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Linear codes over finite fields.
» LetF :=F, denote the finite field with g-elements.
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v

v

Classically a linear code C over F is a subspace C < FV.
N is called the length of the code.

Ct:={veFV| v-c:zij\ilvici =0forall c € C} the dual
code.

» Cis called self-dual, if C = C*t.
» Important for the error correcting properties of C' is the minimum

distance
d(C) == min{d(c,) | ¢ # ¢ € C} = min{w(c) | 0 # c € C}
where
w(e) = {1 i < N | £ 0}

is the Hamming weight of ¢ and d(¢, ') = w(c — ¢’) the
Hamming distance.
The Hamming weight enumerator of a code C < FV is

hwec(g;7 y) = Z mN—w(C)yw(C) c C[.’IJ, y]N
ceC



The Gleason-Pierce Theorem (1967):

Theorem.

If C = C+ <FY such that w(c) € mZ for all ¢ € C and some m > 1
then either

| ¢ =2 and m = 2 (all self-dual binary codes).
Il ¢ =2 and m = 4 (the doubly-even self-dual binary codes).
Il ¢ =3 and m = 3 (all self-dual ternary codes).
IV g =4 and m = 2 (all Hermitian self-dual codes).
0 ¢ = 4 and m = 2 (certain Euclidean self-dual codes).
d q arbitrary, m = 2 and hwec (z,y) = (2 + (¢ — 1)y?)N/2

Type

The self-dual codes in this Theorem are called Type |, II, lll and IV
codes respectively.



Explanation of Gleason-Pierce Theorem.

Reason for divisibility condition

For all elements 0 # a in Fo = {0,1} and F3 = {0, 1, —1} we have that
a® = 1. So for ¢ € F)Y the inner product

(¢,¢) =p w(c) forp=2,3.
Hermitian self-dual codes satisfy
0 N
C=C ={zecF)|) cal=0foralzecC}
=1

For 0 # a € F4 again aa? = a® = 1, hence (¢, ¢) = w(c).

Invariance of Hamming weight enumerator

It follows from Gleason-Pierce Theorem that the Hamming weight
enumerator of the respective codes is a polynomial in z and y™.



Some examples for Type | codes.

The repetition code i, = [ 1 1 | has hwe;, (z,y) = 2% + ¢°.
The extended Hamming code

€g =

O = OO
_ o O O
—_ == O
—_ = O =
[ R R

1
1
0
1

OO O
oo = O

has hwe., (z,y) = 2% + 142*y* + 4® and hence is a Type Il code.
8



The binary Golay code is another Type Il code.

924 =

[110101110001100000000000 |
101010111000110000000000
100101011100011000000000
100010101110001100000000
100001010111000110000000
100000101011100011000000
100000010101110001100000
100000001010111000110000
100000000101011100011000
100000000010101110001100
100000000001010111000110

100000000000101011100011 |

is also of Type Il with Hamming weight enumerator

hwey,, (,y) = 2% 4+ 7592'%® + 2576222 + 759z

8,16
Y

4 y24



Type Ill codes: tetracode and ternary Golay code.

The tetracode.

1 1
fai= [ 01 2
is a Type lll code with

hwey, (z,y) = z* + 8zy°.

The ternary Golay code.

111210200000
101121020000
100112102000 b

g2 =11 90011210200 F
100001121020
10000011210 2

hweg,, (,y) = x'? + 2642%y° 4 4402°y” + 24"



Hermitian self-dual codes over F,.

The repetition code i» @ Fs =1 1 |
has hwe;, e, (7,y) = 22 + 3y
The hexacode

£ & =
£ = &
— & &

1 00
he=1]10 1 0 < TS
0 0 1

where w? + w + 1 = 0. The hexacode is a Type IV code and has
Hamming weight enumerator

hwep, (2, y) = 2% + 4522y* + 18y°.



The MacWilliams’ theorem (1962).

Theorem
Let C < FY be a code. Then

1
hwec (z,y) = ol hwec(z + (¢ — 1)y, z — y).

In particular, if C = C*, then hwe is invariant under the

MacWilliams’ transformation

we(3)=m ) (0)



Gleason’s theorem (ICM, Nice, 1970)

Theorem.
If C is a self-dual code of Type LILIIl or IV then hwes € C|[f, g] where
Type f g
I .272 + y2 $2y2($2 _ y2)2
i9 Hamming code eg
IT | 28+ ldaty® + 48 alyt(at —yh)*
Hamming code eg | binary Golay code go4
11T ot + 8zy? yP(2® —y°)?
tetracode t,4 ternary Golay code g5
v 2% + 3y? y*(2* —y?)?
1o @ Fy hexacode hg




Proof of Gleason’s theorem.

Let C <F) be a code of Type T = I,Il,lll or IV. Then C' = C*+ hence
hwec is invariant under MacWilliams’ transformation .

Because of the Gleason-Pierce theorem, hwe( is also invariant under
the diagonal transformation

dp, = diag(1, () t 2 — 2,y — Gny
(where ¢, = exp(2mi/m)) hence
hwe(C) € Inv((hg, dm) =: GT)

lies in the invariant ring of the complex matrix group Gr. In all cases
G is a complex reflection group and the invariant ring of G is the
polynomial ring C[f, g] generated by the two polynomials given in the
table.

Corollary
The length of a Type Il (resp. Ill) code is a multiple of 8 (resp. 4).

Proof: CSIQ e Gy and 4412 € G-



Extremal self-dual codes.

Gleason’s theorem allows to bound the minimum weight of a code of
a given Type and given length.
Theorem.
Let C be a self-dual code of Type T and length N. Then
d(C) <m+ mL%@J
| #T =1,thend(C) <2+2|¥].
Il If T =11, then d(C) < 4+ 4[ £ ].
Il If T =111, then d(C) < 3+ 3| &£ ].
IV If T =1V, then d(C) < 2+ 2| ¥].

Using the notion of the shadow of a code, the bound for Type | codes
may be improved.

N
d(C) < l+lL)4J+n

where a = 2 if N (mod 24) = 22 and 0 else.



Complete weight enumerators,

Let V be a finite abelian group (e.g. V =TF,) and C C V¥. For
c=(c1,...,cn) € VN and v € V put

ap(c) = |{i € {1,...,N} | ¢; = v}|.

Then
cweg 1= Z H 1% € Clz, :v e V]

ceCveV

is called the complete weight enumerator of C.

The tetracode.
we b4

4 3 3 2 2
cwey, (zo, 1, T2) = xy + Tox] + Toxs + 3T T2 + 3TX1 X5

11 .
1 2 ]§F3

hwey, (z,y) = cwer, (z,y,y) = z* + Sxyg-

Clear. hwec(z,y) = cwec(z,y, ..., y)



Codes and Lattices: Construction A.
Let p be a prime and (by, ..., by) be a basis of RY such that

0 ifi#j
(bi’bf):{ 1/p ifi=j

Let C <F)Y =7~ /pZ" be a code. Then the codelattice L is

N
Lo =A{)_aibi | (a1 (mod p),...,an (mod p)) € C}
i=1

Remark.

» L¥ = L1, S0 Lo is unimodular, iff C is self-dual.
» L is even unimodular, if p = 2 and C'is a Type |l code.
> 01, = cwec (Do, ..., 9p—1) Where

o0
a mn 2
T — 9(a+pZ)b1 _ Z q( +pn)°/p

n=—oo



Construction A: Examples.

Eg — [Je8

The Leech lattice and the Golay code

Let L :=L,,.
Then min(L) = 2 and Min(L) = {+2e;, ..., +2e24}.

Letv:=3e; +e3+...+ ey

Then (v,v) = (9 + 23) = 16 and (v, 2e;) is odd for all i.
Put L, _{66L|(£v)even}
Then Ayy = < vy 2 >

The ternary Golay code.

L, is an odd unimodular lattice of dimension 12 with minimum 2.
Or,, =1+ 264q + 2048¢%/2 + 7944¢? + 24576¢°/% +



A formal notion of a Type of a code.

Definition of Type, part |

A Type is a quadruple (R, V, ®, 3) such that

» Ris a finite ring (with 1) and 7 : R — R an involution of R.
(ab)” =b’a’ and (a’)? =aforalla,be R

» V afinite left R-module.

> B:V XV — Q/Z regular, e-hermitian:
B(rv,w) = (v, 7 u)for: € Rv,weV,
v — B(v,) e Hom(V,Q/Z) |somorph|sm
Z(R), e’ =1 B(v, u) = B(w, ev) for v,w € V.
> & C QuadO(V, Q/Z) a set of quadratic mappings on V.
with certain additional properties.



Codes of a given Type.

Let (R,V,®,3) be a Type.
Definition.

» A code C over the alphabet V is an R-submodule of V.
» The dual code (with respect to 3) is
N
Ct={zcVV|pN(z,c) = Z/B(xi,ci) =0forallce C}.
=1
C'is called self-dual (with respect to 3) if C = C+.
» Then C'is called isotropic (with respect to ®) if
N

¢N(c) =) ¢(c;)=0forallce Cand ¢ € .

i=1



A formal notion of a Type of a code.

Definition
The quadruple (R, V, ®, 5) as above is called a Type if

> & < Quady(V,Q/Z) is a subgroup and for all € R, ¢ € ® the
mapping ¢[r| : x — ¢(rx) is again in .
Then & is an R-gmodule.

» For all ¢ € ® there is some ry € R such that
A(@)(v,w) = o(v + w) — ¢(v) — p(w) = B(v, rew) for all v, w € V.
» For all » € R the mapping

¢r 2V — Q/Z,v — B(v,rv) lies in .



Type LILIILIV in the new language.

Type | codes (2;)

1 1
R:F2:Vv7 b’(x,y) = ixyv (I): {pr'_) 512 :6(56,25),0}

Type Il code (21).

1 1
R:F2:V7 ﬁ(xay): 51'.% @:{¢.’IJO—> Z'T272¢:¢ﬂ3¢70}

Type lll codes (3).
R=Fs =V, f(r,y) = 32, @ = {p: 0+ 20" = f(z,2), 2,0}
Type IV codes (47).
R=TFy=V, B(z,y) = %tr(w‘?), ={p:z— %wf,()}

where 7 = z2.



The Clifford-Weil group associated to a Type.

Definition.

Let T := (R,V,3,®) be a Type. Then the
associated Clifford-Weil group €(T) is a subgroup of GL,y(C)

C(T) = (my,dg, henop, |7 € R, ¢ € P,e=ucv. €Rsym. id. )
Let (e,|v € V) denote a basis of C!V!. Then

Myt €y — €y, dg i €y — exp(2mig(v))e,

he,ue,ve ey = |6V|71/2 Z exp(27riﬂ(w,vev))ew+(1_e)v
weeV



Invariance of complete weight enumerators.

Theorem.

Let C < V¥ be a self-dual isotropic code of Type T. Then cwec is
invariant under C(T').

Proof.

Invariance under m,. (r € R*) because C is a code.
Invariance under dy4 (¢ € ®) because C is isotropic.
Invariance under h. . ., because C is self dual.

The main theorem.(N,, Rains, Sloane (1999-2006))

If R is a direct product of matrix rings over chain rings, then

Inv(C(T)) = (cwec | C of Type T)).



The Clifford-Weil groups for Type | and II.

Type | codes (2)

1 1
R=Ty =1V, ﬁ(x7y) = EIi% ¢ = {(p.’L'l—> 5'%2 :ﬁ(ﬁ,l'),()}

. 1 1 1
€(I) = (d, = diag(1,—1),h1,11 = 7 ( 1 1 ) = hy) = G1

Type Il codes (21;).

1 1
R:IF?:K 5(%9): §xy7 (P:{(bx’_) Zx2a2¢:@a3¢a0}

G(II) = <d¢ = diag(l,i), h2> = GH



The Clifford-Weil groups for Type Il and V.
Type Il codes (3).

1 1
R=F;=V, B(z,4) = 52y, & = {p: 3 20 = (z,2),2¢,0}

100 1 111
G(III) = <m2 = 001 ,dlp = diag(1,<3,C3),h1,171 = — 1C3<§ >
010 V3 \1cc

Type IV codes (417).

1 1
R:]FALZ‘/a ﬂ(x,y): itr(xy)a CI):{QOZL'!—) il'f,()}

1000 1111
0001 : L1111
C(IV) = (my, = 0100 ,dyp = diag(1,-1,-1,-1),h1 11 = 51111 )

0010 1-1-11



Symmetrizations.
Definition
Let (R, J) be a ring with involution. Then the central unitary group is

ZU(R,J) :={g € Z(R) | g9’ = g7g =1}.

Theorem.
LetT = (R,V, 3, ®) be a Type and

U:={ueZUR,J)| d(uv) = ¢(v) forall p € ®,v € V}.

Then m(U) := {m, | v € U} is in the center of C(T).

Example.

R =T, or R =F5then ZU(R,id) = R — {0}.
If R =F, then ZU(R,id) = {1}, but ZU(R,™) = R — {0}.



Symmetrized Clifford-Weil groups.

Definition.
Let U < ZU(R,J) and Xy, ..., X, be the U-orbits on V.
The U-symmetrized Clifford-Weil group is

CWN(T) = {g™) | g € &(T)} < GLn41(C)

1 n
i 2 o) = 2 |X|Zew>

vEX; =0 wEX;

then

¢z Z R

Remark.

The invariant ring of V) (T') consists of the U-symmetrized invariants
of C(T).



Symmetrized weight enumerators.

Definition.

Let U permute the elements of V and let C < VV. Let Xo,..., X,
denote the orbits on U on V and for ¢ = (¢4, ...,cn) € C and
0 < j < n define

a;j(c)={1<i< N ¢ € X;}

Then the U-symmetrized weight-enumerator of C'is

cwe(CU) = Z H x;j(c) € Clzo, ..., Zn)

ceC j=0

Remark.

If the invariant ring of €(T") is spanned by the complete weight
enumerators of self-dual codes of Type T, then the invariant ring of
eW)(T) is spanned by the U-symmetrized weight-enumerators of
self-dual codes of Type T'.



Gleason’s Theorem revisited.

Remark

For Type LILIILIV the central unitary group ZU(R, J) is transitive on
V — {0}, so there are only two orbits:

z {0}, y =V —{0}

and the symmetrized weight enumerators are the Hamming weight
enumerators.

100 1 111
C(IM) = (mg = [ 001 | ,d, = diag(1,¢3,¢3), hiin = —= | 166G )
010 V3 \1¢¢,

yields the symmetrized Clifford-Weil group Gy = €Y (II1)

1 2
W) = <méU) = Ig,d(wU diag(1,(3), hy 1)1 =hy =— <1_1)>



The symmetrized Clifford-Weil group of Type IV.

1000 1111
0001 . 1111-1-1
G(IV) = (mw = 10100 ’d@ = dlag(l,'l,'lg'l),hl,l,l - 5 1-1 1-1
0010 1-1-11

yields the symmetrized Clifford-Weil group Gry = €(V)(IV)

1
eV(IV) = (m{) = I,d}) = diag(1,~1), b}y = ha = 5 Gf)>



Hermitian codes over Fy

1 1
(9H) :R=V =Ty, [(z,y) = = tr(zy),® = {p: 2 — 27, 2p,0}.

Let « be a primitive element of Fy and put ¢ = (3 € C. Then with

3

respect to the C-basis

of C[V], the associated Clifford-Weil group C(9%!) is generated by

3

2 3 4 5 6 .7
(03150‘705 O, @& )

dtp = dlag(la Cv Cza Cv Cza Cv Cza Cv CZ) 5

My :

100000000
000000001
010000000
001000000

000100000 | , A :=

000010000
000001000
000000100
000000010




Hermitian codes over Fy

€(9H) is a group of order 192 with Molien series

o(t)
(1= 2)2(1 — t4)2(1 — t6)3(1 — £3)(1 — £12)

where

0(t) ;== 1+ 3t* + 24¢° + 74¢8 + 156¢10 + 321412 + 525¢14 + 705¢16
+ 90518 4 989¢20 + 931422 + 83724 4 640t%6 + 406¢%°
+ 24330 + 111432 4 31¢34 4 9¢36 4 38

So the invariant ring of €(97) has at least
(1) +9 = 6912 + 9 = 6921

generators and the maximal degree (=length of the code) is 38.
What about Hamming weight enumerators ?



Hermitian codes over Fy

U:=72U09")= {2 €F} |27 = 2* = 1} = (F})?
has 3 orbits on V' = Fy:
{0} = Xo, {1,0%,a*, 0%} = X1, {a,a?,0°,a"} =: X,

100 L [144
W9y = (d) = diag(1,¢,¢?), m{Y) == [ 001 | , B(V) = 5112 )
010 1-2 1

of order 192 = 48 of which the invariant ring is a polynomial ring
spanned by the U-symmetrized weight enumerators

q2 = x% 4+ 8x129, q4 = xé + 16(xox} + w023 + 32323)
g6 = 15 + 8(x3x? + 33 + 22§ + 2285)
+72(x323 2% + 2xoxiae + 2x0117%) + 3202323

of the three codes with generator matrices

11 1 111
(1ol | P29 111 1 000
0 121 0 a 2¢ 0 1 2



Hermitian codes over Fy

Their Hamming weight enumerators are

ro = qa(z,y,y) =2 +8y°,
re=qu(z,y,y) =z + 32zy° + 48y*,
re = qo(x,y,y) = x5 + 161‘3y3 + 72x2y4 + 288xy5 + 352y6 .

The polynomials r,, 74 and r¢ generate the ring Ham(9%7) spanned by
the Hamming weight enumerators of the codes of Type 9%.
Ham(9) = C[ry, 74] ® r6C[rq, r4] with the syzygy

3 3949 13

2 4 3
rg = 17"27“4 - 57“27“4 — 17“4 — 1316 + 31r2TaTs

Note that Ham(9%7) is not the invariant ring of a finite group.



