IsFixpoint( G, d )
IsFixpoint( G, d, operation )
IsFixpoint
returns true
if the point d is a fixpoint under the
operation of the group G.
We say that d is a fixpoint under the operation of G if every element g of G maps d to itself. This is equivalent to saying that each generator of G maps d to itself.
As a special case it is allowed that the first argument is a single group
element, though this does not make a lot of sense, since in this case
IsFixpoint
simply has to test d^g = d
.
IsFixpoint
accepts a function operation of two arguments d and g
as optional third argument, which specifies how the elements of G
operate (see Other Operations).
gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );; gap> IsFixpoint( g, 1 ); false gap> IsFixpoint( g, [6,7,8], OnSets ); true
IsFixpoint
is so simple that it does all the work by itself, and,
unlike the other functions described in this chapter, does not dispatch
to another function.
GAP 3.4.4