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» G finite group.

» R D Z, (complete) discrete valuation ring.
» K = frac(R) field of fractions.

» m uniformizer of R, F' = R/7R.

We want to understand the representation theory of RG.
First step: Understand

Ly(G):={L cV | Lisan RG-lattice in V'}

for all simple K'G-modules V.
For the talk assume that R splits RG.
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Intersection of maximal orders.

» V asimple KG-module.
» ey € KG the associated central primitive idempotent.
» S asimple F'G-module.

» The decomposition number dy, g is the multiplicity of the
composition factor S'in L/xL forany L € Ly (G).

Fact.

evRGC () Endg(L)
Lely (G)

with equality if dy. 5 € {0,1} for all S.



Example S;.

G = S3 the symmetric group of degree 3, R = Zs, dim(V') = 2.
Ly(G) ={3"L1,3"Ly | n € 7}

where
Ly := (b1,b2) D Lo = (3b1,b2) D 3Ly

L1/ Ly = F3 trivial module, Ly /3L, = F3 sign module.



Example S;.

G = S5 the symmetric group of degree 3, R = Z3, dim(V') = 2.
Ly(G) ={3"L1,3"Ly | n € 7}

where
Ly := (b1,b2) D Lo = (3b1,b2) D 3Ly

L1/ Ly = F3 trivial module, Ly /3L, = F3 sign module.

R R R 3R
Endg(L;) = ( R R ) , Endg(Le) = < 3-1R R >

and

ev RG = EndR(Ll) N EndR(Lg) = <



Example Ds.

G = Dg the dihedral group of order 8, R = Z,, dim(V') = 2.
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where
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Example Ds.

G = Dg the dihedral group of order 8, R = Z,, dim(V') = 2.
Lv(G) = {2”L1, 2" Loy ’ nec Z}

where
Ly :=(b1,b2) D Ly = (2b1,bo) D 2Ly

and Ll/LQ = L2/2L1 = F,.
EndR(Ll) N EndR(Lg) = <

and

evRG:{< “ %f) lab,e.d€ Ria=d (mod 2)}
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Exponent matrices.

Definition.
For M € ZF**, (ny,...,nz) € N, n:= 3% n; let

A(nl, ey Mg, M) — {(X'L]) c RTLXn | Xl] c ﬂ_minnanj}
be the graduated order with exponent matrix M.

G = Sy, dim(V) = 2 then ey ZsG = A(L, 1; < 8 (1) )).

Theorem.

ey RG is graduated < dy, s € {0,1} for all S.
Then (L (G), C) is a distributive lattice.



From exponent matrices to lattices.
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From exponent matrices to lattices.

A = A(M) with M =

OO O OO
= O = O =
_ O O = =
OO~ — =

2
1
1
0
1

(0,0,0,0,0)
(1,0,0,0,0)

(1,1,0,0,0)

(1,1,0,0,1)

(1,1,1,0,1)
(2,1,1,0,1)

(1,1,1,1,1)=(0,0,0,0,
(2,1,1,1,1)=(1,0,0,0,0)
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Obvious properties of exponent matrices.

» Since A := A(ni,...,ng; M) is an order we have

m;; = 0 and Mij + My > my, for all 1,7,¢

> If
e; = diag(1,...,1,0...,0),..., e, = diag(0,...,0,1,...,1)
~—— ~——

n1 nk

are lifts of the central primitive idempotents of A/J(A), then
J(A(n17 sy TV M)) = A(nlv sy N M + Ik)

and hence m;; + mj; > 0 for i # j.

» W.l.o.g. write matrices with respect to a suitable basis of
L := Adiag(1,0...,0). Then

m;1 = 0 for all ¢ and m;; > 0 for all 4, j.
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<z, y >i= ‘—Cl;' trace,.q(xy) is an associative non degenerate
symmetric bilinear form on K G so that RG is self-dual
RG = RG" = {z € KG |< z,RG >C R}.

' c RGCTl := @evRG.
1%



Duality.
<z, y >i= ‘—Cl;' trace,.q(xy) is an associative non degenerate
symmetric bilinear form on K G so that RG is self-dual

RG = RG" = {z € KG |< z,RG >C R}.

' c RGCTl := @evRG.
1%

Remark.
If ey RG = A(nl, vy N, M) =: A, then

A* = A(nq, ..., ng;ad — MT) C A

1 ... 1
with a := v, (|G|) — v (dim(V)) and J =



Duality.
<z, y >i= ‘—Cl;' trace,.q(xy) is an associative non degenerate
symmetric bilinear form on K G so that RG is self-dual

RG = RG" = {z € KG |< z,RG >C R}.

' c RGCTl := @evRG.
1%

Remark.
If ey RG = A(nl, vy N, M) =: A, then

A* = A(nq, ..., ng;ad — MT) C A
1 ... 1
with a := v, (|G|) — v (dim(V)) and J =
S0 a — my; > my; or equivalently

m;; +mj; < a.
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Involution.
RG is an R-order with a canonical R-linear involution

°:RG — RG,g— g%
If e = €}, then choose 0 # ¢ = ¢! € K™*" such that
gpg™ = ¢, s0 gt = pg"p L forall g € G.
Then
ey RG = (eyRG)° = {¢X"¢p™! | X € ey RG} C R™".

Remark.

If ey RG = A(n1,...,n,; M) and all simple modules S are
selfdual, then ¢ can be chosen as

¢ = diag(f1, 7" fa, ..., 7% fi) with a; € N, f; € GL,,,(R)

and Mij — Myj; = aj — ;.



Summary: Properties of exponent matrices.

Theorem.

Let V' be a simple K G-module such that

ey RG = A(nq,...,n,; M) is a graduated order.

Let a := v:(|G]) — vx(dim(V)). Then w.r.t. a suitable basis of L
as above forall i,5,¢ € {1,...,k}

wlog m;1 = 0, m;; > 0.
order m;; = 0, my; + mjp > myy
rad m;; +mj; > 0if i #£ 7.
dual mij = mj; <a
iNvo mg; —myj; = my; —my; = aj — a; if €], = ey and all simple
FG-modules S with dy, g > 0 are selfdual.
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Symmetric groups.

v

Irreducible representations in characteristic 0 are
parametrized by the partitions A of n.

SA < 189n Specht lattice.

S>\1 X...XS)\S

v

Irreducible representations D* in characteristic p are
parametrized by the p-regular partitions A of n.

D* = FS*/(FSM*

Jantzen-Schaper-formula: multiplicity of D# as composition
factor in (S*)# /S* if decomposition matrix is known.

» This formula yields the exponents as, . .., ax of the invariant
form ¢ and hence the first row of the exponent matrices.

v

v

v



The decomposition matrix of the principal block of
ZgSﬁ.

6) (5.1 (4,153 (3,2,1)
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» Jantzen-Schaper yields:
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0bv d 0 f
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Example €39 1)Z3S.
» Jantzen-Schaper yields:

321235 = A((3,2,1), (3%), (4,1%), (5, 1), (6); M) where
01 1 2 1
0 0 a b c
M=] 0 d d e
0bv d 0 f
0 e f 0

» For all z we have

O0<z+2 <2 sox+a €{1,2}

» Invariance under the involution ° yields
a—d =c—cd=e—e=0andb—-b =d—-d=f—-f=1

hencea=d =c=cd=e=¢'=1,b=d=f' =1, and
V=d=f=0.



Example €39 1)Z3S.

» Jantzen-Schaper yields:
6(3,2,1)2356 = A((3a 2, 1)7 (32)a (47 12)a (57 1)a (6)7 M) where

01121
00111
M=101011
0 00O0O
01110

» For all z we have
O0<z+2 <2 sox+a €{1,2}
» Invariance under the involution ° yields
a—d =c—cd=e—e=0andb-b =d—-d=f—-f=1

hencea=d =c=d=e=¢'=1,b=d= f' =1, and
V=d=f=0.



Symmetric groups of degree 2p, exponent matrices.

Theorem.

Let G = Sy, R = Zy, V a simple KG-module. Then ey RG is
graduated with exponent matrix X, A, B, C, or D:

0 01 2

X:=(0), A::(OO), D=0 01

000

011 21 AT

00111 R
B=|l01011|, C:=

010 1

00000 D000

01110



Symmetric groups of degree 2p, lattices.

A D C
0,0 (0,0,0) (0,0,0,0)
0,1) (1,0,0) (1,0,0,0)
(1,1)=p(0,0) (1,1,0) (1,0,1,0, (1,1,0,0)

(1,1,1)=p(0,0,0)
(1,1,1,1)=p(0,0,0,0)
(2,1,1)=p(1,0,0) 2,1,1,
(2,1,1,1)=p(1,0,0,0)



Second step: Description of RG.

(2

RG/J(RG) = @;_, ¢.RG/J(RG)

My, (F)
Py, ..., P; the projective indecomposable RG-lattices.
Morita equivalence:

RG ~ EndRG(@ P)=A= @ Hompg(P;, Pj) == @ ejAe;
i=1 ij=1 i7j=1\2/__-/
J
where A/J(A) = @;_,€A/J(A) and the e; are orthognal
———

F
primitive idempotents in A that lift the e;.
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The basic order A.

Remark.
Let A = 7 ;_ Hompg(P;, Pj) = D7 j—; Aji- Then
» /A, are self-dual local R-orders.

A;jis a Ay — Aj;-bimodule.
A Ak C Agg.

AiiAji C J(Ay) if i # 5.

> A?; = Ajj.

(e;iAe;)° = ejAe]

Aij C Dy evAyj.

vV vV

v

v



The basic order A.

Remark.
Let A = 7 ;_ Hompg(P;, Pj) = D7 j—; Aji- Then
» /A, are self-dual local R-orders.

vV vV

vV v v VY

Aij is a A — Ajj-bimOdUIG.

DAk C Ajg.

AiiAji C J(Ay) if i # 5.

B = By

(e;iAe;)° = ejAe]

Aij C @V EvAij.

If dy.s, € {0,1} for all V, then A;; is commutative and

@ ey Ay = @ R

Vidy,s,=1 Vidy,s,=1

is the unigue maximal order in KA;.
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Results.

Theorem.
We know RG for

» blocks with cyclic defect groups (Plesken, 1983)
> G = Sop, R=17Zy.
» G = SLa(p?).
> G = SLy(2/), f <6.
» G=5,,n<9.
» some other examples.
Theorem.

We know I' = @, ey RG for SLa(p7).



The decomposition matrix of the principal block of
ZgSﬁ.

x(1) 6) 6.1) 41 (3,2,1)
1 (6) 1 . . .
5 (5,1) 1 1 . :
10 | (4,1?) 1 1 : .
5 (3%) 1 1 .
16 |(3,2,1)] 1 1 1 1 1
10 |(3,13%) | . . 1 1
5 (2%) 1 1
5 (2,14 | . 1 1
1 (1%) 1 .




Example End(Fg).
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