CharTable( H )
CharTable  returns the  character   table record of   the Iwahori-Hecke
algebra H.  This is  basically  the same as the   character table of  a
Coxeter group  described earlier  with the  exception that  the component
irreducibles contains the   matrix of  the  values  of the  irreducible
characters of the     generic Iwahori-Hecke algebra specialized  at   the
parameters  in  the  component parameter  of H.    Thus, if all these
parameters  are equal to~1    in  QQ then the  component irreducibles
just  contains the  ordinary  character table of  the underlying  Coxeter
group.
The  function CharTable  first recognizes  the  type of H, then calls
special functions  for each type involved  in  H and finally  forms the
direct product of all these tables.
    gap> W := CoxeterGroup( "G", 2 );;
    gap> u := X( Rationals );;  u.name := "u";;
    gap> v := X( LaurentPolynomialRing( Rationals ) );; v.name := "v";;
    gap> u := u * v^0;;
    gap> H := Hecke( W, [ u^2, v^2 ], [ u, v ] );
    Hecke(CoxeterGroup("G", 2),[ u^2*v^0, v^2 ],[ u*v^0, v ])
    gap> Display( CharTable( H ) );
    H(G2)
    
                2   2             2       2          1         1          2
                3   1             .       .          1         1          1
   
                               ~A_1     A_1        G_2       A_2 A_1 + ~A_1
               2P                                  A_2       A_2           
               3P              ~A_1     A_1 A_1 + ~A_1           A_1 + ~A_1
  
    phi_{1,0}       1           v^2   (u^2)   (u^2)v^2  (u^4)v^4   (u^6)v^6
    phi_{1,6}       1            -1      -1          1         1          1
    phi_{1,3}'      1           v^2      -1       -v^2       v^4       -v^6
    phi_{1,3}''     1            -1   (u^2)     (-u^2)     (u^4)     (-u^6)
    phi_{2,1}     (2)      v^2+(-1) (u^2-1)       (u)v (-u^2)v^2 (-2u^3)v^3
    phi_{2,2}     (2)      v^2+(-1) (u^2-1)      (-u)v (-u^2)v^2  (2u^3)v^3
As mentioned before, the record components classparam, classnames and
irredinfo contain canonical  labels and parameters  for the classes and
Character tables for Coxeter  groups  and   also  ChevieCharInfo).   For  direct  products,
sequences of such canonical labels of the individual types are given.
We can also have character tables for algebras where the parameters are not necessarily indeterminates:
    gap> H1 := Hecke( W, [ E(6)^2, E(6)^4 ],[ E(6), E(6)^2 ] );
    Hecke(CoxeterGroup("G", 2),[ E(3), E(3)^2 ],[ -E(3)^2, E(3) ])
    gap> ct := CharTable( H1 );
    CharTable( "H(G2)" )
    gap> Display( ct );
    H(G2)
                 2 2    2   2          1   1          2
                 3 1    .   .          1   1          1
    
                     ~A_1 A_1        G_2 A_2 A_1 + ~A_1
                2P                   A_2 A_2
                3P   ~A_1 A_1 A_1 + ~A_1     A_1 + ~A_1
   
    phi_{1,0}      1    A  /A          1   1          1
    phi_{1,6}      1   -1  -1          1   1          1
    phi_{1,3}'     1    A  -1         -A  /A         -1
    phi_{1,3}''    1   -1  /A        -/A   A         -1
    phi_{2,1}      2    B  /B         -1  -1          2
    phi_{2,2}      2    B  /B          1  -1         -2
 
    A = E(3)^2
      = (-1-ER(-3))/2 = -1-b3
    B = E(3)+2*E(3)^2
      = (-3-ER(-3))/2 = -2-b3
    gap> RankMat( ct.irreducibles );
    5 
The last result tells us that the specialized character table is no more invertible.
Character tables of Iwahori--Hecke algebras were introduced in GP93; see also the introduction to this chapter for further information about the origin of the various tables.
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4