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Lattices

Definition.
A lattice L in Euclidean n-space (R™, (,)) is the Z-span of an R-basis
B = (by,...,b,) of R"
L= (b,...,bn)z= {Zaibi | a; € Z}.
=1

L, :={L <R"™| Lis lattice } the set of all lattices in R™.
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Invariants of lattices.

Gram matrix.
Gram(L) = {g Gram(B)g"" | g € GL,(Z)} where

Gram(B) = ((b;,b;)) = BB € RZ)X"

sym

is the Gram matrix of B.

Invariants from Gram matrix.

» det(L) = det(Gram(B)) = det(BB™) the determinant of L is the
square of the volume of the fundamental parallelotope of B.

» min(L) = min{(¢,£) | 0 # ¢ € L} the minimum of L.
» Min(L) ={¢ € L | (4,£) = min(L)} the shortest vectors of L.
» | Min(L)| the kissing number of L.



Properties of lattices.

Dual lattice.
Let L = (b1, ...,by)z < R™ be a lattice. Then the dual lattice

L# .= {z € R" | (z,0) € ZVL € L}

is again a lattice in R™ and the dual basis B* = (b7, ..., b}) with
(b7, bj) = 6;; is a lattice basis for L#.
Gram(B*) = Gram(B)~!.

Integral lattices.

» L is called integral, if L C L# or equivalently Gram(B) € Z"*".
» Lis called even, if Q(¢) := £(¢,¢) € Zforall ¢ € L.

» Even lattices are integral and an integral lattice is even if
(bi,b;) e2Zforalli=1,...,n.

» L is called unimodular if L = L#.



Orthogonal decomposition.

Definition.

Let L; <R™ and L, < R™2 be lattices. Then L; L. Ly, <R™ ] R™2 is
called the orthogonal sum of L; and L. A lattice is orthogonally
indecomposable if it cannot be written as orthogonal sum of proper
sublattices.

If G; € Gram(L;) are Gram matrices of L;, then the block diagonal
matrix diag(G1, G2) is @ Gram matrix of L; L Lo, but not all Gram
matrices of L; 1 L, are block diagonal.

Theorem (M. Kneser).

Every lattice L has a unique orthogonal decomposition
L=1L; ... 1 L,withindecomposable lattices L.



Construction of orthogonal decomposition.

Proof.

>

Call x € L indecomposable, if z # y + z for y, 2z € L — {0},
(y,z) = 0.

» Then any 0 # z € L is sum of indecomposables,

because if x is not itself indecomposable then z = y + z with
(y,z) =0and hence 0 < (y,y) < (z,z), 0 < (2, 2) < (z,z).
So this decomposition process terminates.

In particular L is generated by indecomposable vectors.

Two indecomposable vectors y, z € L are called connected, if
there are indecomposable vectors xg = y, z1,...,2; = zin L,
such that (x;,2;41) # 0 for all 4.

This yields an equivalence relation on the set of indecomposable
vectors in L with finitely many classes K, ..., K.

If L, .= (K;)zthen L=L; L ... L L, is the unique orthogonal
decomposition of L in indecomposable sublattices.



Equivalence and automorphism groups.

Equivalence.

The orthogonal group

0,(R) = {g € GL,(R) | (vg,wg) = (v,w) for all v,w € R"} actson L,
preserving all invariants that can be deduced from the Gram matrices
like integrality, minimum, determinant, density etc..

Lattices in the same O,,(R)-orbit are called isometric.

Automorphism group.

The automorphism group of L is

Aut(L) = {o € O,(R) | o(L) = L}
=~ {g € GL,(Z) | g Gram(B)g'" = Gram(B)}

Aut(L) is a finite group and can be calculated efficiently, if the finite
set of vectors {¢ € L | Q(¢) < max} ; Q(b;)} can be stored. (Bernd
Souvignier, Wilhelm Plesken)



Reflections and automorphisms.

v

For a vector 0 # v € R™ the reflection along v is

(w.0), _, (@)
(v,0) Q)

Op:TH—x—2

v

ov € O, (R).
If L C L is an integral lattice and v € L satisfies (v,v) € {1,2}
then o, € Aut(L).

If L is even then define

v

v

S(L) == (o0 | v e L,Q) = 1)

the reflection subgroup of Aut(L)



Root lattices.

Definition.

» An even lattice L is called a root lattice, if L= (¢ € L | Q(¢) = 1).
Then R(L) := {¢ € L | Q(¢) = 1} is called the set of roots of L.

» A root lattice L is called decomposable if L =M L N for proper
root lattices M and N and indecomposable otherwise.

Theorem.

Let L be an indecomposable root lattice. Then S(L) acts irreducibly
on R™.

Proof. Let 0 £ U < R™ be an S(L)-invariant subspace and

a € R(L)—U Then o,(u) = u — (u,a)a € U for all u € U implies that
(u,a) =0forallu € U and hence a € U+. So R(L) CUUU* and L
is decomposable.



Indecomposable root lattices.

Theorem.

» Let L = (R(L)) be a root lattice.

» Then L has a basis B € R(L)" such that (b;,b;) € {0, —1} for all
1],

» The Gram matrix of this basis is visualised by a Dynkin diagram,
a graph with n vertices corresponding to the n basis elements
and with an edge (3, j) if (b;,b;) = —1.

» The Dynkin diagram is connected, if L is indecomposable.

Theorem.

Let L € L,, be an indecomposable root lattice. Then L is isometric to
one of A, D, if n > 4, Eg, E7, Eg if n = 6, 7, 8 respectively.



Dynkin diagrams of indecomposable root lattices.

. I
A
0



Gram matrix for Es.

yields the following Gram matrix

2 -1 0 0 0 0 0 0

-1 2 -1 0 0 0 0 0

o -1 2 -1 0 0 0 -1

. 0 o -1 2 -1 0 0 0

Gram®) =1 o ¢ o 1 2 -1 0 o0

0 0 0 o -1 2 -1 0

0 0 0 0 0o -1 2 0

0 0 -1 0 0 0 0 2




The indecomposable root lattices.

> Letr, s € R(Eg) with (r,s) = —1.
Then E; = r+ NEg and Eg = (r, s)* N Es.
» If (e1,...,e,) is an orthonormal basis of R™ then
]Dn = <€1 —€2,62 —€3,...,6h_1 — €p,Ep_1+ en>Z-
» A1 < (eg+...+e,)t 2R ! has basis
(61 — €2, —€3,...,Ep_1 — en).
» h:=|R(L)|/n € Zis called the Coxeter number of an
indecomposable root lattice L.

L[ |R(D) h det(L) | S(L) Aut(L)
A, | n(n+1) n+1 n+1 Snit1 +Sn41

D, |[2n(n—1)|2(n—-1)| 4 |Cy*t:5S, C21 8,

E; 126 18 2 2.5ps(2) 2.5ps(2)

Eg 240 30 1 2.0§ (2).2 2.07(2).2




The Leech lattice.

The Leech lattice.

There is a unique even unimodular lattice Ay, of dimension 24 without
vectors of norm 2. Aut(As4) = 2.Co; is the sporadic quasisimple
Conway group.

A construction of the Leech lattice.

» Eg has a hermitian structure over Z[a] where o? — a +2 = 0.
» The 3-dimensional Z[«a]-lattice Ps with hermitian Grammatrix

-1 a@ 2
» Then the Leech lattice Aoy is Eg ®z(4) Ps With euclidean inner
product (z,y) = Tr(h(x,y))-

2 o -1
E:( a 2 « )is known as the Barnes-lattice.



Theta-series of lattices.

» The theta series 0, =, q@W.

» Assume that L is an even lattice and let L, := {¢ € L | Q(¢) = a}.
Then L, is a finite Aut(L)-setand 6, = >, |La|q*

» L = /272 the square lattice with Gram matrix g (2) ):
0, =1+ 4¢"* +4¢® + 4¢* +8¢° + 4¢® + 4¢° + 8¢'° + . ..
Aut(L) = Dg (the symmetry group of a square)




Example: the hexagonal lattice.

The hexagonal lattice.

2 2 1 2
det(L) = 3, min(L) = 2, (L) = 2 ~ 1.1547 (density .91)

Basis B = ((1,1), (223, 1=¥3)), Gram(B) = ( 21 )

0, =1+ 6q + 6¢> + 6¢* + 12¢" + 6¢° + 6¢'? + 12¢'3 + 646 + . ..

Aut(L) = Dy (the symmetry group of a regular hexagon)




Example: the Eg-lattice.

» Let (eq,...,es) be an orthonormal basis of R® and consider
L= ZS = <61,...,68>Z = L#

» LetDg:={¢ € L| (¢ ¢) € 2Z} be the even sublattice of L.

> Op, = 1+ 112q + 11364> + 3136¢> + 9328¢* + 14112¢° + ...

» Then D?/Dg = (e1+Ds,v+Ds) = Cy x Co, Where v = 3 Zle €.

> (v,v) = § =2and Eg = (Dg, v) is an even unimodular lattice.

> O, = Op, + 0yyps = 1+ 240qg + 2160 + 6720¢° + 17520¢* +
30240¢° + ... =1+ 240(q + 9¢° + 28¢> + 73¢* + 126¢° + . ..)

D8#

E8 E8

D8



Theta series as holomorphic functions.

In the following we will consider even Iattices L and the associated
integral quadratic form Q : L — Z, 0 +— 1 (¢,0) = £ Z] t

Theorem.

Define ¢(z) := exp(2miz) and H := {z € C | ¥(z) > 0} the upper half
plane. The function

0 :H—C, 22— 0(2 ZeXp (2miz) Q(e)—Z|L lq(2)
Lel

is a holomorphic function on the upper half plane H.
It satisfies 0, (2) = 0L(z + 1).



The theta series of the dual lattice.

Poisson summation formula.
For any well behaved function f : R — C and any lattice L € L,

det(L)2 > f(z) = Y f®)

€L yEL#
where f fRn z) exp(—2mi(z,y))dz is the Fourier transform of f.
Theorem.
Let L € £,,. Then 0,(=2) = (2)™? det(L)"/20,4(2).

Proof.



—1y n/2 _1/92
Proof of 6,(=1) = (2)"" det(L)"/?0.4(z).
Both sides are holomorphic functions on H, so it suffices to prove the

identity for z = it and ¢ € R,.
The Fourier transform of

F(a) = ep(— Q) s fly) = VE" exp(-2mtQ(y).

Hence Poisson summation yields

—1) = Z fx) = det(L)~1/? Z = det(L)~V/2t"/20 4 (it).
eL#

xeL

Poisson summation:

det(L)'? " fl@)= Y f(y)

el yeL#



The space of modular forms.

The group of biholomorphic mappings of the upper half plane
H:={z € C| 3(z) > 0} is the group of Mdbius transformations

z A(z) =

az+b a b
= L R.
cz+d’ ( d)GS 2(R)

For all k € Z this yields an action |, of SL2(R) on the space of
meromorphic functions f : H — C defined by

az+b
cz+d

Fl,A(Z) = (ez +d) " f( )-

Definition.

A holomorphic function f : H — C is called modular form of weight &,
f € My, if
fl, A= fforall A€ SLy(Z)

and f is holomorphic at ico.
f is called cuspform, f € MY, if additionally lim; .., f(it) = 0.



Fourier expansion.

Remember: f|, A(z) := (cz +d) " f(2£8).

SLQ(Z):<T::((1J 1),8::(_01 (1)>>

where S actson Hby z — —2 and T by z — z + 1.

Theorem.

A holomorphic function f : H — C is a modular form of weight &, if
f(z) = f(z+1)and f(=£) = (—2)* f(z) and f is holomorphic at ico.

Theorem.

Let f € My for some k. Then f(z) = f|,T(z) = f(z + 1) and hence f
has a Fourier expansion

Z cn exp(2miz)" Z cnq(z

n=0

The form f is a cuspform, if ¢ = 0.



Even unimodular lattices have dimension 8d.

Theorem.
Let L = L# € £,, be even. Then n € 8Z.

Proof. Assume not. Replacing Lby L L LorL L L 1L L L L, if
necessary, we may assume that n = 4 + 8m. Then by Poisson
summation

00(52) = 0u(—) = C)"V20(2) = —="/%0,(2)

and since 4y, is invariant under 7', we hence get

0L((TS)(2)) = —=""*01(2)

where (TS)(z) = 22 +1=
(T'S)? =1 we calculate

Or(2) = 0.((T'S)*2) = O (T'S)(T'8)*z) = —(:25)"*0L((T5)?2)
= (Z)"PEEP0L((TS)2) = (2)"20L((T'S)z) = —01(2)

z;l_ (TS)Q(Z) — =z + 1= ;_11

z—1

a contradiction.



Theta series of even unimodular lattices are modular
forms

Theorem.

If L =L# € L, is even, then 6.(z) € M;, with k = %.
In particular the weight of 6;, is half of the dimension of L and hence
a multiple of 4.

Proof. 0, (z) = 0.(z + 1) because L is even.
From the Poisson summation formula we get

) )P et L 20,0 () = 20,4 (2)

z 7

0. (

since n is a multiple of 8 and det(L) = 1.



The graded ring of modular forms.
Remember: f|, A(2) := (cz + d)_k’f(%).
Since |, is multiplicative

(1, A9l,,4) = (f9),1,, A

for all A € SLo(R) the space of all modular forms is a graded ring

M:= éMk
k=0

Theorem.
M, = {0} if k is odd.

Proof: Let A = —I, € SLy(Z) and f € Mj. Then
fl,ARZ) = (- 1)*f(2) = f(z) for all z € H and hence f = 0 if k is odd.



The ring of theta-series.

If L is an even unimodular lattice of dimension n, then n is a multiple
of 8 and hence 0, € M,, , is a modular of weight k£ = n/2 € 4Z.

0, € M := D M.

E, :=0g, € M, is the normalized Eisenstein series of weight 4. Put

1
= 750 (0%, — Or,,) = q — 24¢° +252¢° — 1472¢" + ... € M1,

Theorem.
M’ = C[E4, Al.



Theta series of certain lattices.

M = C[Ey, A

Corollary.

Let L be an even unimodular lattice of dimension n.

» Ifn=8thenf, =0g, = E, =1+ 24()2?::1 o3(m)q™.

» If n = 16 then
01, = O, 1, = E3 = 14 480q + 6192042 + 10502404 + . . ..

» Forn = 24 let ¢; = |L;| be the number of roots in L.
Then 0, =1+ c1q + (196560 — ¢1)g? + . . ..

» Let L be an even unimodular lattice of dimension 80 with
minimum 8. Then | Min(L)| = 1 250 172 000.



Extremal modular forms.

M =@ Mux = C[E4, A
k=0

E4:9E8:1+240q+...€M4, A:O+q+€M12

Basis of My,:
Ef = 1+ 240kq+  *q>+
E{°A = gt g+
E§_6A2 — q2+
Eb-3ape = . ¢+

where a = | 2] = | £].
Definition.
This space contains a unique form

F® = 140g+0g% +...+0g% + f& g*t + fPqot2 4 .

f) is called the extremal modular form of weight 4k.



Extremal even unimodular lattices.

Theorem (Siegel).
fé’i)l > 0 for all £ and fé’i)Q < 0 for large k (k > 5200).

Corollary.

Let L be an n-dimensional even unimodular lattice. Then
n

min(L) <2+ 2[24J.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L< R™

n 8|16 | 24 32 48 56 72 | 80
mn) (2|2 | 4| 4 6 6 | 8| 8
number of
extemal 1] 2 | 1 |>10°| >3 |many | ? | >2

lattices




