p-adic integral group rings.

Gabriele Nebe

Lehrstuhl D für Mathematik

St. Johns, June 5, 2009

- ▶ *G* finite group.
- ▶ $R \supseteq \mathbb{Z}_p$ (complete) discrete valuation ring.
- $ightharpoonup K = \operatorname{frac}(R)$ field of fractions.
- π uniformizer of R, $F = R/\pi R$.

- G finite group.
- ▶ $R \supseteq \mathbb{Z}_p$ (complete) discrete valuation ring.
- $K = \operatorname{frac}(R)$ field of fractions.
- π uniformizer of R, $F = R/\pi R$.

We want to understand the representation theory of RG.

- ▶ *G* finite group.
- ▶ $R \supseteq \mathbb{Z}_p$ (complete) discrete valuation ring.
- $K = \operatorname{frac}(R)$ field of fractions.
- π uniformizer of R, $F = R/\pi R$.

We want to understand the representation theory of ${\it RG}$. First step: Understand

$$\mathcal{L}_V(G) := \{L \subset V \mid L \text{ is an } RG\text{-lattice in } V\}$$

for all simple KG-modules V.

- G finite group.
- ▶ $R \supseteq \mathbb{Z}_p$ (complete) discrete valuation ring.
- $K = \operatorname{frac}(R)$ field of fractions.
- π uniformizer of R, $F = R/\pi R$.

We want to understand the representation theory of RG. First step: Understand

$$\mathcal{L}_V(G) := \{L \subset V \mid L \text{ is an } RG\text{-lattice in } V\}$$

for all simple KG-modules V. For the talk assume that R splits RG.

Intersection of maximal orders.

- ▶ *V* a simple *KG*-module.
- ▶ $\epsilon_V \in KG$ the associated central primitive idempotent.

Intersection of maximal orders.

- V a simple KG-module.
- ▶ $\epsilon_V \in KG$ the associated central primitive idempotent.
- ightharpoonup S a simple FG-module.
- ► The decomposition number $d_{V,S}$ is the multiplicity of the composition factor S in $L/\pi L$ for any $L \in \mathcal{L}_V(G)$.

Intersection of maximal orders.

- V a simple KG-module.
- \bullet $\epsilon_V \in KG$ the associated central primitive idempotent.
- ightharpoonup S a simple FG-module.
- ► The decomposition number $d_{V,S}$ is the multiplicity of the composition factor S in $L/\pi L$ for any $L \in \mathcal{L}_V(G)$.

Fact.

$$\epsilon_V RG \subseteq \bigcap_{L \in \mathcal{L}_V(G)} \operatorname{End}_R(L)$$

with equality if $d_{V,S} \in \{0,1\}$ for all S.

Example S_3 .

 $G=S_3$ the symmetric group of degree 3, $R=\mathbb{Z}_3, \dim(V)=2.$

$$\mathcal{L}_V(G) = \{3^n L_1, 3^n L_2 \mid n \in \mathbb{Z}\}$$

where

$$L_1 := \langle b_1, b_2 \rangle \supset L_2 = \langle 3b_1, b_2 \rangle \supset 3L_1$$

 $L_1/L_2 \cong \mathbb{F}_3$ trivial module, $L_2/3L_1 \cong \mathbb{F}_3$ sign module.

Example S_3 .

 $G=S_3$ the symmetric group of degree 3, $R=\mathbb{Z}_3$, $\dim(V)=2$.

$$\mathcal{L}_V(G) = \{3^n L_1, 3^n L_2 \mid n \in \mathbb{Z}\}$$

where

$$L_1 := \langle b_1, b_2 \rangle \supset L_2 = \langle 3b_1, b_2 \rangle \supset 3L_1$$

 $L_1/L_2 \cong \mathbb{F}_3$ trivial module, $L_2/3L_1 \cong \mathbb{F}_3$ sign module.

$$\operatorname{End}_R(L_1) = \begin{pmatrix} R & R \\ R & R \end{pmatrix}, \operatorname{End}_R(L_2) = \begin{pmatrix} R & 3R \\ 3^{-1}R & R \end{pmatrix}$$

and

$$\epsilon_V RG = \operatorname{End}_R(L_1) \cap \operatorname{End}_R(L_2) = \begin{pmatrix} R & 3R \\ R & R \end{pmatrix}.$$

Example D_8 .

 $G=D_8$ the dihedral group of order 8, $R=\mathbb{Z}_2,\,\dim(V)=2.$

$$\mathcal{L}_V(G) = \{2^n L_1, 2^n L_2 \mid n \in \mathbb{Z}\}\$$

where

$$L_1 := \langle b_1, b_2 \rangle \supset L_2 = \langle 2b_1, b_2 \rangle \supset 2L_1$$

and $L_1/L_2\cong L_2/2L_1\cong \mathbb{F}_2$.

Example D_8 .

 $G=D_8$ the dihedral group of order 8, $R=\mathbb{Z}_2, \dim(V)=2.$

$$\mathcal{L}_V(G) = \{2^n L_1, 2^n L_2 \mid n \in \mathbb{Z}\}\$$

where

$$L_1 := \langle b_1, b_2 \rangle \supset L_2 = \langle 2b_1, b_2 \rangle \supset 2L_1$$

and $L_1/L_2\cong L_2/2L_1\cong \mathbb{F}_2$.

$$\operatorname{End}_R(L_1) \cap \operatorname{End}_R(L_2) = \begin{pmatrix} R & 2R \\ R & R \end{pmatrix}$$

and

$$\epsilon_V RG = \{ \begin{pmatrix} a & 2b \\ c & d \end{pmatrix} \mid a, b, c, d \in R, a \equiv d \pmod{2} \}$$

Exponent matrices.

Definition.

For
$$M \in \mathbb{Z}^{k \times k}$$
, $(n_1, \dots, n_k) \in \mathbb{N}^k$, $n := \sum_{i=1}^k n_i$ let

$$\Lambda(n_1, ..., n_k; M) := \{ (X_{ij}) \in R^{n \times n} \mid X_{ij} \in \pi^{m_{ij}} R^{n_i \times n_j} \}$$

be the graduated order with exponent matrix M.

Exponent matrices.

Definition.

For
$$M \in \mathbb{Z}^{k \times k}$$
, $(n_1, \dots, n_k) \in \mathbb{N}^k$, $n := \sum_{i=1}^k n_i$ let

$$\Lambda(n_1, ..., n_k; M) := \{ (X_{ij}) \in R^{n \times n} \mid X_{ij} \in \pi^{m_{ij}} R^{n_i \times n_j} \}$$

be the graduated order with exponent matrix M.

$$G=S_3, \dim(V)=2 ext{ then } \epsilon_V \mathbb{Z}_3 G=\Lambda(1,1; \left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight).$$

Exponent matrices.

Definition.

For
$$M \in \mathbb{Z}^{k \times k}$$
, $(n_1, \dots, n_k) \in \mathbb{N}^k$, $n := \sum_{i=1}^k n_i$ let

$$\Lambda(n_1, \dots, n_k; M) := \{ (X_{ij}) \in R^{n \times n} \mid X_{ij} \in \pi^{m_{ij}} R^{n_i \times n_j} \}$$

be the graduated order with exponent matrix M.

$$G=S_3, \dim(V)=2 ext{ then } \epsilon_V \mathbb{Z}_3 G=\Lambda(1,1; \left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight).$$

Theorem.

 $\epsilon_V RG$ is graduated $\Leftrightarrow d_{V,S} \in \{0,1\}$ for all S.

Then $(\mathcal{L}_V(G), \subset)$ is a distributive lattice.

From exponent matrices to lattices.

$$\Lambda = \Lambda(M) \text{ with } M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right)$$

From exponent matrices to lattices.

$$\Lambda = \Lambda(M) \text{ with } M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right)$$

Obvious properties of exponent matrices.

▶ Since $\Lambda := \Lambda(n_1, \dots, n_k; M)$ is an order we have

$$m_{ii} = 0$$
 and $m_{ij} + m_{j\ell} \ge m_{i\ell}$ for all i, j, ℓ

Obvious properties of exponent matrices.

▶ Since $\Lambda := \Lambda(n_1, \dots, n_k; M)$ is an order we have

$$m_{ii}=0$$
 and $m_{ij}+m_{j\ell}\geq m_{i\ell}$ for all i,j,ℓ

▶ If

$$e_1 = \operatorname{diag}(\underbrace{1, \dots, 1}_{n_1}, 0 \dots, 0), \dots, e_k = \operatorname{diag}(0, \dots, 0, \underbrace{1, \dots, 1}_{n_k})$$

are lifts of the central primitive idempotents of $\Lambda/J(\Lambda),$ then

$$J(\Lambda(n_1,\ldots,n_k;M)) = \Lambda(n_1,\ldots,n_k;M+I_k)$$

and hence $m_{ij} + m_{ji} > 0$ for $i \neq j$.

Obvious properties of exponent matrices.

▶ Since $\Lambda := \Lambda(n_1, \dots, n_k; M)$ is an order we have

$$m_{ii}=0$$
 and $m_{ij}+m_{j\ell}\geq m_{i\ell}$ for all i,j,ℓ

▶ If

$$e_1 = \operatorname{diag}(\underbrace{1, \dots, 1}_{n_1}, 0 \dots, 0), \dots, e_k = \operatorname{diag}(0, \dots, 0, \underbrace{1, \dots, 1}_{n_k})$$

are lifts of the central primitive idempotents of $\Lambda/J(\Lambda),$ then

$$J(\Lambda(n_1,\ldots,n_k;M))=\Lambda(n_1,\ldots,n_k;M+I_k)$$

and hence $m_{ij} + m_{ji} > 0$ for $i \neq j$.

▶ W.l.o.g. write matrices with respect to a suitable basis of $L := \Lambda \operatorname{diag}(1, 0 \dots, 0)$. Then

$$m_{i1} = 0$$
 for all i and $m_{ij} \geq 0$ for all i, j .

Duality.

 $< x,y>:= rac{1}{|G|}\operatorname{trace}_{reg}(xy)$ is an associative non degenerate symmetric bilinear form on KG so that RG is self-dual

$$RG = RG^{\#} = \{x \in KG \mid < x, RG > \subset R\}.$$

$$\Gamma^{\#} \subset RG \subset \Gamma := \bigoplus_{V} \epsilon_{V} RG.$$

Duality.

 $< x,y>:= rac{1}{|G|}\operatorname{trace}_{reg}(xy)$ is an associative non degenerate symmetric bilinear form on KG so that RG is self-dual

$$RG = RG^{\#} = \{x \in KG \mid \langle x, RG \rangle \subset R\}.$$

$$\Gamma^{\#} \subset RG \subset \Gamma := \bigoplus_{V} \epsilon_{V} RG.$$

Remark.

If
$$\epsilon_V RG = \Lambda(n_1, \dots, n_k; M) =: \Lambda$$
, then

$$\Lambda^{\#} = \Lambda(n_1, \dots, n_k; aJ - M^{\operatorname{tr}}) \subset \Lambda$$

with
$$a := v_{\pi}(|G|) - v_{\pi}(\dim(V))$$
 and $J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$.

Duality.

 $< x,y>:= rac{1}{|G|}\operatorname{trace}_{reg}(xy)$ is an associative non degenerate symmetric bilinear form on KG so that RG is self-dual

$$RG = RG^{\#} = \{x \in KG \mid \langle x, RG \rangle \subset R\}.$$

$$\Gamma^{\#} \subset RG \subset \Gamma := \bigoplus_{V} \epsilon_{V} RG.$$

Remark.

If
$$\epsilon_V RG = \Lambda(n_1, \dots, n_k; M) =: \Lambda$$
, then

$$\Lambda^{\#} = \Lambda(n_1, \dots, n_k; aJ - M^{\mathrm{tr}}) \subset \Lambda$$

with
$$a:=v_{\pi}(|G|)-v_{\pi}(\dim(V))$$
 and $J=\left(\begin{array}{ccc}1&\ldots&1\\ \vdots&\vdots&\vdots\\ 1&\ldots&1\end{array}\right)$.

So $a - m_{ij} \ge m_{ji}$ or equivalently

$$m_{ij} + m_{ji} \le a$$
.

Involution.

RG is an R-order with a canonical R-linear involution

$$^{\circ}: RG \to RG, g \mapsto g^{-1}.$$

Involution.

RG is an R-order with a canonical R-linear involution

$$^{\circ}: RG \to RG, g \mapsto g^{-1}.$$

If $\epsilon_V=\epsilon_V^\circ$ then choose $0\neq\phi=\phi^{tr}\in K^{n\times n}$ such that $g\phi g^{\mathrm{tr}}=\phi, \text{ so } g^{-1}=\phi g^{\mathrm{tr}}\phi^{-1} \text{ for all } g\in G.$

Then

$$\epsilon_V RG = (\epsilon_V RG)^\circ = \{\phi X^{\operatorname{tr}} \phi^{-1} \mid X \in \epsilon_V RG\} \subset R^{n \times n}.$$

Involution.

RG is an R-order with a canonical R-linear involution

$$^{\circ}: RG \to RG, g \mapsto g^{-1}.$$

If $\epsilon_V=\epsilon_V^\circ$ then choose $0\neq\phi=\phi^{tr}\in K^{n\times n}$ such that $g\phi g^{\mathrm{tr}}=\phi, \text{ so } g^{-1}=\phi g^{\mathrm{tr}}\phi^{-1} \text{ for all } g\in G.$

Then

$$\epsilon_V RG = (\epsilon_V RG)^\circ = \{\phi X^{\operatorname{tr}} \phi^{-1} \mid X \in \epsilon_V RG\} \subset R^{n \times n}.$$

Remark.

If $\epsilon_V RG = \Lambda(n_1,\dots,n_k;M)$ and all simple modules S are selfdual, then ϕ can be chosen as

$$\phi = \operatorname{diag}(f_1, \pi^{a_2} f_2, \dots, \pi^{a_k} f_k)$$
 with $a_i \in \mathbb{N}, f_i \in \operatorname{GL}_{n_i}(R)$

and
$$m_{ij} - m_{ji} = a_j - a_i$$
.

Summary: Properties of exponent matrices.

Theorem.

```
Let V be a simple KG-module such that
  \epsilon_V RG = \Lambda(n_1, \dots, n_k; M) is a graduated order.
  Let a := v_{\pi}(|G|) - v_{\pi}(\dim(V)). Then w.r.t. a suitable basis of L
  as above for all i, j, \ell \in \{1, \dots, k\}
wlog m_{i1} = 0, m_{ij} \geq 0.
order m_{ii}=0, m_{ij}+m_{i\ell}\geq m_{i\ell}
  rad m_{ij} + m_{ji} > 0 if i \neq j.
 dual m_{ij} + m_{ji} \leq a
 invo m_{ij} - m_{ii} = m_{1j} - m_{1i} = a_j - a_i if \epsilon_V^{\circ} = \epsilon_V and all simple
        FG-modules S with d_{VS} > 0 are selfdual.
```

Symmetric groups.

- Irreducible representations in characteristic 0 are parametrized by the partitions λ of n.
- $S^{\lambda} \leq 1^{S_n}_{S_{\lambda_1} \times ... \times S_{\lambda_s}}$ Specht lattice.

Symmetric groups.

- Irreducible representations in characteristic 0 are parametrized by the partitions λ of n.
- $S^{\lambda} \leq 1^{S_n}_{S_{\lambda_1} \times ... \times S_{\lambda_s}}$ Specht lattice.
- ▶ Irreducible representations D^{λ} in characteristic p are parametrized by the p-regular partitions λ of n.
- $D^{\lambda} = FS^{\lambda}/(FS^{\lambda})^{\perp}$

Symmetric groups.

- Irreducible representations in characteristic 0 are parametrized by the partitions λ of n.
- $S^{\lambda} \leq 1^{S_n}_{S_{\lambda_1} \times ... \times S_{\lambda_s}}$ Specht lattice.
- ▶ Irreducible representations D^{λ} in characteristic p are parametrized by the p-regular partitions λ of n.
- $D^{\lambda} = FS^{\lambda}/(FS^{\lambda})^{\perp}$
- ▶ Jantzen-Schaper-formula: multiplicity of D^{μ} as composition factor in $(S^{\lambda})^{\#}/S^{\lambda}$ if decomposition matrix is known.
- ▶ This formula yields the exponents a_2, \ldots, a_k of the invariant form ϕ and hence the first row of the exponent matrices.

The decomposition matrix of the principal block of \mathbb{Z}_3S_6 .

	(6)	(5,1)	$(4,1^2)$	(3^2)	(3, 2, 1)
(6)	1	•	•		•
(5,1)	1	1	•		
$(4,1^2)$		1	1		
(3^2)	•	1		1	
(3, 2, 1)	1	1	1	1	1
$(3,1^3)$		•	1		1
(2^3)	1				1
$(2,1^4)$		ě	·	1	1
(1^6)			•	1	

► Jantzen-Schaper yields:

$$\epsilon_{(3,2,1)}\mathbb{Z}_3S_6=\Lambda((3,2,1),(3^2),(4,1^2),(5,1),(6);M)$$
 where

$$M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & a & b & c \\ 0 & a' & 0 & d & e \\ 0 & b' & d' & 0 & f \\ 0 & c' & e' & f' & 0 \end{array}\right)$$

► Jantzen-Schaper yields:

$$\epsilon_{(3,2,1)}\mathbb{Z}_3S_6=\Lambda((3,2,1),(3^2),(4,1^2),(5,1),(6);M)$$
 where

$$M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & a & b & c \\ 0 & a' & 0 & d & e \\ 0 & b' & d' & 0 & f \\ 0 & c' & e' & f' & 0 \end{array}\right)$$

For all x we have

$$0 < x + x' \le 2$$
, so $x + x' \in \{1, 2\}$

► Jantzen-Schaper yields:

$$\epsilon_{(3,2,1)}\mathbb{Z}_3S_6=\Lambda((3,2,1),(3^2),(4,1^2),(5,1),(6);M)$$
 where

$$M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & a & b & c \\ 0 & a' & 0 & d & e \\ 0 & b' & d' & 0 & f \\ 0 & c' & e' & f' & 0 \end{array}\right)$$

For all x we have

$$0 < x + x' \le 2$$
, so $x + x' \in \{1, 2\}$

Invariance under the involution ° yields

$$a - a' = c - c' = e - e' = 0$$
 and $b - b' = d - d' = f' - f = 1$

hence a = a' = c = c' = e = e' = 1, b = d = f' = 1, and b' = d' = f = 0.

► Jantzen-Schaper yields:

$$\epsilon_{(3,2,1)}\mathbb{Z}_3S_6=\Lambda((3,2,1),(3^2),(4,1^2),(5,1),(6);M)$$
 where

$$M = \left(\begin{array}{ccccc} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

▶ For all x we have

$$0 < x + x' \le 2$$
, so $x + x' \in \{1, 2\}$

Invariance under the involution ° yields

$$a - a' = c - c' = e - e' = 0$$
 and $b - b' = d - d' = f' - f = 1$

hence
$$a=a'=c=c'=e=e'=1,\, b=d=f'=1,$$
 and $b'=d'=f=0.$

Symmetric groups of degree 2p, exponent matrices.

Theorem.

Let $G=S_{2p},\,R=\mathbb{Z}_p,\,V$ a simple KG-module. Then ϵ_VRG is graduated with exponent matrix X,A,B,C, or D:

$$X := \left(\begin{array}{cc} 0 \end{array} \right), \qquad A := \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \qquad D := \left(\begin{array}{cc} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

$$B := \begin{pmatrix} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}, \qquad C := \begin{pmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Symmetric groups of degree 2p, lattices.

Second step: Description of RG.

$$RG/J(RG) = \bigoplus_{i=1}^{s} \overline{\underline{e}_{i}'RG/J(RG)}_{M_{n_{i}}(F)}$$

 P_1, \ldots, P_s the projective indecomposable RG-lattices. Morita equivalence:

$$RG \sim \operatorname{End}_{RG}(\bigoplus_{i=1}^s P_i) =: \Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) == \bigoplus_{i,j=1}^s \underbrace{e_j \Delta e_i}_{\Delta_{ji}}$$

where $\Delta/J(\Delta)=\bigoplus_{i=1}^s \overline{e_i\Delta/J(\Delta)}$ and the e_i are orthognal primitive idempotents in Δ that lift the \overline{e}_i .

Remark.

Let
$$\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$$
.

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

• Δ_{ii} are self-dual local R-orders.

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

- ▶ Δ_{ii} are self-dual local R-orders.
- $ightharpoonup \Delta_{ij}$ is a $\Delta_{ii} \Delta_{jj}$ -bimodule.

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

- ▶ Δ_{ii} are self-dual local R-orders.
- ▶ Δ_{ij} is a $\Delta_{ii} \Delta_{jj}$ -bimodule.

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

- ▶ Δ_{ii} are self-dual local R-orders.
- ▶ Δ_{ij} is a $\Delta_{ii} \Delta_{jj}$ -bimodule.
- $\qquad \qquad \Delta_{ij}\Delta_{jk}\subseteq\Delta_{ik}.$
- $ightharpoonup \Delta_{ij}\Delta_{ji}\subseteq J(\Delta_{ii}) \text{ if } i\neq j.$

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i,P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

- ▶ Δ_{ii} are self-dual local R-orders.
- Δ_{ij} is a $\Delta_{ii} \Delta_{jj}$ -bimodule.
- $\qquad \qquad \Delta_{ij}\Delta_{jk}\subseteq \Delta_{ik}.$

Remark.

Let $\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i,P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$. Then

- ▶ Δ_{ii} are self-dual local R-orders.
- Δ_{ij} is a $\Delta_{ii} \Delta_{jj}$ -bimodule.
- $\qquad \qquad \Delta_{ij}\Delta_{jk}\subseteq\Delta_{ik}.$
- $ightharpoonup \Delta_{ij}\Delta_{ji}\subseteq J(\Delta_{ii}) \text{ if } i\neq j.$
- $(e_i \Delta e_j)^\circ = e_j^\circ \Delta e_i^\circ$

Remark.

Let
$$\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i, P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$$
. Then

- $ightharpoonup \Delta_{ii}$ are self-dual local R-orders.
- ▶ Δ_{ij} is a $\Delta_{ii} \Delta_{jj}$ -bimodule.
- $\qquad \qquad \Delta_{ij}\Delta_{jk}\subseteq\Delta_{ik}.$

- $(e_i \Delta e_j)^\circ = e_j^\circ \Delta e_i^\circ$
- $\blacktriangleright \Delta_{ij} \subset \bigoplus_{V} \epsilon_{V} \Delta_{ij}.$

Remark.

Let
$$\Delta = \bigoplus_{i,j=1}^s \operatorname{Hom}_{RG}(P_i,P_j) = \bigoplus_{i,j=1}^s \Delta_{ji}$$
. Then

- $ightharpoonup \Delta_{ii}$ are self-dual local R-orders.
- $ightharpoonup \Delta_{ij}$ is a $\Delta_{ii} \Delta_{jj}$ -bimodule.
- $\qquad \qquad \bullet \ \Delta_{ij}\Delta_{jk}\subseteq \Delta_{ik}.$
- $ightharpoonup \Delta_{ij}\Delta_{ji}\subseteq J(\Delta_{ii}) \text{ if } i\neq j.$
- $(e_i \Delta e_j)^\circ = e_j^\circ \Delta e_i^\circ$
- ▶ If $d_{V,S_i} \in \{0,1\}$ for all V, then Δ_{ii} is commutative and

$$\bigoplus_{V,d_{V,S_i}=1} \epsilon_V \Delta_{ii} \cong \bigoplus_{V,d_{V,S_i}=1} R$$

is the unique maximal order in $K\Delta_{ii}$.

Theorem.

We know RG for

▶ blocks with cyclic defect groups (Plesken, 1983)

Theorem.

- ▶ blocks with cyclic defect groups (Plesken, 1983)

Theorem.

- blocks with cyclic defect groups (Plesken, 1983)
- $G = \operatorname{SL}_2(p^2).$

Theorem.

- blocks with cyclic defect groups (Plesken, 1983)
- $G = \operatorname{SL}_2(p^2).$
- $G = \mathrm{SL}_2(2^f), f \leq 6.$

Theorem.

- blocks with cyclic defect groups (Plesken, 1983)
- $G = \operatorname{SL}_2(p^2).$
- ▶ $G = SL_2(2^f), f \le 6.$
- ▶ $G = S_n, n \le 9$.
- some other examples.

Theorem.

We know RG for

- blocks with cyclic defect groups (Plesken, 1983)
- $G = \operatorname{SL}_2(p^2).$
- ▶ $G = SL_2(2^f), f \le 6.$
- ▶ $G = S_n, n \le 9$.
- some other examples.

Theorem.

We know $\Gamma = \bigoplus_V \epsilon_V RG$ for $\mathrm{SL}_2(p^f)$.

The decomposition matrix of the principal block of \mathbb{Z}_3S_6 .

$\chi(1)$		(6)	(5,1)	$(4,1^2)$	(3^2)	(3, 2, 1)
1	(6)	1		•		
5	(5,1)	1	1	•		
10	$(4,1^2)$		1	1		
5	(3^2)	•	1		1	
16	(3, 2, 1)	1	1	1	1	1
10	$(3,1^3)$			1		1
5	(2^3)	1		•		1
5	$(2,1^4)$		•	·	1	1
1	(1^6)		•	•	1	

Example $\operatorname{End}(P_{(6)})$.

$\chi(1)$		1	5	16	5
$\chi(1)$	$\pmod{3}$	1	-1	1	-1
		1	1	1	1
		0	3	0	-3
		0	0	3	3
		0	0	0	9