We conclude this chapter with a simple example to illustrate further the use of GRAPE.
In this example we construct the  Petersen graph P, and its  edge graph
(often  called line graph)  EP.  We compute  the (global) parameters of
EP, and so verify that EP is distance-regular (see BCN89).  We
also show that  there is just  one orbit  of 1-factors  of  P under the
automorphism  group of P (but you  should read the documentation of the
function CompleteSubgraphsOfGivenSize to see exactly what that function
does).
    gap> P := Graph( SymmetricGroup(5), [[1,2]], OnSets,
    >          function(x,y) return Intersection(x,y)=[]; end );
    rec(
      isGraph := true,
      order := 10,
      group := Group( ( 1, 2)( 6, 8)( 7, 9), ( 1, 3)( 4, 8)( 5, 9),
        ( 2, 4)( 3, 6)( 9,10), ( 2, 5)( 3, 7)( 8,10) ),
      schreierVector := [ -1, 1, 2, 3, 4, 3, 4, 2, 2, 4 ],
      adjacencies := [ [ 8, 9, 10 ] ],
      representatives := [ 1 ],
      names := [ [ 1, 2 ], [ 2, 5 ], [ 1, 5 ], [ 2, 3 ], [ 2, 4 ],
          [ 1, 3 ], [ 1, 4 ], [ 3, 5 ], [ 4, 5 ], [ 3, 4 ] ] )
    gap> Diameter(P);
    2
    gap> Girth(P);
    5
    gap> EP := EdgeGraph(P);
    rec(
      isGraph := true,
      order := 15,
      group := Group( ( 1, 4)( 2, 5)( 3, 6)(10,11)(12,13)(14,15), ( 1, 7)
        ( 2, 8)( 3, 9)(10,15)(11,13)(12,14), ( 2, 3)( 4, 7)( 5,10)( 6,11)
        ( 8,12)( 9,14), ( 1, 3)( 4,12)( 5, 8)( 6,13)( 7,10)( 9,15) ),
      schreierVector := [ -1, 3, 4, 1, 3, 1, 2, 3, 2, 4, 1, 4, 1, 2, 2 ],
      adjacencies := [ [ 2, 3, 13, 15 ] ],
      representatives := [ 1 ],
      isSimple := true,
      names := [ [ [ 1, 2 ], [ 3, 5 ] ], [ [ 1, 2 ], [ 4, 5 ] ],
          [ [ 1, 2 ], [ 3, 4 ] ], [ [ 1, 3 ], [ 2, 5 ] ],
          [ [ 1, 4 ], [ 2, 5 ] ], [ [ 2, 5 ], [ 3, 4 ] ],
          [ [ 1, 5 ], [ 2, 3 ] ], [ [ 1, 5 ], [ 2, 4 ] ],
          [ [ 1, 5 ], [ 3, 4 ] ], [ [ 1, 4 ], [ 2, 3 ] ],
          [ [ 2, 3 ], [ 4, 5 ] ], [ [ 1, 3 ], [ 2, 4 ] ],
          [ [ 2, 4 ], [ 3, 5 ] ], [ [ 1, 3 ], [ 4, 5 ] ],
          [ [ 1, 4 ], [ 3, 5 ] ] ] )
    gap> GlobalParameters(EP);
    [ [ 0, 0, 4 ], [ 1, 1, 2 ], [ 1, 2, 1 ], [ 4, 0, 0 ] ]
    gap> CompleteSubgraphsOfGivenSize(ComplementGraph(EP),5);
    [ [ 1, 5, 9, 11, 12 ] ] 
GAP 3.4.4