
Performance Engineering

Alexander Hulpke

April 1999

This talk is an attempt to give general strategies for a multi-faceted problem. Most real-world
problems will need a closer, specific treatment. Even if the talk succeeds, the slides on their
own might look extremely simple-minded.

My general assumption will be that you have code that runs too slow and that this is neither
because of an inefficient algorithm design, nor because of the inherent difficulty of the
problem.

Concentrating on GAP specifics I will talk about some traps and problems which I
encountered again and again in GAP code and about remedies and ways to avoid these.
These lists are certainly not comprehensive but may give some hints.

JAH, Linz Workshop 1999 1



A la recherche du temps perdu

The first problem is to locate where unreasonably much time is spent. In simple cases
interruption and backtrace or differences of Runtime(); will suffice, in more complicated
cases Profile ing might be necessary.

• The minimum clocktick difference is 10ms. Functions which take very little time are only
profiled properly if they get called very often.

• Garbage Collections can influence single runs.

• Start GAP with command line option -g -g to get a display of all garbage collections.
A call GASMAN("collect"); will enforce a collection.

• The “culprit” function must take a substantial part of the runtime – otherwise it drowns in
a sea of noise.

• Usually profiling gives only a “top-level” time distribution.

• Usually the “sum” of the profile information is relevant: The functions called as children
are only called because of the function.

• Kernel methods are not profiled.

JAH, Linz Workshop 1999 2



• Functions are only profiled if profiling is turned on for them deliberately.

• Do “elementary” operations show up high in the profile?

• Get an idea of “reasonable” runtimes for subtasks.

• Dissection of high-level functions might be necessary.

• Do the times of parts of the algorithm sum up?

• TraceMethods is ignored for profiled operations.

• If operation A is installed as a method for operation B, calls to A are also listed for B.

JAH, Linz Workshop 1999 3



Example

Compute the conjugacy classes of a group of size 1152. (These are pruned outputs.)

The generic default method uses cyclic extension. There also is a (usually more efficient)
method for solvable groups.

Define the group, turn on profiling for a few functions of the “solvable groups” algorithm.

gap> g:=TransitiveGroup(12,200);;

gap> ProfileOperationsAndMethods(true);

gap> ProfileFunctions(OCOneCocycles,

> SubgroupsSolvableGroup,

> InvariantSubgroupsElementaryAbelianGroup,

> ActionSubspacesElementaryAbelianGroup);

gap> l:=ConjugacyClassesSubgroups(g);;

gap> DisplayProfile();

JAH, Linz Workshop 1999 4



count self/ms chld/ms function

231659 770 30 ADD_LIST

505 10 2730 StabChainOp

1740 60 3370 Enumerator: for a collection with

13541 2960 690 Meth(DepthOfPcElement)

1 0 4270 Zuppos

234 270 4480 Meth(InducedPcgsByPcSequenceAndGe

234 10 4750 InducedPcgsByPcSequenceAndGenerat

234 10 4760 InducedPcgsByGeneratorsNC

234 0 4810 InducedPcgsByGenerators

468 11150 9310 NormalizerOp: perm group

234 0 20460 NormalizerOp

2 1290 35270 LatticeSubgroups: cyclic extensio

1 0 36570 LatticeSubgroups

2 0 36580 ConjugacyClassesSubgroups

36660 TOTAL

Now the same with the solvable groups method

gap> g:=TransitiveGroup(12,200);;IsSolvableGroup(g);;

JAH, Linz Workshop 1999 5



count self/ms chld/ms function

2 0 110 InvariantSubgroupsElementaryAbe

6 30 2090 ActionSubspacesElementaryAbelia

115 990 5320 OCOneCocycles

572 10 6600 StabChainOp

3576 70 6620 ClosureGroup

72354 510 6400 DepthOfPcElement

226 540 7290 OrbitStabilizerAlgorithm: for pc

72 20 8190 ExternalOrbitsStabilizersAttr

1580 40 8910 InducedPcgsByPcSequenceAndGenera

272 6650 9790 NormalizerOp: perm group

148 10 16950 NormalizerOp

200 10 26980 CentralizerModulo

2 230 78240 SubgroupsSolvableGroup

1 20 78550 LatticeSubgroups: elementary abe

78800 TOTAL

JAH, Linz Workshop 1999 6



Analysis

Analyzing the code we find that CentralizerModulo is only used to compute
normalizers of the subgroups. The interface to the algorithm permits to turn this off:

gap> SubgroupsSolvableGroup(g,rec(retnorm:=false));;

gap> DisplayProfile();

count self/ms chld/ms function

58778 440 4270 DepthOfPcElement

33 0 6880 SmallGeneratingSet

115 870 6360 OCOneCocycles

72 10 7890 ExternalOrbitsStabilizersAttr: m

2 270 33630 SubgroupsSolvableGroup

33900 TOTAL

Finally, just to show the difference here are times without profiling:

cyclic extension elementary abelian extension

Profile 36 78

No Profile 24 41

JAH, Linz Workshop 1999 7



What can go wrong ...

Different calculations which yield equivalent results can take notably different time and GAP

might do extra tests you do not really want to happen.

It is also possible that the operation chosen does more than what is needed and this “more”
comes at a premium.

... and how to avoid it

To avoid such problems you should have an idea what you intend GAP to do and – if
possible – also a rough idea how it should do it.

You also probably will want to ignore some of the (default) convenience mechanisms built in
to save beginners from accidentally getting wrong results.

This also might mean that you have to write own code or modify existing library code.

Of course it is still possible that GAP library routines are underperforming. If you encounter a
problem of this kind please let us know!

JAH, Linz Workshop 1999 8



Asking the wrong question

GAP contains many operations and several of them might solve your problem. However the
cost of the underlying algorithms can be quite different.

• In general, ask for the weakest result that will answer your question.

• The mathematical definition of an object might not be the optimal one for calculations.
(Don’t get Sylow subgroups by computing the Lattice.)

• Try to use the lowest (reasonable) level representation in inner loops (row vectors and
matrices instead of generic vector spaces). If necessary rephrase the problem.

• Some operations in GAP are there to answer certain types of questions interactively with
little parameter interface. (E.g. Factorization .) They are not suited to be called from
within algorithms.

• When checking large sets of elements, can the question be phrased for elements up to
conjugacy or automorphisms? (The function MorClassLoop provides a general
interface to run through tuples of elements.)

• Do not compute all subgroups unless you really want (almost) all.

• It might be worth to change an algorithm to run it only partially (only on some classes,
JAH, Linz Workshop 1999 9



modulo a normal subgroup, stop if one solution was found – don’t wait for all). Some
operations already provide an extended interface of this kind.

• The pigeonhole principle is your friend. (If there is only one candidate left and theory
tells there must be a solution this is it.)

• Is the same question asked again and again? (Dynamical Programming.)

• Does the code create equal but not identical objects (e.g. InducedPcgs ) anew?

A dual problem is not asking for enough, respectively using an operation interface that will
not return everything that has been computed.

• Computing the orbit and the stabilizer separately.

• It is possible that the library interface of various operations does not yet permit to obtain
all intermediate data. Complain.

JAH, Linz Workshop 1999 10



Calling the wrong method

If different methods are applicable for the same object all will return a valid result. Thus you
won’t note immediately if the method called is not the (optimal) one you believed it to be.

• ProfileOperationsAndMethods lists the identification strings of the methods.

• TraceMethods displays the identification strings whenever a method gets called.

• ApplicableMethod can be used to check which method will be used. (Note
however: Some functions still dispatch on operations and a few operations dispatch first
in the kernel.)

• The good method might not be applicable because some (obvious) filters are not set.
(IsFinite is a well-known culprit.)

• Set the filter once the object is created.

• Should the filter be implied? (InstallTrueMethod takes care.)

• The better method is actually ranked lower than a not-so-good default.

• Is the method ranked so low, because filters are missing (which are set for the default
method)? Again IsFinite is a likely candidate.

JAH, Linz Workshop 1999 11



• Explicitly rerank the method higher.

• If it happens for many methods it might be worth to rerank filters.

• The only implemented method may be too generic.

• Is it necessary to call the operation? (NCversions might avoid element tests.)

• Don’t let GAP check properties you know already.

• When not debugging use NCversions of functions/operations.

• A function might (implicitly) ask for properties of an object you already know. Tell such
properties to the object by setting the corresponding attributes.

• But don’t spend all time just maintaining information.

JAH, Linz Workshop 1999 12



Using the wrong representation

The choice of a suitable data structure can substantially influence the performance of an
algorithm. This choice of a representation can happen unknowingly: While one might be
interested only in an “ideal” object, GAP must to be given a concrete representation, the
(right!) choice of this may be crucial for performance.

• It can be worth to change the representation in which the calculation takes place. (For
example computing in an isomorphic PcGroup so that all pcgs calculations are done with
respect the FamilyPcgs.)

• Matrix groups translate almost all calculations via a NiceMonomorphism into a
permutation representation.

• Lists or matrices of finite fields that are concatenated are not automatically in the matrix
representations. Matrix arithmetic then can be comparatively slow.

• There are compact kernel data structures for vectors and matrices over small finite fields.
The kernel implements fast addition/multiplication for these. ConvertToVectorRep

and ConvertToMatrixRep change objects accordingly. (It does not improve element
access.)

JAH, Linz Workshop 1999 13



• Operations for words usually convert it to an internal list format, access via Syllables is
much quicker.

• Multiple operations on complicated objects are often done quicker in the permutation
group image of the operation homomorphism.

• Use the implicit homomorphisms of the group operation functions (→ talk on external
sets)

• Try to build intermediate objects in a way that they can be used directly.

• Is the algebraic context reasonable? (Can one change from rationals to integers? From
rational functions to Laurent polynomials?)

• Integers > 228, finite fields > 216 require a more complicated arithmetic.

• In algorithms for solvable groups try to use a Pcgs or ModuloPcgs instead of explicitly
creating many factor groups (each with its own collector).

• For deeply nested lists the type determination can be expensive.

• Plain lists are typed in the kernel, a list may not (yet) know to be sorted, dense or
homogeneous.

JAH, Linz Workshop 1999 14



Lists, Collections and their elements

A favourite place to waste time is to find elements in a list or collection.

• Element tests become much quicker in a sorted list.

• A list that contains immutable objects may not store that it is sorted.

• A few “library lists” (elements of GF(p)n, right transversals) have an intelligent Position

function that is faster than an ordinary search. It will not inherit to sublists.

• For “property stabilizers” (GL, SO, wreath products) much simpler element tests are
possible.

• If element tests turn out to be the time consuming part investigate other data structures.
Frequent in tests in small objects that are handled by an algorithm might be better via
sorted element lists.

Lists are also used to represent row vectors and careless arithmetic can create lots of garbage.
There are in-place operations that avoid this.

For example instead of sum:=sum+c*vec use AddCoeffs(sum,vec,c) .

JAH, Linz Workshop 1999 15



The devil in the detail

In many cases speed tuning at the cost of legibility, generality or maintainability may not be
worth the price, but inner loops may warrant such measures bordering on the desperate.

• Do not create garbage.

• Try to use in-place operations whenever possible.

• Instead of l=[] compare Length(l)=0 .

• Do not build intermediate objects which are not used further on (for example do a
polynomial multiplication with the coefficient lists yourself and do not create rational
functions.)

• Check the methods for operations whether they still dispatch. Call the innermost
operation.

• Try to precompute subresults.

• If possible use kernel operations (e.g. sublist, scalar product) – even if they do a bit more
than library code.

• There is about 10-15% benefit from “unraveling” a simple recursion by a stack.

JAH, Linz Workshop 1999 16



Kernel vs. Library

In average C code is a factor 4-5 faster than the same code in the library.

However usually most time is spent in a small part of the code. (e.g. permutation
multiplication or matrix arithmetic)

The philosophy of the GAP design is to put these routines in the kernel while preserving the
rapid prototyping convenience of an interpreted language.

Compiling the whole library gives a disappointing increase in performance (10 %).

The improvement will be better if most time is spent in “elementary” calculations as Integer
Arithmetic, List Handling or Combinatorics.

Compiled code still has “untyped” variables. If it is known that certain variables will be small
integers hand-specialization can be worthwhile.

The compiler cannot use special C features (packed representation, bit manipulation) for
GAP lists unless this is provided for by the GAP language.

Compilation is a last resort if the algorithms cannot be improved any more.

JAH, Linz Workshop 1999 17



Creating many objects

GAP ensures that two equal types are identical. This makes creating or changing types
expensive, if it happens often:

for i in params do

o:=Objectify(NewType(family,filter),rec(param:=i));

SetMyAttribute(o,value);

SetMyProperty(o,true);

Add(l,o);

od;

In every iteration of the loop a new type is created, GAP checks whether this type already
exists (finds out it does) and returns the old type. An obvious improvement is:

typ:=NewType(family,filter);

for i in params do

o:=Objectify(typ,rec(param:=i));

or even better to store a few default types in family.

JAH, Linz Workshop 1999 18



However assigning attributes (or properties) also implies a type change. The quickest way to
create the objects thus is:

typ:=NewType(family,filter and HasMyProperty and MyProperty);

for i in params do

o:=ObjectifyWithAttributes(typ,rec(param:=i),

MyAttribute,value);

Caveat: If any of the attributes has a separate setter method installed,
ObjectifyWithAttributes cannot use the quick way but has to call the setter. This
will be slower than the standard method.

JAH, Linz Workshop 1999 19



Keeping many objects

Once many objects have been created it is possible they will remain in existence for some
time and use up the memory. The numbers given are only the pure data content, there is
some constant offset for the bag of each non-immediate object.

Memory requirements:

Type Bytes (32 bit system)

small integer 4

integer > 228 b (log2(n)/8)
8

+ 1c · 8
FF Element 4

list 4 · l for pointers

GF(2) vector, blist bit list

GF(q) vector compressed in bytes

permutation 2 · deg (but 4 · deg if deg > 216)

word 8, 16, 32 bit syllables, integers list

The best way is not to run into this problem, but here are a few desperate measures if you
really must keep that many objects.

JAH, Linz Workshop 1999 20



• Attributes which have been computed once remain stored.

• NamesOfComponents lists the components which are known for an object.
(Currently) every attribute is stored that way.

• The values of “large” attributes which are likely not to be used later can be computed via
AttributeValueNotSet .

• this does not help, if the method involves other attributes. (Say AsList calls
AsSSortedList .)

• If this is suspected it might be worth to create another object with the same generators,
compute its attribute value and delete this new object afterwards.

• You might want to assign a few attribute values for the new object, e.g. Size , to avoid
expensive recalculations.

• Objects which are otherwise dead might be kept alive via pointers to families or
homomorphisms.

• Inessential information of this kind can be kept via weak pointers. (This are pointers that
do not enforce objects to stay alive over a garbage collection.)

JAH, Linz Workshop 1999 21


