LittlewoodRichardsonRule(mu, nu)
LittlewoodRichardsonCoefficient(mu, nu, tau)
Given     partitions mu of  n  and   nu  of m the module
'S'(<mu>) otimes 'S'(<nu>)           is           naturally      an
'H'(Sym_ntimesSym_m)-module  and,   by inducing,  we   obtain  an
'H'(Sym_{n+m})-module. This module has the same composition factors
as sum_nu a_munu^lambda S(lambda),  where the sum runs
over   all   partitions  lambda   of     n+m and  the    integers
a_{munu}^lambda are the Littlewood--Richardson coefficients.  The
integers    a_{munu}^lambda  can     be   calculated    using   a
straightforward       combinatorial   algorithm    known      as   the
Littlewood--Richardson rule (see [JK]).
The function LittlewoodRichardsonRule returns an (unordered) list of
partitions  of  n+m in  which    each partition lambda   occurs
a_{munu}^lambda times. The Littlewood-Richardson coefficients are
independent of e; they can be  read more easily from the computation
S(mu)*S(nu).
gap> H:=Specht(0);; # the generic Hecke algebra with 'R'=*C*['q'] gap> LittlewoodRichardsonRule([3,2,1],[4,2]); [ [ 4, 3, 2, 2, 1 ],[ 4, 3, 3, 1, 1 ],[ 4, 3, 3, 2 ],[ 4, 4, 2, 1, 1 ], [ 4, 4, 2, 2 ],[ 4, 4, 3, 1 ],[ 5, 2, 2, 2, 1 ],[ 5, 3, 2, 1, 1 ], [ 5, 3, 2, 2 ],[ 5, 4, 2, 1 ],[ 5, 3, 2, 1, 1 ],[ 5, 3, 3, 1 ], [ 5, 4, 1, 1, 1 ],[ 5, 4, 2, 1 ],[ 5, 5, 1, 1 ],[ 5, 3, 2, 2 ], [ 5, 3, 3, 1 ],[ 5, 4, 2, 1 ],[ 5, 4, 3 ],[ 5, 5, 2 ],[ 6, 2, 2, 1, 1], [ 6, 3, 1, 1, 1 ],[ 6, 3, 2, 1 ],[ 6, 4, 1, 1 ],[ 6, 2, 2, 2 ], [ 6, 3, 2, 1 ],[ 6, 4, 2 ],[ 6, 3, 2, 1 ],[ 6, 3, 3 ],[ 6, 4, 1, 1 ], [ 6, 4, 2 ], [ 6, 5, 1 ], [ 7, 2, 2, 1 ], [ 7, 3, 1, 1 ], [ 7, 3, 2 ], [ 7, 4, 1 ] ] gap> H.S(3,2,1)*H.S(4,2); S(7,4,1)+S(7,3,2)+S(7,3,1,1)+S(7,2,2,1)+S(6,5,1)+2*S(6,4,2)+2*S(6,4,1,1) +S(6,3,3)+3*S(6,3,2,1)+S(6,3,1,1,1)+S(6,2,2,2)+S(6,2,2,1,1)+S(5,5,2) +S(5,5,1,1)+S(5,4,3)+3*S(5,4,2,1)+S(5,4,1,1,1)+2*S(5,3,3,1)+2*S(5,3,2,2) +2*S(5,3,2,1,1)+S(5,2,2,2,1)+S(4,4,3,1)+S(4,4,2,2)+S(4,4,2,1,1)+S(4,3,3,2) +S(4,3,3,1,1)+S(4,3,2,2,1) gap> LittlewoodRichardsonCoefficient([3,2,1],[4,2],[5,4,2,1]); 3
The    function   LittlewoodRichardsonCoefficient  returns a  single
Littlewood--Richardson coefficient (although you are really better off
asking for all of them, since they will all be calculated anyway).
See        also             InducedModule     InducedModule    and
InverseLittlewoodRichardsonRule   InverseLittlewoodRichardsonRule.
This  function     requires   the    package     ``specht''    (see
RequirePackage).
GAP 3.4.4