IsEquivalent( M1, M2 )
Let M1 and M2 be modules acted on by rings R_1 and R_2, respectively,
such that mapping the generators of R_1 to the generators of R_2 defines
a ring homomorphism. Furthermore let at least one of M1, M2 be
irreducible. Then IsEquivalent( M1, M2 ) returns true if the actions
on M1 and M2 are equivalent, and false otherwise.
gap> rand:= RandomInvertableMat( 3, GF(2) );;
gap> b:= UnitalAlgebra( GF(2), List( a.generators, x -> x^rand ) );;
gap> m:= NaturalModule( b );;
gap> IsEquivalent( nat / FixedSubmodule( nat ),
> m / FixedSubmodule( m ) );
true
GAP 3.4.4