Matrix group
recognition

Max Neunhéffer

Matrix group recognition in GAP

Max Neunhoffer

University of St Andrews

15.9.2007




peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}




peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}




Matrix group
recognition

Max Neunhéffer

Matrix groups . . .
Let Fq be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).



peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and
GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)




peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|




peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|
@ Membership test: Is M € GLy(Fq) in G?




peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and
GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|
@ Membership test: Is M € GLy(Fq) in G?
@ Homomorphisms ¢ : G — H?




peiktgl \atrix groups . ..
Sl Let g be the field with g elements and

Int

GLy(Fq) := {M € Fg*" | M invertible}
The problem Given: My, ..., M, € GLy(Fq)
Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?




peiktgl \atrix groups . ..
Sl Let g be the field with g elements and

Int

GLy(Fq) := {M € Fg*" | M invertible}
The problem Given: My, ..., M, € GLy(Fq)
Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups




peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups

@ (Maximal) subgroups?




peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups

@ (Maximal) subgroups?

° ...




il Permutation groups and matrix groups

Max Neunhéffer

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fyg).
It is finite, we have |GLn(Fq)| = q""~D/2 T (q' — 1)




il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:

Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)




il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: my,...,mx € Sp

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)




Matrix group

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: my,...,mx € Sp

Then the 7; generate a group G < S,

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)




Matrix group

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: m1,...,mx € Sp
Then the 7; generate a group G < S,

It is finite, we have |S,| = n!

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)
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Max Neunhffer Let n € N and S, be the symmetric group:
Sph=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: mq1,...,m € Sp

Then the 7; generate a group G < S,

It is finite, we have |Sp| = n!.

determine about G algorithmically (e.g.):
@ The group order |G|

@ Membership test: Is M € Sp, in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?

@ Comparison with known groups

@ (Maximal) subgroups?

° ...
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In standard GAP:

Matrix groups

gap> ugens;
[ <an immutable 56x56 matrix over GF2>,
<an immutable 56x56 matrix over GF2> ]

gap> u := Group (ugens);;
gap> Size(u); time;
252000

341277

gap> Image (NiceMonomorphism(u));
<permutation group with 2 generators>
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Matrix groups in GAP
In standard GAP:

gap> ugens;
[ <an immutable 56x56 matrix over GF2>,
<an immutable 56x56 matrix over GF2> ]

gap> u := Group (ugens);;
gap> Size(u); time;
252000

341277

gap> Image (NiceMonomorphism(u));
<permutation group with 2 generators>

Using the upcoming genss package (with F. Noeske):

gap> Size(StabilizerChain(u)); time;
252000
1368

For “bigger” matrix groups both approaches do not work.
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To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P € P its size g(P),

Complexity theory

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) < f(g(P))
for some function f.

The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)

@ Problem given by My, ..., Mk € GLs(Fq).
@ Size determined by n, k and log q.
@ Runtime should be < a polynomial in n, k and log g.
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Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability € is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most e.

Example: Comp. of |G| = 4089470473293 004 800 for
permutation group G = (my,m2) (n = 137 632):
deterministic alg.: 112s Monte Carlo ¢ = 1%: 6s
Saving: 95% of runtime
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niroducton Let Fq be the field with g elements und
The problem M1 e Mk (= GLH(FQ)

Find for G .= (My, ..., M):
Aeducion @ The group order |G| and
@ an algorithm that, given M € GL;(Fy),
e decides, whether or not M € G, and,
e if so, expresses M as word in the M;.
Solution forleaves @ The runtime should be bounded from above by a
polynomial in n, k and log q.

@ A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call
(My, ..., M) recognised constructively.
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The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

There is no solution in polynomial time in log g known!

Integer factorisation

Some methods need a factorisation of g’ — 1 foran i < n.

There is no solution in polynomial time in log g known!

In practice g is small = no problem.
We ignore both!
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Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

@ (M) is explicitly computable for all M € G

@ o is surjective: H= (Py,..., Px)

@ His in some sense “smaller”

@ or at least “easier to recognise constructively”

@ eg. H<SyorH<GLy(Fy)with’logq’ < nlogq
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Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :
@ Generate a (pseudo-) random element M € G,

@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

Computing the kernel

© evaluate the same word in the M;,
© getelement M' € Gwith M- M~" € N.

Q If M is uniformly distributed in G
then M- M’ is uniformly distributed in N

@ Repeat.

— Monte Carlo algorithm to compute N
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and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,
@ evaluate the same word in the M;,
© getelement M' € Gsuchthat M- M~" ¢ N,
© express M- M~ as word in the N;,
O get M as word in the M; and N;:
M =T]inthe M;, M-M~"=T]inthe N
= M= ([T inthe N;) - (TT in the M;).
@ If M ¢ G, then at least one step does not work.
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Up arrows: inclusions
Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006
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Let V= Fg, then G actson V.
Let W < V be an invariant subspace, i.e.:

MW =W foralMecG

Choose basis (wjy, ..., wy) of W and extend to a basis
(W17"'7Wd7Wd+1)"'7Wn)
Exanl: masan of V. After a base change the matrices in G look like this:

{ '3 g ] with A€ F3* B € ng(”_d), De Fg"_d)x(”_d)

and

A B
G — GLy_o(Fy), [

A D]HD

is a homomorphism of groups.
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el Example: invariant subspace

Max Neunhéffer

A B
0 D

is @ homomorphism of groups, its kernel is

N;:{[é‘ g}€G|D:1}.

The mapping

G GLoa(Fa). | § p | D

A B
0 1

also is a homomorphism of groups and has kernel

NQ;:{H‘ g}eG\A:D:1}.

This group is a p-group for g = p®:
1B| 1B _[1B+F
o1 o 1| |0 1

Together with a reduction additional information is gained!

N GLu(Fa). | § 5 |4
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Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

Theorem (Aschbacher, 1984)

Let G < GLy(Fq) and Z := GN Z(GL(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:
@ TCG/ZC AuyT)
for a non-abelian simple group T, and

@ G acts absolutely irreducibly on V = Fg.

(This last case is called C9.)

Thus we can call in heavy artillery:
@ the classification of finite simple groups
@ the modular representation theory of simple groups
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gl Approach for leaves of the tree
Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:
@ For “small” groups compute direct isomorphism onto
a permutation group.
@ Determine, for which (simple) group
T < G/Z < Aut(T) holds.
© Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.
© Finally use information about S to recognise G
constructively.
This uses:
@ the classification of finite simple groups
@ information about their automorphism groups
@ information about element orders
@ information about conjugacy classes
@ classifications of the irreducible representations
@ information about the subgroup structure
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il Non-constructive recognition

Max Neunhéffer

Methods for non-constructive recognition:
@ Knowledge about representations narrows down the
possibilities

@ Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.
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Standard generators

In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.
Find a tuple (sy,...,s;) € S" together with certain words
p1, ..., Pminthe s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o |5 =|sj|for1 <i<r,
o |pj| = |pjlfor1<j<m
(the pj are the same words in the s;),
then s; — sj for 1 </ < r defines an automorphism
of S.
Such elements are called “standard generators” of S.
We find G = S explicitly by finding a tuple (M, ..., M;) of
standard generators in G.
Often this leads to efficient Las Vegas algorithms to find
explicit isomorphisms.
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el \/crification

Max Neunhéffer

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

= We have to check whether our result is correct!

Idea:
@ Find (short) presentations for the leaf-groups,

@ put these together to one for the whole group.
@ Check the relations and thus prove the result.

Verification
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sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O’'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

@ methods for most Aschbacher classes for matrix
groups and projective groups (some improved
algorithms still needed),

Status of our

implementation @ nearly ready non-constructive recognition,
@ a few leaf methods,
@ no verification.
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