1 Self-injective rings

Let \mathcal{C} be a commutative ring. One says that \mathcal{C} is self-injective if it is injective as a module over itself, that is, if $\text{Hom}_{\mathcal{C}}(\cdot, \mathcal{C})$ is an exact functor. By Baer’s criterion, this is equivalent to saying that any homomorphism $\phi : I \to \mathcal{C}$, where I is an ideal of \mathcal{C}, can be extended to all of \mathcal{C}, that is, there exists a homomorphism $\psi : \mathcal{C} \to \mathcal{C}$ such that $\psi|_I = \phi$. To understand the structure of self-injective rings better, we consider the set

$$S := \{ c \in \mathcal{C} \mid \text{ann}(c) \text{ is essential in } \mathcal{C} \},$$

where an ideal of \mathcal{C} is called essential in \mathcal{C} if it has a non-zero intersection with any non-zero ideal of \mathcal{C}.

Example: Let p be a prime number, $k \in \mathbb{N}$, and $\mathcal{C} = \mathbb{Z}_{p^k}$. The non-zero ideals of \mathcal{C} are the ideals

$$\langle p^{k-1} \rangle \subset \ldots \subset \langle p^2 \rangle \subset \langle p \rangle \subset \langle 1 \rangle.$$

Since the intersection of any two of them always contains $\langle p^{k-1} \rangle \neq 0$, we conclude that any non-zero ideal of \mathcal{C} is essential in \mathcal{C}. Since $\text{ann}(p^l) = \langle p^{k-l} \rangle$ holds for all $0 \leq l \leq k$, we conclude that $S = \{ p, \ldots, p^{k-1}, p^k \} = \langle p \rangle$. We observe that S is an ideal of \mathcal{C} in this example. Next, we show that this holds in general, and this justifies that S is called the singular ideal of \mathcal{C}.

Lemma 1 The set S defined above is an ideal of \mathcal{C}.

Proof: Clearly, $0 \in S$. Let $s, t \in S$. Then $\text{ann}(s)$ and $\text{ann}(t)$ are both essential in \mathcal{C}. This implies that also $\text{ann}(s) \cap \text{ann}(t)$ is essential in \mathcal{C}. Since

$$\text{ann}(s) \cap \text{ann}(t) \subseteq \text{ann}(s + t),$$

it follows that $\text{ann}(s + t)$ is essential in \mathcal{C}, that is, $s + t \in S$. Now let $c \in \mathcal{C}$. Since $\text{ann}(s) \subseteq \text{ann}(sc)$, we obtain that $\text{ann}(sc)$ is essential in \mathcal{C}, that is, $sc \in S$. □

Next, we establish some connections between the singular ideal S and other remarkable ideals of \mathcal{C}. The nilradical N of \mathcal{C} is the set of all nilpotent elements of \mathcal{C}. It equals the intersection of all prime ideals of \mathcal{C}. A ring is called reduced if its nilradical is zero.

Lemma 2 We always have $N \subseteq S$, and $N = 0$ is equivalent to $S = 0$. If \mathcal{C} is Noetherian, then $N = S$.

1
Proof: Let \(c \in \mathcal{C} \) be nilpotent. We need to show that \(\text{ann}(c) \) is essential in \(\mathcal{C} \). Let \(I \neq 0 \) be an ideal of \(\mathcal{C} \) and let \(0 \neq d \in I \). There exists a smallest positive integer \(n \) such that \(c^n d = 0 \). Then \(0 \neq c^{n-1} d \in \text{ann}(c) \cap I \).

Since \(N \subseteq S \), it is clear that \(S = 0 \) implies \(N = 0 \). Assume conversely that \(\mathcal{C} \) is reduced. Let \(0 \neq c \in \mathcal{C} \). We wish to show that \(c \not\in S \), that is, \(\text{ann}(c) \) is not essential in \(\mathcal{C} \). It suffices to show that \(I := \text{ann}(c) \cap \langle c \rangle = 0 \). Indeed, any \(d \in I \) has the form \(d = ce \) for some \(e \) with \(c^2 e = 0 \). Then \(0 = c^2 e^2 = (ce)^2 \). Since \(\mathcal{C} \) has no non-zero nilpotent elements, we must have \(ce = 0 \) and thus \(d = 0 \).

Now suppose that \(\mathcal{C} \) is Noetherian and let \(c \in S \). We need to show that \(c \not\in S \), that is, \(\text{ann}(c) \) is not essential in \(\mathcal{C} \). It suffices to show that \(I := \text{ann}(c) \cap \langle c \rangle = 0 \). Indeed, any \(d \in I \) has the form \(d = ce \) for some \(e \) with \(c^2 e = 0 \). Then \(0 = c^2 e^2 = (ce)^2 \). Since \(\mathcal{C} \) has no non-zero nilpotent elements, we must have \(ce = 0 \) and thus \(d = 0 \).

The Jacobson radical \(J \) of \(\mathcal{C} \) is defined to be the intersection of all maximal ideals of \(\mathcal{C} \). The proof of the following useful characterization is left as an exercise.

Lemma 3 We have

\[
d \in J \iff \forall c \in \mathcal{C} : 1 - cd \text{ is a unit of } \mathcal{C}.
\]

So far, we have established the inclusions \(N \subseteq S \) and \(N \subseteq J \) in general, and \(N = S \subseteq J \) in the Noetherian case.

Theorem 1 Let \(\mathcal{C} \) be self-injective. Then \(J = S \).

Proof: “\(J \subseteq S \)”: Let \(d \in J \) and let \(I \) be an ideal of \(\mathcal{C} \) such that \(\text{ann}(d) \cap I = 0 \). We need to show that this implies that \(I = 0 \). The homomorphism \(\phi : I \to \mathcal{C} \), \(c \mapsto cd \) is injective. Hence it induces an isomorphism \(\hat{\phi} : I \to \text{im}(\phi) \) with inverse \(\hat{\phi}^{-1} : \text{im}(\phi) \to I \subseteq \mathcal{C} \). Consider the resulting map \(\varphi : \text{im}(\phi) \to \mathcal{C} \) which satisfies \(\varphi(\phi(c)) = c \) for all \(c \in I \). Since \(\mathcal{C} \) is self-injective, \(\varphi \) can be extended to a homomorphism \(\psi : \mathcal{C} \to \mathcal{C} \). Let \(\psi(1) =: b \). Then we have for all \(c \in I \):

\[
cdb = \phi(c)b = \psi(\phi(c)) = \varphi(\phi(c)) = c.
\]

We conclude that \(1 - db \in \text{ann}(I) \). But since \(d \in J \), the element \(1 - db \) is a unit and hence \(I = 0 \) follows.
"$S \subseteq J$": Let $d \in S$ and $c \in C$. We need to show that $1 - cd$ is a unit of C. Since $\text{ann}(d) \cap \text{ann}(1 - cd) = 0$

and $\text{ann}(d)$ is essential in C, we may conclude that $\text{ann}(1 - cd) = 0$. Thus there exists a homomorphism $\phi : \langle 1 - cd \rangle \to C$ with $\phi(1 - cd) = 1$. Since C is self-injective, ϕ can be extended to $\psi : C \to C$. Then we have

$$1 = \phi(1 - cd) = \psi(1 - cd) = (1 - cd)\psi(1),$$

which shows that $1 - cd$ is a unit. □

A commutative ring C is called von Neumann regular if for all $c \in C$, we have $\langle c \rangle = \langle c^2 \rangle$, that is, there exists $d \in C$ such that $c = c^2d$. Then $(1 - cd)c = 0 = c(1 - dc)$, that is, d is a weak form of an inverse of c.

Theorem 2 Let $C \neq \{0\}$. The following are equivalent:

1. C is von Neumann regular.
2. C is reduced and has Krull dimension zero.
3. For every maximal ideal m of C, the localization C_m is a field.

Proof: "1 \Rightarrow 2": "$N = 0$": Let $c^n = 0$, where n is the minimal positive integer with this property. Let d be such that $c = c^2d$. If n is even, then we have $0 = c^nd^{n/2} = c^{n/2}$ contradicting the minimality of n. Thus $n = 2m + 1$ and $0 = c^{2m+1}d^{n} = c^{m+1}$. The minimality of n implies that $m = 0$, that is, $c = 0$.

"Krull-dim(C) = 0": Let p be a prime ideal of C. We need to show that p is maximal. The ring $\bar{C} := C/p$ is a domain. Let $0 \neq [c] \in \bar{C}$. By assumption, we have $c = c^2d$ for some d, that is, $[c][1 - dc] = 0$ holds in \bar{C}. This implies that $[c]$ is a unit in \bar{C}. Thus we have shown that \bar{C} is a field, that is, p is maximal.

"2 \Rightarrow 3": Suppose that $N(C) = 0$ and Krull-dim(C) = 0 and let m be a maximal ideal of C. Since $N(C_m) = N(C)_m$ and Krull-dim(C_m) \leq Krull-dim(C), we conclude that also C_m is reduced and of Krull dimension zero. However, it is also a local ring, and thus C_m contains only one prime ideal, namely the maximal ideal m_m. Since the nilradical equals the intersection of all prime ideals, we obtain $m_m = 0$. Thus C_m is a field.

"3 \Rightarrow 1": Let $c \in C$ be given. Let m be a maximal ideal. We have

$$(\langle c \rangle/\langle c^2 \rangle)_m \cong \langle c \rangle_m/\langle c^2 \rangle_m \cong \langle c \rangle/\langle c^2 \rangle_1.$$

Since $F := C_m$ is a field, $\xi \in F$ and $\langle \xi \rangle^2 \in F$ generate the same ideal in F. Thus we have shown that $\langle c \rangle/\langle c^2 \rangle_m = 0$ for all maximal ideals m. Since being zero is a local property, this implies that $\langle c \rangle/\langle c^2 \rangle = 0$, that is, $\langle c \rangle = \langle c^2 \rangle$. □
Theorem 3 Let \mathcal{C} be self-injective. Then \mathcal{C}/S is von Neumann regular.

For the proof of this theorem, we need some preparation. For any ideal I of \mathcal{C}, we may consider

\[\mathcal{M} = \{ I' \mid I' \text{ is an ideal of } \mathcal{C} \text{ and } I \cap I' = 0 \} . \]

By Zorn’s Lemma, the set \mathcal{M} contains an element that is maximal with respect to inclusion. Let I^c be such a maximal element. Then I^c is called a complement of I, and this implies that $I \oplus I^c$ is essential in \mathcal{C}.

Proof: Let $c \in \mathcal{C}$ be given. Let $I := \text{ann}(c)$ and let I^c be a complement of I. Consider the homomorphism $\phi : I^c \to \mathcal{C}$, $d \mapsto cd$, which is injective. Hence $\hat{\phi} : I^c \to \text{im}(\phi)$ is an isomorphism with inverse $\hat{\phi}^{-1} : \text{im}(\phi) \to I^c \subseteq \mathcal{C}$. Consider the resulting map $\varphi : \text{im}(\phi) \to \mathcal{C}$ which satisfies $\varphi(\phi(d)) = d$ for all $d \in I^c$. Since \mathcal{C} is self-injective, we can extend φ to a homomorphism $\psi : \mathcal{C} \to \mathcal{C}$ with $b := \psi(1)$. Then we have for all $d \in I^c$:

\[cd = \phi(d)b = \psi(\phi(d)) = \varphi(\phi(d)) = d. \]

This implies $c^2db = cd$ for all $d \in I^c$. Hence we have $\text{ann}(c^2b - c) \supseteq I^c$, and $\text{ann}(c^2b - c) \supseteq \text{ann}(c) = I$ holds anyhow. Thus $\text{ann}(c^2b - c) \supseteq I \oplus I^c$, and since $I \oplus I^c$ is essential in \mathcal{C}, we conclude that also $\text{ann}(c^2b - c)$ is essential in \mathcal{C}. This means that $c^2b - c \in S$, that is, $[c] = [c^2b]$ in \mathcal{C}/S. \square

Examples: The ring \mathbb{Z} is not self-injective, since the homomorphism $\phi : \langle 2 \rangle \to \mathbb{Z}$ with $\phi(2) = 1$ cannot be extended to \mathbb{Z}. More generally, any reduced ring \mathcal{C} of Krull dimension at least 1 is not self-injective: $N = 0$ implies $S = 0$, and $\text{Krull-dim}(\mathcal{C}) \geq 1$ implies that \mathcal{C} is not von Neumann regular, hence \mathcal{C} cannot be self-injective according to Theorem 3.

In contrast to these “counter”-examples, a variety of self-injective rings will be found in the next section.

2 Quasi-Frobenius rings

Let $\mathcal{C} \neq \{ 0 \}$ be a commutative ring. So far, we have studied the annihilators of elements of \mathcal{C}. Now we study the annihilators of ideals of \mathcal{C}. We begin by stating the most basic properties without proof.

Lemma 4 Let I, I_1, I_2 be ideals of \mathcal{C}.

1. $I_1 \subseteq I_2 \Rightarrow \text{ann}(I_1) \supseteq \text{ann}(I_2)$.
2. $I \subseteq \text{ann}(\text{ann}(I))$.
3. $\text{ann}(I) = \text{ann}(\text{ann}(\text{ann}(I)))$.
4. $\text{ann}(I_1 + I_2) = \text{ann}(I_1) \cap \text{ann}(I_2)$.

Lemma 5 Consider the following assertions:

(P_1) C is self-injective.

(P_2) $\text{ann}(\text{ann}(I)) = I$ for all ideals I of C.

(C_1) $\text{ann}(I_1) + \text{ann}(I_2) = \text{ann}(I_1 \cap I_2)$ for all ideals I_1, I_2 of C.

(C_2) $\text{ann}(\text{ann}(I)) = I$ for all finitely generated ideals I of C.

Then $(P_i) \rightarrow (C_j)$ holds for all $i, j \in \{1, 2\}$.

Proof: “$(P_2) \Rightarrow (C_2)$” is trivial.

“(P_2) \Rightarrow (C1)” : The previous lemma implies that

$$\text{ann}(\text{ann}(I_1) + \text{ann}(I_2)) = \text{ann}(\text{ann}(I_1)) \cap \text{ann}(\text{ann}(I_2)).$$

Using (P_2), this means that

$$\text{ann}(\text{ann}(I_1) + \text{ann}(I_2)) = I_1 \cap I_2.$$

Taking annihilators on both sides and using once more (P_2), we obtain

$$\text{ann}(I_1) + \text{ann}(I_2) = \text{ann}(I_1 \cap I_2).$$

“(P1) \Rightarrow (C1)” : The inclusion “\subseteq” is straightforward. For the converse, let $c \in \text{ann}(I_1 \cap I_2)$. Define $\phi : I_1 + I_2 \rightarrow C$ by setting $\phi(c_1 + c_2) = cc_1$. To see that this is well-defined, suppose that $c_1 + c_2 = c_1' + c_2'$. Then $c_1 - c_1' = c_2' - c_2 \in I_1 \cap I_2$. Thus $c(c_1 - c_1') = 0$, that is, $cc_1 = cc_1'$. Since C is self-injective, there exists a homomorphism $\psi : C \rightarrow C$ that extends ϕ. Set $b := \psi(1)$. Then we have for all $c_1 \in I_1$, $c_2 \in I_2$:

$$b(c_1 + c_2) = \psi(c_1 + c_2) = \phi(c_1 + c_2) = cc_1.$$

In particular, we get (setting $c_1 = 0$) that $bc_2 = 0$ for all $c_2 \in I_2$, that is, $b \in \text{ann}(I_2)$, and (setting $c_2 = 0$) that $bc_1 = cc_1$ for all $c_1 \in I_1$, that is, $c - b \in \text{ann}(I_1)$. Finally, we can write $c = (c - b) + b \in \text{ann}(I_1) + \text{ann}(I_2)$.

"\((P_1) \Rightarrow (C_2)\)"\: First, consider the special case of a principal ideal \(I = \langle c_1 \rangle\). Let \(d \in \text{ann}(\text{ann}(I)) = \text{ann}(\text{ann}(c_1))\). We need to show that \(d \in I\). Define a homomorphism \(\phi : I \to \mathcal{C}\) via \(\phi(c_1) = d\). For well-definedness, we need to show that \(\text{ann}(c_1) \subseteq \text{ann}(d)\). However, if \(c \in \text{ann}(c_1)\), then \(\text{ann}(c) \supseteq \text{ann}(\text{ann}(c_1)) \ni d\) and thus \(cd = 0\), that is, \(c \in \text{ann}(d)\).

Since \(\mathcal{C}\) is self-injective, \(\phi\) can be extended to a homomorphism \(\psi : \mathcal{C} \to \mathcal{C}\). Set \(b := \psi(1)\). Then we have

\[bc_1 = \psi(c_1) = \phi(c_1) = d,\]

which shows that \(d \in \langle c_1 \rangle = I\).

Second, consider the general case \(I = \langle c_1, \ldots, c_n \rangle\). Then we have

\[\text{ann}(\text{ann}(I)) = \text{ann}\left(\bigcap_{i=1}^{n} \text{ann}(c_i)\right).\]

Using the already proven implication "\((P_1) \Rightarrow (C_1)\)"\, we obtain

\[\text{ann}(\text{ann}(I)) = \sum_{i=1}^{n} \text{ann}(\text{ann}(c_i)).\]

From the principal ideal case above, we know that \(\text{ann}(\text{ann}(c_i)) = \langle c_i \rangle\) and thus we may conclude

\[\text{ann}(\text{ann}(I)) = \sum_{i=1}^{n} \langle c_i \rangle = I.\]

\[\square\]

For proving the subsequent main result, we use the following fact without proof: A commutative ring is Artinian if and only if it is Noetherian and has Krull dimension zero.

Theorem 4 The following are equivalent:

1. \(\mathcal{C}\) is Noetherian and self-injective.
2. \(\mathcal{C}\) is Noetherian and satisfies \(\text{ann}(\text{ann}(I)) = I\) for all ideals \(I\) of \(\mathcal{C}\).
3. \(\mathcal{C}\) is Artinian and satisfies \(\text{ann}(\text{ann}(I)) = I\) for all ideals \(I\) of \(\mathcal{C}\).

If the equivalent conditions are satisfied, then \(\mathcal{C}\) is called a quasi-Frobenius ring.