Recognition of division algebras.

Gabriele Nebe, Allan Steel

Lehrstuhl D für Mathematik, University of Sydney

DAG day, Eindhoven, 18.3.2010
Motivation.

Construction of irreducible matrix representations.

- G finite group, K a field, $n \in \mathbb{N}$, $\Delta : G \rightarrow \text{GL}_n(K)$ group homomorphism
- KG-module structure on $V = K^{1 \times n}$.
- The representation Δ is called irreducible, if V is a simple KG-module, i.e. V and $\{0\}$ are the only KG-submodules of V.
- There are only finitely many simple KG-modules up to isomorphism.
- **Goal**: Find all irreducible matrix representations of G.
Construct irreducible representations of G.

1) Construct representations:
 - Permutation representations
 - More general induced representations from subgroups
 - Tensor products
 - Symmetric square
 - Alternating square
 - More general symmetrizations

2) Find irreducible representations as subquotients.
 Meataxe techniques.
Construct irreducible representations of G.

- If char $K = p > 0$ then these are realized over a finite subfield. For finite fields meataxe techniques are available to find composition factors and to prove irreducibility.
- If char $K = 0$, then these are realized over a number field K, a finite extension of \mathbb{Q}.
- Over \mathbb{Q} meataxe techniques are used to obtain subrepresentations that are likely to be irreducible.
- Use the endomorphism ring

$$E = \{ x \in K^{n \times n} \mid x\Delta(g) = \Delta(g)x \text{ for all } g \in G \}$$

- **Schur’s Lemma:** Δ irreducible \iff E skewfield.
- **Goal:** Test if E is a skew field.
- E is a finite dimensional semisimple \mathbb{Q}-algebra.
Computing the endomorphism algebra.

\[E = \{ x \in \mathbb{Q}^{n \times n} \mid x \Delta(g) = \Delta(g)x \text{ for all } g \in G \} \]

- Obtain \(E \) by solving system of linear equations
- or by finding random elements:
 - \(G = \langle g_1 = 1, g_2, \ldots, g_s \rangle \),
 - \(\pi : \mathbb{Q}^{n \times n} \to \mathbb{Q}^{n \times n}, \pi(x) = \frac{1}{s} \sum_{i=1}^{s} \Delta(g_i)^{-1} x \Delta(g_i) \) is linear
- 1 is unique eigenvalue \(\geq 1 \)
- eigenspace \(E \)
- iterating \(\pi \) approximates the projection
 \(\pi_G : x \mapsto \frac{1}{|G|} \sum_{g \in G} \Delta(g)^{-1} x \Delta(g) \) onto \(E \leq \mathbb{Q}^{n \times n} \)
- \(E = \langle \pi^\infty(b_1), \ldots, \pi^\infty(b_n^2) \rangle \)
- \(E = \langle \pi^\infty(x_1), \ldots, \pi^\infty(x_a) \rangle_{\mathbb{Q}} \text{ algebra} \)
Strategy to determine structure of E.

Wedderburn

$$E \cong \bigoplus_{i=1}^{t} D_i^{n_i \times n_i}$$

with division algebras D_i.

Algorithm (overview)

- $E = \langle b_1, \ldots, b_d \rangle_{\mathbb{Q}}$ given in right regular representation:

 - $b_i \in \mathbb{Q}^{d \times d}$, $b_k b_i = \sum_{j=1}^{d} (b_i)_{j,k} b_j$

- find central idempotents, achieve $E = D^{n \times n}$

- calculate the Schur index of E as lcm of local Schur indices

- Use regular trace bilinear form:

 $\text{Tr}: E \times E \rightarrow K$, $(a, b) \mapsto \text{tr}_{\text{reg}}(ab)$.

- σ real place of K, then Schur index m_σ of $E \otimes_{\sigma} \mathbb{R}$ from signature of $\sigma \circ \text{Tr}$.

- \wp finite place of K, then Schur index m_\wp of completion E_\wp from discriminant of any maximal order.
Find idempotents in $Z(E)$.

$Z = Z(E) := \{ z \in E \mid zb_i = b_iz \text{ for all } 1 \leq i \leq d \}$

- $Z \cong \bigoplus_{i=1}^{t} K_i$ étale
- regular representation: $Z = \langle z_1, \ldots, z_s \rangle \leq \mathbb{Q}^{s \times s}$
- Elementary fact: the z_i have a simultaneous diagonalization
- Choose random $z \in Z$, compute its minimal polynomial f
- If $f = gh$ is not irreducible, then $\mathbb{Q}^s = \ker(g(z)) \oplus \ker(h(z))$ is a Z-invariant decomposition of the natural module
- Compute the action of the generators on both invariant submodules and iterate this procedure
- Z is a field, if all z_i have irreducible minimal polynomial
Assume that $E = D^{n \times n}$ is simple.

- $E = D^{n \times n}$
- $K = Z(D) = Z(E)$ number field of degree $k = [K : \mathbb{Q}]$
- $m^2 = \dim_K(D)$ and so $d = \dim_{\mathbb{Q}}(E) = n^2 m^2 k$
- know d and k
- **Goal**: compute Schur index m of E
- **Fact**: Let \mathbb{P} denote the set of all places of K. Then D is uniquely determined by all its completions $(D_\wp)_{\wp \in \mathbb{P}}$.
- The Schur index m of E is the least common multiple of the Schur indices m_\wp of all completions $E_\wp := E \otimes_K K_\wp$.
- **Goal**: Determine all local Schur indices m_\wp of E.
- For $\wp : K \to \mathbb{C}$ complex place $E \otimes_K \mathbb{C} = \mathbb{C}^{mn \times mn}$.
- If $\wp : K \to \mathbb{R}$ is a real place then

$$E_\wp = E \otimes_K \mathbb{R} = \begin{cases} \mathbb{R}^{nm \times mn} & \text{or} \\ \mathbb{H}^{nm/2 \times nm/2} \end{cases}$$

where $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}} \right)$.
The real completion.

Use the trace bilinear form. \(\text{Tr} : E \times E \to K, (a, b) \mapsto \text{tr}_{\text{reg}}(ab) \).

Lemma

- Signature \((\mathbb{H}, \text{Tr}) = (1, -3)\).
- Signature \((\mathbb{R}^{2 \times 2}, \text{Tr}) = (3, -1)\).
- Signature \((\mathbb{R}^{n \times n}, \text{Tr}) = (n(n + 1)/2, -n(n - 1)/2)\).
- Signature \((\mathbb{H}^{n/2 \times n/2}, \text{Tr}) = (n(n - 1)/2, -n(n + 1)/2)\).

Proof:

- The Gram matrix of \(\text{Tr} \) for the basis \((1, i, j, k)\) of \(\mathbb{H} \) is diag\((4, -4, -4, -4)\).
- The Gram matrix of \(\text{Tr} \) for the basis \((\begin{array}{cccc}10 & 00 & 01 & 00 \\00 & 01 & 00 & 10 \end{array})\) is diag \((2, 2, \begin{array}{c}02 \\20 \end{array})\).
Maximal order is a local property.

- $K = \mathbb{Z}(E)$ number field, R ring of integers, $E = D^{n \times n}$.
- An R-order Λ in E is a subring of E which is a finitely generated R-module and spans E over K.
- Λ is called maximal, if it is not contained in a proper overorder.
- $\Lambda^* := \{ d \in E \mid \text{tr}(da) \in R \text{ for all } a \in \Lambda\}$
- Λ order \Rightarrow $\Lambda \subset \Lambda^*$.

Theorem.

The algebra E has a maximal order.

The order Λ is maximal if and only if all its finite completions are maximal orders.

Proof. $\Lambda \subset E$ any R-order, then $\Lambda \subset \Lambda^*$ and Λ^*/Λ is a finite group. So Λ has only finitely many overorders and one of them is maximal.
Local division algebras.

Let R be a complete discrete valuation ring with finite residue field $F = R/\pi R$ and quotient field K. Let D be a division algebra with center K and index m, so $m^2 = \dim_K(D)$.

Theorem.
The valuation of K extends uniquely to a valuation v of D and the corresponding valuation ring

$$M := \{ d \in D \mid v(d) \geq 0 \}$$

is the unique maximal R-order in D.

Let $\pi_D \in M$ be a prime element. Then $[(M/\pi_D M) : F] = m$.

Put

$$M^* := \{ d \in D \mid \text{tr}(da) \in R \text{ for all } a \in M \}$$

where tr denotes the regular trace $\text{tr} : D \to K$. Then

$$M^* = \pi_D^{1-m} M \text{ and } |M^*/M| = |M/\pi_D M|^{m-1} = |F|^{m(m-1)}.$$
R complete dvr, $M \leq D$ valuation ring, $\dim_K(D) = m^2$.

Matrix rings.

All maximal R-orders Λ in $D^{n \times n}$ are conjugate to $M^{n \times n}$. With respect to the trace bilinear form, we obtain

$$\Lambda^* = \pi_D^{1-m} \Lambda$$

and hence $|\Lambda^*/\Lambda| = |F|^{n^2(m^2 - m)}$.

- Know $(nm)^2 = \dim_K(D^{n \times n})$ so $s = nm$, and $|F|$.
- Calculate Λ and Λ^* and therewith $t = (nm)^2 - n^2m$.
- Then $m = (s^2 - t)/s = s - t/s$.

The discriminant of a maximal order.

- $E = D^{n \times n}$ central simple algebra over number field $K = Z(E)$ of dimension $s^2 = (nm)^2$
- m_\wp the \wp-local Schur index of D, so $E_\wp \cong D^{n_\wp \times n_\wp}_\wp$ with $n_\wp m_\wp = s$
- Λ be a maximal R-order in E
- t_\wp the number of composition factors $\cong R/\wp$ of the finite R-module Λ^*/Λ.

Theorem.

- $t_\wp > 0 \iff m_\wp \neq 1$
- $m_\wp = (s^2 - t_\wp)/s = s - t_\wp/s$
- The global Schur index is

$$m = \text{lcm} \{ m_\wp \mid \wp \in \mathcal{S} \} \cup \{ m_\sigma \mid \sigma \text{ real place of } K \}$$
Theorem (see Yamada, The Schur subgroup of the Brauer group).

Let $E = D^{n \times n}$ be the endomorphism ring of a rational representation of a finite group. Then D has uniformly distributed invariants. This means that $\mathbb{Z}(D)$ is Galois over \mathbb{Q} and m_\wp does not depend on the prime ideal \wp of $\mathbb{Z}(D) = K$, but only on the prime number $p \in \wp \cap \mathbb{Q} = p\mathbb{Z}$.

$$m_p := m_\wp \text{ for any } \wp \leq R, \wp \cap \mathbb{Q} = p\mathbb{Z}.$$
Discriminant maximal order Λ over \mathbb{Z}.

- $E = D^{n \times n}$, $K = \mathbb{Z}(D) = \mathbb{Z}(E)$, $s^2 = (mn)^2 = \dim_K(E)$.
- Assume that D has uniformly distributed invariants.
- $m_p := m_\wp$ for any $\wp \subseteq R$, $\wp \cap \mathbb{Q} = p\mathbb{Z}$.
- $\wp \subseteq R \Rightarrow N_p := N_{K/Q}(\wp)$, $a_p := |\{\wp \mid \wp \cap \mathbb{Q} = p\mathbb{Z}\}|$.
- Let Λ be a maximal order in E.
- $\Lambda^\# := \{x \in E \mid \text{tr}_{\text{reg}}(x\lambda) \in \mathbb{Z} \text{ for all } \lambda \in \Lambda\} = R^\# \Lambda^*$.
- $\delta := \text{disc}(K/Q) = |R^\#/R|$.

Main result

$$|\Lambda^\#/\Lambda| = \delta^{s^2} \prod_p N_p^{a_p s(s-t_p)}$$

where $t_p = s/m_p$.
Computation of maximal order: direct approach.

- Let $\Lambda = \langle \lambda_1, \ldots, \lambda_{s^2k} \rangle \subset E$ be any order.
- Then there is a maximal order M in E such that
 \[\Lambda \subset M \subset M^* \subset \Lambda^*. \]
- Λ^*/Λ is a finite R-module.
- **Algorithm:**
 - Loop over the minimal submodules $\Lambda \subset S \subset \Lambda^*$.
 - Compute the multiplicative closure $M(S) = \langle S, S^2, S^3, \ldots \rangle$.
 - If $M(S) \not\subset \Lambda^*$ then S is not contained in an order.
 - Otherwise $M(S)$ is an overorder of Λ.
 - Replace Λ by $M(S)$ and continue.
 - If no $M(S)$ is an order, then Λ is already maximal.
Zassenhaus' computation of maximal order.

Let \(\Lambda \) be an order in \(E \).

- The arithmetic radical \(AR(\Lambda) \) of \(\Lambda \) is the intersection of all maximal right ideals of \(\Lambda \) that contain \(|\Lambda^*/\Lambda| \).
- Then \(AR(\Lambda) \) is an ideal, hence \(\Lambda \subset O_r(AR(\Lambda)) := O(\Lambda) := \{ x \in E \mid AR(\Lambda)x \subseteq AR(\Lambda) \} \).
- \(\Lambda = O(\Lambda) \) if and only if \(\Lambda \) is hereditary.
- Any overorder of a hereditary order is hereditary.
- If \(\Lambda \) is hereditary, but not maximal, say \(\Lambda_\wp \) is not maximal (\(\wp \) prime ideal of \(R \)), then \(O_r(I) \) is a proper overorder of \(\Lambda \) for any maximal twosided ideal \(I \) of \(\Lambda \) that contains \(\wp \).
- all rational primes \(p \mid |\Lambda^*/\Lambda| \) are handled separately
- Prime after prime we compute a \(p \)-maximal order.
- Involves only linear equations modulo \(p \).
Example, \(E = \text{Mat}_3(\mathbb{Q}[\zeta_7 + \zeta_7^{-1}]) \).

- Input \(E \) from file (algebra generators)
- Call SchurIndexJac(\(E \))
- Dimension of \(E \) is 12
- Centre of dimension 3 and discriminant \(7^2 \)
- Determinant of order: \(7^{10}43^6 \), Discriminant \(7^243^6 \)
- Order is already hereditary
- For prime 7: 2 maximal ideals
- Idealiser of first ideal is proper overorder
- and 7-maximal, so finished with prime 7
- For prime 43: 6 maximal ideals
- Idealiser of \(\text{first} \) ideal is proper overorder
- and has 5 maximal ideals
- Idealiser of \(\text{second} \) ideal is proper overorder
- and has 4 maximal ideals
- Idealiser of \(\text{third} \) ideal is proper overorder
- and 43-maximal, so finished with prime 43
- Discriminant of maximal order is 1
Situation for $43R = \wp_1 \wp_2 \wp_3$.

- $\Lambda = \begin{pmatrix} R & R \\ 43R & R \end{pmatrix}$,

- 6 maximal ideals:
 - $I_i = \begin{pmatrix} \wp_i & R \\ 43R & R \end{pmatrix}$, $J_i = \begin{pmatrix} R & R \\ 43R & \wp_i \end{pmatrix}$ for $i = 1, 2, 3$

- Idealiser of I_1 is $\Lambda_1 = \begin{pmatrix} R & \wp_1^{-1} \\ 43R & R \end{pmatrix} \sim \begin{pmatrix} R & R \\ \wp_2 \wp_3 & R \end{pmatrix}$.

- Λ_1 has 5 maximal ideals: $\wp_1 \Lambda_1$ and
 - $I_i' = \begin{pmatrix} \wp_i & R \\ \wp_2 \wp_3 & R \end{pmatrix}$, $J_i' = \begin{pmatrix} R & R \\ \wp_2 \wp_3 & \wp_i \end{pmatrix}$ for $i = 2, 3$.

- Idealiser of I_2' is conjugate to $\Lambda_2 = \begin{pmatrix} R & R \\ \wp_2 \wp_3 & R \end{pmatrix}$

- has maximal ideals $\wp_1 \Lambda_2$, $\wp_2 \Lambda_2$ and I_3'', J_3''.

- The idealiser of I_3'' is maximal.
Cyclotomic orders.

- p prime, $\langle a \rangle = (\mathbb{Z}/p\mathbb{Z})^*$, $n \in \mathbb{Z}$
- $z_p \in \mathbb{Z}^{(p-1) \times (p-1)}$ companion matrix of the p-th cyclotomic polynomial

$$\Lambda := \langle \text{diag}(z_p, z_p^a, \ldots, z_p^{a^{p-2}}) \rangle \leq \mathbb{Z}^{(p-1)^2 \times (p-1)^2}$$

- $E = \mathbb{Q}\Lambda$ central simple \mathbb{Q}-algebra of dimension $(p - 1)^2$

$p = 7$:

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>-2</th>
<th>6</th>
<th>-6</th>
<th>7</th>
<th>10</th>
<th>-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>si</td>
<td>$2^3 7^3$</td>
<td>$2^3 7^6 \infty$</td>
<td>$2^3 3^6 7^2$</td>
<td>$2^3 3^6 \infty$</td>
<td>1</td>
<td>$2^3 5^6 7^6$</td>
<td>$2^3 5^6 7^3 \infty$</td>
</tr>
</tbody>
</table>