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2 | v · c =

n∑

i=1

vici = 0 for all c ∈ C}

self-orthogonal means C ⊂ C⊥ and self-dual means C = C⊥.

wt(c) := |{1 ≤ i ≤ n | ci 6= 0}| is the Hamming weight of c ∈ F
n
2

Clear: C ⊂ C⊥ ⇒ wt(c) ∈ 2Z for all c ∈ C.

C is called Type II, if C = C⊥ and wt(c) ∈ 4Z for all c ∈ C.
Facts:

I C = C⊥ ≤ F
n
2 ⇒ n = 2 dim(C) is even.

I C = C⊥ ≤ F
n
2 ⇒ 1 = (1, . . . , 1) ∈ C.

I C ≤ F
n
2 Type II ⇒ n ∈ 8Z.
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Automorphism groups.

The automorphism group of C is

P (C) := {π ∈ Sn | π(C) = C}.

For a subgroup G ≤ Sn we let

C(G) := {C ≤ F
n
2 | G ≤ P (C)}

the set of all F2G-submodules of the permutation module F
n
2 .

Question:
I Is there C = C⊥ ∈ C(G) ?
I Is there a Type II code C ∈ C(G) ?
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Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes,
so G ≤ SG via its regular representation.

Then C(G) =: Creg(G) are the left ideals of F2G.

We find the famous and important cyclic codes, if G is cyclic.

Theorem 1 ∃C = C⊥ ∈ Creg(G) ⇔ |G| ∈ 2Z.

Theorem 2 (Sloane, Thompson)
∃C = C⊥ ∈ Creg(G) of Type II
⇔
|G| ∈ 8Z and the Sylow 2-subgroups of G are not cyclic.
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Proof of Theorem 1.

⇒: C = C⊥ ≤ F2G ∼= F
|G|
2 , then dim(C) = |G|

2 , so |G| is even.

⇐: 1 6= g ∈ G, g2 = 1. Then

C := F2G(1 + g) = C⊥.

More precisely, write G =
.
∪ {hi, hig}, then with respect to

h1, h1g, h2, h2g, . . . C is the rowspace of

1 1 0 0 . . . 0 0

0 0 1 1
. . . 0 0

. . . . . . . . .
...

0 0 0 0 . . . 1 1
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Remark. Condition (E) is fulfilled, if |NG(Hi)/Hi| is even where
Hi := StabG(i) for i ∈ {1, . . . , n}.

Clear. Theorem A implies Theorem 1.
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In joint work with Annika Günther we treat arbitrary permutation
groups G ≤ Sn.

Theorem A ∃C = C⊥ ∈ C(G) ⇔ condition (E) is satisfied.

(E) every simple F2G-module S with S ∼= S∗ = Hom(S,F2)
occurs in F

n
2 with even multiplicity.

Theorem B If C = C⊥ is of Type II, then P (C) ≤ Altn.

Theorem C ∃C = C⊥ ∈ C(G) of Type II ⇔
(a) n ∈ 8Z,
(b) condition (E) is satisfied, and
(c) G ≤ Altn.
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Remark: Theorem 2 follows from Theorem C:

Proof:
I Condition (E) for group ring codes is equivalent to even

group order.
I The Sylow 2-subgroups of a group of even order are not

cyclic precisely if the regular representation of G is
contained in the alternating group.

Theorem C ∃C = C⊥ ∈ C(G) of Type II ⇔
(a) n ∈ 8Z,
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Proof of Theorem A

⇒: F
n
2/C

⊥ ∼= Hom(C,F2), so if S is a composition factor of C,
then S∗ is a composition factor of F

n
2/C

⊥.

F
n
2 ⊇ C⊥

︸ ︷︷ ︸

S∗

= C ⊇ {0}
︸ ︷︷ ︸

S

⇐: C ⊂ C⊥ maximal self-orthogonal, then C⊥/C anisotropic
and hence semi-simple,

C⊥/C ∼=⊥ Sj with Sj
∼= S∗

j ∀j.

S ⊥ S is hyperbolic since F2 = {x2 | x ∈ F2}.

Theorem A ∃C = C⊥ ∈ C(G) ⇔ condition (E) is satisfied.
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Orthogonal groups

Let K be any field, V = K2m, q : V → K a non-degenerate
quadratic form of Witt defect 0. This means that there is

U ≤ V, dim(U) = m, q(U) = {0}.

Fix such a maximal isotropic subspace U .

O(V, q) := {g ∈ GL(V ) | q(g(v)) = q(v) for all v ∈ V }.

Dickson homomorphism

D : O(V, q) → {1,−1}, g 7→ (−1)m−dim(U∩Ug)

is a well defined (independent from U ) homomorphism.

char(K) 6= 2 ⇒ D(g) = det(g).

Theorem. StabO(V,q)(U) ≤ ker(D)
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Proof of Theorem B
Let n ∈ 8Z.

V := 1
⊥/〈1〉 = {x+ 〈1〉 | x ∈ F

n
2 ,wt(x) ∈ 2Z}

q : V → F2, q(x+ 〈1〉) :=
wt(x)

2
+ 2Z.

I q is a well-defined, non-degenerate quadratic form.
I Its associated bilinear form is

∑
xiyi.

I (V, q) has Witt defect 0.
I The maximal isotropic subspaces of (V, q) are precisely the

images of the Type II codes in F
n
2 .

I Sn fixes 1 and preserves the weight hence embeds into
O(V, q).

I The restriction of the Dickson homomorphism
D : Sn → {1,−1} is the sign.
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Generalization of Theorem B

This shows more general:
Theorem B’. Let C ≤ F

n
2d be a self-dual generalized

doubly-even code. Then P (C) ≤ Altn.

For odd characteristic, the weight preserving mappings that
preserve orthogonality are all permutations and sign changes

{±1}n : Sn

and one obtains

Theorem B”. Let p > 2 and C = C⊥ ≤ F
n
pd . Then

det(Aut(C)) = {1}.
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⇐: Condition (E) ⇒ ∃ X = X⊥ ∈ C(G).
X doubly-even, then done , else

X0 := {x ∈ X | wt(x) ∈ 4Z}

Then X⊥
0 /X0
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I C1 and C2 are doubly-even.
I dim(C1)− dim(C1 ∩ C2) = 1 is odd.
I G ≤ P (X) ≤ P (X0) acts on {C1, C2}.
I D(G) = {1} so Cig = Ci for all g ∈ G, i = 1, 2.
I Ci ∈ C(G) are Type II.


