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Binary Codes

A linear binary code of length n is a subspace C < F7.

n
Cti={veFs|v-c=) wici=0forallce C}
=1

self-orthogonal means C' ¢ C* and self-dual means C = C+.

wt(c) := {1 <i<n|¢ #0}| is the Hamming weight of ¢ € F}
Clear: C Cc C* = wt(c) € 2Zforall c € C.

C'is called Type Il, if C = C+ and wt(c) € 4Z for all c € C.
Facts:

» O =Ct <F} = n=2dim(C) is even.
»C=Ct<Fp=1=(1,...,1)€C.
» C <F7 Type ll = n € 8Z.
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Automorphism groups.

The automorphism group of C'is
P(C):={reS,|n(C)=C}.
For a subgroup G < S, we let
C(G) :={C <F3 |G <P(O)}

the set of all FoG-submodules of the permutation module F3.
Question:

> Isthere C = C*+ € C(G) ?
» Is there a Type Il code C € C(G) ?
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Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes,
so G < Sg via its regular representation.

Then C(G) =: C,¢4(G) are the left ideals of FoG.
We find the famous and important cyclic codes, if G is cyclic.
Theorem 1 3C = C* € C,.,(G) < |G| € 2Z.

Theorem 2 (Sloane, Thompson)

JC = Ct € Crey(G) of Type I

&

|G| € 8Z and the Sylow 2-subgroups of G are not cyclic.
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Proof of Theorem 1.

=:C =Ct <FoG = IF‘QG|, then dim(C) = @ so |G| is even.
<:1#g€d, g>=1. Then

C:=TFG(1+g)=C"*.
More precisely, write G =U {h;, h;g}, then with respect to
hi1,h1g, ho, hag, . .. C is the rowspace of

11 00 ... 00
00 11 . 00

00 00 ... 11



General permutation representations

In joint work with Annika Glnther we treat arbitrary permutation
groups G < S,,.
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In joint work with Annika Glnther we treat arbitrary permutation
groups G < S,,.

Theorem A 3C = C+ € G(G) « condition (E) is satisfied.

(E) every simple FyG-module S with § = S* = Hom(S, F2)
occurs in 5 with even multiplicity.

Remark. Condition (E) is fulfilled, if | N¢(H;)/H;| is even where
H; := Stabg (i) fori € {1,...,n}.

Clear. Theorem A implies Theorem 1.
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General permutation representations

In joint work with Annika Glnther we treat arbitrary permutation
groups G < S,,.

Theorem A 3C = C+ € G(G) « condition (E) is satisfied.

(E) every simple FoG-module S with S = S* = Hom(S, F2)
occurs in 5 with even multiplicity.

Theorem B If C = C* is of Type Il, then P(C) < Alt,,.

Theorem C 3C = C* € C(G) of Type Il &
(a) n € 8%,

(b) condition (E) is satisfied, and

(c) G < Alt,,.
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Remark: Theorem 2 follows from Theorem C:
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» Condition (E) for group ring codes is equivalent to even
group order.
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Theorem 2 follows from Theorem C

Remark: Theorem 2 follows from Theorem C:

Proof:

» Condition (E) for group ring codes is equivalent to even
group order.

» The Sylow 2-subgroups of a group of even order are not
cyclic precisely if the regular representation of G is
contained in the alternating group.

Theorem C 3C = C+ € ¢(G) of Type Il &
(@) n € 8Z,

(b) condition (E) is satisfied, and

(c) G < Alt,,.



Proof of Theorem A

=: F2/C+ =~ Hom(C,Fy), so if S is a composition factor of C,
then S* is a composition factor of Fy/C-t.

Fro>Cct=Cc2{0}
S* S

«: C c C+ maximal self-orthogonal, then C/C anisotropic
and hence semi-simple,

C*H/C =1 S; with S; = S¥vj.
S 1 S'is hyperbolic since Fy = {22 | x € Fy}.

Theorem A 3C = C+ € C(G) < condition (E) is satisfied.
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Orthogonal groups

Let K be any field, V = K2, ¢ : V — K a non-degenerate
quadratic form of Witt defect 0. This means that there is

U<V, dimU)=m, q(U) = {0}.

Fix such a maximal isotropic subspace U.

O(V,q) :={g € GL(V) [ q(9(v)) = q(v) for all v € V}.
Dickson homomorphism
D:0(V,q) — {1,-1},9g— (_1)m—dim(Ung)

is a well defined (independent from U) homomorphism.
char(K) # 2 = D(g) = det(g).
Theorem. Stabgy,)(U) < ker(D)
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Proof of Theorem B
Let n € 8Z.

Vi=1Y/1) ={z+ (1) | z € F}, wt(z) € 2Z}

wt(a)

q:V —Fy,q(x+ (1)) := 5

+ 27.

q is a well-defined, non-degenerate quadratic form.

Its associated bilinear form is > x;y;.

(V,q) has Witt defect 0.

The maximal isotropic subspaces of (V, q) are precisely the
images of the Type Il codes in F3.

Sy, fixes 1 and preserves the weight hence embeds into
OV, q).

The restriction of the Dickson homomorphism

D : S, — {1,—1} is the sign.

vV v v Y
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Generalization of Theorem B

This shows more general:
Theorem B’. Let C' < I}, be a self-dual generalized
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Generalization of Theorem B

This shows more general:
Theorem B’. Let C' < I}, be a self-dual generalized
doubly-even code. Then P(C) < Alt,,.

For odd characteristic, the weight preserving mappings that
preserve orthogonality are all permutations and sign changes

{£1}": 5,
and one obtains

Theorem B”. Letp > 2and C = C*+ < F7,. Then
det(Aut(C)) = {1}.
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Proof of Theorem C

«: Condition (E) = 3 X = X+ € C(G).
X doubly-even, then done, else

Xo:={zx e X | wt(z) € 4Z}
1
Then Xg/Xo = Fy @ Fo.
C1 and Cy are doubly-even.
dim(C1) — dim(C; N Cy) = 1 is odd.
G < P(X) < P(Xy) acts on {C1, Cs}.

v

vV v v Vv

C; € C(Q) are Type Il

D(G)={1}soCig=C;foralge G,i=1,2.



