InductionTable( W1, W )
InductionTable computes  the  decomposition  of the  induced characters
from the  subgroup W1 into  irreducible  characters of  W.  The  rows
correspond to the characters of the parent group, the columns to those of
the subgroup.  What is   returned  is actually   a record  with   several
fields:  scalar contains  the induction table   proper, and there is a
Display method.  The   other fields contain labeling information  taken
from the character tables of W1 and W when it exists. 
    gap> W := Group( [ (1,2), (2,3), (3,4) ], () );
    Group( (1,2), (2,3), (3,4) )
    gap> H:=Subgroup( W, [ (1,2), (3,4) ] );
    Subgroup( Group( (1,2), (2,3), (3,4) ), [ (1,2), (3,4) ] )
    gap> W.name := "W";; H.name := "H";; # to avoid warnings
    gap> Display( InductionTable( H, W ) );
        tt | X.1 X.2 X.3 X.4
    ______________________________
    X.1 tt |   1   .   .   .
    X.2 tt |   .   .   .   1
    X.3 tt |   1   .   .   1
    X.4 tt |   .   1   1   1
    X.5 tt |   1   1   1   . 
    gap> W := CoxeterGroup( "G", 2 );;
    gap> H := ReflectionSubgroup( W, [ 1, 4 ] );
    ReflectionSubgroup(CoxeterGroup("G", 2), [ 1, 4 ])
    gap> CartanName( H );
    "A1x~A1"
    gap> t := InductionTable( H, W );       
    InductionTable( ReflectionSubgroup(CoxeterGroup("G", 2), 
    [ 1, 4 ]), CoxeterGroup("G", 2))
    gap> Display( t );
                tt | 11,11 11,2 2,11 2,2
    __________________________________________
    phi_{1,0}   tt |     .    .    .   1
    phi_{1,6}   tt |     1    .    .   .
    phi_{1,3}'  tt |     .    1    .   .
    phi_{1,3}'' tt |     .    .    1   .
    phi_{2,1}   tt |     .    1    1   .
    phi_{2,2}   tt |     1    .    .   1 
If one does not want to see the whole induction  table,  one  can specify 
the characters of the subgroup and of the parent group by giving a second
argument to Display.  This  second  argument  is a record with optional 
components charsGroup and charsSubgroup, to which one  has  to assign 
the lists of rows and columns which should be printed.
    gap> Display( t,rec( charsGroup := [5], charsSubgroup := [2,3] ) );
    Induction from A1x~A1 into G2
              tt | 11,2 2,11
    ______________________________
    phi_{2,1} tt |    1    1 
GAP 3.4.4