InertiaSubgroup( G, chi )
For a class function chi of a normal subgroup N of the group G,
InertiaSubgroup( G, chi ) returns the inertia subgroup I_G(<chi>),
that is, the subgroup of all those elements g  in  <G> that satisfy
<chi> ^ g = <chi>.
 
    gap> V4:= Subgroup( S4, S4.generators{ [ 3, 4 ] } );
    Subgroup( S4, [ c, d ] )
    gap> irrsub:= Irr( V4 );
    #W  Warning: Group has no name
    [ Character( Subgroup( S4, [ c, d ] ), [ 1, 1, 1, 1 ] ), 
      Character( Subgroup( S4, [ c, d ] ), [ 1, 1, -1, -1 ] ), 
      Character( Subgroup( S4, [ c, d ] ), [ 1, -1, 1, -1 ] ), 
      Character( Subgroup( S4, [ c, d ] ), [ 1, -1, -1, 1 ] ) ]
    gap> List( irrsub, x -> InertiaSubgroup( S4, x ) );
    [ Subgroup( S4, [ a, b, c, d ] ), Subgroup( S4, [ a*b^2, c, d ] ),
      Subgroup( S4, [ a*b, c, d ] ), Subgroup( S4, [ a, c, d ] ) ] 
GAP 3.4.4