Congruences between Schur elements

Michel Broué

Université Paris Cité

Geck Fest - June 2023

Heidelberg 1991 +n?, then... Unglaublich

Schur elements matter

For H a finite group and ℓ a prime number, we set the following notation.

- For χ an irreducible character of H, its Schur element is $S_{\chi}:=|H| / \chi(1)$.
- For $h \geq 0$ an integer, $\operatorname{Irr}_{h}(H):=\left\{\chi \in \operatorname{Irr}(H) \mid\left(S_{\chi}\right)_{\ell}=\ell^{h}\right\}$.
- For $r \in(\mathbb{Z} / \ell \mathbb{Z})^{\times}, \operatorname{Irr}_{h, r}(H):=\left\{\chi \in \operatorname{Irr}_{h}(H) \mid\left(S_{\chi}\right)_{\ell^{\prime}} \equiv \pm r \bmod \ell\right\}$.
- For \mathcal{G} a subgroup of $\operatorname{Gal}\left(\mathbb{Q}_{\ell}(\sqrt[(G)]{1}) / \mathbb{Q}_{\ell}\right)$, $\operatorname{lrr}_{h, r, \mathcal{G}}(H):=\left\{\chi \in \operatorname{Irr}_{h, r}(H) \mid \forall \sigma \in \mathcal{G},{ }^{\sigma} \chi=\chi\right\}$.

A perfect isometry between (H, b) and $\left(H^{\prime}, b^{\prime}\right)$ is (in particular) a "bijection with signs" $\chi \in \operatorname{Irr}(H, b) \xrightarrow{\sim} \varepsilon_{\chi}^{\prime} \chi^{\prime} \in \operatorname{Irr}\left(H^{\prime}, b^{\prime}\right)$ such that $\varepsilon_{\chi^{\prime}} S_{\chi^{\prime}} / S_{\chi}=r \in(\mathbb{Z} / \ell \mathbb{Z})^{\times}$, i.e., $\operatorname{Irr}_{h, r}(H, b) \xrightarrow{\sim} \operatorname{Irr}_{h, r}\left(H^{\prime}, b^{\prime}\right)$.
"AMIDRUNK conjecture" - Let b be an ℓ-block of G. Assume that $O_{\ell}(G)=1$ and b of defect not 1 . Then, whenever $h \geq 0, r \in(\mathbb{Z} / \ell \mathbb{Z})^{\times}$, and $\mathcal{G} \subseteq \operatorname{Gal}\left(\mathbb{Q}_{\ell}(\sqrt[|G|]{1}) / \mathbb{Q}_{\ell}\right)$ are given,

$$
\sum_{\mathcal{E} / G}(-1)^{|\mathcal{E}|}| | r_{h, r, \mathcal{G}}\left(N_{G}(\mathcal{E}), e\right) \mid=0, \ldots
$$

Notation

- $K=$ an abelian finite extension of \mathbb{Q},
- $V=$ an r-dimensional vector space over K,
- $W=$ a finite subgroup of $\mathrm{GL}(V)$ generated by (pseudos-)reflections,
- \mathcal{A} the set of reflecting hyperplanes for W,
and for H a reflection hyperplane of $W(H \in \mathcal{A})$:
- e_{H} the order of the fixator W_{H} of H in G,
- s_{H} the corresponding reflection with eigenvalue $e^{2 \pi i / e_{H}}$, the generator of W_{H} called distinguished reflection.

Braid groups

$$
\text { Set } \quad V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H
$$

The covering $V^{\text {reg }} \rightarrow V^{\text {reg }} / W$ is Galois, hence it induces a short exact sequence

Theorem

(1) The braid group B_{W} is generated by the braid reflections ($\mathbf{s}_{H, \gamma}$) (for all H and all γ).

2 The pure braid group P_{W} is generated by the elements $\left(\mathbf{s}_{H, \gamma}^{e_{H}}\right)$
3 If W acts irreducibly on V, the center of B_{W} and P_{W} are cyclic, and the center of P_{W} is generated by π, the positive loop around x_{0}.

For $W \subset \mathrm{GL}(V)$ a reflection group, let $\{\mathbf{s}, \mathbf{t}, \ldots\}$ be a complete set of representatives of conjugacy classes of braid reflections in B_{W}, with reflections-orders respectively $\{d, e, \ldots\}$.
Choose corresponding indeterminates $\left\{\left(u_{\alpha}\right)_{\alpha=0, \ldots d-1},\left(v_{\beta}\right)_{\beta=0, \ldots, e-1}, \ldots\right\}$

Generic Hecke Algebra

The corresponding generic Hecke algebra $\mathcal{H}(W)$ is the quotient of the group algebra of B_{W} over the Laurent polynomials algebra

$$
\mathbb{Z}\left[\left(u_{\alpha}^{ \pm 1}\right)_{\alpha=0, \ldots d-1},\left(v_{\beta}^{ \pm 1}\right)_{\beta=0, \ldots, e-1}, \ldots\right]
$$

by the ideal generated by

$$
\left(\mathbf{s}-u_{0}\right) \cdots\left(\mathbf{s}-u_{d-1}\right),\left(\mathbf{t}-v_{0}\right) \cdots\left(\mathbf{t}-v_{e-1}\right), \ldots .
$$

Notice that if we specialize $u_{\alpha} \mapsto \exp (2 \pi i \alpha / d), v_{\beta} \mapsto \exp (2 \pi i \beta / e), \ldots$, then $\mathcal{H}(W)$ becomes the group algebra of W.

Theorem \& Conjecture

${ }^{1}$ (Theorem - G. Malle, I. Marin, Mathématiciennes grecques, and al.) $\mathcal{H}(W)$ is free of rank $|W|$ over $\mathbb{Z}\left[\left(u_{\alpha}^{ \pm 1}\right),\left(v_{\beta}^{ \pm 1}\right), \ldots\right]$.

2 (Conjecture) There exists a unique linear form

$$
t: \mathcal{H}(W) \rightarrow \mathbb{Z}\left[\left(u_{\alpha}^{ \pm 1}\right)_{\alpha=0, \ldots d-1},\left(v_{\beta}^{ \pm 1}\right)_{\beta=0, \ldots, e-1}, \ldots\right]
$$

with the following properties.

- t is a symmetrizing form on the algebra $\mathcal{H}(W)$,
- t specializes to the canonical linear form on the group algebra of W,
- For all $b \in B$, we have

$$
t\left(b^{-1}\right)^{\vee}=\frac{t(b \pi)}{t(\pi)}
$$

Φ-cyclotomic Hecke algebras

Let x be an indeterminate, let Φ be a cyclotomic polynomial in $K[x]$.
A Φ-cyclotomic Hecke algebra $\mathcal{H}_{x}(W)$ is (in particular) a specialization "with only one indeterminate" of the generic Hecke algebras such that

- $u_{\alpha} \mapsto \zeta_{\alpha} x^{m_{\alpha}}, v_{\beta} \mapsto \xi_{\beta} x^{n_{\beta}}, \ldots$ where ζ, ξ, \ldots are roots of 1 , and $m_{\alpha}, n_{\beta} \ldots$ are nonnegative rational numbers,
- $\mathcal{H}_{x}(W)$ is a $\mathbb{Z}_{K}\left[x, x^{-1}\right]$-algebra,
- $\mathcal{H}_{x}(W)$ is a specialization of the generic Hecke algebra $\mathcal{H}(W)$,
- which is congruent modulo Φ to the group algebra of W.

Examples

- $\Phi=x^{2}+x+1$ (a "3-Weyl group" for $G=G L_{6}$),

$$
\begin{gathered}
W_{3}=B_{2}(3)=\mu_{3}\left\langle\mathfrak{S}_{2} \longleftrightarrow \underset{\substack{(3)=2}}{2}\right. \\
\mathcal{H}\left(W_{3}\right)=\left\langle S, T ;\left\{\begin{array}{l}
S T S T=T S T S \\
(S-1)(S-x)\left(S-x^{2}\right)=0 \\
\left(T-x^{3}\right)(T+1)=0
\end{array}\right\}\right\rangle
\end{gathered}
$$

- $\Phi=x^{2}+1$ (a "4-Weyl group" for $G=\mathrm{O}_{8}, W=D_{4}$),

$$
\begin{gathered}
\left.W_{4}=G(4,2,2) \longleftrightarrow \mathrm{s} 2\right)_{(2) \mathbf{u}}^{2} \mathrm{t} \\
\mathcal{H}\left(W_{4}\right)=\left\langle S, T, U ;\left\{\begin{array}{l}
S T U=T U S=U S T \\
\left(S-x^{2}\right)(S-1)=0
\end{array}\right\}\right\rangle
\end{gathered}
$$

Some conjectures implying congruences

Let \mathbb{G} be the type ("reflection coset") of a "finite reductive group" ($\mathbf{G}, F)$, and let (\mathbb{L}, λ) be a Φ-cuspidal pair of \mathbb{G}.

Conjectures (from last century)
There exists a Φ-cyclotomic algebra $\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)$ attached to the relative Weyl group $W_{\mathbb{G}}(\mathbb{L}, \lambda)$ (a complex reflection group), where

- $t: \mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda) \rightarrow \mathbb{Z}_{K}\left[x, x^{-1}\right]$ is the specialization of the canonical form,
- the Schur elements $\mathbf{S}_{\chi}^{\left(\mathcal{H}_{G}(\mathbb{L}, \lambda)\right)} \in \mathbb{Z}_{K}\left[x, x^{-1}\right]$ attached to characters χ of $\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)$ are defined by

$$
t=\sum_{\chi \in \operatorname{lrr}\left(\mathcal{H}_{G}(\mathbb{L}, \lambda)\right)} \frac{1}{\mathbf{s}_{\chi}^{\left(\mathcal{H}_{G}(\mathbb{L}, \lambda)\right)}} \chi,
$$

which satisfies Conjectures Conj-1 and Conj-2 below.

Conj-1. There is a bijection $\operatorname{Irr}\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right) \xrightarrow{\sim} \operatorname{Irr}(\mathbb{G},(\mathbb{L}, \lambda)), \chi \mapsto \rho_{\chi}$ together with a collection of signs $\left(\varepsilon_{\chi}\right)$ such that, as a character of a \mathbf{G}^{F}-object- $\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)_{\left.\right|_{x=q}}$, we have

$$
R_{\mathbf{L}}^{\mathbf{G}}(\lambda)_{\left.\right|_{x=q}}=\bigoplus_{\chi \in \operatorname{lrr}\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)} \varepsilon_{\chi} \rho_{\left.\chi\right|_{x=q}} \otimes \chi_{\left.\right|_{x=q}}
$$

Conj-2. $\left.\quad \operatorname{tr}\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)_{\left.\right|_{x=q}} ; R_{\mathbb{L}}^{\mathbb{G}}(\lambda)_{\mid x=q}\right)=\operatorname{Deg}\left(R_{\mathbb{L}}^{\mathbb{G}}(\lambda)\right)_{\left.\right|_{x=q}} t_{\left.\right|_{x=q}}$, hence

$$
\left.\operatorname{tr}\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)_{\left.\right|_{x=q}} ; R_{\mathbb{L}}^{\mathbb{G}}(\lambda)_{\mid x=q}\right)=\sum_{\left.\chi \in \operatorname{lrr}\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)\right)} \frac{\left.\operatorname{Deg}\left(R_{\mathbb{L}}^{\mathbb{G}}(\lambda)\right)_{\left.\right|_{x=q}}\right)}{\left(\mathbf{S}_{\chi}\right)_{\left.\right|_{x=q}}} \chi_{\left.\right|_{x=q}} \text {, and }
$$

$$
\operatorname{Deg}_{\varepsilon_{\chi} \rho_{\chi}}=\frac{\operatorname{Deg}\left(R_{\mathbb{L}}^{\mathbb{G}}(\lambda)\right)}{\mathbf{S}_{\chi}^{\left(\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)}} .
$$

Since

$$
\operatorname{Deg}\left(R_{\mathbb{L}}^{\mathbb{G}}(\lambda)\right)=\varepsilon_{\mathbb{G}} \varepsilon_{\mathbb{L}} \frac{|\mathbb{G}: \mathbb{L}|}{|\mathbb{G}: \mathbb{L}|_{x}} \operatorname{Deg}(\lambda),
$$

Conj-2 implies

$$
\frac{\mathbf{S}_{\varepsilon_{\chi} \rho_{\chi}}^{(\mathbb{G})}}{\mathbf{S}_{\lambda}^{(\mathbb{L})} \mathbf{S}_{\chi}^{\left(\mathcal{H}\left(\mathcal{H}_{\mathbb{L}}(\mathbb{L}, \lambda)\right)\right.}}=\varepsilon_{\mathbb{G}} \varepsilon_{\mathbb{L}}|\mathbb{G}: \mathbb{L}|_{x} \text { hence } \frac{\mathbf{S}_{\varepsilon_{\chi} \rho_{\chi}}^{(\mathbb{G})}}{\mathbf{S}_{\lambda}^{(\mathbb{L})} \mathbf{S}_{\chi}^{\left(\mathcal{H} \mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda)\right)}} \equiv 1 \quad \bmod \Phi .
$$

Moreover, since $\left.\mathcal{H}_{\mathbb{G}}(\mathbb{L}, \lambda) \equiv K W_{\mathbb{G}}(\mathbb{L}, \lambda)\right) \bmod \Phi$, we have

$$
\frac{\mathbf{S}_{\varepsilon_{\chi} \rho_{\chi}}^{(\mathbb{G})}}{\mathbf{S}_{\lambda}^{(\mathbb{L})} S_{\chi_{W_{\mathbb{G}}(\mathbb{L}, \lambda)}}} \equiv 1 \quad \bmod \Phi .
$$

Assuming extendibility of λ

Ask Britta $=$ Assume that λ extends to a character of $N_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)$, still denoted by λ.
Then the characters of $N_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)$ may be denoted by $\lambda \cdot \chi$

- where χ runs over $\operatorname{lrr}\left(W_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right.$,
- and where $(\lambda \cdot \chi)(1)=\operatorname{Deg}(\lambda)_{\mid x=q} \chi(1)=\lambda(1) \chi(1)$.

Then the above equality becomes :

$$
\frac{\mathbf{S}_{\varepsilon_{\chi} \rho_{\chi}}}{S_{\lambda \cdot \chi}^{\left(N_{G^{F}}(\mathbb{L}, \lambda)\right)}} \equiv 1 \quad \bmod \Phi
$$

Now comes ℓ

Let ℓ be a prime number which does not divide q, and divides $\Phi(q)$. By the above congruence, it follows that

$$
\frac{\varepsilon_{\chi} S_{\rho_{\chi}{ }^{F}}}{S_{\lambda \cdot \chi}} \equiv 1 \bmod \ell,
$$

Note that the above congruence means the following two facts.
(1) if $\left(S_{\lambda \cdot \chi}\right)_{\ell}=\ell^{h}$ then $\left(S_{\rho_{\chi}{ }^{F}}\right)_{\ell}=\ell^{h}$.

2 $\left(\frac{\varepsilon_{\chi} S_{\rho_{\chi}^{\sigma^{F}}}}{S_{\lambda \cdot \chi}}\right)_{\ell^{\prime}} \equiv 1 \bmod \ell$,
hence we have a bijection a bijection

$$
\operatorname{lrr}_{h, 1}\left(N_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right) \xrightarrow{\sim} \operatorname{UnCha}_{h, 1}\left(\mathbf{G}^{F} ;(\mathbf{L}, \lambda)\right) \quad, \quad \lambda \cdot \chi \mapsto \rho_{\chi}^{\mathbf{G}^{F}} .
$$

Let s be an ℓ-element of $\mathbf{G}^{*} F^{*}$.
We know that there exists a bijection

$$
\operatorname{UnCha}\left(C_{\mathbf{G}^{*}}(s)\right)^{F^{*}} \xrightarrow{\sim} \mathcal{E}\left(\mathbf{G}^{F},(s)\right) \quad, \quad \rho \mapsto \xi_{\rho}
$$

such that

$$
\operatorname{Deg}\left(\xi_{\rho}\right)= \pm \frac{\left|\mathbf{G}^{F}\right|_{q^{\prime}}}{\left|\mathbf{C}_{\mathbf{G}^{*}}(s)^{F^{*}}\right|_{q^{\prime}}} \operatorname{Deg}(\rho) .
$$

Since

$$
\frac{\left|\mathbf{G}^{F}\right|_{q}}{\left|C_{\mathbf{G}^{*}}(s)^{F^{*}}\right|_{q}} \equiv \pm 1 \quad \bmod \ell,
$$

it follows that

$$
\left(\frac{S_{\xi_{\rho}}}{S_{\rho}}\right)_{\ell} \equiv \pm 1 \quad \bmod \ell
$$

Sadness, Seriousness, ... and Friendly smile

The late Jan Saxl, Three Fields Medalists,...

and two dissipated guys.

