
GAP Tools

Alexander Hulpke

April 1999

JAH, Linz Workshop 1999 1

CVS

CVS (http://www.cyclic.com) is a system for distributed code development.

'

&

$

%

h

h

h

h

@
@

@@I

-

�
�
���

Z
Z
ZZ~

? Main

Repository

User 1 User 2

User 1 gets code

User 2 gets codechange

code

commit
changes get changes

All GAP code is in a CVS repository in St Andrews. We offer read access to the current
development version. (This will still require a password – Ask.)

Changes only go in the repository after they are committed. If other changes to the same
piece of code have been done already by another user, CVS enforces a check for
compatibility by the user.

JAH, Linz Workshop 1999 2

It is possible to create different development branches (we have the “current” branch and
GAP4B5.)

CVS remembers all versions of the code, it can resurrect older versions, find differences
between versions or merge changes from one branch into another.

Every committed change gets an identification text.

(Make sure you have a current CVS version (1.10 and later is safe), older ones might be prone
to the Y2K problem.)

JAH, Linz Workshop 1999 3

Homebuilt Tools

All other tools are somehow “home-grown”.

We use them in the development, they may be of use to other people.

Needless to say they come without any support.

All path names are relative to the GAP root directory under CVS.

Debugging Tracer

Sometimes it the Where display does not help to localize the position of an error (or GAP

simply crashes). A desperate way to find such errors is to print “life-line” line numbers.

The shell script etc/addebugs adds Print statements after every “;” that count up,
etc/removedebugs removes them again.

The scripts keep safety copies of the original files.

JAH, Linz Workshop 1999 4

Manual Tester

The manual test scripts (doc/test take a manual chapter, extract all sections between
\beginexample –\endexample pairs and runs the GAP input, comparing its output to
the output given in the examples. It lists all discrepancies.

Tests are performed up to blanks. All output of one command is concatenated into one line.

The manual tester cannot cope with errors that will cause GAP to enter the brk> -loop. Such
examples must be enclosed by \begintt –\endtt .

you@unix> testexample ../ref/grpperm.tex

Lots of not redirected screen output

Differences in output:

=====================

Command: h:=Group(GeneratorsOfGroup(op));;StabChain(h);;time;

Example: 970

Output : 950

JAH, Linz Workshop 1999 5

Manual Builder

The documentation of most functions and operations is at the place where they are created
in the library:

###

##

#O Piffle(<woffle>,<biffle>)

##

computes the maximal piffle which is

compatible with <woffle> and <biffle>.

DeclareOperation("Piffle",[IsWoffle,IsBiffle])

We want this text to go in the manual with added examples.

This is achieved by the manual builder, a perl script etc/buildman.pe which replaces
declarations in a skeleton file (.msk) by the appropriate description from the library.

JAH, Linz Workshop 1999 6

The skeleton:
\Declaration {Piffle }
\beginexample

gap> Piffle(a,b)

<a maximal piffle>

\endexample

transforms the declaration:
#O Piffle (<woffle>,<biffle>)

computes the maximal piffle which is

compatible with <woffle> and <biffle>.

DeclareOperation("Piffle",[IsWoffle,IsBiffle])

into this manual section:

IPiffle (woffle,biffle) O

computes the maximal piffle which is compatible with woffle and biffle.

gap> Piffle(a,b)

<a maximal piffle>

JAH, Linz Workshop 1999 7

The manual builder is started with a configuration file that indicates which files are to be read:

@msfiles = ("piffle","pifflemore");

@gdfiles = ("group","kernel.g","piffle");

DIR = "../ref";

LIB = "../../lib";

It is also possible to define local variables which will be automatically replaced when
occurring in the skeleton in double {{· · ·}} brackets. (So we don’t have old version numbers
all over the manual.)

The skeleton files and configuration files for the GAP reference manual are in the
doc/build directory.

There is a rudimentary Makefile to build everything.

JAH, Linz Workshop 1999 8

HTML Converter

The HTML converter etc/convert.pl converts a TeX version of a manual into HTML
files. The command line options -c and -s determine whether files are chapter-wise or
section-wise.

When run for a share package the share package name must be given as argument to the
-n option, otherwise the converter assumes it is run for one of the books of the main manual
and will not get crossreferences right.

convert.pl -c -n mypkg texpath htmpath

The converter does not (yet) understand all subtleties of the TeX style.

It does not interpret any user-defined macros.

The converter expects a line with at least 16 percentage signs before any new \Section

line.

JAH, Linz Workshop 1999 9

Building the documentation from scratch

Part of the ref manual is built from skeleton files in doc/build and the library. Then all
four manuals have to be translated with TEX, bibliography and index are created with BiBTEX
and makeindex .

The doc/make_doc script does everything for you and builds local HTML documentation.
(However it does not take care of changes in the library since the last documentation build.
For this go in the doc/build directory and touch all *.msk files before running
make_doc .)

Distribution scripts

The subdirectory mkdistrib contains scripts that build a new distribution from scratch.

Most of this is only of internal interest, but it might help to get started with a CVS version on
your own.

JAH, Linz Workshop 1999 10

Zoo Unzoo

We use the zoo compressor because:

• Historical Reasons – Changing would involve lots of work.

• We provide a free (GPL) source and binary for all platforms. (The versions for Win and
Mac of other compressors usually are shareware and require registration.)

• We use a slight extension of the zoo format to distinguish binary and text files (CRLF
problem).

Every file in a GAP .zoo archive has a comment !TEXT! or !BINARY! that tells whether
a CRLF translation should take place. The unzoo decompressor we provide uses these
comments.

If you submit a share package in another format we must repack it with zoo . You save us
much work if you wrap your package directly this way.

JAH, Linz Workshop 1999 11

Bugzilla

Bugzilla is a bug tracking system developed by the Mozilla folks. We use a modified
version to keep track of bugs and as a “wish list”.

These lists are for our internal use, we do not guarantee that entries will be considered.

To access these lists you need a web browser (with cookies turned on!), the URLs are:

http://www-history.mcs.st-and.ac.uk/gapbugs/

http://www-history.mcs.st-and.ac.uk/gapwish/

The first use forces you to register for a password.

JAH, Linz Workshop 1999 12

