IsEquivalent( M1, M2 )
Let M1 and M2 be modules acted on by rings R_1 and R_2, respectively,
such that mapping the generators of R_1 to the generators of R_2 defines
a ring homomorphism. Furthermore let at least one of M1, M2 be
irreducible. Then IsEquivalent( M1, M2 )
returns true
if the actions
on M1 and M2 are equivalent, and false
otherwise.
gap> rand:= RandomInvertableMat( 3, GF(2) );; gap> b:= UnitalAlgebra( GF(2), List( a.generators, x -> x^rand ) );; gap> m:= NaturalModule( b );; gap> IsEquivalent( nat / FixedSubmodule( nat ), > m / FixedSubmodule( m ) ); true
GAP 3.4.4