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Abstract. We show that there is no [24, 12, 9] doubly-even self-dual code over
F4 by attempting to construct the generator matrix of this code directly.

1. Introduction

Some of the nicest and best known error-correcting codes are found among self-
dual codes. The theory of self-dual codes has strong connections with other areas
of combinatorics, group theory and lattices. Of particular interest are extremal
doubly-even self-dual binary codes with length divisible by 24 because for any
nonzero weight w, the codewords of weight w form a 5-design [1]. In 1991, Quebbe-
mann [10] introduced a generalization of doubly-even codes to arbitrary finite fields
of characteristic 2. Over the field F4 these doubly-even self-dual codes are called
“Type II” codes in [3, 6, 2]. In [6], Gaborit, Pless, Solé and Atkin proved the mass
formula for doubly-even self-dual codes over F4 and classified them up to length
8. The classification results of length 12 and 16 are given by Betsumiya, Gulliver,
Harada, and Munemasa [3] and Betsumiya [2] respectively. Nebe, Quebbemann,
Rains and Sloane [9] studied the complete weight enumerators of these codes. Note
that the proof of [9, Theorem 21] for the case n = 24 errornessly investigated only
an affine sublattice of the relevant set of integral polynomials and concluded that
for a [24, 12, 9] doubly-even self-dual code C over F4 the number of codewords in
the subcode C ∩ F24

2 is divisible by 3 and hence not a power of 2. The diploma
thesis [7, Section 9.6.1] corrected this error by showing that there are exactly two
possible candidates for complete weight enumerators of [24, 12, 9] doubly-even self-
dual codes over F4. The aim of the present paper is to show that none of these
candidates is a weight enumerator of such a code, so the statement of [9, Theorem
21] is correct. Using extensive computations in Magma and Sage we attempt to
construct the generator matrix of a [24, 12, 9] doubly-even code over F4 directly. It
turns out that there is no such code, which shows that the largest possible minimum
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Hamming distance d of a doubly-even self-dual code over F4 of length n is given as
in [9, Theorem 21]:

n 4 8 12 16 20 24
d 3 4 6 6 8 8

2. Preliminaries

Let F denote a field. As usual an [n, k, d] code C over F is a k-dimensional
subspace of Fn so that the minimum Hamming distance of C is d. The dual code of
C is

C⊥ := {x ∈ Fn |
n∑

i=1

xici = 0 for all c ∈ C}.

Lemma 1. Let C be an [n, k, d] linear code over F. Let v = (v1, v2, . . . , vn) be
any weight d word of C with vi = 1 for some i. Then there exists a code C′,
permutation equivalent to C, generated by G′ = [Ik | A′], such that v′, the codeword
of C′ corresponding to v, is the first row of G′.

Proof. Up to permutation equivalence we can assume that v1 = 1 and vi = 0 for
2 ≤ i ≤ n − d + 1. Define a projection π : C → Fn−d+1 by π(c) = (c1, . . . , cn−d+1)
for c = (c1, . . . , cn) ∈ C. If π(c) = 0, then wt(c) ≤ d − 1, implying that c is the
all-zero word. So π is injective and its image has dimension k = dim(C). Let G
be a generator matrix for the code C with its first row equal to the word v. Since
dim(π(C)) = k, there exist k linearly independent columns I of the first n − d + 1
columns of G. We have 1 ∈ I, otherwise the rank of columns I will be less than k.
Applying a permutation to the first n − d + 1 coordinates of C (fixing column 1),
we can get a code C′ such that the first k coordinates form an information set for
C′. Now the code C′ has a unique generator matrix of the form G′ = [Ik | A′] with
its first row equal to v.

Let C be an [n, n/2] self-dual code. Fix n1 and n2 so that n1 + n2 = n. Let B
and D be the largest subcode of C whose support is contained entirely in the left n1
and right n2 coordinates, respectively. Suppose B and D have dimensions k1 and
k2, respectively. Let k3 = n/2− k1 − k2. Then there exists a generator matrix for
C in the form

gen(C) =

 B O
O D
E F


where B is a k1 × n1 matrix with (B O) being a generator matrix for B, D is a
k2 × n2 matrix with (O D) being a generator matrix for D, O is a zero matrix of
appropriate size, and (E F ) is a k3 × n3 matrix. Let B∗ be the code of length n1
generated by B, BE be the code of length n1 generated by the rows of B and E, D∗
be the code of length n2 generated by D, DF be the code of length n2 generated
by the rows of D and F . The following result is known as the Balance Principle [8,
Theorem 9.4.1].

Lemma 2. (i) rank(E) = rank(F ) = k3;
(ii) n1 − 2k1 = n2 − 2k2;

(iii) B⊥E = B∗,D⊥F = D∗.
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3. The main result

This section describes the computations that lead to the main result of this note,
the non-existence of a doubly-even self-dual code over F4 of length 24 with minimum
distance ≥ 9. Let F4 = {0, 1, ω, ω2} be the finite field of order 4.

Definition 3. (Quebbemann [10]) A vector c ∈ Fn
4 is called doubly-even if

∑n
i=1 ci =∑

i<j cicj = 0. We say that a linear code C ≤ Fn
4 is doubly-even if each codeword in

C is doubly-even.

Doubly-even codes are self-orthogonal. This follows from the identity∑
i<j

(ci + c′i)(cj + c′j) =
∑
i<j

cicj +
∑
i<j

c′ic
′
j +

n∑
i=1

ci

n∑
i=1

c′i −
n∑

i=1

cic
′
i.

We will show the following theorem.

Main Theorem. Let C ≤ F24
4 be a doubly-even self-dual code. Then d(C) ≤ 8.

For the proof let C be a doubly-even self-dual code in F24
4 so that its minimum

Hamming weight is d(C) ≥ 9. Then by [7, Section 9.6.1] there are two possibilities
for the complete weight enumerator of C:

p1 = x240 + 2280x150 x
3
1x

3
ωx

3
ω2 + 2652(x140 x

6
1x

2
ωx

2
ω2 + x140 x

2
1x

6
ωx

2
ω2 + x140 x

2
1x

2
ωx

6
ω2) + . . .

p2 = x240 + 2376x150 x
3
1x

3
ωx

3
ω2 + 2508(x140 x

6
1x

2
ωx

2
ω2 + x140 x

2
1x

6
ωx

2
ω2 + x140 x

2
1x

2
ωx

6
ω2) + . . .

In particular d(C) = 9. Replacing C by a permutation equivalent code, we assume
that

α := (1 1 1 ω ω ω ω2 ω2 ω2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) ∈ C.
We apply the Balance Principle with n1 = 9 and n2 = 15:

Corollary 4. Let C be a doubly-even self-dual code in F24
4 containing the vector α

from above and so that its minimum Hamming weight is d(C) ≥ 9. Then C has a
generator matrix of the form

gen(C) =

 1 1 1 ω ω ω ω2 ω2 ω2 0
O D
E F


with D ∈ F4×15

4 . In the notation of Lemma 2 the code B is the one-dimensional code
generated by the vector α, k1 = 1, and k2 = 4. Also D∗ is a [15, 4, d] doubly-even
code with minimum distance d ≥ 9.

Lemma 5. In the notation of Corollary 4 let DF = (D∗)⊥ be the code with generator

matrix

(
D
F

)
∈ F11×15

4 . Then the minimum weight of DF is greater than 2.

Proof. Suppose that there exists a codeword y ∈ DF with weight 2. Then we can
find a codeword β = (x y) ∈ C, where x ∈ F9

4 with wt(x) ≥ 7. Consider the
multiset {βiα−1i | i ∈ supp(x)} consisting of non-zero values, where α ∈ C is the
vector defined above. As this multiset contains at least 7 elements one of the 3
non-zero elements in F4 has to occur at least 3 times. Denote this common value
by a. Then the weight of the codeword β − aα is less than 9, which is impossible.
Similar arguments show that there is no codeword of weight 1 in DF . The lemma
follows.
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A linear code is called projective if its dual distance is greater than 2. ¿From the
above discussion, we know that the code D∗ is a [15, 4, d] doubly-even projective
code with minimum distance d ≥ 9.

3.1. The [15, 4,≥ 9] doubly-even projective codes D∗. Using direct compu-
tations we show the following proposition.

Proposition 6. Let D∗ be a [15, 4, d] doubly-even projective code with minimum
distance d ≥ 9. Then d = 9 and there are 18231 such [15, 4, 9] codes D∗ up to
permutation equivalence.

Table 1. Number of nonisomorphic doubly-even [11 + r, r, d]

r d=9 d=10
1 1 1
2 39 4
3 1180 1
4 18231∗ 0∗

Here ∗ indicates that we only count projective codes.

Proof. By the Griessmer bound the minimum weight of D∗ is either 9 or 10. We
can easily check that there is only one weight 9 doubly-even vector

(1 0 0 0 0 0 0 ω ω ω ω2 ω2 ω2 1 1)

and one weight 10 doubly-even vector

(1 0 0 0 0 0 w w w2 w2 1 1 1 1 1)

in F15
4 up to permutation equivalence and multiplication by elements in F∗4.

By Lemma 1, every [15, 4, 9] doubly-even projective code over F4 is permutation
equivalent to a code which has a generator matrix of the following form

1 0 0 0 0 0 0 w w w w2 w2 w2 1 1
0 1 0 0

A0 0 1 0
0 0 0 1


where A is a 3× 11 matrix over F4. We attempt to complete this generator matrix
row by row. For each row in turn, our first step is to create a list of candidates. A
row vector is a candidate if the subcode generated by the completed rows is doubly-
even and has minimum distance 9. For Row 4, we should also check that the
generated subcode is projective. We then check for permutation equivalence among
the subcodes generated by the completed rows. Our method for testing isomorphism
of codes is based on that of Feulner [5]. The results are shown in Table 1 (column
d=9), showing that there are in total 18231 nonisomorphic [15, 4, 9] doubly-even
projective codes.

Similarly, every [15, 4, 10] doubly-even projective code is permutation equivalent
to a code which has a generator matrix of the following form

1 0 0 0 0 0 w w w2 w2 1 1 1 1 1
0 1 0 0

A0 0 1 0
0 0 0 1


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where A is a 3 × 11 matrix over F4. The results are shown in Table 1 (column
d=10). Hence there is no [15, 4, 10] doubly-even projective code.

3.2. Completing the remaining rows. This final section completes the proof
of the Main Theorem.

For each of the [15, 4, 9] doubly-even projective codes D∗ from Proposition 6 we
choose a generator matrix D ∈ F4×15

4 of D∗ and use Magma to compute a matrix
F ∈ F7×15

4 such that the dual code (D∗)⊥ = DF is generated by the rows of D
and F . To simplify computations we try to find matrices F whose rows have small
weight: for 18217 out of 18231 nonisomorphic codes D∗ from Proposition 6 the row
vectors of F can be chosen to be all-one vector and six weight 3 vectors. Then we
try to complete the generator matrix of C as in Corollary 4 by filling the matrix
E ∈ F7×9

4 row by row. Let us illustrate this by an example.

Example 1. Let D∗ be a [15, 4, 9] doubly-even projective code with generator
matrix

1 0 0 0 0 0 0 w w w w2 w2 w2 1 1
0 1 0 0 0 1 1 w2 w2 w2 w w w 0 0
0 0 1 0 1 w2 w2 0 w w2 0 0 w w 1
0 0 0 1 1 w w2 w2 0 w 0 w w2 1 0

 .

Then C has a generator matrix of the following form

111ωωωω2ω2ω2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O
1 0 0 0 0 0 0 w w w w2 w2 w2 1 1

0 1 0 0 0 1 1 w2 w2 w2 w w w 0 0

0 0 1 0 1 w2 w2 0 w w2 0 0 w w 1

0 0 0 1 1 w w2 w2 0 w 0 w w2 1 0
1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

wt ≥ 6

0 0 0 0 0 0 1 w2 0 0 0 0 w 0 0

0 1 0 0 0 0 0 0 0 w 0 0 0 w2 0

0 0 0 0 0 0 0 1 w2 w 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 w2 0 0 w 0

0 1 0 0 w2 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 w2 0 w 0



.

As the first row of F is the all-one vector, also the first row of E needs to be
the all-one vector. To complete the remainder of the matrix E, we use the method
described earlier. We find (up to equivalence) 6 possibilities for the second row of E,
442 possibilities for the third row of E, then 8202, 6843, only 2 possibilities for rows
4–6, and none of them can be completed to obtain a generator matrix of a self-dual
doubly-even [24, 12, 9] code over F4. Therefore there is no [24, 12, 9] doubly-even
code in this case.

Similar computations exclude all the 18231 possibilities from Proposition 6. Thus
we have proved that there is no [24, 12, 9] doubly-even self-dual code over F4 and
hence completed the proof of the Main Theorem.
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