

(ii) Der Erweiterungskörper E von K heißt ein **Zerfällungskörper** von f(t), falls f(t) über E in Linearfaktoren zerfällt und E minimal ist, d.h. f(t) zerfällt nicht in Linearfaktoren in F[t] für $K \subseteq F \subset E$, $F \neq E$.

(Dann existieren $\xi_i \in E$, so dass $f(t) = \prod (t - \xi_i)$ in E[t].)

Beachte: f(t) hat dann keine weiteren Wurzeln in E.

Satz 2.4. Sei $f(t) = \sum_{i=0}^{n} a_i t^i \in K[t]$, $a_n \neq 0$ ein Polynom vom Grad $n \geq 1$.

- (i) Ein Wurzelkörper von f(t) existiert.
- (ii) Jeder minimale Wurzelkörper L von f ist von der Form $L = K[\alpha]$ mit $f(\alpha) = 0$.
- (iii) Sei f(t) irreduzibel in K[t], $\psi: K \to K_1$ ein Körperisomorphismus, und $\tilde{\psi}$ wie in Bemerkung 2.2. Sei $f_1(t) = \sum_{i=0} \psi(a_i)t^i = \tilde{\psi}(f(t)) \in K_1[t]$. Ist $L = K[\alpha]$ ein minimaler Wurzelkörper von f und $L_1 = K_1[\alpha_1]$ ein minmaler Wurzelkörper von f_1 , dann definiert $\psi_1: L \to L_1, \sum_{i=0}^m a_i \alpha^i \mapsto \sum_{i=0}^m \psi(a_i) \alpha_1^i$ einen Körperisomorphismus (der ψ fortsetzt).
- (iv) Insbesondere folgt aus (iii): Ist f(t) irreduzibel in K[t], so sind je zwei minimale Wurzelkörper isomorph über K.

BEWEIS:

- (i) Sei $\tilde{E} = K[t]/(f(t))$ "Wurzelring" mit $f(\bar{t}) = 0$ ($\bar{t} = t + (f(t))$). Jedes maximale Ideal $I \leq \tilde{E}$ liefert einen (sogar minimalen) Wurzelkörper $E = \tilde{E}/I$. Alternativ sei f_1 ein irreduzibler Teiler von f in K[t] und setze $E := K[t]/(f_1)$.
- (ii) Ist L ein minimaler Wurzelkörper von f, so enthält L ein α mit $f(\alpha) = 0$. Da $K(\alpha) \leq L$ ein Wurzelteilkörper von L ist, folgt $L = K(\alpha)$. Weiter ist α algebraisch über K, also $L = K[\alpha]$.
- (iii) Da $f(t) \in K[t]$ irreduzibel ist, ist auch sein Bild $f_1 = \tilde{\psi}(f) \in K_1[t]$ irreduzibel. Daher ist $L \cong K[t]/(f(t)) \cong K_1[t]/(f_1(t)) \cong L_1$.

Beispiel Das irreduzible Polynom $t^4 - 2 \in \mathbb{Q}[x]$ hat $\mathbb{Q}[\sqrt[4]{2}]$ und $\mathbb{Q}[i\sqrt[4]{2}]$ als minimale Wurzelkörper. Der Wurzelkörper ist also nicht physikalisch eindeutig, sondern nur bis auf Isomorphie.

Satz 2.5. Sei $f(t) \in K[t] \setminus K$.

- (i) Es gibt einen Erweiterungskörper von K, über welchem f(t) in Linearfaktoren zerfällt.
- (ii) Je zwei Zerfällungskörper von f sind isomorph über K.

BEWEIS:

(i) folgt aus 2.4 durch Iteration.

(ii) Sei L ein Zerfällungskörper von f über K. Durch Induktion über m:=[L:K] zeigen wir: Ist $\psi:K\to K'$ ein Körperisomorphismus und L' ein Zerfällungskörper von $\tilde{\psi}(f)\in K'[t]$ über K', so lässt sich ψ zu einem Körperisomorphismus $\psi':L\to L'$ fortsetzen. Ist m=1, dann zerfällt f in K[t] in Linearfaktoren und $L'=K'\cong K=L$. Sei also m>1 und $g(t)\in K[t]$ ein irreduzibler Faktor von f vom Grad d>1. Sei $g_1:=\tilde{\psi}(g)$. Sei $\alpha\in L$ mit $g(\alpha)=0$ und $\alpha'\in L'$ mit $g_1(\alpha')=0$. Dann sind die Teilkörper $L_1=K[\alpha]\le L$ und $L_2=K'[\alpha']\le L'$ beides minimale Wurzelkörper von g (bzw. g_1) und nach Satz 2.4 (iii) lässt sich ψ zu einem Isomorphismus $\psi_1:L_1\to L_2$ fortsetzen. Weiter ist $[L:L_1]=\dim_{L_1}(L)=\frac{\dim_K(L)}{\dim_K(L_1)}=\frac{\dim_K(L)}{d}<[L:K]$ und L (bzw. L') ist ein Zerfällungskörper von $f(t)\in L_1[t]$ (bzw. $\tilde{\psi}_1(f(t))\in L_2[t]$). Nach Induktionsvoraussetzung lässt sich ψ_1 zu einem Körperisomorphismus von L nach L' fortsetzen, der dann natürlich auch ψ fortsetzt.

3 Der algebraische Abschluss.

Bemerkung 3.1. Sei L/K eine Körpererweiterung. Dann ist

$$Alg_K(L) := \tilde{K} := \{ a \in L \mid a \text{ ist algebraisch ""uber } K \}$$

ein Teilkörper von L. \tilde{K} heißt der algebraische Abschluss von K in L. \tilde{K} ist der größte Teilkörper von L, der algebraisch über K ist.

Definition 3.2. Ein Körper K heißt algebraisch abgeschlossen, falls jedes $f \in K[t]$ eine Nullstelle in K hat.

Bemerkung 3.3. Äquivalent sind:

- (i) K is algebraisch abgeschlossen.
- (ii) Jedes irreduzible Polynom in K[t] hat Grad 1.
- (iii) Ist (L/K) eine algebraische Erweiterung, so gilt L = K.

Definition 3.4. Sei K ein Körper. Ein Erweiterungskörper E von K heißt ein algebraischer Abschluss von K, falls

- (i) E ist algebraisch abgeschlossen.
- (ii) (E/K) ist algebraisch.

Es gilt (ohne Beweis):

Satz 3.5. (a) Jeder Körper K hat einen algebraischen Abschluss. (b) Je zwei algebraische Abschlüsse \bar{K} und \bar{K}' von K sind über K isomorph.

Der Beweis von (b) folgt aus

Lemma 3.6. Sei \bar{K} ein algebraischer Abschluss von K. Ist $K \subset L \subset F$ eine algebraische Erweiterung und $\varphi : L \to \bar{K}$ ein Ringhomomorphismus mit $\varphi_{|K} = id$, dann gibt es einen Ringhomomorphismus $\psi : F \to \bar{K}$ mit $\psi_{|L} = \varphi$.

Der Beweis von Lemma 3.6 ist nicht konstruktiv, er benötigt das Lemma von Zorn, kann jedoch für endliche Erweiterungen konstruktiv gemachtwerden.

4 Endliche Körper.

Satz 4.1. Sei K ein Körper und $U \le K^*$ endlich. Dann ist U zyklisch, d.h. es gibt ein $z \in K$ mit $U = \langle z \rangle$.

Beweis. K^* ist eine abelsche Gruppe, also ist auch U eine endliche abelsche Gruppe. Angenommen U ist nicht zyklisch. Nach dem Hauptsatz über endliche abelsche Gruppen gibt es dann eine Primzahl p und eine Untergruppe $X := C_p \times C_p \cong \langle a, b \rangle \leq U$. Die p^2 Elemente von X erfüllen aber alle $x^p = 1$, sind also Nullstellen des Polynoms $t^p - 1 \in K[t]$. Dieses hat aber (da K[t] faktoriell ist) höchstens p Nullstellen in K, ein Widerspruch.

Lemma 4.2. Sie K ein Körper und $f: K \to K$ ein Körperendomorphismus. Dann ist

$$F := Fix(f) := \{k \in K \mid f(k) = k\}$$

ein Teilkörper von K.

Beweis. Mit $a, b \in F$ liegen auch a + b und $a \cdot b$ in F. Weiter gilt $0, 1 \in F$ und für $0 \neq a \in F$ auch $a^{-1} \in F$.

Lemma 4.3. Ist K ein Körper der Charakteristik p, dann ist die Abbildung $\Phi_p: K \to K, a \mapsto a^p$ ein Körperendomorphismus von K, der sogenannte Frobeniusendomorphismus. Ist K endlich, so ist Φ_p bijektiv also ein Automorphismus von K, der Frobeniusautomorphismus.

Beweis: Φ_p ist ein Ringhomomorphismus, denn $\Phi_p(ab) = \Phi_p(a)\Phi_p(b)$ und

$$\Phi_p(a+b) = (a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k} = a^p + b^p \text{ für alle } a, b \in K.$$

Der Kern eines Ringhomomorphismus ist ein Ideal, also ist Φ_p injektiv und damit auch surjektiv, wenn K endlich ist.

Satz 4.4. Sei K ein endlicher Körper. Dann ist Char(K) = p eine Primzahl und $|K| = p^n$ eine Potenz dieser Primzahl. Umgekehrt gibt es zu jeder Primzahlpotenz p^n genau einen Körper mit p^n Elementen. Dieser wird mit \mathbb{F}_{p^n} bezeichnet.

Beweis. Der Primkörper von K ist auch endlich und daher $\cong \mathbb{F}_p$ für eine Primzahl p. Also ist K ein endlich dimensionaler \mathbb{F}_p -Vektorraum und daher $|K| = p^n$ mit $n = [K : K_0]$. Sei umgekehrt $n \in \mathbb{N}$ und p eine Primzahl.

Existenz: Sei K der Zerfällungskörper des Polynoms $f(t) = t^{p^n} - t \in \mathbb{F}_p[t]$. Dann gilt $f(t) = \prod_{i=1}^{p^n} (t - a_i) \in K[t]$ mit $Z := \{a_1, \dots, a_{p^n}\} \subseteq K$. Da ggT(f, f') = 1 gilt $|Z| = p^n$, die Nullstellen von f sind also paarweise verschieden. Weiter gilt: f(1) = f(0) = 0 und $a \in K$ ist Nullstelle von f genau dann wenn $\Phi_p^n(a) = a$. Da die n-te Potenz des Frobeniusautomorphismus von K wieder ein Automorphismus von K ist, bilden die Nullstellen von f in K also einen Teilring von K, und damit K = Z.

Eindeutigkeit. Sei L ein Körper mit p^n Elementen. Dann ist der Primkörper $L_0 = \mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$. Weiter ist $L^* = L \setminus \{0\}$ eine Gruppe mit $p^n - 1$ Elementen, also gilt $a^{p^n - 1} = 1$ für alle $0 \neq a \in L$. Also enhält L die p^n verschiedenen Nullstellen von $t^{p^n} - t \in \mathbb{F}_p[t]$ und damit ist L der Zerfällungskörper dieses Polynoms.

Bemerkung 4.5. Jeder Erzeuger $a \in \mathbb{F}_{p^n}$ mit $\langle a \rangle = \mathbb{F}_{p^n}^*$ heißt Primitivwurzel von \mathbb{F}_{p^n} . Jede Primitivwurzel erzeugt den Körper $\mathbb{F}_{p^n} = \mathbb{F}_p[a]$.

Die Teilkörper von \mathbb{F}_{p^n} sind genau die Körper \mathbb{F}_{p^d} für die Teiler d von n. Für $d \mid n$ ist

$$\mathbb{F}_{p^d} := \{ a \in \mathbb{F}_{p^n} \mid a^{p^d} = a \} = Fix(\Phi_p^d).$$

Bemerkung 4.6. Sei $\mathbb{F} = \mathbb{F}_{p^n}$ ein endlicher Körper und $\alpha \in \mathbb{F}^*$ eine Primitivwurzel. Sei m ein Teiler von n und $\mathbb{F}_{p^m} \cong K \leq \mathbb{F}$. Dann ist $\langle N_{\mathbb{F}/K}(\alpha) \rangle = K^*$.

BEWEIS: Sei n = md. $Gal(\mathbb{F}/K)$ wird erzeugt von F^m . Also ist

$$\alpha N_{\mathbb{F}/K} = \alpha^{p^m + p^{2m} + \ldots + p^{dm}} \alpha^{1 + p^m + p^{2m} + \ldots + p^{(d-1)m}} = \alpha^{\frac{p^n - 1}{p^m - 1}}.$$

Da α ein Element der Ordnung p^n-1 ist, ist $\alpha N_{\mathbb{F}/K} \in K^*$ ein Element der Ordnung p^m-1 , also eine Primitivwurzel.

5 Separable Erweiterungen

Definition 5.1. (i) Ein Polynom $f(t) \in K[t]$ heißt separabel, falls die Wurzeln von f(t) in einem Zerfällungskörper von f paarweise verschieden sind.

- (ii) Sei (E/K) algebraische Körpererweiterung. $a \in E$ heißt separabel, falls das Minimalpolynom über K von a separabel ist. (E/K) heißt separabel, falls jedes $a \in E$ separabel ist. (Beachte: Das Minimalpolynom ist irreduzibel über K.)

Lemma 5.2. Seien $f, g \in K[x]$ und (E/K) eine Körpererweiterung. Sei weiter h = ggT(f, g) in K[x]. Dann gilt: h = ggT(f, g) in E[x].

BEWEIS: $*: h = \alpha f + \beta g$ mit geeigneter Wahl von $\alpha, \beta \in K[x]$. Sei nun $s \in E[x]$ mit s|f und s|g. Dann folgt mit *: s|h (in E[x]). Da h|f und h|g in K[x], also auch in E[x] folgt $h = \operatorname{ggT}(f,g)$ in E[x].

Satz 5.3. Sei $f \in K[t]$ vom $Grad \ge 1$. f ist genau dann inseparabel, wenn $ggT(f, f') \ne 1$ in K[t].

BEWEIS: Wegen 5.2 sei O.B.d.A. K Zerfällungskörper von f.

- "⇒" f ist genau dann inseparabel, wenn ein $a \in K$ existiert mit $(t-a)^2|f(t)$. Das impliziert $f(t) = (t-a)^2 \cdot g(t)$ mit $g(t) \in K[t]$; $f' = 2(t-a) \cdot g(t) + (t-a)^2 g'(t) = (t-a) \underbrace{[2g(t) + (t-a)g'(t)]}_{\in K[t]}$. Also (t-a)|ggT(f,f').
- "\(\infty\)" (t-a)|ggT(f,f')| impliziert f(t)=(t-a)h(t) und f'(t)=h(t)+(t-a)h'(t), daraus folgt (t-a)|h(t), also $f(t)=(t-a)^2\tilde{h}(t)$.

Beispiele 2.

- a) Jedes irreduzible Polynom über Q ist separabel.
- b) $t^p x \in \mathbb{F}_p(x)[t]$ ist irreduzibel aber inseparabel, denn es gilt: $(t^p x)' = pt^{p-1} \equiv 0 \pmod{p}$. Dann gilt $ggT(0, t^p x) = t^p x$.

Definition 5.4. K heißt **perfekt** (vollkommen), falls jede endliche Erweiterung von K separabel ist. (d.h. jedes irreduzible Polynom in K[t] ist separabel)

Satz 5.5. (i) Falls Char(K) = 0, so ist K perfekt.

(ii) Falls $|K| < \infty$, so ist K perfekt.

BEWEIS:

- (i) Sei $f(t) \in K[t]$ irreduzibel und $grad(f) \ge 1$. Dann ist $f'(t) \ne 0$ und grad(f') < grad(f). Also gilt ggT(f, f') = 1.
- (ii) Sei $f \in K[t]$ irreduzibel. Es sind nun 2 Fälle zu unterscheiden :
 - (i). $f' \neq 0$, dann gilt ggT(f, f') = 1 (wie oben).
 - (ii). f' = 0. Sei $f(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_0$. Dann ist $f'(t) = n a_n t^{n-1} + (n-1)a_{n-1}t^{n-2} + \ldots + a_1 = 0$. $ia_i = 0$ für alle $i = 1 \ldots n$, falls $a_i \neq 0$, dann p|i. Beh.: $f = g^p$ für ein $g \in K[t]$. Da $a \mapsto a^p$ eine bijektive Abbildung von K ist, gibt es $b_i \in K$ mit $b_i^p = a_i$

Da $a \mapsto a^p$ eine bijektive Abbildung von K ist, gibt es $b_i \in K$ mit $b_i^p = a$ $(0 \le i \le n)$. Sei $g := \sum_i b_i t^{i/p}$.

Dann gilt $g^p = \sum_i b_i^p t^i = f$.

Erinnerung: Eine Körpererweiterung L/K heißt einfach, falls ein $x \in L$ existiert mit L = K(x). In dem Fall nennt man x auch ein **primitives Element** von L/K.

Satz 5.6. (Satz vom primitiven Element) Sei L = K(y, z) eine endliche Körpererweiterung von K so dass z separabel über K ist. Dann gibt es ein $x \in L$ mit L = K(x).

<u>Beweis.</u> Für endliche Körper ist dies aus dem Struktursatz ersichtlich. Sei also Œ K unendlich. Seien μ_y und μ_z die Minimalpolynome von y bzw. z über K und E ein Zerfällungskörper von $\mu_y\mu_z$ über L. Dann ist

$$\mu_y = \prod_{i=1}^n (t - y_i), \mu_z = \prod_{i=1}^m (t - z_i) \in E[t]$$

mit $z_i \neq z_j$ für alle $i \neq j$. Sei Œ $z = z_1, y = y_1$. Da K unendlich ist, gibt es ein $a \in K$ mit

$$y_i + az_j \neq y + az$$
 für alle $1 \leq i \leq n, 2 \leq j \leq m$.

Setze x := y + az.

Behauptung. K(x) = L:

Weil $\mu_y(x-az) = \mu_y(y) = 0$ gilt, ist z Nullstelle von $h := \mu_y(x-at) \in K(x)[t]$. Also ist z auch Nullstelle von $f := \operatorname{ggT}(h, \mu_z)$ in K(x)[t]. Ist $j \neq 1$, so gilt $h(z_j) = \mu_y(y+az-az_j) \neq 0$ nach Konstruktion von a. Also ist (t-z) der einzige gemeinsame Teiler von h und μ_z und somit $f = t - z \in K(x)[t]$, woraus sich $z \in K(x)$ ergibt.

Folgerung 5.7. Jede endliche separable Körpererweiterung ist einfach. Sei $E = K[\alpha] \cong K[X]/(\mu_{\alpha}(X))$ endlich und separabel und n := [L:K] der Grad von μ_{α} . Über einem algebraischen Abschluss \overline{K} von K zerfällt $\mu_{\alpha}(X) = \prod_{i=1}^{n} (X - \alpha_{i})$ in ein Produkt von n paarweise verschiedenen Linearfaktoren. Es gibt genau n verschiedene K-lineare Körperhomomorphismen $\sigma_{i}: E \to \overline{K}$. Diese sind gegeben durch $\sigma_{i}(\alpha) = \alpha_{i}, i = 1, ..., n$.

6 Normale Erweiterungen

Definition 6.1. Sei K ein Körper und \bar{K} sein algebraischer Abschluss. Eine algebraische Erweiterung $K \subset E \subset \bar{K}$ heißt **normal** über K, falls für jeden K-Algebrenhomomorphismus $\varphi : E \to \bar{K}$ gilt $\varphi(E) = E$.

Beispiel. $E := \mathbb{Q}[\sqrt[4]{2}]$ ist nicht normal über \mathbb{Q} , da z.B. der durch $\sqrt[4]{2} \mapsto i\sqrt[4]{2}$ definierte \mathbb{Q} -Algebrenhomomorphismus von E in $Alg_{\mathbb{Q}}(\mathbb{C}) \cong \mathbb{Q}$ den Körper E nicht in sich selbst abbildet.

Satz 6.2. Äquivalent sind:

- (i) (E/K) normal.
- (ii) Jedes irreduzible Polynom in K[t], das eine Nullstelle in E hat, zerfällt in E[t] in Linearfaktoren.

- (iii) Das Minimalpolynom jedes Elements von E über K zerfällt in E[t] in Linearfaktoren.
- (iv) Das Minimalpolynom jedes Erzeugers von E über K zerfällt in E[t] in Linearfaktoren.

BEWEIS: (i) \Rightarrow (ii) Sei $f \in K[t]$ irreduzibel, $\alpha \in E$ eine Nullstelle von f. Sei $\beta \in \bar{K}$ eine weitere Nullstelle von f. Zu zeigen: $\beta \in E$. Es gilt $K[\alpha] \cong K[\beta]$. Dieser Isomorphismus lässt sich nach Lemma 3.6 zu einem Körperhomomorphismus $\varphi : E \to \bar{K}$ fortsetzen. Da E normal ist, gilt $\varphi(E) = E$. Also gilt $\beta \in E$.

- $(ii) \Rightarrow (iii) \Rightarrow (iv) \text{ Klar.}$
- (iv) \Rightarrow (i) Sei $\varphi : E \to \bar{K}$ ein Körperhomomorphismus mit $\varphi_{|K} = id$. Sei α ein Erzeuger von E über K, $\beta = \varphi(\alpha) \in \text{Bild}(\varphi)$ und sei $f(t) \in K[t]$ das Minimalpolynom von β . Dann ist f(t) auch das Minimalpolynom von $\alpha \in E$. Nach Voraussetzung zerfällt f in Linearfaktoren in E[t], d.h. E enthält alle Nullstellen von f in \bar{K} und damit auch β .

Beispiel Die Eigenschaft, normal zu sein, ist nicht transitiv. Sei $L = \mathbb{Q}[\sqrt{2}]$ und $E = \mathbb{Q}[\sqrt[4]{2}]$. Dann sind (L/\mathbb{Q}) und (E/L) normale Erweiterungen, als Erweiterungen vom Grad 2, aber (E/\mathbb{Q}) ist nicht normal.

Satz 6.3. Eine endliche Erweiterung (E/K) ist normal, genau dann wenn E der Zerfällungskörper eines Polynoms in K[t] ist.

BEWEIS: \Rightarrow : Sei (E/K) normal. Da E endlich ist, gibt es $a_1, \ldots, a_n \in E$ mit $E = K[a_1, \ldots, a_n]$. Ist p_i das Minimalpolynom von a_i über K, so ist E der Zerfällungskörper von $\prod_{i=1}^n p_i$.

 \Leftarrow : Sei E der Zerfällungskörper eines Polynoms p in K[t]. Dann ist E von den Nullstellen a_1, \ldots, a_n von p über K erzeugt und das Minimalpolynom jedes dieser a_i über K teilt p und zerfällt daher in E[t] in Linearfaktoren. Also ist E normal über K.

Satz 6.4. Sei E/K eine algebraische Körpererweiterung. Dann gibt es eine eindeutig bestimmte minimale normale Körpererweiterung \tilde{E}/K , mit $E \subseteq \tilde{E}$. \tilde{E} heißt die normale Hülle von E über K.

Ist E/K endlich, so auch \tilde{E}/K .

BEWEIS: Setze \tilde{E} gleich dem Zerfällungskörper aller Minimalpolynome (über K) von Elementen von E. Dann ist \tilde{E}/K normal und \tilde{E} minimal. Ist $E=K[a_1,\ldots,a_n]$ endlich über K, so ist \tilde{E} der Zerfällungskörper des Produkts der Minimalpolynome der a_i und damit endlich über K.

7 Galoiserweiterungen

Wiederholung: Eine algebraische Körpererweiterung E/K heißt **normal**, falls für jeden K-Algebrenhomomorphismus $\varphi: E \to \overline{E} \cong \overline{K}$ in einen algebraischen Abschluss von E gilt, dass $\varphi(E) = E$ ist. Da man K-Automorphismen von E zu K-Automorphismen von \overline{K} fortsetzen kann (Lemma 3.6) liefert also die Einschränkung einen Gruppenepimorphismus

$$\operatorname{Aut}_K(\overline{K}) \to \operatorname{Aut}_K(E), \varphi \mapsto \varphi_{|E}.$$

Der Kern dieses Epimorphismus ist $\operatorname{Aut}_E(\overline{E})$ ein Normalteiler in $\operatorname{Aut}_K(\overline{K})$ und es gilt

$$\operatorname{Aut}_K(E) \cong \operatorname{Aut}_K(\overline{K}) / \operatorname{Aut}_E(\overline{K}).$$

Eine Erweiterung E/K ist genau dann normal, wenn jedes Minimalpolynom eines Elements von E in E[t] in Linearfaktoren zerfällt.

Eine algebraische Körpererweiterung E/K heißt **separabel**, falls das Minimalpolynom eines jeden Elements von E in $\overline{K}[t]$ in paarweise verschiedene Linearfaktoren zerfällt. Für jedes $a \in E$ gilt also $\operatorname{ggT}(\mu_a, \mu'_a) = 1$.

Eine endliche Erweiterung E/K ist genau dann separabel, wenn

$$[E:K] = [E:K]_s = |\operatorname{Hom}_K(E,\overline{K})|.$$

Folgerung 7.1. Eine endliche Körpererweiterung E/K ist genau dann normal und separabel wenn $|\operatorname{Aut}_K(E)| = [E:K]$.

Definition 7.2. Sei M ein Monoid und K ein Körper. Ein Homomorphismus $\lambda : M \longrightarrow K^*$ heißt Charakter (von M über K).

Satz 7.3. (Artin) Sei M ein Monoid und K ein Körper. Je n verschiedene Charaktere über K sind linear unabhängig (als Elemente von K^M).

BEWEIS: Induktion über n: n = 1: klar $n - 1 \to n$: Seien $\sigma_1, \ldots, \sigma_n$ Charaktere. Ann.: $\sigma_1, \ldots, \sigma_n$ sind linear abhängig. Danr existieren $a_i \in K$ mit nicht alle $a_i = 0$, so dass gilt:

*:
$$a_1\sigma_1(m) + \ldots + a_n\sigma_n(m) = 0$$
 für alle $m \in M$.

Mit der Induktionsannahme folgt $a_i \neq 0$ für alle i. Sei nun $m_0 \in M$. Setzt man nun $m_0 m$ für m in * ein und bildet zum anderen $\sigma_1(m_0)*$, so erhält man nach Bildung der Differenz:

$$-\begin{cases} a_{1}\sigma_{1}(m_{0})\sigma_{1}(m) + \dots + a_{n}\sigma_{n}(m_{0})\sigma_{n}(m) = 0\\ a_{1}\sigma_{1}(m_{0})\sigma_{1}(m) + a_{2}\sigma_{1}(m_{0})\sigma_{2}(m) + \dots + a_{n}\sigma_{1}(m_{0})\sigma_{n}(m) = 0\\ \underbrace{a_{1}(\sigma_{1}(m_{0}) - \sigma_{1}(m_{0}))\sigma_{1}(m) + \dots + \underbrace{a_{n}(\sigma_{n}(m_{0}) - \sigma_{1}(m_{0}))}_{\text{neueKoeff}} \sigma_{n}(m) = 0 \end{cases}$$
 für alle $m \in M$

Nun sind $\sigma_2, \ldots, \sigma_n$ linear unabhängig (nach Ind.Ann). Damit gilt: $a_i(\sigma_i(m_0) - \sigma_1(m_0)) = 0$ für alle $i = 1, \ldots, n$. Da die a_i alle ungleich 0 sind, folgt $\sigma_i(m_0) = \sigma_1(m_0)$ für alle $i = 1, \ldots, n$. $m_0 \in M$ war beliebig gewählt, also gilt: $\sigma_i = \sigma_1$. Dies ist ein Widerspruch.

Folgerung 7.4. Sei L/K eine separable Körpererweiterung vom Grad n und $\operatorname{Hom}_K(L,\overline{K}) = \{\sigma_1,\ldots,\sigma_n\}$ Für $(v_1,\ldots,v_n)\in L^n$ gilt:

$$(v_1,\ldots,v_n)$$
 ist K-Basis von $L \Leftrightarrow \det((\sigma_i(v_i))_{i,i=1}^n) \neq 0$.

Beweis. als Übung.

Hauptsatz 7.5. Sei E ein Körper und $G \leq \operatorname{Aut}(E)$. Sei $K = Fix_G(E) := \{k \in E | gk = k \text{ für alle } g \in G\}$ der Fixkörper von G. Dann gilt: [E : K] = |G|.

Beweis: Sei r := [E : K] und n := |G|.

Sei zunächst $r < \infty$. Dann ist $E = K[a_1, \ldots, a_d]$ für gewisse $a_i \in E$. Jeder K-Automorphismus von E ist durch die Bilder der a_i eindeutig bestimmt. Ist m_i der Grad des Minimalpolynoms von a_i über K, so gibt es höchstens m_i mögliche Bilder von a_i in E. Also gilt $n = |G| \le |\operatorname{Aut}_K(E)| \le m_1 \cdot \ldots \cdot m_d < \infty$.

(i) Zeige $r \geq n$.

Annahme: r < n. Dann ist $n < \infty$. Nun fasst man $g \in G$ als Charakter auf $g : E^* \longrightarrow E^*$, $x \mapsto gx$. Sei (a_1, \ldots, a_r) eine K-Basis von E. Dann ist

$$\sum_{g \in G} x_g(ga_i) = 0 \text{ für } i = 1, \dots, r$$
 (7.1)

ein lineares homogenes Gleichungssystem in x_g über E mit r Gleichungen und n = |G| > r Unbekannten. Damit existiert eine nichttriviale Lösung $(x_g)_{g \in G}$. Da alle Elemente in E K-Linearkombinationen der a_i sind und G aus K-linearen Abbildungen besteht, gilt $\sum_{g \in G} x_g g = 0$ (als lineare Abbildung von E nach E). Also ist G linear abhängig, was einen Widerspruch zu Satz 7.3 impliziert.

(ii) Zeige $n \geq r$. Sei nun o.B.d.A. n endlich (d.h., $|G| < \infty$).

$$S: E \longrightarrow K: a \mapsto \sum_{g \in G} ga$$
 ist eine K-lineare Abbildung. Nach 7.3 ist $S \neq 0$.

Zeige nun: Sind $a_1, \ldots, a_{n+1} \in E$, so sind (a_1, \ldots, a_{n+1}) linear abhängig über K.

Bew.:* : $\sum_{i=1}^{n+1} x_i(g^{-1}a_i) = 0$ mit $g \in G$ ist ein homogenes lineares Gleichungssystem in x_i

über E mit |G|=n Gleichungen und n+1 Unbekannten. Also existiert eine nichtriviale Lösung von $*:(x_1,\ldots,x_{n+1})$. O.B.d.A. sei $S(x_1)\neq 0$ (durch eine Permutation der Indizes wird erreicht, dass $x_1\neq 0$ und durch Multiplikation mit einem geeigneten Element aus E wird erreicht, dass $S(x_1)\neq 0$) Nun bildet man g *und summiert anschließend über alle $g\in G$. Man erhält:

$$\sum_{g \in G} \sum_{i=1}^{n+1} a_i g(x_i) = \sum_{i=1}^{n+1} a_i \underbrace{S(x_i)}_{\in K} = 0 \text{ mit } S(x_1) \neq 0$$

Also sind (a_1, \ldots, a_{n+1}) linear abängig über K.

Folgerung 7.6. Seien die Voraussetzungen wie bei 7.5 mit $|G| < \infty$. Dann gilt: $G = \operatorname{Aut}_K(E)$.

BEWEIS: Falls $G < \operatorname{Aut}_K(E)$, so wendet man 7.5 auf $\tilde{G} = \operatorname{Aut}_K(E)$ an. Sei nun \tilde{K} der \tilde{G} -Fixkörper: $|G| = [E:K] \stackrel{K \subseteq \tilde{K}}{\geq} [E:\tilde{K}] \stackrel{7.5}{=} |\tilde{G}| > |G|$. Dies ist ein Widerspruch, also gilt: $\tilde{G} = G$.

Folgerung 7.7. Sei E/K eine endliche Körpererweiterung und $G = Aut_K(E)$, so gilt:

- $(i) |G| \le [E:K]$
- (ii) |G| = [E : K] genau dann, wenn $K = Fix_G(E)$.

BEWEIS:
$$\tilde{K} := Fix_G(E) \supseteq K$$
, also gilt $[E:K] \ge [E:\tilde{K}] \stackrel{7.5}{=} |G|$.

Definition 7.8. Eine endliche Körpererweiterung (E/K) heißt galoissch, falls $|\operatorname{Aut}_K(E)| = [E:K]$. Dann heißt $G = \operatorname{Gal}(E/K) := \operatorname{Aut}_K(E)$ die Galoisgruppe von E über K.

Satz 7.9. Für eine endliche Körpererweiterung E/K sind äquivalent:

- (1) E/K ist Galoiserweiterung.
- (2) E/K ist normal und separabel, also Zerfällungskörper eines separablen Polynoms.
- (3) $K = \operatorname{Fix}_G(E)$ für eine endliche Untergruppe G von $\operatorname{Aut}(E)$.

Beweis: $(1) \Leftrightarrow (2)$ ist Folgerung 7.1.

 $(3) \Rightarrow (2)$: Sei $a \in E$. Betrachte die Bahn von a unter G.

$$Ga = \{a = a_1, \dots, a_n\}.$$

Das Polynom $p_a(x) := \prod_{i=1}^n (x - a_i) \in E[x]$ ist invariant unter der Operation von G auf E[x] vermöge $g(\sum b_i x^i) := \sum g(b_i) x^i$ liegt also im Fixring K[x] (da $Fix_G(E) = K$). Insbesondere zerfällt das Minimalpolynom von a über K (welches ja p_a teilt) in paarweise verschiedene Linearfaktoren in E[x]. Damit ist E normal und separabel.

$$(1) \Rightarrow (3)$$
: Folgt aus Folgerung 7.7

Folgerung 7.10. Sei E/K galoissch mit Galoisgruppe G. Ist $a \in E$, so operiert G transitiv auf den Nullstellen des Minimalpolynoms von a über K. Der Stabilisator ist die Galoisgruppe von E über K[a],

$$\operatorname{Stab}_{G}(a) = \operatorname{Gal}(E/K[a])$$

.

Hauptsatz 7.11. Fundamentalsatz der Galois-Theorie: $Sei\ (E/K)$ Galoiserweiterung und $G = Aut_K(E)$. Dann gilt:

(i) |G| = [E:K]

(ii)
$$\Phi: \mathcal{U}(G) = \{U|U \leq G\} \longrightarrow \mathcal{Z}(K, E) = \{F|F \text{ ist ein K\"orper und } K \leq F \leq E\}$$

 $U \mapsto Fix_U(E)$

ist eine inklusionsumkehrende Ähnlichkeit, wobei G auf \mathcal{U} durch Konjugation und auf $\mathcal{Z}(K,E)$ durch Anwenden operiert.

BEWEIS:

- (i) Dies ist sofort klar.
- (ii) Zeige: Φ ist injektiv. Sei $U_i \leq G$ mit $\Phi(U_1) = \Phi(U_2)$. Ersetzt man U_2 durch $\langle U_1, U_2 \rangle$ (beachte $\Phi(\langle U_1, U_2 \rangle) = \Phi(U_2)$), so kann man o.B.d.A. annehmen, dass $U_1 \leq U_2$. Außerdem gilt: $|U_1| = [E:\Phi(U_1)] = [E:\Phi(U_2)] = |U_2|$. Also gilt: $U_1 = U_2$. Zeige: Φ ist surjektiv.

Ist $F \in \mathcal{Z}$, so ist E/F galoissch, denn E ist Zerfällungskörper eines separablen Polynoms $f(t) \in K[t] \subset F[t]$. Setze $U := \operatorname{Aut}_F(E) \leq \operatorname{Aut}_K(E)$. Dann ist $F = \Phi(U)$. Dass Φ G-verträglich ist, folgt wegen $\operatorname{Fix}_{gUg^{-1}}(E) = g(\operatorname{Fix}_U(E))$.

Die inklusionsionsumkehrende Eigenschaft folgt sofort.

Folgerung 7.12. Mit den Bezeichnungen aus 7.11 gilt:

 $U \leq G$ genau dann ein Normalteiler von G, wenn $(\Phi(U)/K)$ galoissch ist. Dann ist $Gal_K(\Phi(U)) \cong G/U$ vermöge Einschränken. (E/F) ist galoissch für alle $F \in \mathcal{Z}(K, E)$.

Folgerung 7.13. (Satz vom primitiven Element) Sei (E/K) endlich und separabel. Dann existiert ein $a \in E$ mit E = K[a]. (a heißt ein primitives Element.)

BEWEIS: Ist $|K| < \infty$, so folgt dies aus dem Struktursatz für endliche Körper (jeder Erzeuger von K^* ist ein solches primitives Element). Sei also $|K| = \infty$. Zwischen E und K liegen nur endlich viele Zwischenkörper, also wird die Behauptung für jedes $a \in E \setminus \{\text{endlich viele Zwischenkörper}\}$ erfüllt.