Matrix group
recognition

Max Neunhéffer

Matrix group recognition in GAP

Max Neunhoffer

University of St Andrews

15.9.2007

peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Matrix group
recognition

Max Neunhéffer

Matrix groups . . .
Let Fq be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).

peietiegil \1atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and
GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|
@ Membership test: Is M € GLy(Fq) in G?

peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and
GLn(Fq) := {M € Fg*" | M invertible}
Then the M; generate a group G < GLj(Fg).
It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|
@ Membership test: Is M € GLy(Fq) in G?
@ Homomorphisms ¢ : G — H?

peiktgl \atrix groups . ..
Sl Let g be the field with g elements and

Int

GLy(Fq) := {M € Fg*" | M invertible}
The problem Given: My, ..., M, € GLy(Fq)
Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?

peiktgl \atrix groups . ..
Sl Let g be the field with g elements and

Int

GLy(Fq) := {M € Fg*" | M invertible}
The problem Given: My, ..., M, € GLy(Fq)
Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups

peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups

@ (Maximal) subgroups?

peiktgl \atrix groups . ..
Max Neunhoffer Let IF4 be the field with q elements and

GLn(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
Reduciion It is finite, we have |GLx(Fq)| = g™ D217, (q' — 1)

What do we want to determine about G?

@ The group order |G|

Solution forieaves @ Membership test: Is M € GL,(Fq) in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?
@ Comparison with known groups

@ (Maximal) subgroups?

° ...

il Permutation groups and matrix groups

Max Neunhéffer

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fyg).
It is finite, we have |GLn(Fq)| = q""~D/2 T (q' — 1)

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:

Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: my,...,mx € Sp

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)

Matrix group

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: my,...,mx € Sp

Then the 7; generate a group G < S,

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)

Matrix group

il Permutation groups and matrix groups

Max Neunhéffer

Let n € N and S, be the symmetric group:
Sh=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: m1,...,mx € Sp
Then the 7; generate a group G < S,

It is finite, we have |S,| = n!

Let Fq be the field with g elements and
GLy(Fq) := {M € Fg*" | M invertible}

Then the M; generate a group G < GLj(Fg).
It is finite, we have |GL(Fq)| = q""~D/2 T (q' — 1)

et Pcrmutation groups

Max Neunhffer Let n € N and S, be the symmetric group:
Sph=A{r:{1,...,n} = {1,...,n} | = bijective}.

Given: mq1,...,m € Sp

Then the 7; generate a group G < S,

It is finite, we have |Sp| = n!.

determine about G algorithmically (e.g.):
@ The group order |G|

@ Membership test: Is M € Sp, in G?

@ Homomorphisms ¢ : G — H?

@ Kernels of homomorphisms? Is G simple?

@ Comparison with known groups

@ (Maximal) subgroups?

° ...

peietingl \1atrix groups in GAP

Max Neunhéffer

In standard GAP:

Matrix groups

gap> ugens;
[<an immutable 56x56 matrix over GF2>,
<an immutable 56x56 matrix over GF2>]

gap> u := Group (ugens);;
gap> Size(u); time;
252000

341277

gap> Image (NiceMonomorphism(u));
<permutation group with 2 generators>

Matrix group
recognition

Max Neunhéffer

Matrix groups

Matrix groups in GAP
In standard GAP:

gap> ugens;
[<an immutable 56x56 matrix over GF2>,
<an immutable 56x56 matrix over GF2>]

gap> u := Group (ugens);;
gap> Size(u); time;
252000

341277

gap> Image (NiceMonomorphism(u));
<permutation group with 2 generators>

Using the upcoming genss package (with F. Noeske):

gap> Size(StabilizerChain(u)); time;
252000
1368

Matrix group
recognition

Max Neunhéffer

Matrix groups

Matrix groups in GAP
In standard GAP:

gap> ugens;
[<an immutable 56x56 matrix over GF2>,
<an immutable 56x56 matrix over GF2>]

gap> u := Group (ugens);;
gap> Size(u); time;
252000

341277

gap> Image (NiceMonomorphism(u));
<permutation group with 2 generators>

Using the upcoming genss package (with F. Noeske):

gap> Size(StabilizerChain(u)); time;
252000
1368

For “bigger” matrix groups both approaches do not work.

il Constructive recognition — first formulation

Max Neunhéffer

Let F4 be the field with g elements and

Find for G := (My, ..., My):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G and
o if so, expresses M as word in the M,;.

il Constructive recognition — first formulation

Max Neunhéffer

Let F4 be the field with g elements and

Find for G := (My, ..., My):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G and
o if so, expresses M as word in the M,;.

If this problem is solved, we call

(My, ..., M) recognised constructively.

Matrix group

recognition CompleXIty Of a|gOr|tth

Max Neunhéffer

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P € P its size g(P),

Complexity theory

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) < f(g(P))
for some function f.

peikiwgll Complexity of algorithms

Max Neunhéffer

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P € P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) < f(g(P))
for some function f.

The growth rate of f measures the complexity.

Matrix group

recognition CompleXIty Of a|gOr|tth

Max Neunhéffer

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P € P its size g(P),

Complexity theory

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) < f(g(P))
for some function f.

The growth rate of f measures the complexity.

Example (Constructive matrix group recognition)

@ Problem given by My, ..., Mk € GLs(Fq).
@ Size determined by n, k and log q.
@ Runtime should be < a polynomial in n, k and log g.

ekt Randomised algorithms

Max Neunhéffer

Randomised algorithms

ekt Randomised algorithms

Max Neunhéffer

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

il Randomised algorithms
Max Neunhoffer

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability € is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most e.

Matrix group
recognition

Max Neunhéffer

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability € is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most e.

Example: Comp. of |G| = 4089470473293 004 800 for
permutation group G = (my,m2) (n = 137 632):

Matrix group
recognition

Max Neunhéffer

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability € is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most e.

Example: Comp. of |G| = 4089470473293 004 800 for
permutation group G = (my,m2) (n = 137 632):
deterministic alg.: 112s

Matrix group
recognition

Max Neunhéffer

Randomised algorithms

Definition (Monte Carlo algorithms)

A Monte Carlo algorithm with error probability e is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most e.

Definition (Las Vegas algorithm)

A Las Vegas algorithm with error probability € is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most e.

Example: Comp. of |G| = 4089470473293 004 800 for
permutation group G = (my,m2) (n = 137 632):
deterministic alg.: 112s Monte Carlo ¢ = 1%: 6s
Saving: 95% of runtime

pest gl Constructive recognition

Max Neunhéffer Problem

Let 4 be the field with g elements und
The problem M1 ey Mk (& GLH(FQ)

Find for G := (My, ..., M):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G, and,
e if so, expresses M as word in the M;.

Solution for leaves

pest gl Constructive recognition

Max Neunhéffer Problem

niroducton Let Fq be the field with g elements und
The problem M1 e Mk (= GLH(FQ)

Find for G .= (My, ..., M):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G, and,

e if so, expresses M as word in the M;.
Solution for leaves @ The runtime should be bounded from above by a
polynomial in n, k and log q.

pest gl Constructive recognition

Max Neunhéffer Problem

niroducton Let Fq be the field with g elements und
The problem M1 e Mk (= GLH(FQ)

Find for G .= (My, ..., M):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G, and,

e if so, expresses M as word in the M;.
Solution for leaves @ The runtime should be bounded from above by a
polynomial in n, k and log q.

rfication @ A Monte Carlo Algorithmus is enough.

pest gl Constructive recognition

Max Neunhéffer Problem

niroducton Let Fq be the field with g elements und
The problem M1 e Mk (= GLH(FQ)

Find for G .= (My, ..., M):
@ The group order |G| and

@ an algorithm that, given M € GL;(Fy),

e decides, whether or not M € G, and,

e if so, expresses M as word in the M;.
Solution for leaves @ The runtime should be bounded from above by a
polynomial in n, k and log q.

rification @ A Monte Carlo Algorithmus is enough. (Verification!)

pest gl Constructive recognition

Max Neunhéffer Problem

niroducton Let Fq be the field with g elements und
The problem M1 e Mk (= GLH(FQ)

Find for G .= (My, ..., M):
Aeducion @ The group order |G| and
@ an algorithm that, given M € GL;(Fy),
e decides, whether or not M € G, and,
e if so, expresses M as word in the M;.
Solution forleaves @ The runtime should be bounded from above by a
polynomial in n, k and log q.

@ A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call
(My, ..., M) recognised constructively.

e Troubles

Max Neunhéffer

The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

e Troubles

Max Neunhéffer

The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

There is no solution in polynomial time in log g known!

e Troubles

Max Neunhéffer

The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

There is no solution in polynomial time in log g known!

Integer factorisation
Some methods need a factorisation of g’ — 1 foran i < n.

Matrix group
recognition TrO U bl eS
Max Neunhéffer

The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

There is no solution in polynomial time in log g known!

Integer factorisation

Some methods need a factorisation of g’ — 1 foran i < n.

There is no solution in polynomial time in log g known!

Matrix group
recognition TrO U bl eS
Max Neunhéffer

The discrete logarithm problem

If My = [2] € F3*! with z a primitive root of Fq. Then:

Given 0 # [x] € Fy*", find i € N such that [x] = [2]".

There is no solution in polynomial time in log g known!

Integer factorisation

Some methods need a factorisation of g’ — 1 foran i < n.

There is no solution in polynomial time in log g known!

In practice g is small = no problem.
We ignore both!

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

@ (M) is explicitly computable for all M € G

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

@ (M) is explicitly computable for all M € G
@ o is surjective: H= (Py,..., Px)

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

@ (M) is explicitly computable for all M € G

@ o is surjective: H= (Py,..., Px)

@ His in some sense “smaller”

@ or at least “easier to recognise constructively”

el \\/hat is a reduction?

Max Neunhéffer

Let G:= (My,..., M) < GLy(Fq).
A reduction is a group homomorphism

v : G — H
M — P for all j

with the following properties:

@ (M) is explicitly computable for all M € G

@ o is surjective: H= (Py,..., Px)

@ His in some sense “smaller”

@ or at least “easier to recognise constructively”

@ eg. H<SyorH<GLy(Fy)with’logq’ < nlogq

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

Matrix group
recognition

Max Neunhéffer

Computing the kernel

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,

Matrix group
recognition

Max Neunhéffer

Computing the kernel

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,
@ map it with p onto (M) € H= (P4, ..., Px),

Matrix group
recognition

Max Neunhéffer

Computing the kernel

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :
@ Generate a (pseudo-) random element M € G,

@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,
@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

© evaluate the same word in the M;,

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,
@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

© evaluate the same word in the M;,

© getelement M' ¢ Gwith M- M'~1 € N.

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,
@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

© evaluate the same word in the M;,

© getelement M' ¢ Gwith M- M'~1 € N.

Q If M is uniformly distributed in G
then M- M’ is uniformly distributed in N

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :

@ Generate a (pseudo-) random element M € G,
@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

© evaluate the same word in the M;,

© getelement M' ¢ Gwith M- M'~1 € N.

Q If M is uniformly distributed in G
then M- M’ is uniformly distributed in N

@ Repeat.

ekt Computing the kernel

Max Neunhéffer

Let ¢ : G — H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of :
@ Generate a (pseudo-) random element M € G,

@ map it with p onto (M) € H= (P4, ..., Px),
© express p(M) as word in the P;,

Computing the kernel

© evaluate the same word in the M;,
© getelement M' € Gwith M- M~" € N.

Q If M is uniformly distributed in G
then M- M’ is uniformly distributed in N

@ Repeat.

— Monte Carlo algorithm to compute N

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = [H]-[NI.

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,
@ evaluate the same word in the M;,

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,

@ evaluate the same word in the M;,

© getelement M' € Gsuchthat M- M~" ¢ N,

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,

@ evaluate the same word in the M;,

© getelement M' € Gsuchthat M- M~" ¢ N,
© express M- M~ as word in the N;,

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,

@ evaluate the same word in the M;,

© getelement M' € Gsuchthat M- M~" ¢ N,
© express M- M~ as word in the N;,

O get M as word in the M; and N;:
M =T]inthe M;, M-M~"=T]inthe N

= M= ([T inthe N;) - (TT in the M;).

ekl Recognising image and kernel suffices
Max Neunhdffer Let ¢ : G — H be a reduction and assume that both H
and the kernel N = (N, ..., Npy) of ¢ are already
recognised constructively.

Then we have recognised G constructively:
|G| = |H| - N|. And for M € GL,(Fy):

@ map M with ¢ onto (M) € H= (Px,..., Px),
@ express p(M) as word in the P;,
@ evaluate the same word in the M;,
© getelement M' € Gsuchthat M- M~" ¢ N,
© express M- M~ as word in the N;,
O get M as word in the M; and N;:
M =T]inthe M;, M-M~"=T]inthe N
= M= ([T inthe N;) - (TT in the M;).
@ If M ¢ G, then at least one step does not work.

el Recursion: composition trees
Max Neunhbffer We get a tree:

G
N/ \H

Up arrows: inclusions
Down arrows: homomorphisms

el Recursion: composition trees
Max Neunhbffer We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms

el Recursion: composition trees
Max Neunhbffer We get a tree:

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, substantial improvements: Seress & N. 2006

el Example: invariant subspace

Max Neunhéffer

Let V= Fg, then G actson V.
Let W < V be an invariant subspace, i.e.:

MW =W foralMecG

ample: invariant
bspace

el Example: invariant subspace

Max Neunhéffer

Let V= Fg, then G actson V.
Let W < V be an invariant subspace, i.e.:

MW =W foralMecG

Choose basis (wjy, ..., wy) of W and extend to a basis
(W17"'7Wd7Wd+1)"'7Wn)
amp; it of V. After a base change the matrices in G look like this:

{ '3 g] with A€ F3* B € ng(”_d), De Fg"_d)x(”_d)

el Example: invariant subspace

Max Neunhéffer

Let V= Fg, then G actson V.
Let W < V be an invariant subspace, i.e.:

MW =W foralMecG

Choose basis (wjy, ..., wy) of W and extend to a basis
(W17"'7Wd7Wd+1)"'7Wn)
Exanl: masan of V. After a base change the matrices in G look like this:

{ '3 g] with A€ F3* B € ng(”_d), De Fg"_d)x(”_d)

and

A B
G — GLy_o(Fy), [

A D]HD

is a homomorphism of groups.

el Example: invariant subspace

Max Neunhéffer

A B
0 D

is @ homomorphism of groups, its kernel is

N::{[é\ g}€G|D:1}.

G GLoa(Fa). | § p | D

el Example: invariant subspace

Max Neunhéffer

A B
0 D

is @ homomorphism of groups, its kernel is

N;:{[é‘ g}€G|D:1}.

The mapping

G GLoa(Fa). | § p | D

A B
0 1

also is a homomorphism of groups and has kernel

NQ;:{H‘ g}eG\A:D:1}.

N GLu(Fa). | § 5 |4

el Example: invariant subspace

Max Neunhéffer

A B
0 D

is @ homomorphism of groups, its kernel is

N;:{[é‘ g}€G|D:1}.

The mapping

G GLoa(Fa). | § p | D

A B
0 1

also is a homomorphism of groups and has kernel

NQ;:{H‘ g}eG\A:D:1}.

This group is a p-group for g = p®:

o1l o 7]=10 737

|~

el Example: invariant subspace

Max Neunhéffer

A B
0 D

is @ homomorphism of groups, its kernel is

N;:{[é‘ g}€G|D:1}.

The mapping

G GLoa(Fa). | § p | D

A B
0 1

also is a homomorphism of groups and has kernel

NQ;:{H‘ g}eG\A:D:1}.

This group is a p-group for g = p®:
1B| 1B _[1B+F
o1 o 1| |0 1

Together with a reduction additional information is gained!

N GLu(Fa). | § 5 |4

st How to find reductions?

Max Neunhéffer

st How to find reductions?

Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

st How to find reductions?

Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

Theorem (Aschbacher, 1984)

Let G < GLy(Fq) and Z := GN Z(GL(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:
@ TCG/ZC AuyT)
for a non-abelian simple group T, and

@ G acts absolutely irreducibly on V = Fg.

st How to find reductions?

Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

Theorem (Aschbacher, 1984)

Let G < GLy(Fq) and Z := GN Z(GL(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:
@ TCG/ZC AuyT)
for a non-abelian simple group T, and

@ G acts absolutely irreducibly on V = Fg.

(This last case is called C9.)

st How to find reductions?

Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

Theorem (Aschbacher, 1984)

Let G < GLy(Fq) and Z := GN Z(GL(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:
@ TCG/ZC AuyT)
for a non-abelian simple group T, and

@ G acts absolutely irreducibly on V = Fg.

(This last case is called C9.)

Thus we can call in heavy artillery:
@ the classification of finite simple groups

st How to find reductions?

Max Neunhéffer

Aschbacher has defined classes C1 to C8 of subgroups
of GLy(Fg).

Theorem (Aschbacher, 1984)

Let G < GLy(Fq) and Z := GN Z(GL(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:
@ TCG/ZC AuyT)
for a non-abelian simple group T, and

@ G acts absolutely irreducibly on V = Fg.

(This last case is called C9.)

Thus we can call in heavy artillery:
@ the classification of finite simple groups
@ the modular representation theory of simple groups

peiti=all Approach for leaves of the tree
Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:

peiti=all Approach for leaves of the tree
Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:

@ For “small” groups compute direct isomorphism onto
a permutation group.

ekl Approach for leaves of the tree
Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:
@ For “small” groups compute direct isomorphism onto
a permutation group.

@ Determine, for which (simple) group
T < G/Z < Aut(T) holds.

Matrix group
recognition

Max Neunhéffer

Approach for leaves of the tree
If none of the algorithms for C1 to C8 has succeeded:

@ For “small” groups compute direct isomorphism onto
a permutation group.

@ Determine, for which (simple) group
T < G/Z < Aut(T) holds.

© Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.

ekt Approach for leaves of the tree

Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:

@ For “small” groups compute direct isomorphism onto
a permutation group.

@ Determine, for which (simple) group
T < G/Z < Aut(T) holds.

© Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.

© Finally use information about S to recognise G
constructively.

gl Approach for leaves of the tree
Max Neunhffer If none of the algorithms for C1 to C8 has succeeded:
@ For “small” groups compute direct isomorphism onto
a permutation group.
@ Determine, for which (simple) group
T < G/Z < Aut(T) holds.
© Find an explicit isomorphism onto a “standard copy”
of an intermediate group S.
© Finally use information about S to recognise G
constructively.
This uses:
@ the classification of finite simple groups
@ information about their automorphism groups
@ information about element orders
@ information about conjugacy classes
@ classifications of the irreducible representations
@ information about the subgroup structure

il Non-constructive recognition

Max Neunhéffer

Methods for non-constructive recognition:

@ Knowledge about representations narrows down the
possibilities

il Non-constructive recognition

Max Neunhéffer

Methods for non-constructive recognition:

@ Knowledge about representations narrows down the
possibilities
@ Statistics about orders of random elements

il Non-constructive recognition

Max Neunhéffer

Methods for non-constructive recognition:
@ Knowledge about representations narrows down the
possibilities

@ Statistics about orders of random elements

Usually this leads to Monte Carlo algorithms.

Matrix grou
reéogr?itionp Stand
Max Neunhaffer I G ard generators
n G we can
only multiply, invert and com
pute orders

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

Find a tuple (sy,...,s;) € S" together with certain words
p1, ..., Pminthe s;, such that:

Matrix group
recognition

Max Neunhéffer

Standard generators
In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.
Find a tuple (sy,...,s;) € S" together with certain words
p1, ..., Pminthe s;, such that:
@ S=(s1,...,5),

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

Find a tuple (sy,...,s;) € S" together with certain words
p1, ..., Pminthe s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o [si|=|sj|for1<i<r,
° |pj| = lpjlfor1 <j<m
(the pj are the same words in the s;),

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

Find a tuple (sy,...,s;) € S" together with certain words
p1,...,Pmin the s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o |5 =|sj|for1 <i<r,
° |pj| = lpjlfor1 <j<m
(the pj are the same words in the s;),
then s; — sj for 1 </ < r defines an automorphism
of S.

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

Find a tuple (sy,...,s;) € S" together with certain words
p1,...,Pmin the s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o |5 =|sj|for1 <i<r,
° |pj| = lpjlfor1 <j<m
(the pj are the same words in the s;),
then s; — sj for 1 </ < r defines an automorphism
of S.

Such elements are called “standard generators” of S.

st Standard generators
D In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.

Find a tuple (sy,...,s;) € S" together with certain words
p1,...,Pmin the s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o |5 =|sj|for1 <i<r,
° |pj| = lpjlfor1 <j<m
(the pj are the same words in the s;),
then s; — sj for 1 </ < r defines an automorphism
of S.

Such elements are called “standard generators” of S.

We find G = S explicitly by finding a tuple (M, ..., M;) of
standard generators in G.

Matrix group
recognition

Max Neunhéffer

Standard generators

In G we can only multiply, invert and compute orders.
Suppose: G = Swith T < S < Aut(T) and T simple.
Find a tuple (sy,...,s;) € S" together with certain words
p1, ..., Pminthe s;, such that:
@ S=(s1,...,5),
e if (s,...,s;) € S with
o |5 =|sj|for1 <i<r,
o |pj| = |pjlfor1<j<m
(the pj are the same words in the s;),
then s; — sj for 1 </ < r defines an automorphism
of S.
Such elements are called “standard generators” of S.
We find G = S explicitly by finding a tuple (M, ..., M;) of
standard generators in G.
Often this leads to efficient Las Vegas algorithms to find
explicit isomorphisms.

el \/crification

Max Neunhéffer

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

= We have to check whether our result is correct!

Verification

el \/crification

Max Neunhéffer

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

= We have to check whether our result is correct!

Idea:
@ Find (short) presentations for the leaf-groups,

Verification

el \/crification

Max Neunhéffer

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

= We have to check whether our result is correct!

Idea:
@ Find (short) presentations for the leaf-groups,
@ put these together to one for the whole group.

Verification

el \/crification

Max Neunhéffer

Everywhere we used randomised methods:
Las Vegas and Monte Carlo.

= We have to check whether our result is correct!

Idea:
@ Find (short) presentations for the leaf-groups,

@ put these together to one for the whole group.
@ Check the relations and thus prove the result.

Verification

il Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

Status of our
implementation

Matrix group

sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,

Status of our
implementation

recoumiion Status of our implementation
P
Max Neunhéffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O'Brien, A. Seress,

Status of our
implementation

Matrix group

sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

Status of our
implementation

il Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O’'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

@ methods for most Aschbacher classes for matrix
groups and projective groups (some improved
algorithms still needed),

Status of our
implementation

Matrix group

sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O’'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

@ methods for most Aschbacher classes for matrix
groups and projective groups (some improved
algorithms still needed),

Status of our

implementation @ nearly ready non-constructive recognition,

Matrix group

sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O’'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

@ methods for most Aschbacher classes for matrix
groups and projective groups (some improved
algorithms still needed),

Status of our

implementation @ nearly ready non-constructive recognition,
@ afew leaf methods,

Matrix group

sl Status of our implementation
Max Neunhoffer We have

@ a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Akos Seress, N.),

@ a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, M. Law,

S. Linton, N., A. Niemeyer, E. O’'Brien, A. Seress,

@ complete asymptotically best methods to handle
permutation groups,

@ methods for most Aschbacher classes for matrix
groups and projective groups (some improved
algorithms still needed),

Status of our

implementation @ nearly ready non-constructive recognition,
@ a few leaf methods,
@ no verification.

	Introduction
	Matrix groups
	Constructive recognition

	The problem
	Complexity theory
	Randomised algorithms
	Constructive recognition
	Troubles

	Reduction
	Homomorphisms
	Computing the kernel
	Recursion: composition trees
	Example: invariant subspace
	Finding reductions

	Solution for leaves
	Classifications
	Recognition of the groups
	Standard generators

	Verification
	Status of our implementation

