CrystalDecompositionMatrix(H, n [,Ordering])
CrystalDecompositionMatrix(H, filename [,Ordering])
This function is  similar to   DecompositionMatrix, except that   it
returns a    crystallized  decomposition  matrix.  The    columns of
decomposition  matrices correspond to  projective indecomposables; the
columns of  crystallized  decomposition  matrices  correspond to   the
canonical    basis     elements    of     the    Fock      space  (see
Specht). Consequently, the entries in these matrices are polynomials
(in v),  and  by specializing (ie.  setting  v equal  to 1;  see
Specialized), the decomposition matrices of   H are obtained  (see
Specht).
Crystallized decomposition matrices are defined only for Hecke algebras over a base field of characteristic zero. Unlike ``normal'' decomposition matrices, crystallized decomposition matrices cannot be induced.
gap> CrystalDecompositionMatrix(Specht(3), 6); 6
|1 5,1
|v 1 4,2
|. . 1 4,1^2
|. v . 1 3^2
|. v . . 1 3,2,1
|v v^2 . v v 1 3,1^3
|. . . v^2 . v 2^3
|v^2 . . . . v 2^2,1^2
|. . . . . . 1 2,1^4
|. . . . v v^2 . 1^6
|. . . . v^2 . . gap> Specialized(last); # set 'v' equal to $1$. 6
|1 5,1
|1 1 4,2
|. . 1 4,1^2
|. 1 . 1 3^2
|. 1 . . 1 3,2,1
|1 1 . 1 1 1 3,1^3
|. . . 1 . 1 2^3
|1 . . . . 1 2^2,1^2
|. . . . . . 1 2,1^4
|. . . . 1 1 . 1^6
| . . . . 1 . . 
See also Specht   Specht, Schur  Schur,  DecompositionMatrix
DecompositionMatrix, and Specialized Specialized. This  function
requires the package ``specht'' (see RequirePackage).
GAP 3.4.4