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The hexagonal lattice

Hexagonal Circle Packing



Even unimodular lattices

Definition
» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an R-basis
B=(b,...,by) of R"

L=(b1,...,bu)z ={>_ aibi | a; € Z}.
=1

The dual lattice is

v

L# :={z €R" | (z,0) € Zforall £ € L}

L is called unimodular if L = L#.

L is called even if (£,¢) € 2Z for all £ € L.

ThenQ: L — Z,¢ — 1(¢,¢) is an integral quadratic form.

min(L) := min{Q(¢) | 0 # ¢ € L} the minimum of L.

Min(L) :={£ € L | Q(¢¥) = min(L)}.

Aut(L) := {g € O(R"™, (,)) | g(L) = L} automorphism group of L.
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Extremal even unimodular lattices

The sphere packing density of a unimodular lattice is proportional to its
minimum.

From the theory of modular forms one gets an upper bound for the minimum:

Extremal lattices
Let L be an n-dimensional even unimodular lattice. Then

n€8Nand min(L) < 1+ L% .

Lattices achieving equality are called exiremal.

Extremal even unimodular lattices.

n 8 24 32 48 [ 72 | 80 | > 163,264
min(L) 1] 2 2 3 4 4
number of
extremal |1 | 1 |>107|>4|>1]| >4 0
lattices




Extremal even unimodular lattices in jump dimensions

f® =14196,560% + ... = O4,,.
f9 =1+452,416,000¢° + ... = Op,g, = Opys, = Opssn = OPygn-
f® =146,218,175,600¢* + ... = Or.,.

Let L be an extremal even unimodular lattice of dimension 24m so
min(L) =m+1

>

>

All non-empty layers () # {¢ € L | Q(¢) = a} form spherical 11-designs.

The density of the associated sphere packing realises a local maximum
of the density function on the space of all 24m-dimensional lattices.

If m = 1, then L = A4 is unique, Az is the Leech lattice.

The 196560 minimal vectors of the Leech lattice form the unique tight
spherical 11-design and realise the maximal kissing number in
dimension 24.

A2y is the densest 24-dimensional lattice (Cohn, Kumar).

For m = 2, 3 these lattices are the densest known lattices and realise the
maximal known kissing number.



Extremal even unimodular lattices in jump dimensions

The extremal theta series

f® =14196,560¢° + ... = 0n,,.
£ =1+52,416,000¢° + ... = Op,g, = ...
f® =146,218,175,600¢"* + ... = Or.,.

The automorphism groups
Aut(A24) =~ 2.Cox

Aut(P4gp) = (SL2(23) X Sg) 12
Aut(P4gq) = SL2(47)
Aut(Pusn) =2 (SLa(13)Y SL2(5)).22

Aut(P4sm) = (C5 x Cg X C3) : (DsYC4)

Aut(F72) = (SL2(25) X PSLQ(?)) )

= 0pys, = 0 — Pasm.
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8315553613086720000
PR o 11l - 18- 2

72864 = 2°3%11 - 23
103776 = 2°3 - 23 - 47
524160 = 27325 - 713

1200 = 243 52

5241600 = 2832527 - 13



Turyn’s construction 2L

The extremal lattice in dimension 72

Towards the discovery of the extremal 72-dimensional lattice, whose
existence was a longstanding open question.
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The extremal lattice in dimension 72

Towards the discovery of the extremal 72-dimensional lattice, whose
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> Let (L, Q) be an even unimodular lattice of dimension n.

» Choose sublattices M, N < L suchthat M + N =L, MN N = 2L, and
(M, 3Q), (N, 3Q) even unimodular.

» Such a pair (M, N) is called a polarisation of L.



Turyn’s construction 2L

The extremal lattice in dimension 72

Towards the discovery of the extremal 72-dimensional lattice, whose
existence was a longstanding open question.

v

Let (L, Q) be an even unimodular lattice of dimension n.

Choose sublattices M, N < Lsuchthat M + N =L, M NN = 2L, and
(M, 3Q), (N, 3Q) even unimodular.

Such a pair (M, N) is called a polarisation of L.

L(M,N) :=

v

v

v

{(m+z1,m+zo,m+x3) e LL L L L|méeM,z; € N, z1+x2+x3 € 2L}.
Define Q : L(M,N) — Z,

v

Qlyn vz, s) 1= 5 Q) + Qu2) + Qus)).

» (L(M,N),Q) is an even unimodular lattice of dimension 3n.



LLLLL

minM

(m+a,m+b,m+c) in tL(M,N) ab,cinN
a+b+c in 2L
Leech from Es 2L 2L 2L

Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Es be the unique even unimodular lattice of dimension 8. Then
for any polarisation (M, N) of Es the lattice £(M, N) has minimum > 2.
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Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Es be the unique even unimodular lattice of dimension 8. Then
for any polarisation (M, N) of Es the lattice £(M, N) has minimum > 2.

Note that Aut(FEs) acts transitively on the polarisations of Es.



LLLLL min M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
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Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Es be the unique even unimodular lattice of dimension 8. Then
for any polarisation (M, N) of Es the lattice £(M, N) has minimum > 2.

Note that Aut(FEs) acts transitively on the polarisations of Es.
Proof: Let y := (y1, y2,y3) € L(M, N).
All y; # 0:

1o 3
Qy1,y2,y3) = 5 > Q) = [g1=2
i=1



LLLLL b M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
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Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Es be the unique even unimodular lattice of dimension 8. Then
for any polarisation (M, N) of Es the lattice £(M, N) has minimum > 2.

Note that Aut(FEs) acts transitively on the polarisations of Es.
Proof: Let y := (y1, y2,y3) € L(M, N).
All y; # 0:

N 1 3
Qy1,y2,y3) = 5 > Q) = [g1=2
i=1

y1 # 0 # y2: Theny; € N and

Qy) >1+1+0=2.



LLLLL b M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
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Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Es be the unique even unimodular lattice of dimension 8. Then
for any polarisation (M, N) of Es the lattice £(M, N) has minimum > 2.

Note that Aut(FEs) acts transitively on the polarisations of Es.
Proof: Let y := (y1, y2,y3) € L(M, N).
All y; # 0:
- 1 3
Qy1,y2,y3) = 5 > Q) = [g1=2
i=1
y1 # 0 # y2: Theny; € N and

Qy) >1+1+0=2.

Only one y; # 0then y; € 2L and Q(y) > 2.



Turyn’s construction

LILLL min M
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d := min(L, Q) = min(M, %Q) = min(JV, %Q)
Then [22] < min(£(M, N)) < 2d.
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Then [22] < min(£(M, N)) < 2d.

Proof:
(a,0,0) a=2¢ € 2L with £Q(2¢0) = 2Q(¢) > 2d.



Turyn’s construction

LILLL min M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
a+b+cin 2L
2L12L 2L

d := min(L, Q) = min(M, Q) = min(N, Q)
Then [22] < min(£(M, N)) < 2d.
Proof:

(a,0,0) a=2¢ € 2L with £Q(2¢0) = 2Q(¢) > 2d.
(a,b,0) a,b € N with £Q(a) + $Q(b) > 2d.



Turyn’s construction

LILLL min M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
a+b+cin 2L
2L12L 2L

d := min(L, Q) = min(M, Q) = min(N, Q)
Then [22] < min(£(M, N)) < 2d.
Proof:
(a,0,0) a=2¢ € 2L with £Q(20) = 2Q(¢
(a,b,0) a,b € N with 2Q(a) + 1Q(b)
(a,b,¢) then 3(Q(a) + Q(b) + Q(c))

) =
2d.

>
3
2 5d.



Turyn’s construction

LILLL min M
(m+a,m+b,m+c) in ¢ L(M,N) ab,cinN
a+b+cin 2L
2L12L 2L

d := min(L, Q) = min(M, Q) = min(N, Q)
Then [22] < min(£(M, N)) < 2d.
Proof:
(a,0,0) a=2¢ € 2L with £Q(20) = 2Q(¢
(a,b,0) a,b € N with 2Q(a) + 1Q(b)
(a,b,c) then 3(Q(a) + Q(b) + Q(c))

) >
2d.

>
3
2 5d.

72-dimensional lattices from Leech (Griess)
If (L, Q) = (M, Q) = (N, 1Q) = As4 then 3 < min(L(M, N))

< 4.



Hermitian polarisations
L Z[a]

2L (ab)=(2)
Let a € End(L) such that
» o —a+2 =0 (Za] = integers in Q[v/~T7]).
> (az,y) = (z,By) where f=1—-a =a.
Then M := oL, N := BL defines a polarisation of L such that
(L,Q) = (M, 3Q) = (N, 3Q).



Hermitian polarisations
L Z[a]

2L (ab)=(2)

Let a € End(L) such that

» o —a+2 =0 (Za] = integers in Q[v/~T7]).

> (az,y) = (z,By) where f=1—-a =a.
Then M := oL, N := BL defines a polarisation of L such that
(L,Q) = (M, 3Q) = (N, 3Q).
Remark
L(aL, BL) = L ®z[o) Py Where

Py =((8,5,0),(0,8,8), (@, a, @)) < Zla]?

P, is Hermitian unimodular and Auty,) (F) = = PSL2(7). So
Aut(L(aL, BL)) > Autzje)(L) x PSLa(7).



Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine Z[a]-structures of the Leech lattice.

group order
1 SL2(25) 2735713
2 2.4 x Dsg 27375
3 SL2(13).2 2%3.7.13
4 (SLa(5) x Ag).2 263757
5 (SL2(5) x A5).2 2037252
6 soluble 2933
7| £PSL2(7) x (Cr: C3) | 2%3%72
8 PSL2(7) x 2.A7 273%5 .77
9 2.J2.2 2933577




Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine Z[a]-structures of the Leech lattice.

group order #Q(v) =3
1 SL2(25) 2735713 0
2 2.46 x Dg 27375 220,160
3 SL2(13).2 2%3.7-13 | 2.52,416
4 (SLa(5) x Ag).2 263757 2 - 100, 800
5 (SL2(5) x As).2 2037252 2100, 800
6 soluble 2733 2. 177,408
7| £PSL2(7) x (Cr: C3) | 2%37%72 2306, 432
8 PSL4(7) x 2.A7 27335 .77 | 2-504,000
9 2.J2.2 2933527 [ 21,209,600




The extremal 72-dimensional lattice I'7o

Main result

> I'7o = Aoy ®z14)) Ps is an extremal even unimodular lattice of dimension
72.

> Aut(T'72) = (PSL2(7) x SL2(25)) : 2 (uses the classification of finite
simple groups).

» T'7; realises the densest known sphere packing

» and maximal known kissing number in dimension 72.

» I'75 is the unique extremal even unimodular lattice that admits an
automorphism ¢ for which p, has an irreducible factor of degree > 36
(see below).

Theorem (R. Parker, N)

If (M, N) is a polarisation of the Leech lattice such that £(M, N) is extremal,
then £(M, N) = I'r,.



The Type of an automorphism.
Lattices with large automorphisms

We now use automorphisms to classify extremal even unimodular lattices of
dimension 48 and 72. The motivation comes from coding theory, where one
tries to construct an extremal code of length 72 using automorphisms. In the
meantime we know that if an extremal [72, 36, 16] code exists, then its
automorphism group has order < 5.



The Type of an automorphism.
Lattices with large automorphisms

We now use automorphisms to classify extremal even unimodular lattices of
dimension 48 and 72. The motivation comes from coding theory, where one
tries to construct an extremal code of length 72 using automorphisms. In the
meantime we know that if an extremal [72, 36, 16] code exists, then its
automorphism group has order < 5.

Let L <R"™ be some even unimodular lattice and o € Aut(L) of prime order
p. The fixed lattice

F:=Fixg(o):={veL|ov=v}<L

has dimension d, and ¢ acts on M := Cyc, (o) := F* as a pth root of unity,
son=d+z(p—1).

F¥* 1 M*>L=L*>F1M>pL
with det(F) = |F# /F| = |M# /M| = det(M) = p°

Definition: p-(z,d)-s is called the Type of o.

Proposition: s < min(d, z) and z — s is even.



Theorem

Let L be an extremal even unimodular lattice of dimension 48 and p be a

48-dimensional extremal lattices

prime dividing | Aut(L)|. Then p = 47,23 or p < 13.

| The possible types of automorphisms of prime order p > 3 |

Type Fix(co) Cyc(o) example | class.
7-(1,2)-1 unique unique Pusq yes
3-(2,4)-2 unique atleast2 | Pusq, Pasp
13 (4,0)-0 {0} at least 1 Pygn
1-(4,8)-4 unique at least 1 Pusp
7-(8,0)-0 {0} at least 1 Pisgn
7-(7,6)-5 VTAY not known | not known
5-(12,0)-0 {0} atleast2 | Pisn, Pism
5-(10,8)-8 V5Fs at least 1 Pigm
5-(8,16)-8 | [2. Altio]16 Ass Pigm yes




Possible types of prime order automorphisms of extremal lattices

Prime order automorphisms

Dimension 24 | Dimension 48 | Dimension 72 | Dimension 96
47(1 ,2)-1 37(20)0
(1,2)-1 3-(2,4)-2 9-(4,0)-0 17-(6,0)-0
3-(2,0)-0 13 -(4,0)-0 3-(6,0)-0 13-(8,0)-0
(2,4)-2 1-(4,8)-4 (12 0)-0 13-(7,12)-7
7,5,3,2 7 5,3,2 5,3,2 7,5,3,2

Prime divisors

Let L be an extremal even unimodular lattice of dimension 24m and p be a
prime dividing | Aut(L)|. Then

m=1: p=23orp < 13.
m=2: p = 47,23 orp < 13.
m=3: p = 37,19, 13 or 7, and . is irreducible,

orp<5



Large automorphisms of extremal lattices
Definition

o € Aut(L) is called large, if 1, has an irreducible factor @, of degree
d = ¢(a) > 1 dim(L).

Remark

Let o € Aut(A24) be large. Then
a |23 |33|35|39 |40 |52 |56 |60 84
d|22 |20 |24 |24 |16 |24 | 24 | 16 | 24

Theorem

Let L be an extremal unimodular lattice of dimension 48, o € Aut(L) large.

Then
a| 120 132 69 47 65 104

d 32 40 44 46 48 48
L | Pisn | Pusp | Pasp | Pagq | Pasn | Pasn

Theorem

Let I" be an extremal unimodular lattice of dimension 72, o € Aut(T") large.
Then T' = T'72 and either a = 91 (d = 72) or a = 168 (d = 48).



