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Lattices

Definition.
A lattice L in Euclidean n-space (Rn, (, )) is the Z-span of an R-basis
B = (b1, . . . , bn) of Rn

L = 〈b1, . . . , bn〉Z = {
n∑
i=1

aibi | ai ∈ Z}.

Ln := {L ≤ Rn | L is lattice } the set of all lattices in Rn.

G =
(

1 0
0 1

)

H =
(

1 1
1 2

)



Invariants of lattices.

Gram matrix.
Gram(L) = {gGram(B)gtr | g ∈ GLn(Z)} where

Gram(B) = ((bi, bj)) = BBtr ∈ Rn×nsym

is the Gram matrix of B.

Invariants from Gram matrix.

I det(L) = det(Gram(B)) = det(BBtr) the determinant of L is the
square of the volume of the fundamental parallelotope of B.

I min(L) = min{(`, `) | 0 6= ` ∈ L} the minimum of L.
I Min(L) = {` ∈ L | (`, `) = min(L)} the shortest vectors of L.
I |Min(L)| the kissing number of L.



Properties of lattices.

Dual lattice.
Let L = 〈b1, . . . , bn〉Z ≤ Rn be a lattice. Then the dual lattice

L# := {x ∈ Rn | (x, `) ∈ Z∀` ∈ L}

is again a lattice in Rn and the dual basis B∗ = (b∗1, . . . , b
∗
n) with

(b∗i , bj) = δij is a lattice basis for L#.
Gram(B∗) = Gram(B)−1.

Integral lattices.

I L is called integral, if L ⊂ L# or equivalently Gram(B) ∈ Zn×n.
I L is called even, if Q(`) := 1

2 (`, `) ∈ Z for all ` ∈ L.
I Even lattices are integral and an integral lattice is even if

(bi, bi) ∈ 2Z for all i = 1, . . . , n.
I L is called unimodular if L = L#.



Orthogonal decomposition.

Definition.
Let L1 ≤ Rn1 and L2 ≤ Rn2 be lattices. Then L1 ⊥ L2 ≤ Rn1 ⊥ Rn2 is
called the orthogonal sum of L1 and L2. A lattice is orthogonally
indecomposable if it cannot be written as orthogonal sum of proper
sublattices.

If Gi ∈ Gram(Li) are Gram matrices of Li, then the block diagonal
matrix diag(G1, G2) is a Gram matrix of L1 ⊥ L2, but not all Gram
matrices of L1 ⊥ L2 are block diagonal.

Theorem (M. Kneser).

Every lattice L has a unique orthogonal decomposition
L = L1 ⊥ . . . ⊥ Ls with indecomposable lattices Li.



Construction of orthogonal decomposition.

Proof.
I Call x ∈ L indecomposable, if x 6= y + z for y, z ∈ L− {0},

(y, z) = 0.
I Then any 0 6= x ∈ L is sum of indecomposables,
I because if x is not itself indecomposable then x = y + z with

(y, z) = 0 and hence 0 < (y, y) < (x, x), 0 < (z, z) < (x, x).
I So this decomposition process terminates.
I In particular L is generated by indecomposable vectors.
I Two indecomposable vectors y, z ∈ L are called connected, if

there are indecomposable vectors x0 = y, x1, . . . , xt = z in L,
such that (xi, xi+1) 6= 0 for all i.

I This yields an equivalence relation on the set of indecomposable
vectors in L with finitely many classes K1, . . . ,Ks.

I If Li := 〈Ki〉Z then L = L1 ⊥ . . . ⊥ Ls is the unique orthogonal
decomposition of L in indecomposable sublattices.



Equivalence and automorphism groups.

Equivalence.

The orthogonal group
On(R) = {g ∈ GLn(R) | (vg, wg) = (v, w) for all v, w ∈ Rn} acts on Ln
preserving all invariants that can be deduced from the Gram matrices
like integrality, minimum, determinant, density etc..
Lattices in the same On(R)-orbit are called isometric.

Automorphism group.

The automorphism group of L is

Aut(L) = {σ ∈ On(R) | σ(L) = L}
∼= {g ∈ GLn(Z) | gGram(B)gtr = Gram(B)}

Aut(L) is a finite group and can be calculated efficiently, if the finite
set of vectors {` ∈ L | Q(`) ≤ maxni=1Q(bi)} can be stored. (Bernd
Souvignier, Wilhelm Plesken)



Reflections and automorphisms.

I For a vector 0 6= v ∈ Rn the reflection along v is

σv : x 7→ x− 2
(x, v)
(v, v)

v = x− (x, v)
Q(v)

v.

I σv ∈ On(R).
I If L ⊂ L# is an integral lattice and v ∈ L satisfies (v, v) ∈ {1, 2}

then σv ∈ Aut(L).
I If L is even then define

S(L) := 〈σv | v ∈ L,Q(v) = 1〉

the reflection subgroup of Aut(L)



Root lattices.

Definition.

I An even lattice L is called a root lattice, if L = 〈` ∈ L | Q(`) = 1〉.
Then R(L) := {` ∈ L | Q(`) = 1} is called the set of roots of L.

I A root lattice L is called decomposable if L = M ⊥ N for proper
root lattices M and N and indecomposable otherwise.

Theorem.
Let L be an indecomposable root lattice. Then S(L) acts irreducibly
on Rn.

Proof. Let 0 6= U < Rn be an S(L)-invariant subspace and
a ∈ R(L)− U Then σa(u) = u− (u, a)a ∈ U for all u ∈ U implies that
(u, a) = 0 for all u ∈ U and hence a ∈ U⊥. So R(L) ⊂ U ∪ U⊥ and L
is decomposable.



Indecomposable root lattices.

Theorem.

I Let L = 〈R(L)〉 be a root lattice.
I Then L has a basis B ∈ R(L)n such that (bi, bj) ∈ {0,−1} for all
i 6= j.

I The Gram matrix of this basis is visualised by a Dynkin diagram,
a graph with n vertices corresponding to the n basis elements
and with an edge (i, j) if (bi, bj) = −1.

I The Dynkin diagram is connected, if L is indecomposable.

Theorem.
Let L ∈ Ln be an indecomposable root lattice. Then L is isometric to
one of An, Dn, if n ≥ 4, E6, E7, E8 if n = 6, 7, 8 respectively.



Dynkin diagrams of indecomposable root lattices.

An

Dn

E6

E7

E8



Gram matrix for E8.

yields the following Gram matrix

Gram(E8) =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2





The indecomposable root lattices.

I Let r, s ∈ R(E8) with (r, s) = −1.
Then E7 = r⊥ ∩ E8 and E6 = 〈r, s〉⊥ ∩ E8.

I If (e1, . . . , en) is an orthonormal basis of Rn then
Dn = 〈e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en〉Z.

I An−1 ≤ (e1 + . . .+ en)⊥ ∼= Rn−1 has basis
(e1 − e2, e2 − e3, . . . , en−1 − en).

I h := |R(L)|/n ∈ Z is called the Coxeter number of an
indecomposable root lattice L.

L |R(L)| h det(L) S(L) Aut(L)
An n(n+ 1) n+ 1 n+ 1 Sn+1 ±Sn+1

Dn 2n(n− 1) 2(n− 1) 4 Cn−1
2 : Sn C2 o Sn

E6 72 12 3 PSp4(3).2 C2 × PSp4(3).2
E7 126 18 2 2.Sp6(2) 2.Sp6(2)
E8 240 30 1 2.O+

8 (2).2 2.O+
8 (2).2



The Leech lattice.

The Leech lattice.
There is a unique even unimodular lattice Λ24 of dimension 24 without
vectors of norm 2. Aut(Λ24) = 2.Co1 is the sporadic quasisimple
Conway group.

A construction of the Leech lattice.

I E8 has a hermitian structure over Z[α] where α2 − α+ 2 = 0.
I The 3-dimensional Z[α]-lattice P6 with hermitian Grammatrix

E =

 2 α −1
α 2 α
−1 α 2

 is known as the Barnes-lattice.

I Then the Leech lattice Λ24 is E8 ⊗Z[α] P6 with euclidean inner
product (x, y) = Tr(h(x, y)).



Theta-series of lattices.

I The theta series θL =
∑
`∈L q

Q(`).
I Assume that L is an even lattice and let La := {` ∈ L | Q(`) = a}.

Then La is a finite Aut(L)-set and θL =
∑∞
a=0 |La|qa.

I L =
√

2Z2 the square lattice with Gram matrix
(

2 0
0 2

)
:

θL = 1 + 4q1 + 4q2 + 4q4 + 8q5 + 4q8 + 4q9 + 8q10 + . . .
Aut(L) ∼= D8 (the symmetry group of a square)



Example: the hexagonal lattice.

The hexagonal lattice.

Basis B = ((1, 1), ( 1+
√

3
2 , 1−

√
3

2 )), Gram(B) =
(

2 1
1 2

)
det(L) = 3, min(L) = 2, γ(L) = 2√

3
∼ 1.1547 (density .91)

θL = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + 6q12 + 12q13 + 6q16 + . . .
Aut(L) ∼= D12 (the symmetry group of a regular hexagon)



Example: the E8-lattice.

I Let (e1, . . . , e8) be an orthonormal basis of R8 and consider
L := Z8 = 〈e1, . . . , e8〉Z = L#.

I Let D8 := {` ∈ L | (`, `) ∈ 2Z} be the even sublattice of L.
I θD8 = 1 + 112q + 1136q2 + 3136q3 + 9328q4 + 14112q5 + . . .

I Then D#
8 /D8 = 〈e1 + D8, v+ D8〉 ∼= C2×C2, where v = 1

2

∑8
i=1 ei.

I (v, v) = 8
4 = 2 and E8 = 〈D8, v〉 is an even unimodular lattice.

I θE8 = θD8 + θv+D8 = 1 + 240q + 2160q2 + 6720q3 + 17520q4 +
30240q5 + . . . = 1 + 240(q + 9q2 + 28q3 + 73q4 + 126q5 + . . .)

L E8

D8

D8#

E8



Theta series as holomorphic functions.

In the following we will consider even lattices L and the associated
integral quadratic form Q : L→ Z, ` 7→ 1

2 (`, `) = 1
2

∑n
j=1 `

2
j .

Theorem.
Define q(z) := exp(2πiz) and H := {z ∈ C | =(z) > 0} the upper half
plane. The function

θL : H→ C, z 7→ θL(z) =
∑
`∈L

exp(2πiz)Q(`) =
∞∑
a=0

|La|q(z)a

is a holomorphic function on the upper half plane H.
It satisfies θL(z) = θL(z + 1).



The theta series of the dual lattice.

Poisson summation formula.
For any well behaved function f : Rn → C and any lattice L ∈ Ln

det(L)1/2
∑
x∈L

f(x) =
∑
y∈L#

f̂(y)

where f̂(y) =
∫

Rn f(x) exp(−2πi(x, y))dx is the Fourier transform of f .

Theorem.
Let L ∈ Ln. Then θL(−1

z ) =
(
z
i

)n/2 det(L)−1/2θL#(z).

Proof.



Proof of θL(−1
z ) =

(
z
i

)n/2
det(L)−1/2θL#(z).

Both sides are holomorphic functions on H, so it suffices to prove the
identity for z = it and t ∈ R>0.
The Fourier transform of

f(x) = exp(
−2π
t
Q(x)) is f̂(y) =

√
t
n

exp(−2πtQ(y)).

Hence Poisson summation yields

θL(
−1
it

) =
∑
x∈L

f(x) = det(L)−1/2
∑
y∈L#

f̂(y) = det(L)−1/2tn/2θL#(it).

Poisson summation:

det(L)1/2
∑
x∈L

f(x) =
∑
y∈L#

f̂(y)



The space of modular forms.
The group of biholomorphic mappings of the upper half plane
H := {z ∈ C | =(z) > 0} is the group of Möbius transformations

z 7→ A(z) :=
az + b

cz + d
, A =

(
a b
c d

)
∈ SL2(R).

For all k ∈ Z this yields an action |
k

of SL2(R) on the space of
meromorphic functions f : H→ C defined by

f |
k
A(z) := (cz + d)−kf(

az + b

cz + d
).

Definition.
A holomorphic function f : H→ C is called modular form of weight k,
f ∈Mk, if

f |
k
A = f for all A ∈ SL2(Z)

and f is holomorphic at i∞.
f is called cuspform, f ∈M0

k , if additionally limt→∞ f(it) = 0.



Fourier expansion.
Remember: f |

k
A(z) := (cz + d)−kf(az+bcz+d ).

SL2(Z) = 〈T :=
(

1 1
0 1

)
, S :=

(
0 1
−1 0

)
〉

where S acts on H by z 7→ − 1
z and T by z 7→ z + 1.

Theorem.
A holomorphic function f : H→ C is a modular form of weight k, if
f(z) = f(z + 1) and f(−1

z ) = (−z)kf(z) and f is holomorphic at i∞.

Theorem.
Let f ∈Mk for some k. Then f(z) = f |

k
T (z) = f(z + 1) and hence f

has a Fourier expansion

f(z) =
∞∑
n=0

cn exp(2πiz)n =
∞∑
n=0

cnq(z)n

The form f is a cuspform, if c0 = 0.



Even unimodular lattices have dimension 8d.
Theorem.
Let L = L# ∈ Ln be even. Then n ∈ 8Z.

Proof. Assume not. Replacing L by L ⊥ L or L ⊥ L ⊥ L ⊥ L, if
necessary, we may assume that n = 4 + 8m. Then by Poisson
summation

θL(Sz) = θL(
−1
z

) = (
z

i
)n/2θL(z) = −zn/2θL(z)

and since θL is invariant under T , we hence get

θL((TS)(z)) = −zn/2θL(z)

where (TS)(z) = −1
z + 1 = z−1

z . (TS)2(z) = −z
z−1 + 1 = −1

z−1 . Since
(TS)3 = 1 we calculate

θL(z) = θL((TS)3z) = θL((TS)(TS)2z) = −( 1
z−1 )n/2θL((TS)2z)

= ( 1
z−1 )n/2( z−1

z )n/2θL((TS)z) = ( 1
z )n/2θL((TS)z) = −θL(z)

a contradiction.



Theta series of even unimodular lattices are modular
forms

Theorem.
If L = L# ∈ Ln is even, then θL(z) ∈Mk with k = n

2 .
In particular the weight of θL is half of the dimension of L and hence
a multiple of 4.

Proof. θL(z) = θL(z + 1) because L is even.
From the Poisson summation formula we get

θL
(−1
z

)
=
(z
i

)n/2 detL−1/2θL#(z) = zn/2θL#(z)

since n is a multiple of 8 and det(L) = 1.



The graded ring of modular forms.

Remember: f |
k
A(z) := (cz + d)−kf(az+bcz+d ).

Since |
k

is multiplicative

(f |
k
A)(g|

m
A) = (fg)|

k+m
A

for all A ∈ SL2(R) the space of all modular forms is a graded ring

M :=
∞⊕
k=0

Mk.

Theorem.
Mk = {0} if k is odd.

Proof: Let A = −I2 ∈ SL2(Z) and f ∈Mk. Then
f |
k
A(z) = (−1)kf(z) = f(z) for all z ∈ H and hence f = 0 if k is odd.



The ring of theta-series.

If L is an even unimodular lattice of dimension n, then n is a multiple
of 8 and hence θL ∈Mn/2 is a modular of weight k = n/2 ∈ 4Z.

θL ∈M′ :=
∞⊕
k=0

M4k.

E4 := θE8 ∈M4 is the normalized Eisenstein series of weight 4. Put

∆ :=
1

720
(θ3
E8
− θΛ24) = q − 24q2 + 252q3 − 1472q4 + . . . ∈M12

Theorem.
M′ = C[E4,∆].



Theta series of certain lattices.

M′ = C[E4,∆].

Corollary.

Let L be an even unimodular lattice of dimension n.
I If n = 8 then θL = θE8 = E4 = 1 + 240

∑∞
m=1 σ3(m)qm.

I If n = 16 then
θL = θE8⊥E8 = E2

4 = 1 + 480q + 61920q2 + 1050240q3 + . . ..
I For n = 24 let c1 = |L1| be the number of roots in L.

Then θL = 1 + c1q + (196560− c1)q2 + . . . .

I Let L be an even unimodular lattice of dimension 80 with
minimum 8. Then |Min(L)| = 1 250 172 000.



Extremal modular forms.

M′ =
∞⊕
k=0

M4k = C[E4,∆]

E4 = θE8 = 1 + 240q + . . . ∈M4, ∆ = 0 + q + . . . ∈M12.
Basis of M4k:

Ek4 = 1+ 240kq+ ∗q2+ . . .

Ek−3
4 ∆ = q+ ∗q2+ . . .

Ek−6
4 ∆2 = q2+ . . .

...
Ek−3a

4 ∆a = . . . qa+ . . .

where a = b n24c = bk3 c.

Definition.
This space contains a unique form

f (k) := 1 + 0q + 0q2 + . . .+ 0qa + f
(k)
a+1q

a+1 + f
(k)
a+2q

a+2 + . . .

f (k) is called the extremal modular form of weight 4k.



Extremal even unimodular lattices.

Theorem (Siegel).

f
(k)
a+1 > 0 for all k and f (k)

a+2 < 0 for large k (k ≥ 5200).

Corollary.

Let L be an n-dimensional even unimodular lattice. Then

min(L) ≤ 2 + 2b n
24
c.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L≤ Rn

n 8 16 24 32 48 56 72 80
min(L) 2 2 4 4 6 6 8 8

number of
extremal 1 2 1 ≥ 106 ≥ 3 many ? ≥ 2
lattices


