
Extensions of PcGroups by rewriting systems

Extensions of PcGroups by rewriting systems

Jack Schmidt

University of Kentucky

2007-09-13

A package for computing extensions of pc-groups by groups given by a confluent rewriting system is in preparation.

The GAP implementation was initially dificult, but the new linear algebra proposal and implementation by Max

Neunhoeffer greatly assisted. The GAP implementation also allowed a novel use of collectors to mimic linear

combinations of collectors. Current implementation bottlenecks are in the rewriting process, but could benefit from

those with expertise in collectors. Future work will involve providing fundamental algorithms for groups in this data

representation.

Extensions of PcGroups by rewriting systems

Problem

For a finite group G and fixed prime p, let Fi (G) be the ith term
of the lower central series of Op(G). Define Gi = G/Fi (G).

Given a finite group G with Gk−1 6∼= G and Gk
∼= G , and given

G -modules V , consider all groups H with Hk
∼= G and

Fi (H)/Fi+1(H) ∈ V for all i ≥ k.

Produce algorithm for given p,G ,V that takes Hi as input, and
outputs all Hi+1. Run in time and space polynomial in i .

Extensions of PcGroups by rewriting systems

Solution

Old solutions by Eick, Holt cannot work (only soluble, or only
i = k)

Old solutions are the right way, just use wrong datatype

New datatype makes output length polynomial in i , so algorithm is
possible

Brief sketch of cohomology:

θ : G × G → N finishes extension

Not all θ ∈ NG×G work, kernel of linear operator

For p-groups, only need θ(g , gp−1) and θ(g−1h−1, gh)

Can rewrite all products in p-group using this

Extensions of PcGroups by rewriting systems

Overview

Rewriting systems are important to CGT

Difficulties in implementation:

1 Linear Algebra - method selection

2 Rewriting systems - poor support

3 Collectors - badly adapted to this case

Success in implementation:

1 CVEC fixes most linear algebra concerns

2 One collector can easily replace millions

Future work:

1 RWS cleanup in GAP

2 Permutations given by RWS

Extensions of PcGroups by rewriting systems

Rewriting systems

Basics

Rewriting systems

Formalize simplification based on linear ordering of words

Can explicitly refine normal series, like pcgs

Can be expanded to give coset representatives: membership test
for subgroups, permutation rep

Expensive to find

Can be very large

Multiplication can be expensive (even in PcGroups)

Extensions of PcGroups by rewriting systems

Rewriting systems

Basics

Quick formal definition

For X a monoid generating set for a group G , form free monoid X ∗

Define well-ordering on X ∗ with x ≤ y iff axb ≤ ayb for
a, b, x , y ∈ X ∗

Given g ∈ G , define g∗ ∈ X ∗ as smallest element which evaluates
to g

Rules(G ,X ,≤) = {(x∗g∗y∗, (xgy)∗) : g ∈ G , x , y ∈ X , (xg)∗ =
x∗g∗, (gy)∗ = g∗y∗, (xgy)∗ 6= x∗g∗y∗}

Given rule (y , x) then x ≤ y , and one should replace ayb with axb.
Well-ordering ⇒ stops.

Extensions of PcGroups by rewriting systems

Rewriting systems

Extensions

Rewriting systems for extensions

Given a finite presentation of an extension, how do you multiply
elements?

(q, k) · (q′, k ′) = (q′′, k ′′)

Easy to find a quotient part, but one quickly flounders finding the
kernel part, since multiple words q1, q2 represent same quotient
element, but (q1, 1) 6= (q2, 1).

Rewriting systems form a systematic answer, each rule of quotient
gets an element of the kernel, a tail

Ensures (q, k)∗ = q∗k∗

Extensions of PcGroups by rewriting systems

Rewriting systems

Extensions

Finding extensions

Given a rewriting system for G/N and a basis for G -module N, the
only missing information for an extension is a vector in NRules(G/N)

Not all vectors work, but there is a systematic confluence test

Test ends up being a nullspace calculation for an
|Rules(G/N)| × |Overlaps(G/N)| matrix

Grows as n5 where n is composition length of solvable radical of
G/N, polynomial but large

Extensions of PcGroups by rewriting systems

Implementation

Overview

Implementations

First, Initial implementation in C for GF (2)-modules

Then, GAP implementation with some kernel hacking

Now, GAP implementation with CVEC and primitive RWS

Future, GAP implementation with CVEC and full RWS support

For PcGroups, already implemented by B. Eick in lib/twocohom.g*

Extensions of PcGroups by rewriting systems

Implementation

Overview

Main components

Rewriting engine for original quotient with rule-reporting

Arithmetic engine for iterated kernel (p-core) including
automorphisms induced by quotient

Linear algebra to find nullspaces

Extensions of PcGroups by rewriting systems

Implementation

Failure

Software problems

C code had barbaric p-group collectors, very slow

GAP p-group collectors ill-suited to large elementary abelian
subgroup, but no general solution

GAP is slow to evaluate automorphisms on groups like this

GAP code had barbaric linear algebra; cannot use method
selection, kernel methods tend to segfault

GAP RWS group code mostly buggy, no separation of RWS from
PCGroup, no specification of rules, etc.

Extensions of PcGroups by rewriting systems

Implementation

Failure

Math problems

Not all groups have small rewriting systems

Many coclass trees are “bushy” and while single depth-first path is
fast, full breadth-first is exponential

Not all groups have small modules, so even initial linear algebra
can be hard

More or less all modules contribute cohomology

Extensions of PcGroups by rewriting systems

Implementation

Success

Software success

CVEC is wonderful, though GAP LA still needs rewrite (type
conversion is awful and needed too often)

Calculating the large matrix is effectively doing arithmetic in a
basis of proposed extensions – just pretend each is an extension
and use a collector

Even better, take their subdirect product, just one collector with
large elementary abelian subgroup (and write special purpose code
to set it up)

Extensions of PcGroups by rewriting systems

Implementation

Success

Math success

Able to explore such interesting groups as
SL(2, 7).74.75.76.77.76.75.74.73 and A7.2

6.214.214.214.214.214.214

Found “barren” branch with no twigs in SL(2, p) mod p
corresponding to SL(2, Ẑp)

Found first cohomology in constant time

Found some second cohomology in constant time

Extensions of PcGroups by rewriting systems

Implementation

Future

Future software

Need consistently written linear algebra methods

Need workable support for rewriting system groups

Need basic algorithms for groups given as extensions of pc-groups
by rewriting systems

Explore coset rewriting as a type of permutation group

Use PcGroup extensions and “stable elements” to count
dimension, then stop constructing nullspace when dimension agrees

Extensions of PcGroups by rewriting systems

Implementation

Future

Future math

Prove permutation representation cannot work (example where
degree increases too quickly, but not a “straw-man” like dihedral
groups)

Use local control (Glauberman, Holt, et al.) to allow even smaller
collectors

Use inflation-restriction sequence to give quicker bounds on
dimension and possibly for direct gain

Generalize from SL(2, p) to SL(2, pn) and thus from SL(2, Ẑp) to
SL(2,R) for other complete DVRs R

Extensions of PcGroups by rewriting systems

Summary

Summary

Rewriting systems are useful for extensions

Important to improve linear algebra and collection in GAP

RWS in GAP needs rewriting

	Rewriting systems
	Basics
	Extensions

	Implementation
	Overview
	Failure
	Success
	Future

	Summary

