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1 Introduction.

In this paper a lattice (L,Q) is always an even positive definite lattice, i.e. a free Z-module
L equipped with a quadratic form Q : L→ Z such that the bilinear form

(·, ·) : L× L→ Z, (x, y) := Q(x+ y)−Q(x)−Q(y)

is positive definite on the real space R⊗ L. The dual lattice is

L# := {x ∈ R⊗ L | (x, `) ∈ Z for all ` ∈ L}

and L is called unimodular, if L = L#. The minimum of L is twice the minimum of the
quadratic form on the non-zero vectors of L

min(L) = min(L,Q) = min{(`, `) | 0 6= ` ∈ L}.

From the theory of modular forms it is known ([23], [12]) that the minimum of an even
unimodular lattice of dimension n is always ≤ 2b n

24
c + 2. Lattices achieving this bound

are called extremal. Of particular interest are extremal unimodular lattices in the so called
“jump dimensions”, these are the multiples of 24. There are four even unimodular lattices
known in the jump dimensions, the Leech lattice Λ, the unique even unimodular lattice in
dimension 24 without roots, and three lattices called P48p, P48q, P48n, of dimension 48 which
have minimum 6 [4], [16].

It was a long standing open problem whether there exists an extremal 72-dimensional
unimodular lattice ([21, p. 151], [20, Section 3.4]). Many people tried to construct such
a lattice, or to prove its non-existence. Most of these attempts are not documented, all
constructed lattices contained vectors of norm 6. In [1] Christine Bachoc and I discovered
two extremal lattices in dimension 80 of which we could prove extremality using a classical
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construction that we learned from [18]. Given a binary code C ≤ Fd2 and an even lattice
L ≤ Rn of odd determinant together with a polarisation L/2L = T1 ⊕ T2 by isotropic
subspaces the new lattice L(T1, T2, C) of dimension dn is constructed as the preimage in Ld

of T1 ⊗ C ⊕ T2 ⊗ C⊥ ≤ (L/2L)d. Inspired by [5] Christine and I used polarisations coming
from Hermitian Z[α]-structures (where α2 − α + 2 = 0) of L.

Bob Griess’ article [6] analyses this construction for certain polarisations of the Leech
lattice Λ and C = 〈(1, 1, 1)〉 ≤ F3

2 for which he describes a strategy to prove extremality of
the resulting lattice. This motivated me to try the nine Z[α]-structures of Λ calculated in [8].
I computed the minimum of all nine 72-dimensional lattices using four different strategies:
A combination of lattice reduction programs applied directly to the 72-dimensional lattice
found vectors of norm 6 for all but one lattice. I then went on to compute the super offenders
as described in [6, Section 4] and computed the number of norm 6 vectors in the lattices
as given in Table 1. Using the Z[α] structure of Λ this computation may be reduced to
a computation within the set of minimal vectors of the Leech lattice. The result of these
computations agreed with the ones applying the methods described in Section 4.

Using the explicit matrices for this extremal lattice Γ and the action of the subgroup G
of Aut(Γ) as constructed in Section 2 Mark Watkins (personal communication) succeeded in
listing representatives of all G-orbits of the vectors of norm 8 in Γ using the method described
in [22]. From the stored information one verifies that Γ has 6, 218, 175, 600 minimal vectors
which gives an independent proof of the extremality of Γ (see also Theorem 3.3 for an explicit
description of the kissing configuration of Γ).

2 An Hermitian tensor product construction of Γ.

Throughout the paper let α be a generator of the ring of integers Z[α] in the imaginary
quadratic number field of discriminant −7, with α2 − α + 2 = 0 and β := α = 1 − α its
complex conjugate. Then Z[α] is a principal ideal domain and (α) and (β) are the two
maximal ideals of Z[α] that contain 2.

Let (P, h) be an Hermitian Z[α]-lattice, so P is a free Z[α]-module and h : P ×P → Z[α]
a positive definite Hermitian form. One example of such a lattice is the Barnes lattice

Pb = 〈(β, β, 0), (0, β, β), (α, α, α)〉 = 〈(1, 1, α), (0, β, β), (0, 0, 2)〉 ≤ Z[α]3

with the half the standard Hermitian form

h : Pb × Pb → Z[α], h((a1, a2, a3), (b1, b2, b3)) =
1

2

3∑
i=1

aibi.

Then Pb is Hermitian unimodular, Pb = P ∗b := {v ∈ QPb | h(v, `) ∈ Z[α] for all ` ∈ Pb}. The
automorphism group of the Z[α]-lattice Pb is isomorphic to ±PSL2(7)

AutZ[α](Pb) := {g ∈ GL(Pb) | h(gv, gw) = h(v, w) for all v, w ∈ Pb} ∼= ±PSL2(7).

From any such Hermitian Z[α]-lattice (P, h) one obtains an even Z-lattice

L(P, h) := (L, (, )) := (P, traceZ[α]/Z ◦ h)
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by restricting scalars. Since h is Hermitian h(`, `) ∈ Z = Z[α] ∩ R for all ` ∈ P and hence

Q(`) :=
1

2
traceZ[α]/Z(h(`, `)) = h(`, `) ∈ Z.

The dual lattice of L(P, h) is the product of P ∗ with the different of Z[α]:

L(P, h)# := {v ∈ QP | traceZ[α]/Z(h(`, v)) ∈ Z for all ` ∈ P} =
1√
−7

P ∗.

Michael Hentschel [8] classified all Hermitian Z[α]-structures on the even unimodular Z-
lattices of dimension 24 using the Kneser neighbouring method [10] to generate the lattices
and checking completeness with the mass formula. In particular there are exactly nine such
Z[α] structures (Pi, h) (1 ≤ i ≤ 9) such that (Pi,

1
7
traceZ[α]/Z ◦ h) ∼= Λ is the Leech lattice.

The 36-dimensional Hermitian Z[α]-lattice Ri is defined as

(Ri, h) := Pb ⊗Z[α] Pi, so AutZ[α](Ri) ⊇ PSL2(7)× AutZ[α](Pi).

Definition 2.1. For 1 ≤ i ≤ 9 let (Γi, (, )) := L(Ri,
1
7
h) := (Ri,

1
7
traceZ[α]/Z ◦ h) where the

quadratic form is Q(`) = 1
14

traceZ[α]/Z(h(`, `)) for all ` ∈ Γi = Ri.

All Γi are even unimodular lattices of dimension 72.
The table below lists these nine Hermitian structures of the Leech lattice. The first

column gives the structure of the automorphism group AutZ[α](Pi) followed by its order and
then the number of vectors of norm 6 in the lattice Γi (computed in Section 4 below).

Table 1
group order norm 6 vectors

1 SL2(25) 243 · 5213 0
2 2.A6 ×D8 27325 2 · 20, 160
3 SL2(13).2 243 · 7 · 13 2 · 52, 416
4 (SL2(5)× A5).2 263252 2 · 100, 800
5 (SL2(5)× A5).2 263252 2 · 100, 800
6 soluble 2933 2 · 177, 408
7 ±PSL2(7)× (C7 : C3) 243272 2 · 306, 432
8 PSL2(7)× 2.A7 27335 · 72 2 · 504, 000
9 2.J2.2 2933527 2 · 1, 209, 600

Remark 2.2. (a) The groups number 1, 3, 4, 5, and 9 are maximal finite quaternionic
matrix groups with endomorphism algebra the definite quaternion algebra with center Q
and discriminant 52 (1, 4, 5, 9) resp. 132 (group number 3) (see [17]). For the group number
4 resp. 5, the endomorphism ring of the lattice is not the maximal order.
(b) The group number 8 is a maximal finite symplectic matrix group over Q[α] as defined
in [9], it is globally irreducible in the sense of [7].
(c) The groups number 2 and 7 are reducible.

The Hermitian structures number 4 and 5 are just Galois conjugate to each other, whereas
all the others are Galois invariant. For these seven lattices the automorphism group of the
Z-lattice Γi hence contains an extension of AutZ[α](Ri) by the Galois automorphism. For the
extremal lattice Γ := Γ1 this is a split extension.
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Theorem 2.3. The lattice Γ is an extremal even unimodular lattice of dimension 72. Its
automorphism group Aut(Γ) contains the subgroup U := (PSL2(7)× SL2(25)) : 2.

Two proofs that the minimum of Γ is 8 are given below.

Remark 2.4. The natural CU -module C⊗Γ contains no U -invariant submodules, so Aut(Γ)
is an absolutely irreducible subgroup of GL72(Q). In fact U is almost a globally irreducible
representation in the sense of [7]. More precisely Fp⊗Γ is also absolutely irreducible except
for p = 5 and p = 7, where the module has a unique non-trivial submodule, which is of
dimension 36. For both primes p = 5 and p = 7 there is an element xp ∈ NGL72(Q)(U), the
rational normaliser of U , mapping Γ to the unique sublattice of index p36, which is therefore
isometric to (Γ, pQ) (see [14]). Therefore Aut(Γ) is a maximal finite subgroup of GL72(Q).

Remark 2.5. Since Aut(Γ) contains an element of order 91 the lattice Γ is an ideal lattice in
the cyclotomic field Q[exp(2πi/91)] in the sense of [2]. It would be interesting to determine
the ideal class of this lattice.

2.1 An elementary linear algebra construction.

This section just repeats the construction above in elementary linear algebra (understood
by computer algebra systems).

Let (b1, . . . , b24) be a Z-basis of the Leech lattice Λ and F := ((bi, bj)) ∈ Z24×24
sym denote

its Gram matrix. Then an Hermitian structure over Z[α] is given by a matrix A ∈ Z24×24

such that AFAtr = 2F and the F -adjoint FAtrF−1 = 1− A =: B. Mapping α to the right
multiplication by A then defines the Hermitian Z[α]-structure on the Z-lattice Λ.

That there are exactly nine such Z[α] structures of the Leech lattice means that there
are nine such matrices A1, . . . , A9 up to conjugation under the automorphism group of Λ.

For any of these nine structures the even unimodular lattice Γi of dimension 72 is con-
structed as a sublattice of Λ ⊥ Λ ⊥ Λ with Gram matrix 1

2
diag(F, F, F ) generated by the

rows of the block matrix Ai Ai Ai
Bi Bi 0
0 Bi Bi

 or equivalently

 1 1 Ai
0 Bi Bi

0 0 2

 =: Ti

If U denotes the subgroup of GL72(Z) obtained by replacing α by Ai in the group
AutZ[α](Pb) ≤ GL3(Z[α]) isomorphic to PSL2(7) then Aut(Γi) contains the matrix group

〈{diag(g, g, g) | g ∈ Aut(Λ), gAi = Aig} ∪ U〉 ∼= AutZ[α](Pi)× PSL2(7).

A matrix for the additional Galois automorphism with respect to the basis given by Ti
above can be constructed from an isometry

Yi ∈ GL24(Z), YiFY
tr
i = F, YiAiY

−1
i = Bi

(this only exists for i 6= 4, 5) as the block matrix Yi −Yi AiYi
0 −BiYi Yi
−AYi 0 Yi

 .

The shape of the matrix was obtained from an isometry between (Pb, h) and (Pb, h).
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2.2 A classical coding theory construction.

The lattices Γi can be obtained using a special case of a classical construction with codes: If
(L,Q) is an even unimodular lattice, then L/2L becomes a non-degenerate quadratic space
over F2 with quadratic form q(`+2L) := Q(`)+2Z. This has Witt defect 0, so there are totally
isotropic subspaces U, V ≤ (L/2L, q) such that L/2L = U ⊕ V . Let 2L ≤M,N ≤ L denote
the preimages of U, V , respectively. Then (M, 1

2
Q) and (N, 1

2
Q) are again even unimodular

lattices.

Definition 2.6. ([6], [18, Construction I]) Given such a polarisation (M,N) of the even
unimodular lattice (L,Q) and some k ∈ N let

L(M,N, k) := {(x1+y, x2+y, . . . , xk+y) | y ∈ N, x1, . . . , xk ∈M and x1+. . .+xk ∈M∩N}.

Then the lattice (L(M,N, k), Q̃) is an even unimodular lattice ([18, Proposition]) where

Q̃(x1 + y, x2 + y, . . . , xk + y) :=
1

2

k∑
i=1

Q(xi + y).

Of particular interest for this paper is the case where k = 3.

Lemma 2.7. Let (N,M) be a polarisation of L modulo 2 and assume that d = min(L,Q) =
min(N, 1

2
Q) = min(M, 1

2
Q). Then

d3d
2
e ≤ min(L(M,N, 3), Q̃) ≤ 2d.

Proof. Let λ = (a, b, c) ∈ L(M,N, 3). According to the number of non-zero components one
gets up to permutation:
1) One non-zero component: Then λ = (a, 0, 0) with a = 2` ∈ 2L so

(λ, λ) = 2Q̃(λ) = Q(2`) = 4Q(`) = 2(`, `) ≥ 2d.

2) Two non-zero components: Then λ = (a, b, 0) with a, b ∈ N so (λ, λ) = 2Q̃(λ) =
Q(a) +Q(b) ≥ 2d.
3) Three non-zero components: Then (λ, λ) = 2Q̃(λ) = Q(a) +Q(b) +Q(c) ≥ 3

2
d. �

If (L,Q) ∼= (N, 1
2
Q) ∼= (M, 1

2
Q) ∼= E8 is the unique even unimodular lattice of dimension

8, then Lemma 2.7 immediately implies that L(M,N, 3) ∼= Λ is the Leech lattice (see [11]).
Starting with the Leech lattice one obtains the following Remark.

Remark 2.8. ([6, Theorem 4.10]) Assume that L = Λ ∼= (M, 1
2
Q) ∼= (N, 1

2
Q) is the Leech

lattice. Then L(M,N, 3) has minimum 6 or 8. The vectors of norm 6 in L(M,N, 3) are of
the form (w + x,w + y, w + z) with w ∈ N , x, y, z ∈ M , x + y + z ∈ 2Λ and Q(w + x) =
Q(w + y) = Q(w + z) = 2.

If the sublattices M and N are defined by an Hermitian structure of L as in Section
2, then the lattice L(M,N, 3) is an Hermitian tensor product as one easily sees from the
explicit basis of the Barnes lattice given in Section 2.

Remark 2.9. Assume that the lattice L has an Hermitian structure over Z[α] as defined in
Section 2. Then M := αL and N := βL defines a polarisation of L such that L(M,N, 3) ∼=
Pb ⊗Z[α] L.
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3 The vectors of norm 6 and 8 in L(M,N, 3).

Let (Λ, Q) be the Leech lattice and fix a polarisation (M,N) of Λ such that (M, 1
2
Q) ∼=

(N, 1
2
Q) ∼= Λ.

The following property of the Leech lattice is well known.

Lemma 3.1. The nontrivial classes of Λ/2Λ are represented by vectors v ∈ Λ of norm
(v, v) = 4, 6 and 8. In particular all classes of M/2Λ and N/2Λ are represented by vectors
of norm 8. If K = v + 2Λ contains a vector of norm 8, then {k ∈ K | (k, k) ≤ 8} =
{±k1, . . . ,±k24} with (ki, kj) = 8δij. If K = v + 2Λ contains a vector v of norm 4 or 6 then
{k ∈ K | (k, k) ≤ 8} = {±v}.

Proof. Let (v, v) = 4 or (v, v) = 6 and assume that there is some ±v 6= k ∈ v + 2Λ such
that (k, k) ≤ 8. Then one of v ± k ∈ 2Λ has norm ≤ 6 + 8 < 16 = min(2Λ) which is a
contradiction. Similarly one sees that for (v, v) = 8 the vectors of norm 8 in v + 2Λ form a
frame. Now

|Λ4|
2

+
|Λ6|

2
+
|Λ8|
48

= 224 − 1

so all nonzero classes of Λ/2Λ are represented by vectors of norm ≤ 8. �

Proposition 3.2. Fix some w ∈ Λ \M with (w,w) = 8. Then

(a) W3(w) := {x ∈M | Q(x+ w) = 3} has cardinality 2 · 2048.

(b) W2(w) := {x ∈M | Q(x+ w) = 2} has cardinality 2 · 24.
The set {x+ w | x ∈ W2(w)} is the rescaled root system 24A1.

Proof. (a) If x ∈M such that Q(w+x) = 3 then the class Kx := x+2Λ is not perpendicular
to Kw. Since Kw 6∈M/2Λ = (M/2Λ)⊥ there are 211 = 2048 classes x+ 2Λ ∈M/2Λ that are
not perpendicular to Kw. So there are 2048 possibilities for the class Kw+x = Kx + Kw =
(x+w) + 2Λ. Such a class is necessarily anisotropic and therefore contains exactly 2 vectors
of norm 6 by Lemma 3.1.
(b) Let v1 6= ±v2 ∈ w + M with (vi, vi) = 4 (i = 1, 2). Then again v1 ± v2 ∈ M implies
(v1, v2) = 0, and hence every class in Λ/M contains at most 48 vectors of norm 4. Since
|Λ4|/48 = 212 − 1 all non-zero classes in Λ/M contain exactly 24 pairs of orthogonal vectors
of norm 4. Now W2(w) is the set of minimal vectors in the class w + M and therefore of
cardinality 48. �

Theorem 3.3. The vectors of norm 6 and 8 in L(M,N, 3) are of the form (w+x,w+y, w+z)
with w ∈M , x, y, z ∈ N , x+ y + z ∈ 2Λ such that Q(w + x) +Q(w + y) +Q(w + z) = 6 or
8. For norm 6 the only possibility is Q(w + x) = Q(w + y) = Q(w + z) = 2. Let b6 denote
the number of such vectors. For norm 8 one has the possible types

(a) (8, 0, 0) with 196560 · 3 vectors.

(b) (4, 4, 0) with 196560 · 48 · 3 vectors.

(c) (3, 3, 2) with 4095 · 48 · 2048 · 2 · 2 · 3 vectors.
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(d) (4, 2, 2) with 4095 · 48 · 48 · 48 · 3− 72b6 vectors.

Proof. Clearly these are the only possibilities for vectors of norm 6 or 8 in L(M,N, 3). The
vectors of type (8, 0, 0) correspond to the minimal vectors in the sublattice 2Λ ⊥ 2Λ ⊥ 2Λ.
The vectors of type (4, 4, 0) are of the form (x, y, 0) with x, y ∈ M , (x, x) = (y, y) = 8 such
that x+2Λ = y+2Λ, so one has 196560 possibilities for x and for each such x one may choose
all 48 minimal vectors y ∈ x+ 2Λ. The additional factor 3 counts the possible permutations
(x, y, 0), (x, 0, y), and (0, x, y).
(c) By Lemma 3.1 all anisotropic classes in Λ/2Λ are represented by vectors of norm 6. For
a fixed representative w of one of the 4095 classes of N/2Λ of norm (w,w) = 8 the vectors z
and w run through all z ∈ W2(w) and y ∈ W3(w). Then the condition that x + y + z ∈ 2Λ
means that w + x + 2Λ = y + z + 2Λ, so w + x is one of the 2 vectors of norm 6 in this
anisotropic class.
(d) Again, fixing some w as above the elements y and z are in W2(w). There are 48
possibilities of each of them. Then w + x ∈ w + y + z + 2Λ is in an isotropic class of Λ/2Λ.
This class is either of minimum 4 or 8. If it has minimum 4, then there are 2 vectors of norm
4 in this class which give vectors of norm 6 in L(M,N, 3). It is has minimum 8, then there
are 48 possibilities for w + x such that Q(w + x) = 4. �

Remark 3.4. From Theorem 3.3 the number of vectors of norm 8 in L(M,N, 3) is 6, 218, 175, 600−
72b6, where b6 is the number of norm 6 vectors in this lattice. This can also be seen from
the theory of modular forms.

4 Two proofs that the minimum of Γ is 8

4.1 Counting the norm 6 vectors in L(M,N, 3)

Let W := {w1, . . . , w4095} denote a fixed set of representatives of the classes in N/2Λ con-
sisting of vectors of norm 8. The vectors of norm 6 in Γ are of the form (w+x,w+ y, w+ z)
where w ∈ W , x, y, z ∈ W2(w) and x+ y + z ∈ 2Λ.

Remark 4.1. To count the vectors of norm 6 and 8 in Γi let w ∈ W run through represen-
tatives of the AutZ[α](Pi)-orbits on N/2Λ.
For each such w compute the set W2(w) = {s − w | s ∈ 〈w,M〉, (s, s) = 4}. Then run
through the pairs (x, y) ∈ W2(w)×W2(w) and compute the vectors of norm 4 in the lattice
〈2Λ, w + x+ y〉. This lattice either has two vectors of norm 4 contributing to the vectors of
norm 6 in Γi or it has minimum 8 and then it contains 48 vectors of norm 8 contributing to
the vectors of norm 8 in Γi.
Using this method I found the number of vectors of norm 6 in Γi as given in Table 1.

4.2 Using orthogonal decomposition (24, 48).

The idea (see [15]) is to embed the lattice Γi from Section 2 (i = 1, . . . , 9) into an orthogonally
decomposable lattice I1 ⊥ I2 such that the minimal vectors of I1 and the minimum of
sublattices of I2 can be computed. The even unimodular lattice Γi has basis matrix Ti
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given in Section 2.1 with respect to the Gram matrix 1
2

diag(F, F, F ). Let π denote the

orthogonal projection onto the first 24 components, K1 := ker(1− π) ⊂ I1 := im(π) = K#
1 ,

and K2 := ker(π) ⊂ I2 := im(1− π) = K#
2 . Then

K1 ⊥ K2 ⊂ Γi ⊂ I1 ⊥ I2.

So the even unimodular lattice Γi contains the sublattice K1 ⊥ K2 of index 224 and is
contained in I1 ⊥ I2 also of index 224. Moreover I1 ∼= 1√

2
Λ and K1

∼=
√

2Λ are similar to the
Leech lattice of minimum 2 respectively 8. I2 is a non integral lattice of dimension 48, with
(`, `) ∈ Z for all ` ∈ I2. A computer calculation shows that min(I2) = 4 and min(K2) = 8.
In particular

Remark 4.2. The vectors of norm 6 in Γi are of the form x+ y with x ∈ I1 of norm 2 and
y ∈ I2 of norm 4.

For all i = 1, . . . , 9 I computed representatives v of the orbits of AutZ[α](Pi) on the
minimal vectors of I1. For each v there is some w ∈ I2 such that v + w ∈ Γi, moreover w is
unique modulo K2. So it remains to check that the minimum of the 48 dimensional lattice

I(w) := 〈K2, w〉 ≤ I2

is ≥ 6. This is done by enumerating all vectors of norm 4 in this lattice.

Remark 4.3. For Γ2, . . . ,Γ9 the lattice I(w) contains vectors of norm 4 for some w, summing
up to the number of vectors of norm 6 in Γi given in Table 1. Only for the lattice Γ = Γ1

the representatives w of all 15 orbits of SL2(25) provide lattices I(w) of minimum > 4.

5 Related lattices.

5.1 The polarisations defined by fourvolutions.

Remark 5.1. As proposed by Bob Griess in [6, Lemma B.3] I checked all pairs f, g ∈ Aut(Λ)
with f 2 = g2 = −1 such that x := fg is an element of odd prime order p with irreducible
minimal polynomial. Then p = 3, 5, 7, 13 and the conjugacy class of x in 2.Co1 is unique.
To enumerate all such pairs, I computed the normaliser N of 〈x〉 in 2.Co1 and went through
all conjugacy classes of elements f of N such that f 2 = −1. For each such f that satisfies
xf = x−1 I put g := f−1x. The centraliser in 2.Co1 acts on the situation. All six lattices
L(Λ(f − 1),Λ(g − 1), 3) contain vectors of norm 6.

Table 2
x centraliser order norm 6 vectors
3 2833527 2 · 1, 209, 600
5a 2833527 2 · 1, 209, 600
5b 283 · 5 2 · 103680
7 233 · 5 2 · 11520
13 233 2 · 57600
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5.2 3-modular lattices.

For the construction in Definition 2.6 it is enough to assume that L is an even lattice of
odd determinant to obtain an even lattice L(M,N, k) of determinant det(L)k (see [18]).
Interesting classes of lattices are the p-modular lattices as defined in [19] where a completely
analogous theory of modular forms allows to define extremality as for unimodular lattices.
In particular for p = 7 and p = 3 the “jump-dimensions” for the p-modular lattices are the
multiples of 6 respectively 12. In dimension 6 respectively 12 there is a unique extremal
p-modular lattice, the Barnes lattices P6 and the Coxeter-Todd lattice K12. Applying the
construction to these lattices one hence finds 7-modular lattices of dimension 18 and 3-
modular ones of dimension 36 that have minimum 6 or 8, where 8 would be extremal:

Remark 5.2. (a) The Barnes lattice L has a unique polarisation M,N such that M and
N are similar to L. The lattice L(M,N, 3) has minimum 6, kissing number 336 and its
automorphism group is a maximal finite matrix group ([13, p.44]).
(b) The automorphism group of the Coxeter-Todd lattice L := K12 has five orbits on the set
of polarisations (M,N) of L such that (M, 1

2
Q) ∼= (N, 1

2
Q) ∼= L. The lattices L(M,N, 3) all

have minimum 6 and kissing number 576, 2016, 2880, 4320 respectively 12096.
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