
1 Integral ring extensions

Let S be commutative ring (with 1) and let R be a subring. We call R ⊆ S a
ring extension. An element s ∈ S is called integral over R if there exists a
monic polynomial f ∈ R[x] such that f(s) = 0. If every s ∈ S is integral over R,
then S is said to be integral over R.

Observations: If s is integral over R, then it is also algebraic over R. If R is a
field, then the converse holds as well. For the ring extension Z ⊂ Q, an element
s ∈ Q is integral over Z if and only if s is an integer (this explains where the
name comes from).

Lemma 1 Let R ⊆ S be a ring extension and let s ∈ S. The following are
equivalent:

1. s is integral over R.

2. R[s] is finitely generated as an R-module.

3. There exists a ring extension R[s] ⊆ S ′ such that S ′ is finitely generated as
an R-module.

Proof: “1 ⇒ 2”: There exists a representation sn =
∑n−1

i=0 ris
i for some ri ∈ R.

Thus R[s] = R〈1, s, . . . , sn−1〉.

“2 ⇒ 3”: Take S ′ = R[s].

“3 ⇒ 1”: Let S ′ be generated by g1, . . . , gn ∈ S ′. Since sgi ∈ S ′ for all i, we
have a matrix equation sg = Ag for some A ∈ Rn×n and g = [g1, . . . , gn]T . Then
(sIn − A)g = 0, which implies det(sIn − A)g = 0 and hence det(sIn − A)S ′ = 0
and finally det(sIn − A) = 0. However, det(sIn − A) is a monic polynomial in s
of degree n with coefficients in R. This shows that s is integral over R. �

Theorem 1 Let R ⊆ S be a ring extension.

1. If S is finitely generated as an R-module, then S is integral over R.

2. If s1, . . . , sn ∈ S are integral over R, then R[s1, . . . , sn] is finitely generated
as an R-module.

3. R̄ := {s ∈ S | s is integral over R} is a subring of S and integral over R.

4. Let R ⊆ S ⊆ T be ring extensions. If S is integral over R, and T is integral
over S, then T is integral over R.
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Proof: 1. Let s ∈ S, then R[s] ⊆ S. If S is finitely generated as an R-module,
then s is integral over R by the previous lemma.

2. Let sni
i =

∑ni−1
j=0 rijs

j
i for some rij ∈ R. Then R[s1, . . . , sn] is generated, as an

R-module, by the elements sj1
1 · · · sjn

n with 0 ≤ ji < ni.

3. Let s1, s2 ∈ S be integral over R. By part 2, R[s1, s2] is finitely generated as
an R-module and thus (by part 1) integral over R. Hence also s1 + s2 and s1s2

are integral over R, that is, R̄ is closed w.r.t. addition and multiplication. Thus
R̄ is a subring of S and it is clearly integral over R.

4. Let t ∈ T . Since T is integral over S, we have tn =
∑n−1

i=0 sit
i for some si ∈ S.

Since S is integral over R, the ring R′ := R[s0, . . . , sn−1] is finitely generated as an
R-module by part 2. Since t is integral over R′, the ring R′[t] = R[s0, . . . , sn−1, t]
is finitely generated as an R′-module, and then also as an R-module. By part 1,
it is integral over R, in particular, t is integral over R. �

The ring R̄ is called the integral closure of R in S. If R̄ = R, then R is said to
be integrally closed in S. A domain which is integrally closed in its quotient
field is called normal. For example, Z is normal. This observation from above
can be generalized as follows.

Theorem 2 Factorial rings are normal.

Proof: Let R be a factorial ring and let r
s
∈ Quot(R) be integral over R. We may

assume that gcd(r, s) = 1. Then we have ( r
s
)n =

∑n−1
i=0 ri(

r
s
)i for some ri ∈ R.

Multiplying this by sn, we get

rn =
n−1∑
i=0

rir
isn−i = (r0s

n−1 + r1rs
n−2 + . . .+ rn−1r

n−1)s.

If p is any prime divisor of s, then it also divides rn and thus r. Since gcd(r, s) = 1,
this implies that s must be a unit of R. Thus r

s
∈ R. �

The following lemma will be needed later on, in the proof of the Noether normal-
ization theorem and its corollaries.

Lemma 2 1. If a domain L is integral over a field K, then L is itself a field.

2. Let R ⊆ S be an integral ring extension and let R, S be domains. Then
Quot(R) ⊆ Quot(S) is an integral ring extension (or equivalently, an algebraic
field extension).
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Proof: 1. Let 0 6= s ∈ L. There exists a representation sn =
∑n−1

i=0 ris
i with

ri ∈ K. Without loss of generality, let n be minimal. Then

(sn−1 − rn−1s
n−2 − . . .− r1)s = r0,

and since both factors on the left are non-zero and L is a domain, we have
0 6= r0 ∈ K. Thus r0 is invertible, and we obtain

r−1
0 (sn−1 − rn−1s

n−2 − . . .− r1)s = 1,

showing that s is invertible. Thus L is a field.

2. It is easy to see that Quot(R) ⊆ (R \ {0})−1S is an integral ring extension.
By part 1, (R \ {0})−1S ⊆ Quot(S) is a field. However, Quot(S) is the smallest
field that contains S. Thus we must have (R \ {0})−1S = Quot(S). �

2 Going up and going down

“Going up” and “going down” are the colloquial names of two important results
in commutative algebra, which are due to Cohen and Seidenberg. They are both
concerned with associating a prime ideal chain q0 ( . . . ( ql in S to a given
prime ideal chain p0 ( . . . ( pl in R, where R ⊆ S is an integral ring extension.
“Going up” starts with the construction of q0 and extends the chain “upwards”
the inclusion chain. Its main consequence is the fact that the Krull dimensions of
R and S coincide if R ⊆ S is an integral ring extension. “Going down”, which is
more difficult and requires stronger assumptions on the ring extension, starts with
the construction of ql and extends the chain “downwards”. Its most important
consequence is a relation between the heights of certain prime ideals in S and R.

Let R ⊆ S be a ring extension. If J is an ideal of S, then J ∩R is an ideal of R
called the contraction of J to R. Conversely, if I is an ideal of R, then IS is an
ideal of S called the extension of I in S. Note that the contraction of a prime
ideal is a prime ideal, whereas the extension of a prime ideal is not necessarily
prime (e.g., the extension of 2Z in Q).

Lemma 3 Let R ⊆ S be an integral ring extension. Let I be a proper ideal of R.
Then IS is a proper ideal of S.

Proof: Suppose that IS = S. Then we can write 1 =
∑n

i=1 risi, where ri ∈ I
and si ∈ S. By Theorem 1, S ′ := R[s1, . . . , sn] is finitely generated as an R-
module, say, by g1, . . . , gm ∈ S ′. Since S ′ = IS ′, there exist aij ∈ I such that
gi =

∑
j aijgj for all i. The matrix equation g = Ag yields (Im − A)g = 0 and

thus det(Im − A)g = 0. Since A ∈ Im×m, we have det(Im − A) = 1− r for some
r ∈ I. Thus (1− r)S ′ = 0, which implies 1− r = 0. Thus 1 ∈ I, that is, I = R. �
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Lemma 4 (Cohen-Seidenberg Going Up Lemma) Let R ⊆ S be an inte-
gral ring extension and let p be a prime ideal of R. Then there exists a prime
ideal q of S such that q ∩R = p.

Proof: Since R ⊆ S is integral, Rp ⊆ Sp is also integral. By the previous lemma,
ppSp is a proper ideal of Sp. Thus it is contained in a maximal ideal m of Sp.
Then

pp ⊆ ppSp ∩Rp ⊆ m ∩Rp ( Rp.

Since pp is the maximal ideal in Rp, we conclude that pp = m∩Rp. The commu-
tative diagram

R ↪→ S
φ ↓ ↓ ψ
Rp ↪→ Sp

yields φ−1(pp) = ψ−1(m)∩R. However, φ−1(pp) = p since p is prime, and ψ−1(m)
is prime since m is prime. �

If R ⊆ S is an arbitrary ring extension, then the Krull dimension of R can be
either greater or less than the Krull dimension of S.

Theorem 3 Let R ⊆ S be an integral ring extension. Then R and S have the
same Krull dimension.

Proof: Let p0 ( . . . ( pl be a prime ideal chain in R. By the Going Up Lemma,
there exists a prime ideal q0 such that q0 ∩ R = p0. Now S/q0 is integral over
R/p0 and p1/p0 is a prime ideal of R/p0. Again by the Going Up Lemma, there
exists a prime ideal q̄1 of S/q0 such that q̄1 ∩ R/p0 = p1/p0. This ideal must
have the form q̄1 = q1/q0 for some prime ideal q1 ⊇ q0 of S. If equality would
hold, we’d obtain p1 = p0, a contradiction. Thus q0 ( q1. Moreover, q1∩R = p1.
Proceeding like this, we can produce a prime ideal chain in S of length l. Thus
we have shown that Krull-dim(R) ≤ Krull-dim(S).

For the converse, let q0 ( . . . ( ql be a prime ideal chain in S. Set pi := qi ∩ R.
Then p0 ⊆ . . . ⊆ pl is a prime ideal chain in R. If all inclusions are strict, we
have shown that Krull-dim(R) ≥ Krull-dim(S) as desired. Suppose conversely
that pi = pi+1. It suffices to show that this implies qi ⊇ qi+1. Let s ∈ qi+1. Since
S/qi is integral over R/pi, we have an equation s̄n + r̄n−1s̄

n−1 + . . .+ r̄1s̄+ r̄0 = 0,
where we may assume that n is minimal with this property. Then we have
r̄0 ∈ R/pi = R/pi+1 on the one hand and r̄0 ∈ qi+1/qi on the other. This implies
that r̄0 = 0. Then s̄(s̄n−1 + . . . + r̄1) = 0 holds in the domain S/qi. Due to the
minimality of n, we may conclude that s̄ = 0, that is, s ∈ qi. �
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Lemma 5 Let R ⊆ S be an arbitrary ring extension and let p be a prime ideal
of R. Then there exists a prime ideal q of S such that q ∩ R = p if and only if
p = pS ∩R.

Proof: If p = q ∩ R for some q, then pS ∩ R = (q ∩ R)S ∩ R ⊆ q ∩ R = p and
the other inclusion holds anyhow. Conversely, let p = pS ∩R. Consider the ideal
ppSp in Sp. Since pS ∩ (R \ p) = ∅, this is a proper ideal and hence contained in
a maximal ideal m of Sp. The rest of the argument is analogous to the proof of
the Going Up Lemma. �

If R ⊆ S is a ring extension and I is an ideal of R, then s ∈ S is said to
be integral over I if it satisfies a relation sn =

∑n−1
i=0 ris

i with ri ∈ I. Let
Ī = {s ∈ S | s is integral over I}.

Lemma 6 Let R ⊆ S be an arbitrary ring extension and let R̄ be the integral
closure of R in S. Let I be an ideal of R. Then Ī = Rad(IR̄). In particular, Ī
is closed under addition and multiplication.

Proof: Let s be integral over I, then sn =
∑n−1

i=0 ris
i with ri ∈ I and s ∈ R̄.

Thus sn ∈ IR̄ and hence s ∈ Rad(IR̄).

Conversely, let s ∈ Rad(IR̄). Then sn =
∑n−1

i=0 risi with ri ∈ I and si ∈ R̄.
Since each si is integral over R, the ring R[s1, . . . , sn] is finitely generated as an
R-module, say, by g1, . . . , gm. Then sngi =

∑
rjsjgi =

∑
rj

∑
rijkgk for all i,

which yields a matrix equation sng = Ag with A ∈ Im×m. This implies that
det(snIm − A) = 0, which shows that snm =

∑nm−1
i=0 ais

i for some ai ∈ I. Thus
s ∈ Ī. �

Lemma 7 Let R ⊆ S be an arbitrary ring extension, where R, S are domains
and R is normal. Let I be an ideal of R. Let s ∈ S be integral over I. Then s is
algebraic over K := Quot(R) and if sm =

∑m−1
i=0 kis

i with ki ∈ K is its minimal
equation (i.e., m is minimal), then ki ∈ Rad(I).

Proof: Let sn =
∑n−1

i=0 ris
i, where ri ∈ I. Since s is integral over R, it is clearly

algebraic over K. Let L be an extension field of K that contains s and over which
f = xn −

∑n−1
i=0 rix

i ∈ R[x] splits into linear factors, that is, f =
∏n

i=1(x − li)
for some li ∈ L, where we may assume that l1 = s. Let g ∈ K[x] be the
minimal polynomial of s ∈ L. Then g is a divisor of f and we may assume
that g =

∏m
i=1(x − li) for some m ≤ n without loss of generality. Expanding

g = xm −
∑m−1

i=0 kix
i, the coefficients ki ∈ K are in R[l1, . . . , lm]. Since each li is

integral over R, the ki are also integral over R. Since R is normal, we must have
ki ∈ R.
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Moreover, the ki can be written as sums and products of the li. Since li ∈ Ī
for all i, this implies that ki ∈ Ī by Lemma 6. Thus we have representations
kni

i =
∑ni−1

j=0 rijk
j
i for some rij ∈ I. Since ki ∈ R, this implies that ki ∈ Rad(I). �

Theorem 4 (Cohen-Seidenberg Going Down Theorem) Let R ⊆ S be an
integral ring extension, where R, S are domains and R is normal. Let p0 ( p1

be prime ideals of R. Let q1 be a prime ideal of S such that q1 ∩ R = p1. Then
there exists prime ideal q0 ( q1 of S such that q0 ∩R = p0.

Proof: It suffices to show that there exists q0 ⊆ q1 with the desired property. If
equality would hold, we’d obtain p0 = p1, a contradiction. Consider R ⊆ S ⊆ Sq1 .
The prime ideals of Sq1 have the form qq1 where q is a prime ideal of S that
is contained in q1. Therefore it suffices to show that p0 is the contraction to
R of some prime ideal in Sq1 . According to Lemma 5, we need to show that
p0 = p0Sq1 ∩R.

Let r ∈ R be such that r = a
b

with a ∈ p0S and b ∈ S \ q1. We need to show
that r ∈ p0. Without loss of generality, let r 6= 0. Since a ∈ p0S, and S = R̄,
we have a ∈ p̄0 according to Lemma 6. By Lemma 7, the minimal equation of a
over K := Quot(R) has the form

ak =
k−1∑
i=0

cia
i (1)

with ci ∈ p0. Since b = a
r

and 1
r

is a unit in K, the minimal equation for b over K
is obtained by dividing (1) by rk, which yields

bk =
k−1∑
i=0

ci
rk−i

bi. (2)

Set di := ci

rk−i . Since b is integral over R, we have di ∈ R, again by Lemma 7.
Suppose that r /∈ p0. Then rk−idi = ci ∈ p0 implies that di ∈ p0. Then (2)
implies that bk ∈ p0S ⊆ p1S ⊆ q1, a contradiction. �

Corollary 1 In the situation of the Going Down Theorem, we have ht(q) =
ht(q ∩R) for every prime ideal q of S.

Proof: Let q0 ( . . . ( ql = q be a prime ideal chain in S. As in the proof of
Theorem 3, one can show that q0 ∩ R ( . . . ( ql ∩ R = q ∩ R is a prime ideal
chain in R. Thus ht(q) ≤ ht(q ∩ R). (This part of the proof works for arbitrary
integral extensions, the Going Down Theorem was not used.)

Conversely, let p0 ( . . . ( pl = q ∩ R be a prime ideal chain in R. Applying the
Going Down Theorem repeatedly, we obtain a prime ideal chain q0 ( . . . ( ql = q.
Thus ht(q) ≥ ht(q ∩R). �
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