
Even lattices with covering radius <
√

2.

Gabriele Nebe
Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany

nebe@mathematik.uni-ulm.de

1 Introduction

Let L be a lattice in Euclidean space V := R⊗ L. Then the covering radius
of L is the smallest number r ∈ R such that the spheres with radius r
around all lattice points cover the whole space V . If L is an even lattice
with covering radius <

√
2, then for every v ∈ V , there is a vector l ∈ L

with (v− l, v− l) < 2, where (v, w) denotes the scalar product of two vectors
v, w ∈ V . In particular if v = 1

2
w with w ∈ L, then (w − 2l, w − 2l) < 8.

Since L is even, this means that every class in L/2L contains a vector or
square length ≤ 6. Let µ(L) denote the minimal m such that every class in
L/2L contains a vector of norm ≤ m. The easy but crucial observation for
an even lattice L with µ(L) ≤ 6, given in Lemma 1, is that every norm 8
vector in L gives rise to a norm 2 vector in L which enables to classify these
lattices according to the sublattices spanned by the vectors of norm 2 in L.
32 of the lattices L with µ(L) ≤ 6 are root lattices (Theorem 6), where the
largest dimension is 10, achieved by E8A2. For the other 51 lattices (given
in Theorem 7) the root sublattice is not of full rank. This list of 83 lattices
includes all even lattices with covering radius strictly smaller than

√
2. With

MAGMA ([1]), one checks that all 83 lattices have covering radius ≤
√

2. 69
of these lattices have covering radius <

√
2. The 14 lattices with covering

radius =
√

2 and µ(L) ≤ 6 are listed in Remark 8.
This work was motivated by a question of Richard Parker, who wants

to have a list of all even lattices L with covering radius ≤
√

2 to construct

examples of Lorentzian lattices L ⊥
(

0 1
1 0

)
for which he can calculate the

automorphism group.

1



2 The lattices L with µ(L) ≤ 6

Throughout the whole note let L be an even lattice, such that each class
of L/2L contains a vector of norm ≤ 6. In particular all non zero isotropic
classes of L/2L contain vectors of norm 4. For even nonnegative integers i
let

Li := {x ∈ L | (x, x) = i}

be the set of norm i vectors in L.
The first lemma is the crucial observation, since it constructs from a

vector of norm 8 in L a norm 2 vector in L.

Lemma 1 Let w ∈ L8. Then either w ∈ 2L and r := 1
2
w ∈ L2 or there is

a vector v ∈ L4 such that (v, w) = −2 and r := 1
2
(v + w) ∈ L2. In the first

case (r, w) = 4 and in the second case (r, w) = 3.

Proof. Assume that w 6∈ 2L. Then the class w + 2L ∈ L/2L is isotropic and
hence there is a vector v ∈ L4 such that v + w ∈ 2L. Replacing v by −v if
necessary, one may assume that (v, w) ≤ 0. Since (v, w) ≥ −4 one gets

4 ≤ (v + w, v + w) = (v, v) + (w,w) + 2(v, w) = 12 + 2(v, w) ≤ 12

Now (v + w, v + w) is divisible by 8 and therefore (v + w, v + w) = 8,
1
2
(v + w) ∈ L2, and (v, w) = −2. �

Corollary 2 Let v1, v2 ∈ L4 with (v1, v2) = 0. Then either
a) r := 1

2
(v1 + v2) ∈ L2 or

b) there is v ∈ L4 such that r := 1
2
(v + v1 + v2) ∈ L2.

In case a) one has (r, v1) = (r, v2) = 2.
In case b) after interchanging v1 and v2 if necessary, it holds that (v, v1) =
−2, (v, v2) = 0 and hence (r, v1) = 1 and (r, v2) = 2.

Proof. That only these two cases occur follows from Lemma 1. It remains to
calculate the scalar products in case b). Since v1 + 2L and v2 + 2L generate
an isotropic subspace of L/2L, (v, v1) and (v, v2) are even. By Lemma 1,
(v, v1 + v2) = −2 and hence, after interchanging v1 and v2 if necessary,
(v, v1) = −2 and (v, v2) = 0. �

Let R := 〈L2〉 be the sublattice spanned by the vectors of norm 2 in L.
Then R is a root lattice and therefore an orthogonal sum of irreducible root
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lattices of type An(n ≥ 1), Dn(n ≥ 4), E6, E7, E8. Define the orthogonal rank
OR(M) of a root lattice M to be the maximal number of pairwise orthogonal
norm 2 vectors in M . One has OR(An) = dn

2
e, OR(Dn) = 2bn

2
c, OR(E6) = 4,

OR(E7) = 7 and OR(E8) = 8.

Corollary 3 The number of irreducible components of R is ≤ 3.

Proof. Let R1 ⊥ R2 ⊥ R3 ⊥ R4 ≤ R be the orthogonal sum of 4 components
of R and choose norm 2 vectors ri ∈ Ri (i = 1, . . . , 4). Then v1 := r1 + r2
and v2 := r3 + r4 are orthogonal vectors in L4. Hence by Corollary 2 there
is r ∈ L2 such that (r, v1) > 0 and (r, v2) > 0. This contradicts the fact that
the ri are in different components of R. �

Corollary 4 If OR(R) ≥ 4, then R contains a sublattice D4. More precisely
let ri (i = 1, . . . , 4) be pairwise orthogonal norm 2 vectors in R. Then either
r := 1

2
(r1 + r2 + r3 + r4) ∈ R and 〈r1, r2, r3, r〉 ∼= D4 or there is r ∈ R

and j ∈ {1, . . . , 4} with (r, ri) = 1 for i 6= j and (r, rj) = 0 such that
〈r, ri | i 6= j〉 ⊥ 〈rj〉 ∼= D4 ⊥ A1.

From this corollary one concludes that, if OR(R) ≥ 4, then R has at most
two irreducible components, and if it has two components, then one of them
has orthogonal rank 1, hence is A1 or A2.

Corollary 5 R has no component Dm with m ≥ 8, Am with m ≥ 7 and no
orthogonal summand X ⊥ A1 or X ⊥ A2, where X is one of A6, A5, D7 or
D6.

Proof. Assume that R has an orthogonal component Dm with m ≥ 8. View
Dm := {(x1, . . . , xm) ∈ Zm |

∑m
i=1 xi ≡ 0 (mod 2)}. Then v = (v1, . . . , vm)

with vi = 1 for i = 1, . . . , 8 and vi = 0 for i ≥ 9 is a vector of norm 8 in Dm.
Hence by Lemma 1 there is a norm 2 vector r ∈ Dm with (r, v) ≥ 3. But
there is no such vector.

The other cases are dealt with similarly: For Am = {(x1, . . . , xm+1) ∈
Zm+1 |

∑m+1
i=1 xi = 0} (m ≥ 7) one takes v = (14, (−1)4, 0m−7), for A5 ⊥ Aj

and A6 ⊥ Aj (j = 1, 2), one takes v = (13, (−1)3(, 0)) ⊥ r where r is a
norm 2 vector in Aj and for D6 ⊥ Aj and D7 ⊥ Aj (j = 1, 2), one takes
v = (16(, 0)) ⊥ r where r is a norm 2 vector in Aj. �
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Theorem 6 If R has full rank in L then L = R is one of A1, A2, A3, A4,
A5, A6, D4, D5, D6, D7, E6, E7, E8, A2

1, A3
1, A1A2, A2

1A2, A1A
2
2, A2

2, A3
2,

A1A3, A1A4, A1D4, A1D5, A1E6, A1E8, A2A3, A2A4, A2D4, A2D5, A2E6,
or A2E8.

Proof. For the irreducible root lattices M one calculates

M A1 A2 A3 A4 A5 A6 E6 E7 E8 D4 D5 D6 D7

µ(M) 2 2 4 4 6 6 4 6 4 4 4 6 6

For orthogonal sums, one clearly has µ(M1 ⊥ M2) = µ(M1) + µ(M2). From
this observation one finds that the root lattices M with µ(M) ≤ 6 are the
ones listed in the theorem. This proves the theorem in the case L = R.

Now assume that R < L is a proper sublattice of finite index in L. Then
1) R ⊂ L ⊂ R∗ is an even overlattice of R and hence contained in the dual
lattice R∗ of R.
From the above corollaries it follows that:
2) The number of irreducible components of R is ≤ 3.
3) If R contains a sublattice A4

1 then it contains D4. In particular R has no
component An with n ≥ 7 or Dn with n ≥ 8.
4) If the orthogonal rank of R is ≥ 4, then R has at most 2 components and
one of them is A1 or A2.
The conditions 2), and 3) result in a finite list of possible root lattices R
which can be shortened with 4) and Corollary 5. For all entries R in this list,
there are either no even proper overlattices of R or they contain new norm
2 vectors. �

It remains to consider the case, that R has not full rank in L. Here the
following strategy is used:

Since rank(R) < n := dim(L), there is v ∈ L − (2L + R). Choose v to
be minimal in its class modulo 2L+R. Then (v, v) = 4 or 6 and |(v, r)| ≤ 1
for all norm 2 vectors r. Let L′ := 〈R, v〉. If F is a Gram matrix of R with
respect to a basis consisting of norm 2 vectors, then(

F 0/± 1
0/± 1 4/6

)
is a Gram matrix of L′.

With MAGMA ([1]) one constructs all such symmetric positive definite
matrices (up to isometry) and check whether R is the sublattice of L′ spanned
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by the norm 2 vectors in L′ and for all w ∈ L′ with (w,w) = 8, there
is a norm 2 vector r ∈ R with |(r, w)| ≥ 3, which is a property of any
sublattice of L that contains R according to Lemma 1. To continue, one
takes v′ ∈ L− (L′+2L) minimal in its class modulo (L′+2L) and constructs
all the possible Gram matrices of L′′ := 〈L′, v′〉 etc. Note that L is not
necessarily equal to one of the lattices L′, L′′, . . . constructed like this but
might be an overlattice of odd index.

With this procedure one arrives at the following theorem:

Theorem 7 Let L be an even lattice with µ(L) ≤ 6. Let R be its root
sublattice and assume that R has not full rank in L. If the corank of R is 1
then L = Lj(R) is represented by one of the following 27 decorated Dynkin
diagrams:

L1(E7) :
t t t t t t

t L1(D7) :
t t t t t t

t
L1(D6) :

t t t t t
t L1(D5) :

t t t t
t

L1(D5A1) :
t t t t

t
t

L1(D4) :
t t t

t
L1(D4A1) :

t t t t
t L1(A5) : t t t t t

L1(A4) : t t t t L1(A4A1) : t t t t t
L1(A3) : t t t L2(A3) : t t t
L1(A3A1) : t t t t L2(A3A1) : t t t t
L1(A2) : t t L2(A2) : t t
L1(A2A1) : t t t L2(A2A1) : t t t
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L1(A
3
1) : t t t L2(A

3
1) : t t t

L3(A
3
1) : t t t L1(A

2
1) : t t

L2(A
2
1) : t t L3(A

2
1) : t t

L1(A1) : t L2(A1) : t L3(A1) : t
A basis of L with a given decorated Dynkin diagram consists of the re-

spective fundamental roots of R and an additional norm 4 vector v which has
scalar product −1 with all the fundamental roots surrounded by a box and 0
with the other ones. For the three lattices L3(A

3
1), L3(A

2
1) and L3(A1), this

additional vector v has norm 6, which is indicated by changing the boxes to
hexagons.

If the corank of R is bigger than 1, or R = {0}, then L = Lj(R) is defined
by one of the following 24 Gram matrices Fj(R)

F2(D4) =


2 -1 0 0 -1 -1

-1 2 -1 -1 0 0
0 -1 2 0 0 1
0 -1 0 2 0 0

-1 0 0 0 4 -1
-1 0 1 0 -1 4

, F11({0}) =


4 -2 -1 1 -2 -1

-2 4 -1 -2 1 2
-1 -1 4 -1 -1 1
1 -2 -1 4 1 -1

-2 1 -1 1 4 -1
-1 2 1 -1 -1 4

,

F3(A3) =


2 -1 0 -1 -1

-1 2 -1 0 0
0 -1 2 0 0

-1 0 0 4 -1
-1 0 0 -1 4

, F4(A
3
1) =


2 0 0 -1 -1
0 2 0 -1 0
0 0 2 0 -1

-1 -1 0 4 -1
-1 0 -1 -1 4

,

F3(A2) =


2 -1 0 0

-1 2 0 0
0 0 4 -2
0 0 -2 4

, F4(A2) =


2 -1 0 -1

-1 2 0 0
0 0 4 -2

-1 0 -2 4

,
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F5(A2) =


2 -1 -1 -1

-1 2 0 0
-1 0 4 -1
-1 0 -1 4

, F8(A1) =


2 0 -1 0
0 4 -1 -2

-1 -1 4 -1
0 -2 -1 4

,

F4(A
2
1) =


2 0 -1 0
0 2 0 -1

-1 0 4 -1
0 -1 -1 4

, F5(A
2
1) =


2 0 -1 -1
0 2 0 -1

-1 0 4 -1
-1 -1 -1 4


F9({0}) =


4 -2 -2 1

-2 4 1 -2
-2 1 4 -2
1 -2 -2 4

, F10({0}) =


4 -1 -1 -1

-1 4 -1 -1
-1 -1 4 -1
-1 -1 -1 4

,

F4(A1) =

 2 0 -1
0 4 -1

-1 -1 4

, F5(A1) =

 2 0 0
0 4 -2
0 -2 4

,

F7({0}) =

 4 -1 -1
-1 4 -1
-1 -1 4

, F8({0}) =

 4 -1 -2
-1 4 -1
-2 -1 4

,

F6(A1) =

 2 0 -1
0 4 -2

-1 -2 4

, F7(A1) =

 2 0 -1
0 4 -2

-1 -2 6

,

F3({0}) =

(
4 -1

-1 4

)
, F4({0}) =

(
4 -2

-2 4

)
,

F5({0}) =

(
4 -2

-2 6

)
, F6({0}) =

(
6 -3

-3 6

)
,

F1({0}) = (4), F2({0}) = (6).

Remark 8 The lattices L with µ(L) ≤ 6 and covering radius =
√

2 are
A3

2, A2 ⊥ E6 and the 12 lattices L1(D7), L1(D6), L2(D4), L3(A2), L3(A
3
1),

L4(A
3
1), L4(A

2
1), L7(A1), L6({0}), L9({0}), L10({0}) and L11({0}) of Theo-

rem 7.

Erratum: In the computations for Theorem 7 I completely forgot to deal
with the case R = A2A

2
1. For this root system one finds two lattices L with

µ(L) ≤ 6, L1(A2A
2
1) = A2 ⊥ L2(A

2
1) with covering radius

√
2 and L2(A2A

2
1)

with covering radius <
√

2. I thank Prof. William C. Jagy for pointing out
this error.
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L1(A2A
2
1) : t t t t L2(A2A

2
1) : t t t t
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