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Resumé

Dette speciale omhandler irreducible karakterer i de endelige symmetriske
grupper. Der er en naturlig korrespondence mellem partitioner af n og ir-
reducible karakterer af den symmetrisk gruppe Sn. Denne korrepondence
er specielt synlig i Murnaghan-Nakayama-formlen. Formlen muliggør at
beregne værdien af den irreducible karakter, hørende til partitionen α rekur-
sivt ved at betragte α’s Young diagram. Forbindelsen mellen de irreducible
karakterer og partitioner viser sig ogs̊a i den s̊akaldte hook-formel, som an-
giver graden af den irreducible karakter hørende til α ved hjælp af “hook-
længderne” i α. Hook-formlen kan ogs̊a ses some en anvendelse af Murnaghan-
Nakayama-formlen (eller af forgreningsreglen, som er et specielt tilfælde af
den).

Jeg starter med at præsentere et bevis for Murnaghan-Nakayama-formlen og
s̊a giver jeg nogle eksempler p̊a anvendelser. Den første anvendelse er en
formel for χα(π), værdien af den irreducible karakter, hørende til α p̊a π, i
det tilfælde hvor for et naturligt tal q, q-vægten af π er større end eller lig α’s
q-vægt. De andre anvendelser af Murnaghan-Nakayama-formlen er studier af
“p-vanishing”- og “sign”-konjugationsklasser i Sn, dvs. konjugationsklasser
i Sn hvor alle irreducible karakterer af grad delelig med p antager værdien 0
eller hvor alle irreducible karakterer kun tager værdierne 0,1 eller -1.
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Abstract

In this thesis I will study the irreducible characters of the finite symmetric
groups. They are labeled in a natural way by the partitions of n. This way
of labeling irreducible partitions of Sn becomes even more natural when we
study the Murnaghan-Nakayama formula. This formula allows us to find
the values of the irreducible character labeled by α in a recursive way by
looking at the Young diagram of α. The connection between the irreducible
characters of Sn and the partitions of n appears also in the hook formula,
which allows us to calculate the degree of the irreducible character labeled by
α in terms of the hook lengths of α. The hook formula may actually be seen
as an application of the Murnaghan-Nakayama formula (or of the branching
rule, which is a special case of it), as the degree of a character is equal to its
value on the element 1.

I will start by presenting a proof of the Murnaghan-Nakayama formula and
then use it in some applications. The first application is to find a formula
for χα(π), the value of the irreducible character labeled by α on π, in the
case where for some q, the q-weight of π is at least as big as that of α. The
other applications of the Murnaghan-Nakayama formula that I will present
are to study p-vanishing and sign classes of Sn, that is conjugacy classes of
Sn where all irreducible characters of degree divisible by p take the value 0
or where all irreducible characters take value 0,1 or -1 respectively.
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Introduction

After having given some definitions and results about representations of a
finite group, in particular when the ground field is algebraic closed and has
characteristics 0 in section 1, and about partitions in section 2, I begin study-
ing irreducible characters of Sn. Even if in sections 3 and 4 I consider rep-
resentations both in characteristic 0 and in positive characteristics, starting
from section 5 I will only be considering ordinary irreducible characters of
Sn, that is irreducible characters of Sn over C.

In section 5 I show that the ordinary irreducible representation of Sn
are labeled by the partitions of n in such a way that if [α] is the irreducible
representation corresponding to α, where α is a partition of n, I have that [α]
is the only common irreducible component of IndSnSα(ISα) and IndSnSα′ (ASα′),
where α′ is the partition associated to α, for any H ⊂ Sn, IH is the identity
representation of H and AH is the sign representation of H and for any β
partition of n, Sβ is a Young subgroup corresponding to β, that is a subgroup
of Sn isomorphic to Sβ1 × Sβ2 × · · · . I also show that [α] appears only
once in any decomposition of IndSnSα(ISα) and IndSnSα′ (ASα′) in irreducible

representations and that [α] is also a representation of Sn over Q.
In section 6 I find a method to compute the irreducible characters of Sn,

even if this method isn’t really useful when n is large, as it would require a
really large number of calculations.

In section 7 I prove the determinantal form, i.e. that [α] = |[αi + j − i]|,
where

[n1] · · · [nk] = Ind
Sn1+...+nk
Sn1×···×Snk

(I(Sn1 × · · · × Snk))

when all ni ≥ 0 and is 0 otherwise, which gives an easier method to find the
values of the irreducible characters of Sn on all conjugacy classes, as thanks
to this formula I then only need to find the characters of the representations
[α1 + π(1)− 1] · · · [αk + π(k)− k] for π ∈ Sk, for some big enough k (k needs
to be such that αj = 0 for j > k), which are either induced characters from
the identity representation of some Young subgroup or they are 0.

This is used in section 8 to prove first the branching rule (one part of
which is a particular case of the Murnaghan-Nakayama formula) and then
the Murnaghan-Nakayama formula, which says that

χα(π) =
∑

(i,j)∈α:hαi,j=k

(−1)l
α
i,jχα\R

α
i,j(ρ)

where for any partition β, χβ is the character of the irreducible representation
labeled by β, and π, ρ and k are such that π ∈ Sn, ρ ∈ Sn−k and the cycle
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partition of ρ is obtained by the cycle partition of π by removing a part equal
to k (in particular I need to have that π has at least one k-cycle).

The proof of the Murnaghan-Nakayama formula I present in sections from
3 to 8 follows a book from James and Kerber ([2]).

I then prove in section 9 some results on cores, quotients and β-sets of a
partition, which, together with the Murnaghan-Nakayama formula are used
to prove in section 10 a formulas for χα(π) in the case where the q-weight
of π is at least as big as that of α, where q is any positive integer. I focus
mainly on the case where wq(π) = wq(α) (as if wq(π) > wq(α) I have that
χα(π) = 0) and in this case if π = ρσ, where ρ consists cycles of lengths qλ,
where λ ` wq(π) and σ and ρ acts on distinct sets of elements, I prove that

χα(π) = δq(α)fα
(q)

λ χα(q)(σ)

where δq(α), α(q) and α(q) are the q-sign, the q-quotient and the q-core of α

respectively and fα
(q)

λ depends on α(q) and λ only and I find a formula for

fα
(q)

λ . This section generalizes formula 2.7.25 from the book of James and
Kerber [2], in which ρ consists of cycles all of length q.

In section 11 I present a proof of the hook-formula, which gives the degree
of an irreducible representation of Sn and which says that if fα is the degree
of [α] then

fα =
n!∏

(i,j)∈α h
α
i,j

.

The proof of the hook-formula which is presented is taken from some lecture
notes written by Olsson ([5]).

The Murnaghan-Nakayama and the hook formulas are then used in sec-
tion 12 to find informations about p-vanishing conjugacy classes of Sn, that
is those conjugacy classes of Sn which are 0 on all irreducible characters
of Sn of degree divisible by p, where p is a prime. In particular if I let
n = a0 + a1p + . . . + akp

k be the p-adic decomposition of n, I prove that
when wpi(π) = ai + ai+1p + . . . + akp

k−i for all 0 ≤ i ≤ k, that is when π
is of p-adic type, then π is p-vanishing. This part of this section is based
on results by Malle, Navarro and Olsson, which may be found in section 4
of [3]. Afterward I prove some new results trying to prove that p-vanishing
elements are of p-adic type. This is not true for p = 2, 3, even if in this I
completely classify p-vanishing elements and show that they are really close
to be of p-adic type. In the case where p 6= 2, 3 I have a conjecture that p-
vanishing elements are exactly elements of p-adic type. Even if I haven’t been
able to completely prove this conjecture I have been able to prove different
results which support it. The work in this last part has been originated by
a question of Navarro about which conjugacy classes of Sn are 2-vanishing.
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Finally in section 13 I study p-vanishing classes of Sn, that is conjugacy
classes of Sn which always take value 0,1 or -1 on all irreducible characters.
Some results from this section are taken from an article from Olsson ([6])
or are generalizations of results from this article, while I have proved other
results in this section myself.

Through all of my thesis N always contains 0.

1 Basics on Group Representation Theory

In this section we want to give an overview about results on representations
of finite groups. The results from this section have been taken from [8], where
proofs of these results can be also found. Let V be a vector space over a field
K and let G be a group.

Definition 1 (Representation). A representation of G over V is a homo-
morphism

ρ : G→ GL(V ),

where GL(V ) is the group of automorphisms of V .

If DimK(V ) = n we say that ρ has degree n.
A basic example of representation is given by the identity representation,

which has degree 1 and for which ρ(g) = id for all g ∈ G.
An other example of representation is the regular representation, which

has degree |G|. Let V be the vector space with basis {eg : g ∈ G}. The
regular representation is given by extending

ρ(g)(eh) = egh

by linearity.
A representation is called irreducible if V 6= 0 and no proper subspace of

V is stable under G.
If ρV and ρW are two representations of G over V and W respectively we

can define the direct sum of ρV and ρW by

ρV ⊕ ρW : G → GL(V ⊕W )

g 7→
(
ρV (g) 0

0 ρW (g)

)
.

It is easy to see that ρV ⊕ ρW is also a representation of G.
Let now ρ be a representation of G over V and φ be a representation of

H over W . We can define the tensor product of ρ and φ

ρ⊗ φ : G×H → GL(V ⊗W ),
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by

ρ⊗ φ(g, h)(v ⊗ w) = ρ(g)(v)⊗ φ(h)(w),∀g ∈ G, h ∈ H, v ∈ V,w ∈ W.

It can be seen that ρ⊗φ is a representation of G×H (see section 3.2 of [8]).
In all of the following we will assume that V is finite dimensional.

Definition 2 (Character of a representation). Let ρ be a representation. The
character of ρ is given by

χ(g) = Tr(ρ(g)), g ∈ G.

A character is called irreducible if it is the character of an irreducible
representation. Also it is clear by the properties of the trace that isomorphic
representations have the same character.

We will now assume that K has characteristic 0 and is algebraic closed
and that G is finite. We then have that (theorem 2 and proposition 1 of [8])

Theorem 1. Every representation is a direct sum of irreducible representa-
tions.

Theorem 2. If χ is the character of a representation of degree n we have
that

i) χ(1) = n,

ii) χ(g−1) = χ(g) for g ∈ G,

iii) χ(hgh−1) = χ(g) for g, h ∈ G.

Even if K doesn’t need to be contained in C, χ(g) ∈ C for any g ∈ G, as
it is the sum of the eigenvalues of ρ(g) (χ is the character of ρ) and if λi is

an eigenvalue for g then λ
|G|
i is an eigenvalue for g|G| = 1 and so λ

|G|
i = 1 and

then λi ∈ Qal ⊂ C, where Qal is the algebraic closure of Q.
The last condition in the theorem says that any character is constant over

conjugacy classes.
We will now define a bilinear form on the set of characters of a group.

Let χ, ψ be characters of G. Then (χ, ψ) is defined by

(χ, ψ) = 1/|G|
∑
g∈G

χ(g)ψ(g−1) = 1/|G|
∑
g∈G

χ(g)ψ(g).

It easy to see from the definition that (χ, ψ) = (ψ, χ) for any two characters
χ and ψ of G.

It can be seen that (theorem 3 of [8])
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Theorem 3 (Character relations of the first kind). i) If χ is an irreducible
character we have that (χ, χ) = 1.

ii) If χ and ψ are irreducible characters of non-equivalent representations
we have that (χ, ψ) = 0.

From this theorem it follows easily that (theorem 4 of [8])

Corollary 4. Let ρ and φ be representation and assume that φ is irreducible.
Let χ and ψ be the characters of ρ and φ respectively. If ρ = ⊕i ρi, where ρi
are irreducible representations, we have that (χ, ψ) is equal to the number of
ρi which are equivalent to φ.

Corollary 5. If ρ1 =
∑

imiφi and ρ2 =
∑

i niφi are representations of G,
where the φi are pairwise non-equivalent irreducible representations of G, and
χj is the character of ρj we have that

(χ1, χ2) =
∑
i

mini.

This last corollary follows easily from the previous one and from the fact
that from the definitions of the direct sum of two representations and of the
character of a representation we have that the character of ρ⊕ φ is the sum
of the character of ρ and the character of φ.

In particular we have that (theorem 5 of [8])

Theorem 6. A representation with character χ is irreducible if and only if
(χ, χ) = 1.

We can also define

Definition 3 (Intertwining number). Let ρ and φ be representations of G
over V and W respectively. The intertwining number of ρ and φ is defined
by

i(ρ, φ) = DimK (HomG(V,W )) .

From lemma 2 of [8] we have that that the intertwining number i(ρ, φ)
is equal to (χ, ψ), where χ is the character of ρ and ψ is the character of φ,
when the characteristic of the field K is 0, but the intertwining number can
also be defined when the characteristic of K is different from 0.

By this formula it can be easily shown that if ρ is an irreducible repre-
sentation of G and φ is an irreducible representation of H then ρ ⊗ φ is an
irreducible representation of G × H, as if χ is the character of ρ and ψ is
the character of φ then the character of ρ⊗ φ at (g, h) is given by χ(g)ψ(h).
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In the following we will write χ ⊗ ψ for the character of ρ ⊗ φ. Actually it
can be proved that all irreducible representations of G×H are of this form
(theorem 10 of [8]).

In particular if ρ is the regular representation and χ is its character we
have by proposition 5 of [8] that χ(1) = |G| and χ(g) = 0 if g 6= 1, so that if
φ is any irreducible representation, ψ is its character and n is the degree of
φ, then (χ, ψ) = n, so we have corollary 1 to proposition 5 of [8]

Theorem 7. Any irreducible representation is contained in the regular rep-
resentation with multiplicity equal to its degree.

From this last theorem we have in particular that all the irreducible rep-
resentations appear in (any) decomposition of the regular representation in
irreducible representations.

Also it can be proved that (theorem 7 of [8])

Theorem 8. The number of distinct irreducible characters of a group G is
equal to the number of conjugacy classes of G.

Let now H be a subgroup of G. We will now show how we can construct
representations of H by representations of G and vice-versa.

The following theorem (proposition 7 of [8]) shows how characters tables
of two conjugacy classes of G relates

Theorem 9. [Characters relations of the second kind] If g, h ∈ G, Cg and Ch
are the conjugacy classes of g and h in G and χ1, . . . , χn are all the irreducible
characters of G, we have that∑

i

χi(g)χi(h) =
|G|
|Cg|

δCg ,Ch .

Definition 4 (Restriction of a representation). Let ρ be a representation of
G over V . The restriction of ρ to H is defined by

ResGH(ρ) : H → GL(V )
h 7→ ρ(h).

It is easy to see that if χ is the character of a representation ρ of G and
ResGH(χ) is the character of ResGH(ρ), then χ(h) = ResGH(χ)(h) for any h ∈ H
and that ρ and ResGH(ρ) have the same degree.

We will now describe how it is possible to obtain a representation of G
from a representation of H. Let φ be a representation of H over W . For any
σ ∈ G/H let Wσ be a copy of W . Set

V =
⊕

σ∈G/H

Wσ.
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Then if any element of V can be written like
∑

σ∈G/H wσ, where each wσ ∈
Wσ, in a unique way. Also let S be a system of representatives of the left
cosets of H in G. Let g ∈ G. Then we can write g = hs for some h ∈ H and
s ∈ S in a unique way. Define for any σ ∈ G/H and any wσ ∈ Wσ

ρ(g)(wσ) = φ(h)(wσ) ∈ Wsσ.

It can be shown that extending ρ by linearity to V does actually define a
representation which doesn’t depend on S (up to equivalence). For a proof
of this see section 3.3 of [8].

Definition 5 (Induced representation). ρ as it has just been defined is called
the induced representation of φ and is denoted by IndGH(φ).

It is easy to see by the definition that if the degree of φ is n, then the
degree of IndGH(φ) is equal to n · |G/H|.

Also it can be proved that (theorem 12 of [8])

Theorem 10. Let ψ be the character of φ and IndGH(ψ) be the character of
IndGH(φ). Let S be a system of representatives of left cosets of H in G. Then
for any g ∈ G

IndGH(ψ)(g) =
∑
s∈S

s−1gs∈H

ψ(s−1gs) =
1

|H|
∑
r∈G

r−1gr∈H

ψ(r−1gr).

If ρ and φ are two representations of G over V and W respectively we
can define a representation of G over V ⊗W by extending by linearity ρ ⊗
φ(g)(v ⊗ w) = ρ(g)(v) ⊗ φ(g)(w). It can be shown that ρ ⊗ φ is actually a
representation and that if χ is the character of ρ and ψ is the character of φ
we have that the character of ρ⊗ φ is given by χψ.

Theorem 11. If ρ is a representation of G and φ is a representation of H,
where H is a subgroup of G we have that

ρ⊗ IndGH(φ) = IndGH(ResGH(ρ)⊗ φ).

The last theorem can be proved by showing that the two representations
have the same character (remark (3) to theorem 13 of [8]).

If ρ is a representation of H, where H is a subgroup of G and g ∈ G it is
easy to see that ρ(g)(ghg−1) := ρ(h) defines a representation on gH = gHg−1.

Theorem 12 (Frobenius’ reciprocity law). If ρ is a representation of G and
φ is a representation of H, which is a subgroup of G we have that

i(ρ, IndGH(φ)) = i(ResGH(ρ), φ)
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and so if χ and ψ are the characters of ρ and φ respectively we have that

i(χ, IndGH(ψ)) = i(ResGH(χ), ψ).

Theorem 13 (Mackey’s subgroup theorem). Let H and K be subgroups of
G and let ρ be a representation of H. If S is a set of representatives of the
double cosets KgH in G we have that

ResGK(IndGH(ρ)) =
∑
s∈S

IndKK∩sH(Res
sH
K∩sH(ρ(s))).

Theorem 14 (Mackey’s intertwining number theorem). Let H and K be
subgroup of G and ρ and φ be representations of H and K respectively. If S
is a set of representatives of the double cosets HgK in G we have that

i(IndGH(ρ), IndGK(φ)) =
∑
s∈S

i(ResHH∩sK(ρ),Res
sK
H∩sK(φ(s))).

For a proof of the theorems 12 and 13 see theorem 13 and proposition 22
of [8] respectively. For the proof of theorem 14 in the case where H = K
and ρ = φ see proposition 23 of [8]. The proof in the general case can be
obtained similarly.

2 Some definitions about partitions

In this section we will give some basics definitions about partitions.

Definition 6 (Partition). A sequence of non-negative integers

α = (α1, α2, . . .)

is a partition of n if
i) αi ≥ αi+1 ∀i ≥ 1,
ii)

∑
i αi = n.

If α is a partition of n we write α ` n. Also αi are called the parts of α.
As αi ∈ N for all i and

∑
i αi converges if α is a partition we have that if α

is a partition we can find h ∈ N such that αi = 0 if i > h. For such an h we
can write

α = (α1, . . . , αh).

In order to get uniqueness in writing α = (α1, . . . , αh) we can choose h to be
minimal, that is choose h such that αh 6= 0 and αi = 0 for all i > h. As α is
a partition we have that with this choice of h, αi 6= 0 for any i ≤ h.
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For example the partitions of 5 are given by

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

For n ∈ N, p(n) is the number of partitions of n.
If α is a partition of n and, for i = 1, · · · , n, we define ai to be the number

of parts of α equal to i (all parts of α are ≤ n as α ` n), we can also write

α = (nan , · · · , 1a1) .

Usually iai is left out if ai = 0.
In this notation the partitions of 5 are given by(

51
)
,
(
41, 11

)
,
(
31, 21

)
,
(
31, 12

)
,
(
22, 11

)
,
(
21, 13

)
,
(
15
)
.

Sometimes a mix of these two ways to write a partition is used, especially
when we are only focusing on how many parts equal to one or more certain
numbers a partition has. For example if αi = αi+1 = . . . = αi+s−1 but
αi−1, αi+s 6= αi we could write

(α1, . . . , αh) = (α1, . . . , αi−1, α
s
i , αi+s, . . . , αh).

Let α be a partition of n.

Definition 7 (Young diagram). The Young diagram for α consists of an
array where each the i-th row contains αi nodes and such that the rows are
left-justified.

In the following we will indicate the Young diagram of α still by α.
For example the Young diagram of the partition (3, 2) is given by

• • •
• •

If α is a partition we can define a new partition α′ which is called the
associated partition of α in the following way

Definition 8 (Associated partition). Let α be a partition. For any i let α′i
be the number of parts of α which are bigger or equal to i. α′ = (α′1, α

′
2, . . .)

is the partition associated with α.

For example (3, 2)′ = (2, 2, 1).
Looking at the Young diagram of α it can be easily sen that the Young

diagram of α′ is obtained by reflecting the Young diagram of α across the
diagonal, from which it easily follows that if α is a partition of n then also
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α′ is a partition of n and that (α′)′ = α. If α′ = α we say that α is a self
associated partition.

If α is a Young diagram and (i, j) is such that j ≤ α(i) we call the j-th
node on the i-th row of α the (i, j)-node of α.

We will now give some definitions about hooks of a partition.

Definition 9 (Hook). If (i, j) is a node of α we denote by Hα
i,j the (i, j)-hook

of α, that is the set of nodes of α of the form (i, j′) for some j′ ≥ j or (i′, j)
for some i′ ≥ i.

Definition 10 (Hook-length). Let (i, j) be a node of α. The hook-length
hαi,j of (i, j) is equal to the number of nodes in Hα

i,j.

Definition 11 (Leg-length). Let (i, j) be a node of α. The leg-length lαi,j of
(i, j) is equal to the number of nodes of α of the form (i′, j), i′ > i.

Definition 12 (Arm-length). Let (i, j) be a node of α. The arm-length aαi,j
of (i, j) is equal to the number of nodes of α of the form (i, j′), j′ > j.

It follows easily from the definition that aαi,j = αi−j and that lαi,j = α′j−i,
where α′ is the partition associated to α.

Definition 13 (Rim of α). Let α be a Young diagram. The rim of α, Rα,
is the set of nodes (i, j) of α such that (i+ 1, j + 1) is not in α.

Definition 14. If (i, j) is a node of α, Rα
i,j is the set of nodes of the rims of

the form (i′, j′) with i′ ≥ i and j′ ≥ j.

It can be easily seen that |Rα
i,j| = hαi,j and that Rα

i,j consists of the partition
of the rim between (i, αi) and (α′j, j) (see lemma 1.1 of [4]).

Definition 15 (Improper partition). A sequence λ = (λ1, λ2, . . .) is called
an improper partition of n if

i) λi ∈ N ∀i ≥ 1,

ii)
∑

i λi = n.

If λ is an improper partition of n we write λ |= n.

Also in the case of an improper partition if λi = 0 for all i > h we can
write λ = (λ1, . . . , λh).

Let now π ∈ Sn. We can write

π = Π
c(π)
j=1

(
cj, π(cj), . . . , π

αj(π)−1(cj)
)

where the (cj, π(cj), . . . , π
αj(π)−1(cj)) are disjoint cycles, each i ∈ {1, . . . , n}

appears in exactly one of those cycles and the αj(π) are non-increasing. Also
let ai(π) be the number of the αj(π) which are equal to i.
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Definition 16.
α(π) = (α1(π), . . . , αc(π)(π))

is called the cycle partition of π and

a(π) = (a1(π), . . . , an(π))

is called the cycle type of π.

Even if the cycles
(
cj, . . . , π

αj(π)−1(cj)
)

which appear in the previous de-
composition of π are not uniquely determined (we can start the j-th cycle
with π(cj) instead of cj or we can switch the i-th and the j-th cycle if they
have the same length), it is easy to see that c(π) and the αj(π) are uniquely
defined, so that α(π) is well defined for any partition π ∈ Sn and so the
same is true also for a(π). By definition a(π) is known if if know α(π).
Also as π ∈ Sn, so that α(π) ` n and so all parts of are ≤ n we have that
α(π) = (nan(π), . . . , 1a1(π)) and so we can find α(π) if we know a(π), from
which we have that knowing α(π) is equivalent to knowing a(π).

By the definitions of α(π) and a(π) for any π ∈ Sn and as two elements
of Sn are conjugate if and only if they have the same cycle partition, we
have that σ, ρ ∈ Sn are conjugate if and only if α(σ) = α(ρ) if and only if
a(σ) = a(ρ) (lemma 1.2.6 of [2]).

3 Young Subgroups of Sn

This section is based on section 1.3 of [2].
Let n = {1, . . . , n} and let λ be an improper partition of n. Let nλi be

pairwise disjoint subsets of n such that |nλi | = λi and let Sλi be the subgroup
of Sn consisting of the elements which fixes all the elements of n \ nλi , that
is Sλi is the symmetric group over nλi .

Definition 17 (Young subgroup).

Sλ = Sλ1 × Sλ2 × · · ·

is called the Young subgroup corresponding to nλ = (nλ1 ,n
λ
2 , . . .).

It is easy to see that Sλ ∼= Sλ1×Sλ2×· · · and that this is actually a finite
product as Sλi = {1} whenever λi = 0.

If we write λ as a diagram where in each row there are λi position filled
with the numbers in nλi (that is if we consider a λ-tableau), then Sλ is the
subgroup of Sn which fixes the rows of the diagram.
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If H is any subgroup of Sn there are two trivial representations of H of
degree 1, which then need to be irreducible. These two representations might
be equal, and in fact it is easy to see that they are the same if and only if
H ⊂ An when we are in characteristics 6= 2 and that they are always the
same if we are in characteristics 2. The first one is the identity representation
of H, which will be denoted by IH. The second one is the alternating
representation of H, denoted by AH, that is the representation of H over V ,
where V is a one dimensional vector space, given by

AH : Sλ → GL(V )
π 7→ sign(π) · idV .

We will now show how we can calculate i
(

IndSnSλ(ISλ), IndSnSµ(ISµ)
)

and

i
(

IndSnSλ(ISλ), IndSnSµ(ASµ)
)

where λ and µ are improper partitions of n.

Let {π} be representatives of the double cosets SλρSµ in Sn. Using
Mackey’s intertwining number, theorem 14, we have that

i
(

IndSnSλ(ISλ), IndSnSµ(ISµ)
)

=
∑

π i
(

ResSλSλ∩πSµ(ISλ),Res
πSµ
Sλ∩πSµ

(
IS

(π)
µ

))
=

∑
π i(I(Sλ ∩ πSµ), I(Sλ ∩ πSµ))

=
∑

π 1

as I(Sλ ∩ πSµ) is an irreducible representation. So i(IndSnSλ(ISλ), IndSnSµ(ISn))
is equal to the number of double cosets SλρSµ in Sn. Also we have that

i
(

IndSnSλ(ISλ), IndSnSµ(ASn)
)

=
∑

π i
(

ResSλSλ∩πSµ(ISλ),Res
πSµ
Sλ∩πSµ

(
AS

(π)
µ

))
=

∑
π i(I(Sλ ∩ πSµ), A(Sλ ∩ πSµ)).

As I(Sλ∩ πSµ) and A(Sλ∩ πSµ) are both irreducible representations we have
that

i(I(Sλ ∩ πSµ), A(Sλ ∩ πSµ)) =

{
1 I(Sλ ∩ πSµ) = A(Sλ ∩ πSµ)
0 I(Sλ ∩ πSµ) 6= A(Sλ ∩ πSµ)

By the previous considerations we have that I(Sλ ∩ πSµ) = A(Sλ ∩ πSµ) if
and only if Sλ∩ πSµ ⊂ An when the characteristics of the field we are working
with is 6= 2 (in particular when it is equal to 0). By definition of Sλ and Sµ
we have that

Sλ ∩ πSµ = (ΠiSnλi
) ∩ π(ΠjSnµj

)π−1 = Πi,jSnλi ∩π(n
µ
j )

(1)

and so it is easy to see that Sλ ∩ πSµ ⊂ An if and only if Sλ ∩ πSµ = 1, that

is, if we are in characteristics 6= 2, i
(

IndSnSλ(ISλ), IndSnSµ(ASµ)
)

is equal to the

number of double cosets SλπSµ for which Sλ ∩ πSµ = 1.
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We will now give some methods for finding the number of double cosets
SλρSµ and the number of such cosets satisfying Sλ ∩ πSµ = 1.

This lemma is lemma 1.3.8 of [2].

Lemma 15. ρ ∈ SλπSµ if and only if
∣∣nλi ∩ πnµk

∣∣ =
∣∣nλi ∩ ρnµk∣∣ for all i and

k.

Proof. ⇒ Assume that ρ ∈ SλπSµ. Then ρ = σπτ for some σ ∈ Sλ and
τ ∈ Sµ. Then we have

nλi ∩ ρn
µ
k = nλi ∩ σπτn

µ
k = σnλi ∩ σπnµk = σ(nλi ∩ πnµk)

for any i and k as σ fixes each set nλi and τ fixes each set nµk by definition of
Sλ and Sµ. In particular we have that

∣∣nλi ∩ πnµk
∣∣ =

∣∣nλi ∩ ρnµk∣∣ for all i and
k.
⇐ As for each i and k, nλi ∩ πnµk and nλi ∩ ρn

µ
k have the same number of

elements and they are both contained in nλi , we can find σi ∈ Sλi for each i
such that σi

(
nλi ∩ πnµk

)
= nλi ∩ρn

µ
k for every k. As nλi = ∅ for all i such that

λi = 0 and there are only finitely many j such that λj 6= 0, we have that
only finitely many σi are different from 1, and so we can define σ = σ1σ2 · · · .
It is easy to see that σ

(
nλi ∩ πnµk

)
= σi

(
nλi ∩ πnµk

)
for all i and k and that

by definition of Sλ we have that σ ∈ Sλ. So we have that for each i and k

σ
(
nλi ∩ πnµk

)
= nλi ∩ σπnµk = nλi ∩ ρn

µ
k .

Taking the union over i we obtain σπnµk = ρnµk and so by definition of Sµ we
can find τ ∈ Sµ such that σπτ = ρ. As σ ∈ Sλ and τ ∈ Sµ we then have that
ρ ∈ SλπSµ.

The next theorem is theorem 1.3.10 of [2].

Theorem 16. Let λ and µ be improper partitions of n and Sλ and Sµ be the
corresponding Young subgroups. Then the map

f : SλπSµ 7→
(
zi,k :=

∣∣nλi ∩ πnµk
∣∣)

is a bijection between the set of double cosets of Sλ and Sµ in Sn and the set
of infinite matrices (zi,k) over N satisfying∑

k

zi,k = λi,
∑
i

zi,j = µk.



17 3 Young Subgroups of Sn

Even if in the theorem we are considering infinite matrices as the coeffi-
cients are non-negative we have that the i-th row (the k-th column) is 0 when
λi (µk) is 0, so that if λi = 0 for i > h and µk = 0 for k > l then the number
of infinite matrices over N satisfying the conditions in the theorem is the
same as the number of h× l matrices over N satisfying the same conditions,
so that we only need to consider big enough finite matrices and not infinite
matrices when we want to find the number of double cosets SλπSµ in Sn.

Proof. We know by lemma 15 that f is well defined (it does not depend on
the choice of the element of the double coset SλπSµ) and that f is injective.
So we only need to show that it is surjective. Let (zi,k) satisfy the properties
in the theorem. As

∑
i zi,k = µk for all k we can find a dissection nµi,k of nµk

such that
∣∣nµi,k∣∣ = zi,k for each i, k (that is nµk = ∪inµi,k is a disjoint union

and
∣∣nµi,k∣∣ = zi,k). Similarly for each i we can find a dissection nλi,k of nλi such

that
∣∣nλi,k∣∣ = zi,k. As

∣∣nλi,k∣∣ =
∣∣nµi,k∣∣ for each i and k we can find π ∈ Sn such

that π
(
nµi,k
)

= nλi,k for all i, k. It is easy to see that for such a π we have
that f(SλπSµ) = (zi,k) and so we have that f is surjective and then that f
defines a bijection from the set of double cosets of Sλ and Sµ in Sn to the set
of infinite matrices (zi,k) over N satisfying

∑
k zi,k = λi and

∑
i zi,j = µk.

In particular we have the following

Corollary 17. If λ and µ are improper partitions, i
(

IndSnSλ(ISλ), IndSnSµ(ISµ)
)

is equal to the number of infinite matrices (zi,k) over N with row sums λi and
column sums µk.

We will now show how to find the number of double cosets SλπSµ satis-
fying Sλ ∩ πSµ = 1.

Lemma 18. Sλ ∩ πSµ = 1 if and only if
∣∣nλi ∩ πnµk

∣∣ = 0, 1 for all i, k.

Proof. By equation (1) we have that Sλ ∩ πSµ = Πi,kSnλi ∩π(n
µ
k )

from which

we have that |Sλ ∩ πSµ| = Πi,k

∣∣nλi ∩ π(nµk)
∣∣!. In particular |Sλ ∩ πSµ| = 1 if

and only if all the
∣∣nλi ∩ π(nµk)

∣∣ are either 0 or 1.

Form this lemma and theorem 16 we have the following corollary (corol-
lary 1.3.13 of [2])

Corollary 19. The number of double cosets SλπSµ satisfying Sλ ∩ πSµ = 1
is equal to the number of infinite matrices with coefficients 0 and 1 with row
sums λi and column sums µk.

and so
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Corollary 20. If we are working in characteristics 6= 2 and λ and µ are

improper partitions we have that i
(

IndSnSλ(ISλ), IndSnSµ(ASµ)
)

is equal to the

number of infinite matrices with coefficients 0 and 1 with row sums λi and
column sums µk.

Also in this case even if in the corollaries we are considering infinite
matrices we could just consider some big enough finite matrix.

4 The Dominance Order

This section is based on section 1.4 of [2].
We know want to find for which partitions α, β of n we have that

i(IndSnSα(ISα), IndSnSβ (ASβ)) 6= 0.

To do this we will first define a partial order on the set of partitions of n.

Definition 18 (Dominance order). Let α and β be two partitions of n. We
say that αE β if for all i we have that

i∑
j=1

αj ≤
i∑

j=1

βj.

The order defined by E on the set of partitions of n is called the dominance
order.

It is easy to see that if α E β then α ≤ β where ≤ is the lexicographic
order, that is we can find i such that αj = βj for j < i and αi < βi (unless
α = β).

The next theorem is one direction of the Gale and Ryser’s theorem (the-
orem 1.4.17 of [2]).

Theorem 21. Let α and β be partitions of n. If there exists 0-1 matrices
with rows sums αi and column sums β′k, where β′ is the partition associated
to β, then αE β.

Proof. Assume that such a matrix (zi,k) exists. Let dj,h be the number of

columns for which
∑h

i=1 zi,k = j (that is dj,h is the number of columns of (zi,h)
which contain exactly j 1’s in the first h rows) and let ej be the number of
parts of β′ which are equal to j. Then for any h we have that

h∑
j=1

αj =
h∑
j=1

j · dj,h ≤
h−1∑
j=1

j · ej + h
∞∑
m=h

em =
h∑
j=1

βj
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as if the first h rows of column k of (zi,k) contain exactly j 1’s then β′k ≥ j,
and so αE β.

From this theorem and corollary 20 we have the following, which is one
direction of Ruch and Schönofer’s theorem (theorem 1.4.18 of [2])

Theorem 22. If α and β are partitions of n and Sα and Sβ′ are Young
subgroups for the partitions α and β′ respectively and the characteristic of

the ground-field is not 2, we have that if i
(

IndSnSα(ISα), IndSnSβ′ (ASβ′)
)
6= 0

then αE β.

5 The Ordinary Irreducible Representations

of Sn

This section is based on section 2.1 of [2].
We will now be considering representations of Sn over C (the ordinary

representations of Sn) and show that any irreducible representation over C
can actually be realized over Q. In order to do this we will first show that

i
(
IndSnSα(ISα), IndSnSα′ (ASα

′)
)

= 1 for any α partition of n.

By section 3 we have that i
(
IndSnSα(ISα), IndSnSα′ (ASα

′)
)

is equal to the

number of 0-1 matrices with row sums αi and column sums α′k. In any such
matrix (zi,k) we need to have α1 1’s in the first row and as α′ has exactly α1

non-zero parts we can only fill up the first row in a unique way, that is by
having z1,k equal to 1 if k ≤ α1 and equal to 0 if k > α1. Assume that we
have now filled up until row i− 1 so that for any j < i we have that zj,k = 1
if k ≤ αj and zj,k = 0 if k > αj. If now k > αi we have that the number
of 1’s in the kth column in the first i− 1 rows is equal to the number of αj
which are bigger or equal to k (as the parts of α are non-increasing), that is∑i−1

j=1 zj,k = α′k, and so as we also need to have that
∑

j≥1 zj,k = α′k and all
zj,k ∈ {0, 1}, we need to have that zi,k = 0 for all k > αi. If now k ≤ αi we
have that zj,k = 1 for all j < i and so

∑i−1
j=1 zj,k = i− 1 < α′k and so we can

set zi,k to be equal to 1 in this case. As we have exactly αi columns for which
zi,k can be equal to 1,

∑
k zi,k needs to be αi and all zi,k = 0, 1, we need to

have that zi,k = 1 if k ≤ αi. So we have that the only 0-1 matrix with row
sums αi and column sums α′k is given by (zi,k) where

zi,k =

{
1 k ≤ αi
0 k > αi.
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In particular we have that i
(
IndSnSα(ISα), IndSnSα′ (ASα

′)
)

= 1 for any α ` n.

As both ISα and ASα′ can be defined over Q we have that the same is true
for IndSnSα(ISα) and IndSnSα′ (ASα

′) and as

i
(
IndSnSα(ISα), IndSnSα′ (ASα

′)
)

= 1

we have that IndSnSα(ISα) and IndSnSα′ (ASα
′) contain a unique common rep-

resentation which is irreducible over Q, which appears exactly once in each
one of them. Let [α] be this representation. This representation satisfies

1 ≤ i([α], [α]) ≤ i
(
IndSnSα(ISα), IndSnSα′ (ASα

′)
)

= 1

and so
i([α], [α]) = 1

and then we have that [α] is irreducible also over C and [α] needs to be the
only irreducible representation over C which appears in both IndSnSα(ISα) and

IndSnSα′ (ASα
′). So we have that the following theorem (theorem 2.1.3 of [2])

is true

Theorem 23. If α is a partition on n and Sα and Sα′ are Young sub-
groups corresponding to α and α′ respectively we have that IndSnSα(ISα) and

IndSnSα′ (ASα
′) have exactly one ordinary irreducible component [α] in com-

mon. We also have that [α] appears in each one of IndSnSα(ISα) and IndSnSα′ (ASα
′)

only once and that [α] can be realized over Q.

For example if we let α = (1n) we have that α′ = (n) and we have that
Sα = 1 and Sα′ = Sn and so we have that

IndSnSα(ISα) = IndSnSα(ASα) = IndSnSα(RSα) = RSn

where RG denotes the regular representation on any group G, as ISα, ASα
and RSα are actually the same representation as Sα = 1 and as IndGH(RH) =
RG for any H ⊂ G (example 1 in section 3.3 of [8]), and that

IndSnSα′ (ISα′) = ISn, IndSSn
α′

(ASα′) = ASn

as Sα′ = Sn. So as ISn and ASn are irreducible and they appear in the
decomposition of RSn into irreducible representations we have that

[(1n)] = ASn and [(n)] = ISn.
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The fact that [(1n)] = ASn = ASn ⊗ ISn = ASn ⊗ [(n)] is not casual. If now
α is any partition of n we have by theorem 11 that

IndSnSα(ASα) = IndSnSα(ASα ⊗ ISα) = ASn ⊗ IndSnSα(ISα).

Also as ASn has degree 1 we have that any representation ρ is irreducible
if and only if ASn ⊗ ρ is irreducible (it can be easily seen by considering
the characters). Then we have that ASn ⊗ [α] is irreducible and appears in
the decomposition of both IndSnSα′ (ISα′) and IndSnSα(ASα) (as if ρ = ⊕ρi is

a decomposition of any representation ρ then ASn ⊗ ρ = ⊕(ASn ⊗ ρi) is a
decomposition of ASn⊗ρ) and so ASn⊗[α] needs to be the unique irreducible
representation which appears in both IndSnSα′ (ISα′) and IndSnSα(ASα), and then
for any α ` n we have that

[α′] = ASn ⊗ [α].

We now want to show that {[α]} is the complete set of ordinary irreducible
representations of Sn. The next lemma is lemma 2.1.10 of [2].

Lemma 24. If i
(
IndSnSα(ISα), [β]

)
6= 0 then αE β.

As [β] is an irreducible representation the lemma is saying that if [β]
appears in the decomposition of IndSnSα(ISα) in irreducible representations
then αE β.

Proof. As [β] is a subrepresentation of IndSnSβ′ (ASβ′) we have that whenever

i
(
IndSnSα(ISα), [β]

)
6= 0 then also i

(
IndSnSα(ISα), IndSnSβ′ (ASβ′)

)
is non-zero

and so by theorem 22 we have that αE β.

The following theorem is theorem 2.1.11 of [2].

Theorem 25. {[α] : α ` n} is a complete set of equivalence classes of the
ordinary irreducible representations of Sn.

Proof. We will first prove that if [α] = [β] then α = β. Assume that [α] = [β]
(here equality means that [α] and [β] are equivalent as representations of Sn).
Then by definition of [α] and [β] we have that

i
(
IndSnSα(ISα), [β]

)
= i
(
IndSnSα(ISα), [α]

)
= 1

and
i
(

IndSnSβ (ISβ), [α]
)

= i
(

IndSnSβ (ISβ), [β]
)

= 1.
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Applying the previous lemma we then have that αE β and β E α and so we
need to have that α = β, as by definition of the dominance order we then
get by induction that αi = βi for each i.

So we have that the representations [α], α ` n, are pairwise non-equivalent,
and so as the number of conjugacy classes of Sn and so from theorem 8 we
have that the number of equivalence classes of irreducible representations of
Sn is equal to the number of partitions of n, and so we have that {[α] : α ` n}
is a complete set of equivalence classes of the ordinary irreducible represen-
tations of Sn.

6 The representations IndSnSα(ISα)

This section follows section 2.2 of [2].
We have seen that the regular irreducible representations of Sn are ex-

actly the representations {[α] : α ` n}. We still don’t know however the
representations [α] or their characters. We will now show how they can be
found.

Let p(n) be the number of partitions of n. We can put the partitions of
n in order, so that

(1n) = α1 < α2 < . . . < αp(n) = (n)

where < is given by the lexicographic order. We can now define a matrix

Mn := (mi,k) = i
(

IndSnSαi
(ISαi),

[
αk
])
.

As whenever α E β we also have that α ≤ β we have by lemma 24 that if
i > k (that is if αi > αk) then mi,k = 0. Also by definition of [αi] we have
that mi,i = 1 for any i and so we have that Mn is an upper triangular matrix
with 1’s on the diagonal. If α and β are partitions of n, let ζα and ξα denote
the characters of [α] and IndSnSα(ISα) respectively and ζαβ and ξαβ their value
on the conjugacy class of Sn with cycle partition β. By theorem 25 and by
definition of mi,k we then have that

ξα
i

=
∑
k

mi,kζ
αk .

If we now define two new matrices Zn and Ξn by

Zn :=
(
ζα

i

αk

)
, Ξn :=

(
ξα

i

αk

)
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we can easily seen that
Ξn = MnZn.

As Mn is a matrix over Z and has determinant equal to 1 (as it is upper
diagonal and all the diagonal entries are equal to 1) we have that Mn is
invertible and the inverse is also a matrix over Z. In particular we have that
the characters of [αi] can be obtained as a linear combination with coefficients
in Z of the characters of IndSnS

αk
(ISαk).

In particular we have the following theorem (theorem 2.2.10 of [2])

Theorem 26. The ring char(Sn) = ⊕Zζαi of generalized ordinary characters
of Sn has also {ξα : α ` n} as a Z-basis.

Even if we have that Zn = M−1
n Ξn we still don’t know the coefficients

mi,k, as these are defined in terms of [αk] which we still don’t know, and so
we haven’t found yet the characters of the irreducible representations of Sn.
Though if we consider the scalar product of the i-th and the j-th rows of Mn

we have by definition of mi,k and corollary 5 and the note after definition 3
that ∑

k

mi,kmj,k =
∑
k

(
ξα

i

, ζα
k
)
·
(
ξα

j

, ζα
k
)

=
(
ξα

i

, ξα
j
)
.

So we have a way to evaluate
∑

kmi,kmj,k as we can find the characters ξα
k

by theorem 10. As we also know that Mn is upper triangular and has 1’s on
the diagonal this can be used to actually find Mn, as we already know the
last row and as if we know the last p(n)− i rows (Mn has size p(n)× p(n))
we can find the coefficients mi,k, k > i inductively starting with k = p(n) by

mi,k =
(
ξα

i

, ξα
k
)
−
∑
j>k

mi,jmk,j.

We will now give an other method to find ξα(π) for any π ∈ Sn and any
α ` n.

Definition 19 (Tableau). We say that t is a tableau of shape α, where α
is a partition of n, if t is obtained by the Young diagram of α by placing the
numbers from 1 to n in the nodes of α, so that each of these numbers appears
exactly once in t.

Definition 20 (Tabloid). A tabloid of shape α is an equivalence class of
tableaux of shape α consisting of all the tableaux which contains the same
elements on each row.
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For example if α = (3, 1) we have that

1 2 3
4

is a tableau of shape α and the corresponding tabloid is given by{
1 2 3
4

,
1 3 2
4

,
2 1 3
4

,
2 3 1
4

,
3 1 2
4

,
3 2 1
4

}
.

If t is a tableau we write {t} for the tabloid containing t.
If t is a tableau let ni be the set of elements which are in row i. Let

H(t) = Sn1 × Sn2 × · · · be the row stabilizer of t (that is any element of
H(t) move any number on the i-th row of t to some number still on the i-th
row of t for any i). Then we have that t and t′ are in the same tabloid if
and only if t′ = πt for some π ∈ H(t). Also it clear that if t has shape α
then H(t) is a Young subgroup for α and any Young subgroup for α can be
obtained this way. So if Sα is any Young subgroup for α we have that laterals
of Sα correspond bijectively to the tabloids of shape α and that the action of
Sn on the laterals of Sα is equivalent to the action of Sn on the α-tabloids,
and so it can be seen that IndSnSα(ISα) is equivalent to the representation
ρ of Sn on V = ⊕{t}Ke{t}, where K is the ground-field, and ρ is given by
extending by linearity ρ(π)

(
e{t}
)

= e{πt}. In particular it is easy to see (as ρ
is a permutation representation) that we have that

ξα(π) =
∑

{t}:{t}={πt}

1,

that is ξα(π) is equal to the number of α-tabloids fixed by π.

7 The Ordinary Irreducible Characters as Z-

linear Combinations of Permutations Char-

acters

This section follows section 2.3 of [2].
Even if in the previous section we found a method to compute the char-

acters of the representations [α], the method we found requires many calcu-
lations, so we would like to find an easier one. This is what we will do in this
section. If α(i) ` ni we have that

[
α(i)
]

are representations of Sni and so we
have that [

α(1)
]
⊗ · · · ⊗

[
α(k)

]
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is a representation of

Sn1 × · · · × Snk ⊂ Sn1+...+nk .

Let [
α(1)
]
· · ·
[
α(k)

]
= Ind

Sn1+...+nk
Sn1×···×Snk

([
α(1)
]
⊗ · · · ⊗

[
α(k)

])
.

If α(i) = (ni) we know by section 5 that
[
α(i)
]

= ISni and so if we let
α = (α1, . . . , αk) and Sα = Sn1 × · · · × Snk (Sα under the identification of
Sn1 × · · · × Snk as a subgroup of Sn1+...+nk is actually a Young subgroup for
α) we have that

[(n1)]⊗ · · · ⊗ [(nk)] = ISn1 ⊗ · · · ⊗ ISnk = ISα

and so
[(n1)] · · · [(nk)] = Ind

Sn1+...+nk
Sα

(ISα).

Let now α = (α1, . . . , αh) be a partition of n. If we let [a] = 0 whenever
a < 0, [0] = 1 and [a] = [(a)] if a > 0 we have that

|[αi + j − i]| =

∣∣∣∣∣∣∣∣∣
[α1] [α1 + 1] . . . [α1 + h− 1]

[α2 − 1] [α2] . . . [α2 + h− 2]
...

...
...

[αh + 1− h] [αh + 2− h] . . . [αh]

∣∣∣∣∣∣∣∣∣ (2)

is a generalized representation of Sn as any term of the determinant is of the
form

sign(π)
∏
i

[αi + π(i)− i]

with π ∈ Sh and as we have that
∏

[αi + π(i) − i] is either 0 if some term
αi + π(i)− i < 0 or else it is a representation of Sn as if all αi + π(i)− i are
non-negative we have that (α1 + π(1)− 1, . . . , αh + π(h)− h) is an improper
partition of

h∑
i=1

αi + π(i)− i =
h∑
i=1

αi +
h∑
i=1

π(i)−
h∑
i=1

i =
h∑
i=1

αi = n. (3)

Letting [a] = 0 for a < 0 and [0] = 1 makes sure that the determinant in
equation (2) is independent of the choice of h such that αi = 0 for i > h, as
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we have that for any such h
[α1] [α1 + 1] . . . [α1 + (h+ 1)− 1]

[α2 − 1] [α2] . . . [α2 + (+1)h− 2]
...

...
...

[αh+1 + 1− (h+ 1)] [αh+1 + 2− (h+ 1)] . . . [αh+1]

 =



[α1] [α1 + 1] . . . [α1 + h− 1] [α1 + (h+ 1)− 1]
[α2 − 1] [α2] . . . [α2 + h− 2] [α2 + (h+ 1)− 2]

...
...

...
...

[αh + 1− h] [αh + 2− h] . . . [αh] [αh + 1]
0 0 . . . 0 1


as αh+1 = 0 and so αh+1 + k − (h + 1) < 0 for all k < h + 1 and so we have
that |[αi + j − i]| depends only on α. We want to show that

[α] = |[αi + j − i]| .

In order to do this we will also need to consider compositions of n, that is
sequences λ = (λ1, λ2, . . .) over Z such that

∑
i λi = n. The fact that the

sum of the λi is n forces λi to be equal to 0 for i big enough. A composition
of n is an improper partition of n if and only if all terms are non-negative.
We can extend the definition of ξα, α ` n, and define ξλ for any composition
of n as follows

ξλ =

{
IndSnSλ(ISλ) λ |= n
0 λ 6|= n.

Let SN be the group of permutations over N, that is the group of bijections
from N into itself fixing all but finitely many points (that is SN is the union
of Sn, n ∈ N). As if k ≥ 0 we have that An = An+k ∩Sn we can define a sign
function on SN in an obvious way. If for π ∈ SN and λ a composition of n we
let

λ ◦ π =
(
λπ−1(1), λπ−1(2), . . .

)
we have that ξλ = ξλ◦π, as if λ is not an improper partition of n then λ has
some negative parts and so also λ ◦ π must have some negative part, while
if λ |= n then also λ ◦ π is an improper partition of n and as clearly any
Young subgroup Sλ of λ is also a Young subgroup Sλ◦π of λ ◦ π we have that
IndSnSλ(ISλ) = IndSnSλ◦π(ISλ ◦π) and so also in this case ξλ = ξλ◦π. If λ is again
any composition of n and π ∈ SN, we can also define

λ− id + π = (λ1 − 1 + π(1), λ2 − 2 + π(2), . . .).

As π(i) 6= i for only finitely many i we have that (λ − id + π)i 6= λi only
on finitely many i. Also as λi 6= 0 for only finitely many i we have that the
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same is true for (λ− id +π)i from which we have that
∑

i(λ− id +π)i is well
defined and then similarly to equation (3) we have that

∑
i(λ− id +π)i = n,

so that λ− id + π is a composition of n for any λ is a composition of n and
π ∈ SN.

If λ and µ are compositions of n and k respectively we can define λ − µ
by (λ − µ)i = λi − µi. It can be easily seen that λ − µ is a composition of
n− k.

Assume now that λi = 0 for i > h and that π ∈ SN \ Sh, that is π does
not fix all k > h. Let k be the biggest k which is not fixed by π (k exists as
π fixes all but finitely many k’s). Then we need to have that π(k) < k and
as k > h we have that λk = 0 and so λk − k + π

(
k
)
< 0. So λ− id + π isn’t

an improper partition of n if λi = 0 for all i > h and π 6∈ Sh. In particular
λ − id + π |= n for only finitely many π from which ξλ−id+π 6= 0 only for
finitely many π, so that it makes sense to define

χλ :=
∑
π∈SN

sign(π)ξλ−id+π.

It is easy to see by the previous remark and by the definition of the determi-
nant that if α ` n then χα is the character of |[αi + j − i]|.

The next lemmas are lemmas 2.3.9 and 2.3.10 of [2].

Lemma 27. If λ is a composition of n and

µ = (λ1, . . . , λi−1, λi+1 − 1, λi + 1, λi+2, . . .)

for some i ∈ N, we have that

χµ = −χλ.

Proof. Let τ = (i, i+1) ∈ SN. Then for any π ∈ SN we have that if j 6= i, i+1

(µ− id + π)j = µj − j + π(j) = λj − j + π(τ(j)) = (λ− id + πτ)j.

Also we have that

(µ− id + π)i = µi − i+ π(i) = λi+1 − 1− i+ π(τ(i+ 1)) = (λ− id + πτ)i+1,

(µ−id+π)i+1 = µi+1−(i+1)+π(i+1) = λi+1−i−1+π(τ(i)) = (λ−id+πτ)i.

That is we have that

µ− id + π = (λ− id + πτ) ◦ τ
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and so
ξµ−id+π = ξ(λ−id+πτ)◦τ .

From this we have that

χλ =
∑

π∈SN
sign(π)ξµ−id+π

= sign(τ)
∑

π∈SN
sign(πτ)ξ(λ−id+πτ)◦τ

= sign(τ)
∑

π∈SN
sign(πτ)ξλ−id+πτ

= −χλ.

Lemma 28. Let λ be a composition of m+ k. Then we have that

Res
Sm+k

Sm×Sk

(
ξλ
)

=
∑
µ|=k

ξλ−µ ⊗ ξµ

and that
Res

Sm+k

Sm×Sk

(
χλ
)

=
∑
µ|=k

χλ−µ ⊗ ξµ.

Proof. If λ 6|= m + k and µ |= k then λ− µ 6|= m as we can then find i such
that λi < 0 and so, as µi ≥ 0, we have that (λ − µ)i < 0. In particular if
λ isn’t a generalized partition of m + k then ξλ−µ = 0 for all µ generalized
partitions of k and so

Res
Sm+k

Sm×Sk

(
ξλ
)

= Res
Sm+k

Sm×Sk(0) = 0 =
∑
µ|=k

0⊗ ξµ =
∑
µ|=k

ξλ−µ ⊗ ξµ.

So assume now that λ |= m + k. Then ξλ = Ind
Sm+k

Sλ
(ISλ) and so from

Mackey’s subgroup theorem (theorem 13) we have that

Res
Sm+k

Sm×Sk

(
ξλ
)

=
∑

(Sm×Sk)πSλ

IndSm×Sk(Sm×Sk)∩πSλπ−1

(
I
(
(Sm × Sk) ∩ πSλπ−1

))
.

As Sm × Sk is a Young subgroup of (m, k) we have by lemma 15 that the
double cosets of Sm × Sk and Sλ in Sm+k are completely determined by
knowing the

∣∣m ∩ πnλj
∣∣ and

∣∣((m + k) \ k) ∩ πnλj
∣∣. Also as by definition

of ni we have that
∣∣m ∩ πnλj

∣∣ +
∣∣((m + k) \ k) ∩ πnλj

∣∣ = λj we have that
the double cosets (Sm × Sk)πSλ are completely determined by knowing the∣∣((m + k) \ k) ∩ πnλj

∣∣. Let

µ =
(∣∣((m + k) \ k) ∩ πnλ1

∣∣ , ∣∣((m + k) \ k) ∩ πnλ2
∣∣ , . . .) .
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Then we have that µ |= k and as λi−µi ≥ 0 for all i we have that λ−µ |= m.
By equation (1) we have that

(Sm × Sk) ∩ πSλπ−1 = Sλ−µ × Sµ

for some Young subgroups Sλ−µ and Sµ of λ− µ and µ. So we have that

IndSm×Sk(Sm×Sk)∩πSλπ−1 (I ((Sm × Sk) ∩ πSλπ−1)) = IndSm×SkSλ−µ×Sµ(I(Sλ−µ × Sµ))

= IndSm×SkSλ−µ×Sµ(ISλ−µ ⊗ ISµ)

= IndSmSλ−µ(ISλ−µ)⊗ IndSkSµ(ISµ).

Let now µ |= m+k. If λ−µ |= m, we can find a double coset (Sm×Sk)πSλ for
which µ =

(∣∣((m + k) \ k) ∩ πnλ1
∣∣ , ∣∣((m + k) \ k) ∩ πnλ2

∣∣ , . . .) (just choose
π that sends λi of the elements nλi to elements of m and sending the other
elements of nλi to elements of (m + k)\k) and if λ−µ 6|= m then ξλ−µ⊗ξµ =
0⊗ ξµ = 0 we have again by lemma 15 that

Res
Sm+k

Sm×Sk

(
ξλ
)

=
∑
µ|=k

ξλ−µ ⊗ ξµ

and so the first formula is proved also for the case that λ |= m + k. For the
second formula we now have that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑

π∈SN
sign(π)ξλ−id+π

=
∑

π∈SN
sign(π)

∑
µ|=k ξ

λ−id+π−µ ⊗ ξµ
=

∑
µ|=k

(∑
π∈SN

sign(π)ξλ−µ−id+π
)
⊗ ξµ

=
∑

µ|=k χ
λ−µ ⊗ ξµ.

Let λ be a composition of n, µ a composition of k and π ∈ SN. Let h be
such that λi = µi = 0 and π(i) = i for all i > h. Then

(λ− id− (µ− id) ◦ π)i = λi − i− (µπ−1(i) − π−1(i)) = λi − µi = 0

for all i > h. As∑
i(λ− id− (µ− id) ◦ π)i =

∑
i(λ− id)i −

∑
i((µ− id) ◦ π)i

=
∑

i(λ− id)i −
∑

j(µ− id)j
=

∑
i λi −

∑
j µj

= n− k

we have that λ−id−(µ−id)◦π is a composition of n−k for any λ composition
of n, µ composition of k and π ∈ SN.
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Also let h be such that λi = µi = 0 for all i > h and let −h′ = min{µi}.
−h′ ≤ 0 as 0 is a part of µ. Assume that π 6∈ Sh+h′ . Let k be the maximum
of the elements not fixed by π. Then as k > h+ h′ ≥ h we have that

(λ− id− (µ− id) ◦ π)k = λk − k − µπ−1(k) + π−1(k) = π−1(k)− k − µπ−1(k).

If π−1(k) > h we have that µπ−1(k) = 0 and so (λ−id−(µ−id)◦π)k < 0 by the

maximality of k. If π−1(k) ≤ h we have that π−1(k)− k < −h′ as k > h+ h′

and so as µπ−1(k) ≥ −h′ we again have that (λ− id− (µ− id)◦π)k < 0. So in

any case we have that ξλ−id−(µ−id)◦π = 0 if π 6∈ Sh+h′ and so ξλ−id−(µ−id)◦π = 0
for all but finitely many π ∈ SN and then we can define

χλ/µ :=
∑
π∈SN

sign(π)ξλ−id−(µ−id)◦π.

The next lemma is lemma 2.3.12 of [2].

Lemma 29. If λ is a composition of m+ k we have that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑
β`k

χλ/β ⊗ χβ.

Proof. From the last part of the proof of lemma 28 and as for a given π ∈ SN
and for any n, µ 7→ µ ◦ π gives a bijection between the set of improper
partitions of n, we get that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑
π∈SN

sign(π)
∑
µ◦π|=k

ξλ−id+π−µ◦π ⊗ ξµ◦π.

As ξµ◦π = ξµ this means that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑
π∈SN

sign(π)
∑
µ|=k

ξλ−id−(µ−id)◦π ⊗ ξµ. (4)

As λi ≥ 0 as λ |= k we have that λi − i ≥ −i and so for any j there are
at least j’s i for which (λ − id)i ≥ −j. Let σ ∈ SN be such that the parts
of (λ − id) ◦ σ−1 are non-increasing. σ exists as if λi = 0 for i ≥ h then
λi − i < λk − k for all i > h and all k < i, so any bijection σ for which the
parts of (λ − id) ◦ σ−1 are non-increasing fixes all i > h, and so any such
σ ∈ Sh ⊂ SN. Even if such a σ is not uniquely defined (λ − id) ◦ σ−1 is
uniquely defined, so also β = (λ − id) ◦ σ−1 + id is uniquely defined. So we
have that

(β − id) ◦ σ = λ− id.
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Now it is easy to see that the number of σ which satisfy this properties is
equal to cβ =

∏
j∈Z aj, where aj is the number of parts of β − id which are

equal to j. As we have already seen that only the first h parts of λ− id can
be repeated (h is such that λi = 0 for i > h) and the parts of β − id are the
same and with the same multiplicity of the parts of λ− id (they are just in
a different order) we have that cβ is finite. Also as for any j, λ − id has at
least j parts which are bigger or equal to −j the same is true for β− id, and
so as β − id is obtained by λ− id by reordering the parts so that they are in
non-increasing order we have that (β − id)j ≥ −j for all j and so βj ≥ 0 for
all j. Also as it is clear that∑

i

βi =
∑
i

((λ− id) ◦ σ−1 + id)i =
∑
i

λi = k

we have that β is also an improper partition of k. Also as if (β − id) ◦ σ+ id
isn’t an improper partition of k we have that ξ(β−id)◦σ+id = 0 (so that we
may add terms corresponding to such decompositions of k in the summation
in equation (4)) we have that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑

π∈SN
sign(π)

∑
σ∈SN

∑
β 1/cβ ξ

λ−id−(β−id)◦σ◦π ⊗ ξ(β−id)◦σ+id

=
∑

π,σ sign(π)
∑

β 1/cβ ξ
λ−id−(β−id)◦σ◦π ⊗ ξ(β−id)◦σ+id

=
∑

π,σ sign(π)
∑

β 1/cβ ξ
λ−id−(β−id)◦σ◦π ⊗ ξβ−id+σ−1

=
∑

β 1/cβ
∑

ρ,θ

(
sign(ρ) ξλ−id−(β−id)◦ρ

)
⊗
(
sign(θ)ξβ−id+θ

)
=

∑
β 1/cβ

(∑
ρ sign(ρ) ξλ−id−(β−id)◦ρ

)
⊗
(∑

θ sign(θ)ξβ−id+θ
)

=
∑

β 1/cβ χ
λ/β ⊗ χβ.

where β varies between those β |= n satisfying βi − i ≥ βi+1 − i− 1 for any
i and where ρ = σπ and θ = σ−1, so that

∑
ρ,θ =

∑
π,σ. Also even if we are

rearranging terms this doesn’t change the result, as in all summations there
are only finitely many non-zero terms.

Also assume that for some β that appears in the summation we have that
for some i, βi − i = βi+1 − i − 1. Then βi = βi+1 − 1 and so by lemma 27
we have that in that case χβ = −χβ and so χβ = 0. So actually the only β
which appear in the summations are those of the form βi − i > βi+1 − i− 1
for all i. For these β the parts of β − id are all distinct and so cβ = 1. Also
for any such β we have that βi > βi+1 − 1 and so βi ≥ βi+1 and as β |= k we
then have that β is actually a partition of k. Putting all of this together we
have that

Res
Sm+k

Sm×Sk

(
χλ
)

=
∑
β`k

χλ/β ⊗ χβ

which is what we wanted to prove.
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The next theorem is theorem 2.3.12 of [2].

Theorem 30. Let α ` n and β ` k, where k ≤ n. Then we have that

i) if χα/β 6= 0 we have that αi ≥ βi for all i,

ii)
(
χα/β, ξ(n−k)

)
=

{
1 αi ≥ βi ≥ αi+1 ∀i
0 otherwise.

Proof. As α and β are partitions of n and k ≤ n respectively, we have by the
remarks before lemma 29 that ξα−id−(β−id)◦π = 0 if π 6∈ Sn and it is so easy
to see by the definition of χα/β that

χα/β = |[αi − i− (βj − j)]| .

Assume now that βh > αh for some h. As αm −m and βm −m are strictly
decreasing we have that then if i ≥ h and j ≤ h we have that αi−i ≤ αh−h <
βh − h ≤ βj − j and so αi − i− (βj − j) < 0 and so [αi − i− (βj − j)] = 0 if
i ≥ h and j ≤ h. So as there is a block of size (n−h+ 1)×h which contains
only 0’s in a matrix of size n × n, we need to have that the determinant of
the matrix is 0, so χα/β = 0 if there is some h for which βh > αh and so i)
holds.

By section 5 we have that ξ(n−k) = ISn−k. Let now λ be any composition
of n− k. If λ 6|= n− k then ξλ = 0 and so

(
ξλ, ξ(n−k)

)
= 0 when λ 6|= n− k.

If instead λ |= n − k we have by theorem 12 and by the symmetry of i(·, ·)
that (

ξλ, ξ(n−k)
)

= i
(

Ind
Sn−k
Sλ

(ISλ), ISn−k

)
= i

(
ISλ,Res

Sn−k
Sλ

(ISn−k)
)

= i(ISλ, ISλ)
= 1

and so
(
ξλ, ξ(n−k)

)
= 1 if λ |= n − k. So we have that

(
ξλ, ξ(n−k)

)
is either

equal to 1 or 0 depending on whether all parts of λ are non-negative or not.
By definition of χα/β we now have that(

χα/β, ξ(n−k)
)

=
(∑

π∈SN
sign(π)ξα−id−(β−id)◦π, ξ(n−k)

)
=

∑
π∈SN

sign(π)
(
ξα−id−(β−id)◦π, ξ(n−k)

)
=

∑
π∈SN

sign(π)
∏

i δ(α−id−(β−id)◦π)i≥0.

As α and β are partitions of n and k ≤ n respectively we have that if π 6∈ Sn
then α − id− (β − id) ◦ π 6|= n− k, so that if

(
ξα−id−(β−id)◦π, ξ(n−k)

)
6= 0 we
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need to have that π ∈ Sn. Also as if i > n, so that αi = βi = 0 and π ∈ Sn
we have that (α− id− (β − id) ◦ π)i = αi − i− (βi − i) = 0 we have that

(
χα/β, ξ(n−k)

)
=
∑
π∈Sn

sign(π)
n∏
i=1

δ(α−id−(β−id)◦π)i≥0 =
∣∣δαi−i−βj+j≥0∣∣

where in the matrix i and j vary between 1 and n. Also as αi − i is strictly
decreasing and −βj + j is strictly increasing we have that if δαi−i−βj+j≥0 = 1
then δαi′−i′−βj′+j′≥0 = 1 for all i′ ≤ i and j′ ≥ j, while if δαi−i−βj+j≥0 = 0 then
δαi′−i′−βj′+j′≥0 = 0 for all i′ ≥ i and j′ ≤ j. So we have that two rows i and i′

are equal and non-zero if and only if δαi−i−βj+j≥0 = 0, δαi−i−βj+1+j+1≥0 = 1,
δαi′−i′−βj+j≥0 = 0 and δαi′−i′−βj+1+j+1≥0 = 1, for some 1 ≤ j < n, or if
δαi−i−β1+1≥0 = 1 and δαi′−i′−β1+1≥0 = 1, as for each i ≤ n we have that
αi ≥ βn and so αi − i − βn + n = αi − βn + n − i ≥ 0. So there are
exactly n different possible non-zero rows and so each one of them must
appear in {δαi−i−βj+j≥0} if the determinant must be non-zero. Also by the
remarks we just made we need to have that {δαi−i−βj+j≥0} has 0’s under the
diagonal and 1’s above and on the diagonal if it has non-zero determinant
in which case the determinant is 1. So we have that

∣∣δαi−i−βj+j≥0∣∣ = 1 if
δαi−i−βj+j≥0 = 1 if and only if j ≥ i and

∣∣δαi−i−βj+j≥0∣∣ = 0 otherwise. Also
δαi−i−βj+j≥0 = 1 if and only if j ≥ i if and only if δαi−i−βi+i≥0 = 1 for
1 ≤ i ≤ n and δαi+1−i−1−βi+i≥0 = 0 for 1 ≤ i < n, that is if αi ≥ βi for
i ≤ n and βi > αi+1 − 1 (that is βi ≥ αi+1) for i < n. As when j > n we
have that αj = βj = 0 we then have that

∣∣δαi−i−βj+j≥0∣∣ = 1 if and only if
α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . and the determinant is zero otherwise. So as(

χα/β, ξ(n−k)
)

=
∣∣δαi−i−βj+j≥0∣∣

we have that (
χα/β, ξ(n−k)

)
=

{
1 α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . .
0 otherwise

as we wanted to prove.

We will now prove theorem 2.3.14 of [2].

Theorem 31 (Young’s rule (First version)). Let λ |= n be an improper
partition of n such that λi = 0 for i > n and let α ` n. Then we have that(
χα, ξλ

)
equals the number of (n− 1)-tuples

(
β(1), . . . , β(n−1)) satisfying

i) β(i) `
∑i

j=1 λj for 1 ≤ i ≤ n− 1,

ii) β
(1)
j ≤ β

(2)
j ≤ . . . ≤ β

(n−1)
j ≤ αj for any j ≥ 1,
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iii) β
(i)
j ≤ β

(i−1)
j−1 for any j > 1 and any 1 ≤ i ≤ n, where β(0) = (0) and

β(n) = α.

Proof. Let now β(i) be a partition of
∑

j λ
(i)
j , where λ

(i)
j = 0 if j > i. Then

we have by lemma 29 and by Frobenius’s reciprocity law that(
χβ

(i)
, ξλ

(i)
)

=

(
Res

S
λ
(i)
1 +...+λ

(i)
i

S
λ
(i)
1 +...+λ

(i)
i−1

×S
λ
(i)
i

χβ
(i)
, ξ

(
λ
(i)
1 ,...,λ

(i)
i−1

)
⊗ ξ

(
λ
(i)
i

))
=

∑
β(i−1)`

∑i−1
j=1 λ

(i)
j

(
χβ

(i−1) ⊗ χβ(i)/β(i−1)
, ξ

(
λ
(i)
1 ,...,λ

(i)
i−1

)
⊗ ξ

(
λ
(i)
i

))
=

∑
β(i−1)`

∑i−1
j=1 λ

(i)
j

(
χβ

(i−1)
, ξ

(
λ
(i)
1 ,...,λ

(i)
i−1

))(
χβ

(i)/β(i−1)
, ξ

(
λ
(i)
i

))
.

and by theorem 30 we have that(
χβ

(i)

, ξλ
(i)
)

=
∑

β(i−1)`
∑i−1
j=1

λ
(i)
j

β
(i)
j
≥β(i−1)

j
≥β(i)

j+1
∀j≥1

(
χβ

(i−1)

, ξ

(
λ
(i)
1 ,...,λ

(i)
i−1

))
.

Let now λ(i) = (λ1, . . . , λi, 0, . . .) and β(n) = α. Then we have that(
χα, ξλ

)
=

∑
β(n−1)

(
χβ

(n−1)
, ξ(λ1,...,λn−1)

)
=

∑
β(n−1)

∑
β(n−2)

(
χβ

(n−2)
, ξ(λ1,...,λn−2)

)
= . . .

=
∑

β(n−1) . . .
∑

β(1)

(
χβ

(1)
, ξ(λ1)

)
=

∑
β(n−1) . . .

∑
β(1)

(
χβ

(0)
, ξ(0)

)
=

∑
β(n−1) . . .

∑
β(1) 1

where the last equality follows by the fact that IndS0
S0

(IS0) = IS0, where

S0 = {1} and as β(0) − id + π 6|= 0 if π 6= 1 and where the summations

are taken with β(n−1) `
∑n−1

j=1 λj such that αj ≥ β
(n−1)
j ≥ αj+1 for j ≥ 1,

β(i) `
∑i

j=1 λj such that β
(i+1)
j ≥ β

(i)
j ≥ β

(i+1)
j+1 for 0 ≤ i ≤ n − 2 and where

β(0) = (0, 0, . . .) is the only partition of 0. It is now easy to see that
(
χα, ξλ

)
is

equal to the number of (n− 1)-tuples
(
β(1), . . . , β(n−1)) satisfying conditions

i), ii) and iii).

Theorem 32. If α is a partition of n we have that χα = ζα.

Proof. We will first show that if
(
χα, ξλ

)
6= 0, where λ is an improper par-

tition of n for which λi = 0 for i > n (which we can always assume up
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to reordering the parts of λ, which would not change ξλ) then we have
that λ E α. By Young’s rule we have that if

(
χα, ξλ

)
6= 0 then there ex-

ist
(
β(1), . . . , β(n−1)) satisfying conditions i), ii) and iii) in the text of the

previous theorem. In particular by iii) we have that β
(i)
i+j ≤ β

(0)
j = 0 for any

i, j ≥ 1 and so as β(i) is a partition we need to have that β
(i)
k = 0 for k > i

and so by properties i) and ii) we have that, if h < n

h∑
i=1

λi =
∑
i

β
(h)
i =

h∑
i=1

β
(h)
i ≤

h∑
i=1

αi.

Also as λi = αi = 0 if i > n and as λ |= n and α ` n we have that∑h
i=1 λi ≤

∑h
i=1 αi also for h ≥ n and so if

(
χα, ξλ

)
6= 0 we need to have that

λE α.
Now again by Young’s rule we have that (χα, ξα) is equal to the number

of (n− 1)-tuples
(
β(1), . . . , β(n−1)) satisfying properties i), ii) and iii). Again

we need to have that β
(i)
k = 0 if k > i and so we have that β

(1)
1 = α1 and so

by ii) β
(i)
1 = α1 for all i. Assume now that j ≥ 2 and for all k < j we have

that β
(i)
k is equal to αk if k ≤ i and is 0 if k > i. Then by property ii) we

also have that αi = β
(j−1)
i ≤ β

(j)
i ≤ αi for any i < j and so

j−1∑
i=1

αi + β
(j)
j =

j∑
i=1

β
(j)
i =

j∑
i=1

αi =

j−1∑
i=1

αi + αj

and so we also need to have that β
(j)
j = αj. As we know that β

(j)
i = 0 if i > j

we then need to have that β
(h)
j is equal to αj if h ≥ j and is equal to 0 if

h < j. So there is only one possible (n − 1)-tuple satisfying the conditions,
that is the one with β(i) = (α1, . . . , αi, 0, . . .) and it is easy to see that this
(n− 1)-tuple actually satisfies properties i), ii) and iii), so that (χα, ξα) = 1.

We now want to show that χα is plus or minus an irreducible character.
In order to do this it is enough to show that (χα, χα) = 1, as by definition
of χα and theorem 26 we can write χα =

∑
nβζ

β for some nβ ∈ Z and then
we have that (χα, χα) =

∑
n2
β and this is equal to 1 if and only if only one

nβ = 1 and all the other nβ′ = 0. By the previous part and by definition of
χα it is enough to show that

(
χα, ξα−id+π

)
= 0 for π 6= 1. So assume that

π 6= 1. Let i be the smallest element which is not fixed by π. Then π(i) > i
and so

i∑
k=1

(α− id + π)k =
i∑

k=1

αk − i+ π(i) >
i∑

k=1

αk

and so α − id + π 6Eα and so by the first part we need to have that(
χα, ξα−id+π

)
= 0 for π 6= 1 and so we need to have that (χα, χα) = 1.
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If we can now show that (χα, ζα) = 1 we would then have that χα = ζα

as χα is plus or minus an irreducible character. As if π 6= 1 we have that
α − id + π 6Eα we have by lemma 24 that

(
ξα−id+π, ζα

)
= 0 if π 6= 1. So we

have that

(χα, ζα) =
(∑

π
sign(π)ξα−id+π, ζα

)
= (ξα, ζα) = 1

and so we have that
χα = ζα

and so as we also have that

|[αi + j − i]| = [α].

For example for (n− 1, 1) we have that

[n− 1, 1] =

∣∣∣∣ [n− 1] [n]
[0] [1]

∣∣∣∣ = [n− 1][1]− [n] = IndSnSn−1
(ISn−1)− ISn.

As we saw in section 6 IndSnSn−1
(ISn−1) is equivalent to the representation ρ

on V , where V has a basis
{
e{t}
}

indexed by the tabloids of shape (n− 1, 1),
and such that ρ(π)(e{t}) = e{πt}. Also it is easy to see that a tabloid of
shape (n − 1, 1) is completely determined by knowing the unique element
which is on the second line of any tableau in the tabloid, so that actually ρ is
equivalent to the permutation φ on W , where W has basis {ei}i=1,...,n, such
that φ(π)(ei) = eπ(i), which is called the natural representation of Sn. It is
easy to see that ξ(n−1,1)(π) is equal to the number of elements of n fixed by
π, that is that ξ(n−1,1)(π) = a1(π), where a1(π) is the number of 1-cycles in
the decomposition of π in disjoint cycles. So we also have that

ζ(n−1,1)(π) = a1(π)− 1.

Theorem 33.

ζα((1 · · ·n)) =

{
(−1)r α = (n− r, 1r), 0 ≤ r < n
0 otherwise

This theorem (theorem 2.3.17 of [2]) is actually a special case of the
Murnaghan-Nakayama formula.
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Proof. If α = (n) = (n− 0, 10) we already know that ζα is the character of
ISn and so ζ(n)((1 · · ·n)) = 1.

Assume now that α = (n− r, 1r) for some 1 ≤ r ≤ n− 1. Then we have
that

ζα =

∣∣∣∣∣∣∣∣∣
[n− r] [n− r + 1] . . . [n− r + r − 1] [n− r + r]

1 [1] . . . [r − 1] [r]
...

...
...

...
0 0 . . . 1 [1]

∣∣∣∣∣∣∣∣∣ .
Also the only the only Young subgroup of Sn containing an n-cycle is Sn,
as an n-cycle cannot be written as a product of disjoint cycles of length less
than n. So if λ is any improper partition of n for which Sλ 6= Sn we have that
[λ1][λ2] · · · ((1 · · ·n)) = 0, as then Sλ cannot contain any element conjugate
to (1 · · ·n). So we get a contribution to ζα((1 · · ·n)) only from those terms
which appear in the determinant which contain [n]. As [n] appears in the
right-top corner of the matrix and as for any other coefficient [ai,k] of the
matrix ai,k < n (as the ai,k are strictly increasing in k and strictly decreasing
in i), we have that the sum of the terms of the determinant which contain
[n] is

(−1)r+1+1[n] ·

∣∣∣∣∣∣∣∣∣
1 [1] . . . [r − 1]
0 1 . . . [r − 2]
...

...
...

0 0 . . . 1

∣∣∣∣∣∣∣∣∣ .
As this smallest matrix is upper triangular and as 1’s on the diagonal we
have that the only term containing [n] which appears in ζα is (−1)r[n] and
so as [n]((1 · · ·n)) = 1 we have that

ζ(n−r,1
r) = (−1)r.

So we now only need to show that if α 6= (n − r, 1r) then ζα((1 · · ·n)) = 0.
Let h minimal such that αi = 0 for i > h. Then α = (α1, . . . , αh) and αj 6= 0
for j ≤ h. As α 6= (n− r, 1r) for any r we have that for some 2 ≤ j ≤ h we
have that αj > 1 (that is we need to have that α2 > 1 as α is a permutation).

Then h− 1 <
∑h

j=2 αj and so α1 + h− 1 < n. As [α1 + h− 1] is the upper
right coefficient of {[αi + j − i]}, i, j ≤ h, and for all other coefficients [ai,j]
we have that ai,j < α1 + h− 1 we have that [n] is not contained in any term
of |[αi + j − i]| and so ζα((1 · · ·n)) = 0 if α 6= (n− r, 1r).

In the following we will indicate by χα, where α ` n, the character of the
irreducible representation labeled by α of Sn.
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8 The Murnaghan-Nakayama Formula

In this section we will prove the Murnaghan-Nakayama formula. This section
is based on the first part of section 2.4 of [2].

Let λ be a composition of n. For any i we can define

λi− = (λ1, . . . , λi−1, λi − 1, λi+1, . . .),

λi+ = (λ1, . . . , λi−1, λi + 1, λi+1, . . .).

For any i we have that λi− is a composition of i− 1 and λi+ is a composition
of i + 1. Also if λi = 0 we have that (λi−)i < 0 and so λi− is an improper
partition of n for at most finitely many i, so that ξλ

i−
= 0 for all but finitely

many i.

Lemma 34.
ResSnSn−1

(
ξλ
)

=
∑
i

ξλ
i−
.

Proof. By lemma 6 and as all improper partitions of 1 are of the form µi,
where µij = δi,j we have that

ResSnSn−1×S1
(ξλ) =

∑
i

ξλ−µ
i ⊗ ξµi =

∑
i

ξλ
i− ⊗ ξµi

which is the formula in the lemma as S1 = 1 and so ξµ
i

= ξ(1) = 1.

Theorem 35 (Branching rule). Let α = (α1, α2, . . .) ` n. Then we have that

ResSnSn−1
([α]) =

∑
i:αi>αi+1

[
αi−
]

and that
Ind

Sn+1

Sn
([α]) =

∑
i:αi<αi−1

[
αi+
]

where a0 =∞.

The first part of the branching rule is a particular case of the Murnaghan-
Nakayama formula.

Proof. Applying the previous lemma and theorem 32 we have that

ResSnSn−1
(χα) =

∑
π sign(π)ξα−id+π

=
∑

π sign(π)
∑

i ξ
(α−id+π)i−

=
∑

i

∑
π sign(π)ξα

i−−id+π

=
∑

i χ
αi− .
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Also by lemma 27 if αi = αi+1, that is if αi−i = αi−i+1 − 1 we have that

χα
i−

= 0 and so the last summation can be considered only over those i for
which αi 6= αi+1. As α is a partition, so that we always have that αi ≥ αi+1

this means that
ResSnSn−1

(χα) =
∑

i:αi>αi+1

χα
i−
.

Also as α it is easily verified that if αi > αi+1 then αi− is a partition and so
we also have that

ResSnSn−1
([α]) =

∑
i:αi>αi+1

[
αi−
]

as χβ is the character of [β] for any partition β by theorem 32 and as two
representations are equivalent if and only if they have the same character by
corollary 4.

Using this part of the theorem and theorem 12 if β ` n+ 1 we now have
that (

Ind
Sn+1

Sn
(χα), χβ

)
=
(
χα,Res

Sn+1

Sn

(
χβ
))

=

χα, ∑
i:βi>βi+1

χβ
i−

 .

As
(
χα, χβ

i−
)

= δα,βi− and all the βi− are distinct we need to have that(
Ind

Sn+1

Sn
(χα), χβ

)
is equal to 1 if there exists i such that βi− = α and is

0 otherwise. Also α = βi− if and only if β = αi+ and as β needs to be a
partition we need to have that αi < αi−1. So the only possible β for which [β]

can appear in Ind
Sn+1

Sn
([α]) are those of the form β = αi+ with αi < αi−1, and

as in this case βi > βi+1 we have that [βi−] actually appears in Res
Sn+1

Sn
([β])

and so in this case [β] does appear in Ind
Sn+1

Sn
([α]). Putting all of this together

we have that
Ind

Sn+1

Sn
([α]) =

∑
i:αi<αi−1

[
αi+
]

and so the theorem is proved.

Let µik = ((µik)1, (µ
i
k)2, . . .) be given by (µik)j = k · δi,j.

Lemma 36. Let λ be a composition of n = m+ k and π ∈ Sn. Assume that
π contains a k-cycle and has cycle type (a1(π), a2(π), . . .). Let ρ ∈ Sm have
cycle type

(a1(π), . . . , ak−1(π), ak(π)− 1, ak+1(π), . . .).

Then we have that
χλ(π) =

∑
i

χλ−µ
i
k(ρ).
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Proof. This follows easily from lemma 28 and as if µ |= k we have that
ξµ(1 · · · k) = 0 unless if µ = µik for some i, as only in this case Sµ contains

a conjugate of (1 · · · k). The formula then follows as ξµ
i
k = 1 as it is the

character of ISk.

Theorem 37 (Murnaghan-Nakayama formula). Let α be a partition of n
and let π and ρ be as in lemma 36. Then

χα(π) =
∑

i,j:hαi,j=k

(−1)l
α
i,jχα\R

α
i,j(ρ).

Proof. In order to prove the Murnaghan-Nakayama formula it is enough to
show that χα−µ

i
k = 0 if there is no hook of length k in the i-th row and that

if hαi,j = k then χα−µ
i
k = (−1)l

α
i,jχα\R

α
i,j as we then would get the formula

by lemma 36 and by the fact that in each row there is at most one hook of
length k.

In order to show that χα−µ
i
k = 0 when there is no hook of length k in the

i-th row we will show that if χα−µ
i
k 6= 0 then we can find j such that hαi,j = k.

If αi − k ≥ αi+1 we can easily see that hαi,αi−k+1 = k, so let’s assume that

αi − k < αi+1. As χα−µ
i
k 6= 0 we then need to have that αi − k ≤ αi+1 − 2 as

if αi− k = αi+1− 1 we would get a contradiction by lemma 27. In particular
αi+1− 1 ≥ αi− k+ 1. Let α(1) = (α1, . . . , αi−1, αi+1− 1, αi− k+ 1, αi+2, . . .).

We will now construct α(h) inductively until we would get an α(h) which is a
partition. As long as α

(h)
i+h < α

(h)
i+h+1 let

α(h+1) =
(
α
(h)
1 , . . . , α

(h)
i+h−1, α

(h)
i+h+1 − 1, α

(h)
i+h + 1, αi+h+2, . . .

)
= (α1, . . . , αi−1, αi+1 − 1, . . . , αi+h+1 − 1, αi − k + h+ 1, αi+h+2, . . .).

As α
(h)
i+h is strictly increasing and α

(h)
i+h+1 are non-increasing we need to find

some minimal h for which α
(h)

i+h
≥ α

(h)

i+h+1
. By the minimality pf h we need to

have that α
(h−1)
i+h−1 < α

(h−1)
i+h

and as again by lemma 27, χα
(h)

= (−1)hχα 6= 0

we need to have that α
(h)

i+h
= α

(h−1)
i+h−1 + 1 ≤ α

(h−1)
i+h

− 1 = α
(h)

i+h−1 and as

it is easy to see that α
(h)
j+1 ≤ α

(h)
j for j 6= i + h, i + h − 1 we have that

α(h) is a partition, as all of its terms must be non-negative as α
(h)
j = 0 for

j big enough as for j > i + h, α
(h)
j = αj and α is a partition. We will

now show that hα
i,αi−k+1+h

= k. First it is easy to see that h ≤ k − 1 as

αi−k+k−1 + 1 = αi ≥ αj for all j > i. So (i, αi−k+ 1 +h) is a node of α.
Now the set of nodes of the form (i, j) for j ≥ αi− k+ 1 +h clearly contains



41 8 The Murnaghan-Nakayama Formula

k − h nodes. So in order to show that hα
i,αi−k+1+h

= k it is enough to show

that the set of nodes (h, αi−k+1+h) with h > i contains exactly h nodes. As

we have that αi+h = α
(h−1)
i+h

> α
(h−1)
i+h−1 = αi−k+h−1 and α

(h−1)
i+h

> α
(h−1)
i+h−1 +1

as χα
(h−1) 6= 0 we get that αi+h ≥ αi−k+h+1 and then we need to have that

(i+h, αi−k+1+h) is a node of α, while as αi+h+1 = α
(h)

i+h+1
≤ α

(h)

i+h
= αi−k+h

we need to have that (i+h+ 1, αi− k+ 1 +h) is not a node of α and so as α
is a partition we need to have that the set of nodes (h, αi − k + 1 + h) with
h > i contains exactly h points and so hi,αi−k+1+h = k and so if χα−µ

i
k 6= 0

we can find j such that hαi,j = k.
Assume now that hαi,j = k. By looking at the Young diagram of α it is

easy to see that

(α \Rα
i,j)h =


αh h < i or h > i+ lαi,j
αh+1 − 1 i ≤ h < i+ lαi,j
αi − k + lαi,j h = i+ lαi,j

so that

α \Rα
i,j = (α1, . . . , αi−1, αi+1 − 1, . . . , αi+lαi,j − 1, α1 − k + lαi,j, αi+lαi,j+1, . . .)

and so α \Rα
i,j can be obtained by α− µik by applying lemma 27 recursively

on i, i+ 1, . . . , i+ lαi,j − 1. As we need to apply the lemma lαi,j times we have

that χα−µ
i
k = (−1)l

α
i,jχα\R

α
i,j = (−1)l

α
i,jχα\R

α
i,j where the last equality follows

from theorem 32 and so we have that the theorem is proved.

Let h maximal such that αh ≥ h (that is h is maximal such that (h, h) is
in the Young diagram of α).

Corollary 38.

χα(hα1,1,...,hαh,h) = (−1)
∑h
i=1 α

′
i−i.

Proof. We will first prove that for any β ` n if k is maximal such that (k, k)

is in the Young diagram and β1 = β \ Rβ
1,1 then hβ

1

i,i = hβi+1,i+1 and that

(β1)
′
i = β′i+1 − 1 for any 1 ≤ i ≤ k − 1.

If i < k we have that βi+1, β
′
i+1 > 0 and so it is easy to see that (β1)i =

βi+1 − 1 and (β1)
′
i = β′i+1 − 1. Also it is easy to see that for any partition

γ and any (i, j) node of γ we have that hγi,j = γi + γ′j − i− j + 1 and so we
have that

hβ
1

i,i =
(
β1
)
i
+
(
β1
)′
i
− 2i+ 1 = βi+1 − 1 + β′i+1 − 1 + 2i+ 1 = hβi+1,i+1.
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If we define βi inductively by βi = βi−1 \ Rβi−1

1,1 for i < k we then have that

hβ
i

1,1 = hβi+1,i+1 and that (βi)
′
1 = β′i+1 − i.

Applying this to α and using the Murnaghan-Nakayama formula and as
the only hook of length hα1,1 is Hα

1,1 and this has leg length α′1 − 1 we have
that

χα(hα1,1,...,hαh,h)
= (−1)α

′
1−1χα

1

(hα2,2,...,h
α
h,h)

= (−1)α
′
1−1(−1)α

′
2−2χα

2

(hα3,3,...,h
α
h,h)

= . . .

= (−1)α
′
1−1 · · · (−1)α

′
h−1−h+1χα

h−1

(hαh,h

= (−1)α
′
1−1 · · · (−1)α

′
h−h

= (−1)
∑h
i=1 α

′
i−i.

Corollary 39. If χαβ 6= 0 then β E (hα1,1, . . . , h
α
d,d), where d is such that

(d, d) ∈ Rα, that is d is maximal such that (d, d) ∈ α.

Lemma 40. Let α ` n and let (i, j) be a node of α which doesn’t belong to

the rim of α. If (h, l) is an other node of α we have that h
α\Rαh,l
i,j ≥ hαi+1,j+1.

Proof. First as (i, j) ∈ α \ Rα we have that (i + 1, j + 1) ∈ α and that

(i, j) 6∈ Rα
h,l, so hαi+1,j+1 and h

α\Rαh,l
i,j are defined. Assume that i < h or i > α′l,

where α′ is the partition associated with α. Then it is easy to see that
(α \ Rα

h,l)i = αi > αi+1 − 1, as α is a partition. If h ≤ i < α′l then it can be
seen by considering the Young diagram of α that (α \Rα

h,l)i = αi+1− 1. Also
when i = α′l it can again be easily seen that (α\Rα

h,l)i ≥ (α\Rα
h,l)i+1 = αi+1.

So we always have that (α \ Rα
h,l)i ≥ αi+1 − 1. Similarly it can be seen that

(α \Rα
h,l)
′
j ≥ α′j+1 − 1. Putting these two things together we get that

h
α\Rαh,l
i,j =

(
h
α\Rαh,l
i,j

)
i
+
(
h
α\Rαh,l
i,j

)′
j
− i− j + 1

≥ αi+1 − 1 + α′j+1 − 1− i− j + 1
= αi+1 + α′j+1 − (i+ 1)− (j + 1) + 1
= hαi+1,j+1

and so the lemma is proved.

We will now prove corollary 39.

Proof. Assume that for some i we have that

i∑
j=1

βj >
i∑

j=1

hαj,j.
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If i = 1 we can conclude by the Murnaghan-Nakayama formula as then
β1 > hα1,1 and so α doesn’t have any hook of length β1. Assume now that
i > 1 and that χγδ = 0 if

∑
j≤i−1 δj >

∑
j≤i−1 h

γ
j,j. Then we have that

hα1,1 + · · ·+ hαd,d = n =
∑
βj and as the βj are non-negative we need to have

that i < d and ∑
j>i

βj <
∑
j>i

hαj,j = hαi+1,i+1 + · · ·+ hαd,d.

From the previous lemma if i ≤ j < d and hαh,l = β1 we have that h
α\Rαh,l
j,j ≥

hαj+1,j+1 and so we have that∑
j>i

βj < h
α\Rαh,l
i,i + . . .+ h

α\Rαh,l
d−1,d−1 ≤

∑
j>i−1

h
α\Rαh,l
j,j

and so the sum of the first i − 1 terms of (β2, β3, . . .) needs to be bigger

than h
α\Rαh,l
1,1 + . . . + h

α\Rαh,l
i−1,i−1 and so we have that χ

α\Rαh,l
(β2,β3,...)

= 0 for any (h, l)
such that hαh,l = β1 and then by induction and by applying the Murnaghan-
Nakayama formula we have that χαβ = 0 whenever β 6E(hα1,1, . . . , h

α
d,d) and so

the theorem is proved.

9 β-sets, cores and quotients

In this section we will define β-sets, cores and quotient and show how we can
them to determine informations about hooks of a partition.

Definition 21 (β-set). A β-set is a finite set of N, that is a β-set is a finite
set of non-negative integers.

Assume now that X = {y1, . . . , yk} is a β-set and that yi > yi+1 for i
from 1 to k − 1 (we can always assume this up to reordering the yi). Then
we have that

yi+1 − k + i+ 1 ≤ yi − k + i

for 0 ≤ i < k and so we have that

(y1 − k + 1, y2 − k + 2, . . . , yk)

is a partition (by what we just saw we have that yi − k + i ≥ yk ≥ 0 for all
i).

Definition 22. If X = {y1, . . . , yk} is a β-set and the yi are decreasing we
say that

P ∗(X) = (y1 − k + 1, y2 − k + 2, . . . , yk)

is the partition associated to X.
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If X = {y1, . . . , yk} is a β-set and s ≥ 0 is an integer we can define a new
β-set by

X+s = {y1, . . . , yk, s− 1, s− 2, . . . , 0}.

It is easy to see that (just use the definition)

Theorem 41. If X is a β-set and s ≥ 0 is an integer we have that

P ∗(X) = P ∗(X+s).

Also if α = (α1, . . . , αh) is a partition with αh > 0 and

Xα = {hα1,1, . . . , hαh,1}

it can be easily seen that Xα, the set of first column hook-lengths of α, is a
β-set and that P ∗(Xα) = α. So for any partition α we can find some β-set
X for which P ∗(X) = α.

It is easy to see that

Theorem 42. If X is a β-set and α is a partition we have that P ∗(X) = α
if and only if X = X+s

α for some s ≥ 0.

Lemma 43. If α = (α1, . . . , αh) is a partition and αh > 0, we have that for
any 1 ≤ i ≤ h and any 1 ≤ k ≤ αi,

h∏
j=i+1

(
hαi,k − hαj,k

) αi∏
v=k

hαi,v = hαi,1!

Proof. As the hαl,m are strictly decreasing in both l and m we have that all
terms in the products in the left hand side are between 1 and hαi,k. Also
by choice h we have that lαi,k = h − i and so the number of terms in the
first product is equal to the leg-length of (i, k). As in the second product
there are aαi,k + 1 = αi − k + 1 terms, we have that the left hand side of the
equation we want to prove consists of exactly hαi,k terms, just like the right
hand side. So in order to show that the two sides are equal it is enough to
show that all terms in the left hand side are different. As the

(
hαi,k − hαj,k

)
are pairwise different and the same is true for the hαi,v, we only need to show

that
(
hαi,k − hαj,k

)
6= hαi,v for each i + 1 ≤ j ≤ h and each 1 ≤ v ≤ αi. As the(

hαi,k − hαj,k
)

are increasing and the hαi,v are decreasing it is enough to show
that one of the following must hold

i) hαi,v < hαi,k − hαi+1,k,

ii) hαi,v > hαi,k − hαh,k,
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iii) hαi,k − hαj,k < hαi,v < hαi,k − hαj,k for some i < j < h.

Let j = α′v, where α′ is the partition conjugated to α. We need to have that
i ≤ j ≤ h as (i, v) ∈ α and as by definition of h we have that α′l ≤ h for any
l. Assume that j = i. Then v > αi+1,1 and so we have that

hαi,v = αi+α
′
v−i−v+1 < αi+h−i−(k−1)−(αi+1+h−j−1−(k−1)) = hαi,k−hαi+1,k

and so i) holds in this case.
Assume now that j = α′v = h. Then v ≤ αh and so we have that

hαi,v = αi +α′v − i− v+ 1 > αi + h− i− (k− 1)− (αh− (k− 1)) = hαi,k − hαh,k
and then ii) holds in this case.

So assume now that i < j = α′v < h. We want to show that iii) holds in
this case. By definition of j we have that αj ≥ v and αj+1 < v. So

hαi,v = αi+α
′
v−i−v+1 < αi+h−i−(k−1)−(αj+1+h−j−1−(k−1)) = hαi,k−hαj+1,k

and

hαi,v = αi+α
′
v−i−v+1 > αi+h−i−(k−1)−(αj+h−j−(k−1)) = hαi,k−hαj,k

and then we have that hαi,k − hαj,k < hαi,v < hαi,k − hαj+1,k, that is iii) holds.

So we have that the
(
hαi,k − hαj,k

)
and the hαi,v are pairwise different and

then the lemma is proved.

Lemma 44. If α = (α1, . . . , αh) is a partition and αh > 0, we have that for
any 1 ≤ i ≤ h and any 1 ≤ k ≤ αi,

h∏
j=i

hαj,k

αi∏
v=k+1

(
hαi,k − hαi,v

)
= hαi,1!

Proof. It follows by the previous lemma by considering α′, as for any (j, v)
node of α we have that hαj,v = hα

′
v.j.

We will now use this lemma to prove the following theorem, which shows
how we can remove hooks from a partition by simply considering one of its
β-sets.

Theorem 45. Let X = {y1, . . . yk} be a β-set and let α = P ∗(X). Assume
that the yi decreasing. Then we have that for fixed i and h > 0 we can find j
such that hαi,j = h if and only if yi − h 6∈ X and yi − h ≥ 0. In this case we
have that if

X ′ = {y1, . . . yi−1, yi − h, yi+1, . . . , yk}
then P ∗(X ′) = α \ Rα

i,j and we have that lαi,j is equal to the number of l for
which yi − h < yl < yi.
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Proof. Assume that hαi,j = h and that Y = X+s, s ∈ N. By definition of
X+s and as yi is the i-th biggest element of X, we have that if yi − h 6∈ X
and yi − h ≥ 0 then we have that yi + s is the i-th biggest element of Y ,
(yi+s)−h 6∈ Y and (yi+s)−h ≥ 0. If instead X = Y +s we need to have that
as P ∗(Y ) = α and (i, j) is a node of α, Y needs to contain at least i elements.
As yi − h 6∈ X we need to have that (yi − s) − h 6∈ Y . Also yi is the i-th
biggest element of X, so yi − s needs to be the i-th biggest element of Y (as
Y has at least i elements) and as yi−h 6∈ X, yi−h ≥ 0 and 1, 2, . . . s−1 ∈ X
we need to have that yi − h ≥ s and so (yi − s)− h ≥ 0. So if we can prove
that yi − h 6∈ X and yi − h ≥ 0 for some β-set X such that P ∗(X) = α,
where yi is the i-th biggest element of X, then we have that for any β-set Y
such that P ∗(Y ) = α we have that if zi is the i-th biggest element of Y then
zi − h 6∈ Y and zi − h ≥ 0, so it is enough to show that this property holds
for one β-set for α. Let X = Xα be the set of first column hook-lengths of
α. Then we have that yi = hαi,1.

By the last lemma we have that if we can find j such that hαi,j = h then
hαi,1 − h 6= hαi′,1 for any i′ > i (this is trivial if j = 1 as then hαi,1 − h = 0) and
as hαi,1 − h < hαi,1 ≤ hαi′′,1 for any i′′ ≤ i, and so if for some j we have that
hαi,j = h then hαi,1 − h 6∈ Xα. Also it is clear that in this case we have that
h ≤ hαi,1, so that we also have that hαi,1 − h ≥ 0.

Assume now that hαi,1−h ≥ 0 and hαi,1−h 6∈ Xα. As h ≥ 1 we in particular
need to have that 1 ≤ h ≤ hαi,1 and hαi,1 − h 6= hαi′,1 for any i′ > i, that is
h 6= hαi,1 − hαi′,1 for any i′ > i and so again by the lemma we need to have
that h = hαi,j for some j, (we can apply the lemma if h 6= hαi,1 and if h = hαi,1
we can just take j = 1) and so we have that the first part of the theorem is
true.

As for any s ≥ 0, if X+s
α = {y1, . . . , yk}, where the yi are decreasing, we

have that yi−h < yj < yi if and only if hαi,1−h < hαj,1 < hαi,1 when yi−h ≥ 0
and yi − h 6∈ X+s

α and as by definition of X+s
α we then need to have that

yi − h ≥ s, it is easy to see that in order to show that lαi,j is equal to the
number of l for which yi − hαi,j < yl < yi for any β-set X = {y1, . . . yk} for α,
it is again enough to show it for Xα.

Let α = (α1, . . . , αm), with αm > 0. Then we have that hαl,1 = αl +m− l
for any 1 ≤ l ≤ m. As the arm-length of (i, j) is equal to αi − j, we have
that the leg-length of (i, j) is equal to hαi,j − 1 − αi + j, so, as the hαl,1 are
decreasing, in order to prove this part of the theorem it is enough to prove
that

hαhαi,j−1−αi+j+i,1 > hαi,1 − hαi,1
and that

hαhαi,j−αi+j+i,1 < hαi,1 − hαi,1,
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if lαi,j + i = hαi,j − 1 − αi + j + i < m. When hαi,j − 1 − αi + j + i = m (it
can never be bigger than m) we have that lαi,j = m − i and in this case we
would have proven by the previous point and by the fact that the hαi′,1 are
decreasing that hαi,1 − hαi,1 < hi′,1 if and only if i′ > i, and so also in this case
we would have that if hαhαi,j−1−αi+j+i,1 > hαi,1−hαi,1 then the leg-length of (i, j)

is equal to the number of l for which hαi,1 − hαi,j < hαl,1 < hαi,1.
By definition of leg-length we need to have that αhαi,j−1−αi+j+i ≥ j, so

hαhαi,j−1−αi+j+i+1,1 = αhαi,j−1−αi+j+i +m− (hαi,j − 1− αi + j + i)

> αi +m− i− hαi,j
= hαi,1 − hαi,j

and as again by definition of leg-length we need to have that αhαi,j−αi+j+i < j,
whenever hαi,j − αi + j + i ≤ m, we have that in this case

hαhαi,j−αi+j+i+1,1 = αhαi,j−αi+j+i +m− (hαi,j − 1− αi + j + i)

< αi +m− i− hαi,j
= hαi,1 − hαi,j

and so we always have that the leg-length of (i, j) is equal to the number of
l for which yi − h < yl < yi, where X = {y1, . . . , yk} is any β-set of α.

Assume that hαi,j = h and that lαi,j = s. Looking at the Young diagrams
of α and of α \Rα

i,j and as α \Rα
i,j ` n− h, it is easy to see that

(
α \Rα

i,j

)
l
=


αl l < i or l > i+ s
αl+1 − 1 i ≤ l < i+ s
αi − h+ s l = i+ s.

As α \ Rα
i,j has at most k parts different from 0 as the same is true for α as

|X| = k we can write

α \Rα
i,j =

((
α \Rα

i,j

)
1
, . . . ,

(
α \Rα

i,j

)
k

)
and so we have that

Y =
{(
α \Rα

i,j

)
1

+ k − 1,
(
α \Rα

i,j

)
2

+ k − 2, . . . ,
(
α \Rα

i,j

)
k

}
is a β-set for α \Rα

i,j. We will show that Y = X ′.
As X = {α1 + k − 1, α2 + k − 2, . . . , αk} = {y1, . . . , yk} we have that

yl = αl + k − l. Then we have that

(
α \Rα

i,j

)
l
+ k − l =


αl + k − l = yl l < i or l > i+ s
αl+1 − 1 + k − l = yl+1 i ≤ l < i+ s
αi − h+ k − i = yi − h l = i+ s.



48 9 β-sets, cores and quotients

and so we have that Y = {yl : l 6= i} ∪ {yi − h} = X ′ and then X ′ is a β-set
for α \Rα

i,j and so the theorem is proved.

Corollary 46. Removing a kq-hooks is equivalent to removing a certain se-
quence of k hooks all of length q.

Proof. Suppose that we are removing a kq-hook from a partition with β-set
X = {y1, . . . , yk} by changing yh to yh−kq. Assume that the yi are decreasing
and let h = i1 > . . . > il be those indexes j for which yh − kq < yj ≤ yh and
yh − yj is divisible by q. We can recursively change in the following way the
elements of X

yil → yil − q, yil − q → yil − 2q, . . . , yh − kq + q → yh − kq,
yil−1

→ yil−1
− q, . . . , yil + q → yil ,

. . . ,
yh → yh − q, . . . , yi2 + q → yi2 .

As the yim are decreasing, yh − kq ≥ 0, yh − kq 6∈ X and by definition of
the indexes im, it can be easily seen that each of these steps corresponds
to removing a q-hook, that the β-set we obtain at the end is given by
{y1, . . . , yh−1, yh− kq, yh+1, . . . , yk} and that the number of hooks we remove
this way is exactly k, and so the corollary is proved.

In order to give the definitions of the q-core and the q-quotient of a
partition for any positive integer q we will first introduce the q-abacus.

Definition 23 (q-abacus). The q-abacus consists of q vertical runners index
starting from the left with the numbers 0, 1, . . . , q − 1. The i-th runner con-
tains positions i, q+i, 2q+i, . . . starting from the top and moving downwards.

For example the 4-abacus is given by

0 1 2 3
4 5 6 7
8 9 10 11
...

...
...

...

If X is a β-set we can place a bead on the q-abacus on the numbers which
are contained in X. For example if X = {1, 3, 9} we have that the 4-abacus
for X is given by

0 1© 2 3©
4 5 6 7
8 9© 10 11
...

...
...

...
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Definition 24 (q-core). Let α be a partition. The q-core of α is obtained by
recursively removing q-hooks from α until we obtain a partition which doesn’t
contain any q-hook. The q-core of α is indicated by α(q).

By theorem 45 we can easily see that if X is a β-set for α then we can
obtain a β-set for α(q) by moving each bead on the q-abacus of X as high
as possible, leaving each bead in its runner and without overlapping beads.
This way it can also be seen that the q-core of a partition is unique, that is
it doesn’t depend on which sequence of q-hooks we recursively remove from
α.

If we look again at the previous example we have X = {1, 3, 9}, so α =
(7, 2, 1), and the 4-abacus for α(4) is

0 1© 2 3©
4 5© 6 7
...

...
...

...

so we have that {1, 3, 5} is a β-set for α(4) and then α(4) = (3, 2, 1).

Definition 25 (q-quotient). Let α be a partition and let X be a β-set for α
such that q divides the cardinality of X. The q-quotient of α is given by a
q-tuple of partitions

α(q) = (α0, . . . , αq−1),

where αi = P ∗(Xi) and j ∈ Xi if and only if qj + i ∈ X.

It is easy to see that for any α we can find a β-set X such that q||X| and
P ∗(X) = α and that α(q) doesn’t depend on the choice of such an X, as if
Y satisfies the same properties of X we have that Y = X+kq or X = Y +kq

for some k ≥ 0 (we can assume that Y = X+kq) and then it is easy to see
that Yi = X+k

i and so the αi are well defined. If we labeled positions on each
runners of the q-abacus starting with 0, it can be easily seen that each Xi

consists of the positions of the i-th runner of the q-abacus which correspond
elements of X.

Definition 26 (q-weight). The q-weight of a partition α is the number of
q-hooks that we need to recursively remove from α in order to obtain α(q).
The q-weight of α is indicated by wq(α).

As if γ ` n and δ is obtained by γ by removing a q-hook we have that
δ ` n−q we also have that as α(q) is unique also wq(α) is well defined, that is
it doesn’t depend on which hooks we are removing. More precisely if α ` n
and α(q) ` m we have that wq(α) = (n−m)/q.
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Definition 27. If α is a partition of n we define |α| = n.

Theorem 47. If α is a partition and α(q) = (α1, . . . , αq−1) we have that∑
i

|αi| = wq(α)

and for any positive integer k, there is a bijective correspondence between kq-
hooks of α and k-hooks of α(q). Also this correspondence is preserved after
removing any kq-hook from α and the corresponding k-hook from α(q).

In the theorem a hook of α(q) is just a hook of one of the αi.

Proof. We will start by proving the second part of the theorem. Let X be
a β-set for α such that q||X| and let Xj = {i : iq + j ∈ X} for 0 ≤ j < q.
Then by definition we have that Xj is a β-set for αj for all j. So let now
map the hook of α which corresponds to changing iq + j to (i − k)q + j in
X to the hook of αj which corresponds to changing i to i − k in Xj. It is
easy to see that by theorem 45 this gives a bijection between the kq-hooks
of α and the k-hooks of α(q), as (i − k)q + j 6∈ X if and only if i − k 6∈ Xj

and (i − k)q + j ≥ 0 if and only if i − k ≥ 0 as 0 ≤ j < q. Also it is easy
to see that this bijection is preserved by removing a kq-hook of α and the
corresponding k-hook of α(q).

In order to prove now the first part of the theorem we can notice that by
the second part of the theorem, removing a sequence of m hooks of length q
from α corresponds to removing a sequence of m hooks of length 1 from α(q).
By definition of wq(α) we know that we can remove a sequence of wq(α)
hooks from α, so in particular α(q) must contain at least wq(α) nodes, as
removing a 1-hook means that we are removing a node from α(q). Also if
α(q) would contain more than wq(α) nodes we could, after having removed
the other wq(α) 1-hooks, remove at least one more 1-hook, as then at least
one of the partition obtained from the αj after removing the wq(α) 1-hooks
from α(q) would need to have some part different from 0, and so we could
remove at least one1-hooks from that partition. But this would mean that
we could actually remove a q-hook from α(q), as after removing wq(α) hooks
of length q from α we always obtain α(q). This gives though a contradiction
as by definition α(q) doesn’t have any hook of length q. So we need to have
that α(q) contains exactly wq(α) nodes and so, as the nodes of α(q) are the
nodes of the partitions αj, we need to have that∑

i

|αi| = wq(α.)
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Corollary 48. If β is obtained by α by removing l hooks of length q we have
that wq(β) = wq(α)− l.
Proof. This is an easy application of 47 as then β(q) is obtained by α(q) by
removing l nodes.

It can also be proved that there exists a unique partition which has a
given q-core and a given q-quotient. This can be seen by considering a β-set
of the q-core with sufficiently with cardinality sufficiently big and divisible
by q.

We will now show how we can define a q-sign for a partition.

Definition 28 (Natural numbering). Let X be a β-set. The natural num-
bering on X is given by numbering the elements of X in increasing order.

Definition 29 (q-numbering). Let X be a β-set. Let x, y ∈ X be the j-th
bead (we start count them in increasing order) on the i-th runner and the
j1-th bead on the i1-bead of the q-abacus of X respectively. The q-numbering
of X is the one for which x is indexed by a smaller number then y if and
only if j < j1 or j = j1 and i < i1.

So for example if X = {1, 3, 6, 9} we have that the natural numbering is

0 1©1 2 3©2

4 5 6©3 7
8 9©4 10 11
...

...
...

...

and the 4-numbering of X is

0 1©1 2 3©3

4 5 6©2 7
8 9©4 10 11
...

...
...

...

Definition 30 (q-sign). Let X is a β-set and α = P ∗(X). Let π be the
permutation which sends the natural numbering of X in the q-numbering of
X. The q-sign of X and α is given by

δq(X) = δq(α) = sign(π).

In the previous example we have that

π =

(
1 2 3 4
1 3 2 4

)
and so π = (2 3) and so δ4(X) = δ4(4, 2, 1) = −1.

We will now show that the q-sign of a partition α is well defined.
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Theorem 49. Let X = {x1, . . . , xk} be β-set ordered with the natural num-
bering. Assume that xi − h 6∈ X and xi − h ≥ 0. Let Y = {xa, . . . , xi−1, xi −
h, xi+1, . . . , xk}. Let

zj =

{
xj j 6= i

xi − h j = i

and let Y = {y1, . . . , yk} be the natural numbering on Y . Let α = P ∗(X)
and let (l,m) be the node of α whose removal corresponds to changing X
to Y . If π is the permutation for which zπ(j) = yj for all j we have that

sign(π) = (−1)l
α
l,m.

Proof. Notice that by theorem 45 we have that l = k − i + 1. By the same
theorem we also have that π = (k− i− lαl,m + 1, k− i− lαl,m + 2, . . . , k− i+ 1)

and so π is a cycle of length lαl,m + 1 and then sign(π) = (−1)l
α
l,m .

Corollary 50. Let X and Y be β-sets and let Y be obtained by recursively
removing a series of hooks from X (that is by removing hooks from the corre-

sponding partitions). That is X = {x(1)1 , . . . , x
(1)
k } with the natural numbering

on X and Y = {x(h+1)
1 , . . . , x

(h+1)
k } for some h+1, where the x

(l)
j are obtained

recursively by

x
(l)
j =

{
x
(l−1)
j j 6= il−1
x
(l−1)
il−1
− hl−1 j = il−1

for some il and hl such that x
(l)
il
− hl 6= x

(l)
j for any j and x

(l)
il
− hl ≥ 0.

Let lj be the leg-length of the hook removed at step j. Assume that x
(1)
i is

the natural numbering of X and Y = {y1, . . . , yk} is the natural numbering

on Y . Let π be such that x
(h+1)
π(i) = yi . Then

sign(π) = (−1)
∑h
j=1 lj .

Proof. For each 1 ≤ j ≤ h let πj ∈ Sk be such that x
(j+1)
πj(i1)

> x
(j+1)
πj(i2)

if and

only if x
(j)
i1
> x

(j)
i2

. It isn’t hard to see that each πj is given by the theorem
when we consider the ordering on {1, . . . , k} given by i1 >

′ i2 if and only if

x
(j)
i1
> x

(j)
i2

, instead of the ordering 1 < 2 < . . . < k. Even if we consider a
new order on the set {1, . . . , k} we still have by theorem 45 that πj is a cycle
of length lj + 1.

We want to show that π = πh . . . π1, from which the corollary follows
easily. Using the theorem we have that this is clearly satisfied when h = 1.
So assume that the theorem is true when Y is obtained by X by removing a
sequence of h− 1 hooks. As {x(h)1 , . . . , x

(h)
k } is obtained from X by removing

h − 1 hooks we have that x
(h)
πh−1...π1(i1)

> x
(h)
πh−1...π1(i2)

if and only if i1 > i2.
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Now using the definition of πh we have x
(h+1)
πhπh−1...π1(i1)

> x
(h+1)
πhπh−1...π1(i1)

if and

only if x
(h)
πh−1...π1(i1)

> x
(h)
πh−1...π1(i2)

if and only if i1 > i2 and as by definition

of π we also have that x
(h+1)
π(i1)

> x
(h+1)
π(i2)

if and only if i1 > i2 we then need to
have that π = πh . . . π1 and so the corollary is proved.

In particular when we apply this corollary to the case where P ∗(X) = α
and P ∗(Y ) = α(q) and all hooks removed have length q it can be seen that

x
(1)
π(i) is the q-numbering of X (as beads on the same runner of the q-abacus

cannot jump each other while removing q-hooks) and so π sends the natural
numbering of X in the q-numbering of X, and so δq(X) = δq(α) = sign(π).
So as δq(α) by definition doesn’t depend on the choice of hooks which are
recursively removed from α we have that (−1)

∑
lj is also constant and so the

sum of the leg-lengths of the hooks which are recursively removed from α to
obtain α(q) is also well defined up to a multiple of 2.

10 Weights and characters values

In this section we will define the q-weight of a permutation and show that
if α is a partition of n, σ ∈ Sn and χα(σ) 6= 0 then we need to have that
wq(σ) ≤ wq(α) for any positive integer q. After having done this we will give
a formula that can be used to find χα(σ) when wq(σ) = wq(α). This formula
is a generalization of formula 2.7.25 from [2].

Definition 31 (q-weight of a permutation). Let σ be a permutation and let
bi be the lengths of the cycles of σ which are divisible by q, counted with
multiplicity. The q-weight of σ is given by

wq(σ) =
∑

bi/q.

So for example we have that w2((1, 2)(3, 4, 5, 6)(7, 8, 9)) = 1 + 2 = 3.

Theorem 51. Let α ` n and σ ∈ Sn be such that for some q, wq(σ) > wq(α).
Then χα(σ) = 0.

Proof. Let b1, . . . , bh be the lengths of the cycles of σ which are divisible by
q. We can write bi = qγi, for some positive integers γi. By assumption we
have that

∑
γi > wq(α). By recursively applying the Murnaghan-Nakayama

formula if χα(σ) was different from 0, we could find a partition β, which is
obtained by α by recursively removing hooks of length qγi. By corollary 46
we would then have that β could be obtained by α by removing a sequence
of
∑
γi hooks all of length q. As

∑
γi > wq(α) and we cannot recursively
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remove more then wq(α) hooks of length q from α we have a contradiction
and so we have that χα(σ) = 0 when wq(σ) > wq(α) for some q.

We will now apply the results of the previous section to obtain a formula
for χα(ρπ), where α ` n has q-weight wq(α) = w, ρ has cycle partition qγ
where γ ` w and ρ and π act on distinct elements of n. We want to show
that

χα(ρπ) = δq(α)fα
(q)

(γ)χα(q)(π) (5)

where fα
(q)

(γ) only depends on γ and the q-quotient of α. In particular, as

in the following we will also find a formula for fα
(q)

(γ), this gives a formula
for χα(σ), when wq(σ) = wq(α) as in this case we can write σ = ρπ, where
ρ is the products of the cycles of σ with length divisible by q and π is the
product of the other cycles of σ and we then have that ρ and π satisfy the
assumption we have just defined for them.

Let β be obtained from α by removing recursively hooks of length qγi.
As by corollary 46 we have that β can also be obtained by α by removing∑
γi hooks all of length q and as

∑
γi = w = wq(α) we need to have that

β = α(q).
So if (ih, jh) are the nodes corresponding to the hooks removed at each

step and γ = (γ1, . . . , γk) we have by recursively applying the Murnaghan-
Nakayama formula that

χα(ρπ) =
∑

((i1,j1),...(ik,lk))

(−1)li1,j1+···+lik,jkχα(q)(π), (6)

where lih,jh is the leg-length of the hook removed at step h. So in order to
prove formula (5) it is enough to show that∑

((i1,j1),...(ik,lk))

(−1)li1,j1+···+lik,jk = δq(α)fα
(q)

(γ) (7)

for some fα
(q)

(γ) depending on α(q) and γ only.
Using theorem 47 we have that the removal of any sequence of kiq-hooks

from α correspond bijectively to the removal of a sequence of ki-hooks from
α(q). Let ((il, jl)) be a sequence of nodes of α and ((i′l, j

′
l)) the corresponding

sequence of nodes of α(q), such that hil,jl = qγi and hi′l,j′l = γi in the partition
from which they are removed. If lil,jl and li′l,j′l are the leg-lengths of these
hooks (again in the partition from which they are removed), in order to prove
equation (7) it is enough to prove that

(−1)li1,j1+···+lik,jk = δq(α)(−1)
li′1,j

′
1
+···+li′

k
,j′
k (8)
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as in this case we would have that∑
((i1,j1),...(ik,lk))

(−1)li1,j1+···+lik,jk = δq(α)
∑

((i′1,j
′
1),...(i

′
k,l
′
k))

(−1)
li′1,j

′
1
+···+li′

k
,j′
k

and it is clear that

fα
(q)

(γ) =
∑

((i′1,j
′
1),...(i

′
k,l
′
k))

(−1)
li′1,j

′
1
+···+li′

k
,j′
k

only depends on α(q) and γ.

Theorem 52. If (il, jl) and (i′l, j
′
l) are defined as before we have that

(−1)li1,j1+···+lik,jk = δq(α)(−1)
li′1,j

′
1
+···+li′

k
,j′
k .

Proof. Let X = {x1, . . . , xm} be a β-set for α such that q||X|. We can assume
that the xi are increasing.

In order to prove the theorem we will use corollary 50. Let α(q) =
(α0, . . . , αq−1). Let π be given by the corollary for recursively removing the
hooks Ril,jl from X and let π′ be the permutation that sends the natural
numbering of X in the q-numbering of X. By the notes after corollary 50
we have that π′ is the permutation given by the same corollary for removing
recursively any maximal sequence of q-hooks from X. For each 0 ≤ i < q
let Ji be the set indexes s for which xs = i + qt for some t ∈ N. Let
Xi = {(xs − i)/q : s ∈ Ji} and let πi be given by corollary 50 by removing
from Xi those hooks of the sequence (Ri′l,j

′
j
) of hooks of α(q) which belong to

αi, where the elements of Xi are labeled by the indexes which belong to Ji
(just let Xi = {x′s : s ∈ Ji} with x′s = (xs − i)/q).

We want to prove that

π = π′π0 · · · πq−1

as then we would easily have by corollary 50 that

(−1)li1,j1+···+lik,jk = δq(α)(−1)
li′1,j

′
1
+···+li′

k
,j′
k ,

as each hook Ri′l,j
′
l

of α(q) belongs to exactly one of the αi.
Notice that as the πi act on distinct numbers they all commute with

each other, so it doesn’t matter which order we multiply them in. To show
that π = π′π0 · · · πq−1 we need to show that if we write X = {x(1)1 , . . . , x

(1)
m }

with the natural numbering (we just have that x
(1)
s = xs for each s) and



56 10 Weights and characters values

Y = {x(k+1)
1 , . . . , x

(k+1)
m } is obtained by X as in the text of corollary 50 for

the sequence of hooks Ril,jl we have that

x
(k+1)
π′π0···πq−1(i)

≤ x
(k+1)
π′π0···πq−1(j)

if and only if i ≤ j.

First as we have already noticed we have that P ∗(Y ) = α(q) as we are remov-
ing from α hooks of length γlq and

∑
γl = wq(α). Also as all hooks that we

are removing have lengths divisible by q we have that if x
(1)
i is on the h-th

runner of the q-abacus of X then x
(k+1)
i is on the h-th runner of the q-abacus

of Y . So we will first show that if x
(1)
i and x

(1)
j are on the same runner of the

q-abacus of X then x
(k+1)
π0···πq−1(i)

≤ x
(k+1)
π0···πq−1(j)

if and only if i ≤ j. But as when
removing a hook from α a bead jumps an other bead on the same runner if
and only if in when removing the corresponding hook in α(q) the bead corre-
sponding to the first one jumps the one corresponding to the second one, we
have that if x

(1)
i and x

(1)
j are on the h-th runner then x

(k+1)
πh(i)

≤ x
(k+1)
πh(j)

if and
only if i ≤ j. Also as if s 6= h we have that πs fixes all indexes of the beads
on the h-th runner and πh acts only on these indexes we need to have that

x
(k+1)
π0···πq−1(i)

≤ x
(k+1)
π0···πq−1(j)

if and only if i ≤ j

when x
(1)
i and x

(1)
j are on the same runner of the q-abacus of X and so it

follows by the definition of π′ that

x
(k+1)
π′π0···πq−1(i)

≤ x
(k+1)
π′π0···πq−1(j)

if and only if i ≤ j

and then the theorem is proved.

Lemma 53. If δ = (δ1, . . . , δk) is a partition of wq(α), there is a bijec-
tion between the set of sequences ((i′1, j

′
1), . . . , (i

′
k, j
′
k)) of nodes of α(q) cor-

responding to hooks of lengths (δ1, . . . , δk) which are recursively from δ and
q-tuples of nodes

(
(is1 , js1) , . . . ,

(
isks , jsks

))
corresponding to hooks of lengths(

δs1 , . . . , δsks
)

which are recursively removed from αs, the s-th component of

α(q) such that{
δ01 , . . . , δ0k0

}
∪ . . . ∪

{
δq−11 , . . . , δq−1kq−1

}
= {1, . . . , k}

is a disjoint union and for each 0 ≤ s ≤ q− 1 we have that δs1 + . . .+ δsks =
|αs|.

In particular we have that this bijection satisfies that (i′l, j
′
l) ∈ αs if and

only if l = st for some t and in this case we have that (i′l, j
′
l) = (ist , jst). In

particular if li′l,j′l and list ,jst are the leg-length of the corresponding hooks in
the partition from which they are removed, we have that li′l,j′l = list ,jst .



57 10 Weights and characters values

Proof. This bijection is given by the second part of the lemma. The fact that
δs1 + . . .+ δsks = |αs| is due to the fact that δ ` wq(α), so that δ1 + . . .+ δk =
|α0|+ . . .+ |αq−1| and so whenever we recursively remove a sequence of hooks
of lengths (δ1, . . . , δk) the sum of the hook-lengths of the hooks which are
removed from αs needs to be |αs|.

Lemma 54. If α, β ` n we have that

χαβ =
∑

((i1,j1),...,(ik,jk))

(−1)
∑
l lil,jl

where k is such that βk > 0 and βk+1 = 0, the nodes (il, jl) are such that
hil,jl = βl in the partition obtained by recursively removing from α the rim-
hooks corresponding to the first l − 1 nodes and lil,jl is the leg-length of the
node (il, jl) in the same partition.

Proof. This lemma is actually an easy corollary of the Murnaghan-Nakayama
formula.

Theorem 55. If α, ρ, π and γ are defined as at the beginning of this section
we have that

χα(ρπ) = δq(α)

 ∑
(01,...,0k0 ,...,q−11,...,,q−1kq−1)

q−1∏
i=0

χαi(
γi1 ,...,γiki

)
χα(q)(π)

where the sequences (s1, . . . , sks), 0 ≤ s < q, respect the same properties as
in lemma 53 and α(q) = (α0, . . . , αq−1).

Proof. By the equation (6) and theorem 52 we have that

χα(ρπ) = δq(α)fα
(q)

(γ)χα(q)(π)

where
fα

(q)

(γ) =
∑

((i′1,j
′
1),...(i

′
k,l
′
k))

(−1)
li′1,j

′
1
+···+li′

k
,j′
k

where the sequences ((i′1, j
′
1), . . . (i

′
k, l
′
k)) satisfy the same properties as in the

previous part of this section. Also by applying lemma 53 we have that

fα
(q)

(γ) =
∑

(01,...,q−1kq−1)

∑
(
(i01 ,j01),...,

(
i(q−1)kq1

,j(q−1)kq1

))(−1)
∑
lilm,jlm
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and by lemma 54 we have that

fα
(q)

(γ) =
∑

(01,...,(q−1)kq−1)

∏
χ
αj(
γi1 ,...,γihi

)

from which the theorem follows.

11 The hook-formula

Theorem 56 (Hook formula). If α ` n we have that the degree of [α], the
irreducible representation of Sn indexed by α, is

fα =
n!∏

(i,j)∈α h
α
i,j

.

Proof. By definition of fα we have that fα = χα(1). Using the branching
rule and as α has a 1-hook on row i if and only if αi > αi+1, that is if and
only if αi−, as defined at the beginning of section 8, is a partition, we have
that

fα = χα(1) =
∑
i

χα
i−

(1) =
∑
i

fα
i−
,

where the summation is taken over those i such that αi > αi+1.
By lemma 43 we have that

∏
(i,j)∈α

hαi,j =
h∏
i=1

hαi,1!∏
i′>i(h

α
i,1 − hαi′,1)

.

As when αi > αi+1 we have that

hα
i−

j,1 =

{
hαj,1 j 6= i
hαi,1 − 1 j = i

we need to have that have that

1∏
(k,j)∈αi− h

αi−
k,j

=
∏

1≤k<k′≤h(h
αi−
k,1 −h

αi−
k′,1 )∏h

k=1 h
αi−
k,1 !

=
∏

1≤k<k′≤h,k,k′ 6=i(h
α
k,1−h

α
k′,1)∏

k 6=i h
α
k,1!

∏
k<i(h

α
k,1−h

α
i,1+1)

∏
k>i(h

α
i,1−hαk,1−1)

(hαi,1−1)!

= hαi,1

∏
k′>k(h

α
k,1−h

α
k′,1)∏h

k=1 h
α
k,1!

∏
k<i

hαk,1−h
α
i,1+1

hαk,1−h
α
i,1

∏
k>i

hαi,1−hαk,1−1
hαi,1−hαk,1

= hαi,1

∏
k′>k(h

α
k,1−h

α
k′,1)∏h

k=1 h
α
k,1!

∏
k 6=i

hαi,1−hαk,1−1
hαi,1−hαk,1

.
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If for some i ≤ h we have that αi = αi+1 then hαi,1 = hαi+1,1 + 1, so that
hαi,1−hαi+1,1− 1 = 0 and as in this case we need to have that i < h, as αh > 0
and αh+1 = 0, we have that hαi,1− hαi+1,1− 1 appears in

∏
k 6=i(h

α
i,1− hαk,1− 1),

so that

hαi,1

∏
k′>k(h

α
k,1 − hαk′,1)∏h

k=1 h
α
k,1!

∏
k 6=i

hαi,1 − hαk,1 − 1

hαi,1 − hαk,1
= 0

in this case.
As the hook-formula clearly holds when n = 1 we can proceed by in-

duction and assume that it holds for any partition of n − 1. Then we have
that

fα =
∑

i:αi>αi+1
fα

i−

=
∑

i:αi>αi+1
hαi,1(n− 1)!

∏
k′>k(h

α
k,1−h

α
k′,1)∏h

k=1 h
α
k,1!

∏
k 6=i

hαi,1−hαk,1−1
hαi,1−hαk,1

=
∑h

i=1 h
α
i,1(n− 1)!

∏
k′>k(h

α
k,1−h

α
k′,1)∏h

k=1 h
α
k,1!

∏
k 6=i

hαi,1−hαk,1−1
hαi,1−hαk,1

= n!
∏
k′>k(h

α
k,1−h

α
k′,1)∏h

k=1 h
α
k,1!

1
n

∑h
i=1 h

α
i,1

∏
k 6=i

hαi,1−hαk,1−1
hαi,1−hαk,1

= n!∏
(i,j)∈α h

α
i,j

1
n

∑h
i=1 h

α
i,1

∏
k 6=i

hαi,1−hαk,1−1
hαi,1−hαk,1

.

In order to prove the hook formula it is then enough to prove that

h∑
i=1

hαi,1
∏
k 6=i

hαi,1 − hαk,1 − 1

hαi,1 − hαk,1
= n.

Let g(x) =
∏h

k=1(x− hαk,1). Then for any 1 ≤ i ≤ h we have that

g(hαi,1 − 1) =
h∏
k=1

(hαi,1 − 1− hαk,1) = −
∏
k 6=i

(hαi,1 − 1− hαk,1)

and

g′(hαi,1) =
h∑
j=1

∏
k 6=j

(hαi,1 − hαk,1) =
∏
k 6=i

(hαi,1 − hαk,1),

so that
h∑
i=1

hαi,1
∏
k 6=i

hαi,1 − hαk,1 − 1

hαi,1 − hαk,1
=

h∑
i=1

−hαi,1g(hαi,1 − 1)

g′(hαi,1)
.

As
∑h

i=1 h
α
i,1 =

∑h
i=1 αi + h − i = n +

∑h−1
j=0 j = n +

(
h
2

)
, in order to prove

the hook-formula it is enough to prove the following lemma
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Lemma 57. If x1, . . . , xr are non-zero and pairwise distinct and

g(x) =
r∏
i=1

(x− xi)

we have that
r∑
i=1

−xi
g(xi − 1)

g′(xi)
=

r∑
i=1

xi −
(
r

2

)
.

Proof. Let a =
∑r

i=1 xi and b =
∑

1≤i<j≤r xixj. It is easy to see that

g(x) = xr − axr−1 + bxr−2 + f(x)

where f(x) is a polynomial of degree ≤ r − 3 (here we don’t need the xi to
be non-zero nor pairwise different). As g(x − 1) =

∏r
i=1(x − (xi + 1)) and∑r

i=1(xi + 1) = r +
∑r

i=1 xi = a+ r and

∑
1≤i<j≤r

(xi+ 1)(xj + 1) = b+
∑
j 6=i

xi+
∑
i 6=j

xj +
r∑
i=1

(r− i) = b+ (r−1)a+

(
r

2

)
,

we have by the formula we just found that

g(x− 1) = xr − (a+ r)xr−1 +

(
b+ (r − 1)a+

(
r

2

))
xr−2 + f1(x)

for some f1 of degree at most r − 3. We can see that

x2g(x− 1) =

(
x2 − rx+

(
r

2

)
− a
)
g(x) + h(x)

where h(x) is a polynomial of degree ≤ r − 1. When x = 0 this gives((
r
2

)
− a
)
g(0) + h(0) = 0 and as g(0) =

∏
i(−xi) 6= 0 as the xi are non-zero,

we have that h(0)/g(0) =
(
r
2

)
− a =

(
r
2

)
−
∑

i xi. Also as for 1 ≤ i ≤ r we
have that g(xi) = 0 we need to have that

h(xi) = x2i g(xi − 1) =
r∑

k=1

x2kg(xk − 1)
∏
j 6=k

xi − xj
xk − xj

as the xj are pairwise different and when k 6= i then (xi − xi)/(xk − xi) = 0
appears in the product. As the xi are pairwise distinct and as both h and

r∑
k=1

x2kg(xk − 1)
∏
j 6=k

x− xj
xk − xj

=
r∑

k=1

x2kg(xk − 1)

g′(xk)

∏
j 6=k

(x− xj)
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are polynomial of degree at most r − 1 and they take the same value on all
the xi, which are r different numbers, as g′(xk) =

∑k
i=1

∏
j 6=i(xk − xj) =∏

j 6=k(xk − xj), we need to have that they are the same polynomial. Now we
have that

h(0) =
∑r

k=1

x2kg(xk−1)
g′(xk)

∏
j 6=k(−xj) = −

∑r
k=1

xkg(xk−1)
g′(xk)

∏r
j=1(−xj)

= −
∑r

k=1
xkg(xk−1)
g′(xk)

g(0)

and so we have that

−
r∑

k=1

xkg(xk − 1)

g′(xk)
=
h(0)

g(0)
=

(
r

2

)
−

r∑
i=1

xi

and so
∑r

k=1
xkg(xk−1)
g′(xk)

=
∑r

i=1 xi −
(
r
2

)
as we wanted to prove.

Having proven this lemma we then also have that the hook-formula is
true.

12 p-vanishing classes

In this section we want to show that for any prime p, there are some conjugacy
classes of Sn on which all irreducible characters of degree divisible by p vanish.
The first part of this section is based on part 4 of [3].

Definition 32 (p-vanishing conjugacy class). A conjugacy class of Sn is
called p-vanishing if all irreducible characters of degree divisible by p vanish
on it.

A partition is p-vanishing if it is the cycle partition of a p-vanishing con-
jugacy class of Sn and an element π ∈ Sn is p-vanishing if its conjugacy class
is p-vanishing.

Definition 33 (p-adic decomposition). Let n be a positive integer and p be
a prime. The p-adic decomposition of n is given by

n = a0 + pa1 + . . .+ pkak

with 0 ≤ ai ≤ p− 1, ak 6= 0.

As the 0 ≤ ai ≤ p − 1 and ak 6= 0 it is easy to see that we can write n
like a0 + pa1 + . . . + pkak in a unique way, so that the p-adic decomposition
of n is unique. Throughout this section we will use the notation that the ai
are the coefficients of the p-adic decomposition of n.
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Definition 34 (p-adic type conjugacy class). A partition (c1, . . . , ch) of n is
of p-adic type if it satisfies ∑

j:pi|cj ,
pi+1 6|cj

cj/p
i = ai

for every i ≥ 1 (ai = 0 for i > k).
A conjugacy class or an element of Sn are of p-adic type if their cycle

partition is of p-adic type.

For example if n = 11 we have that n = 8+2+1 and so the only partition
of n of 2-adic type is (8, 2, 1), while as n = 9 + 2 · 1 the partitions of n of
3-adic type are (9, 2) and (9, 1, 1).

If (c1, . . . , ch) is of p-adic type and we write cj = phjdj with p 6 |dj (which
we can always do for j ≤ h if we assume ch > 0) we have by the definition of
a partition of p-adic type that

∑
j:hj=i

dj = ai ≤ p− 1 and so all dj ≤ p− 1.

So we easily have that (c1, . . . , ch) is of p-adic type if and only if we can write
it as (

pkdk1 , . . . , p
kdkhk , p

k−1dk−11 , . . . , p
kdk−1hk−1

, . . . , d01 , . . . , d0h0

)
where for each 1 ≤ 1 ≤ k we have that(

di1 , . . . , dihi

)
` ai

and dihi > 0 (let ihi = 0 if ai = 0).

Lemma 58. π ∈ Sn is of p-adic type if and only if for any i we have that
wpi(π) = ai + ai+1p+ . . .+ akp

k−i.

Proof. If wpi(π) = ai + ai+1p + . . . + akp
k−i for any i we have that the sum

of the lengths of the cycles of π divisible by pj but not by pj+1 is equal to

pjwpj(π)− pj+1wpj+1(π) = pjaj

and so π is of p-adic type in this case.
If instead π is of p-adic type and α(π) = (c1, . . . , ch) we have that

wpi(π) =
∑
l≥i

∑
j:pl|cj ,
pl+1 6|cj

cj/p
i =

∑
l≥i

pl−ial = ai + . . .+ akp
k−i

and so the lemma is proved.
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The next theorem, which will be proved after some lemmas, is a general-
ization of theorem 4.1 of [3].

Theorem 59. Any p-adic type conjugacy class of Sn is p-vanishing.

Definition 35. If α is a partition define

αi = wpi(α)− pwpi+1(α).

Lemma 60. If αi are as defined before we have that αi ∈ N for each i and

wpj(α) =
∑
i≥j

pi−jαi.

Proof. As by corollary 46 we have that removing a pi+1 hook is equivalent
to removing a certain sequence of p hooks all of length pi, it follows by the
definition of wpi(π) and wpi+1(π) that each αi ∈ N.

As αi = 0 for i > k as when i > k we have that both wpi(π) and wpi+1(π)
are 0, we have that

wpj(π) = wpj(π)− pk−j+1wpk+1(π) = αj + . . .+ pk−jαk =
∑
i≥j

pi−jαi

as we wanted to prove.

The next lemma is proposition 4.6 of [3].

Lemma 61. Let α ` n.

i) If αk 6= ak we cannot recursively remove ak hooks of length pk from α.

ii) If αk = ak we can recursively remove ak hooks of length pk from α. The

resulting partition is α(pk) and we have that
(
α(pk)

)
i

= αi for 0 ≤ i < k

and
(
α(pk)

)
k

= 0.

Proof. As αi = 0 for i > k we have by the previous lemma that αk = wpk(α).
So in order to prove i) it is enough to show that for any α, αk ≤ ak, as then
when αk 6= ak we actually need to have that wpk(α) = αk < ak and so in
this case we cannot recursively remove ak hooks of length pk from α. As
n = a0 + pa1 + . . . + pkak is the p-adic decomposition of n we have that all
ai < p and so we need to have that

a0 + pa1 + . . .+ pk−1ak−1 ≤ (p− 1)
(
1 + p+ . . .+ pk−1

)
= pk − 1 < pk,

that is we have that n < (1 + ak)p
k. As all αk ≥ 0 and by the previous

lemma with j = 0 we need to have that n =
∑

i αip
i (as w1(β) = |β| for any
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partition β) we in particular need to have that αkp
k ≤ n < (1 + ak)p

k and
so we have that αk ≤ ak for any α ` n and so part i) is proved.

Assume now that αk = ak. Then we have that ak = wpk(α), again as
wpk+1(α) = 0, and so we can recursively removed ak hooks of length pk from
α and the resulting partition needs to be α(pk). By corollary 48 and as for
any 0 ≤ j ≤ k we have that the removal of a pk-hook corresponds to the
removal of pk−j hooks of length pj, we have that for any 0 ≤ j ≤ k

wpj
(
α(pk)

)
= wpj(α)− pk−jwpk(α).

So we have that
wpk

(
α(pk)

)
= 0

(which we could already have obtained as α(pk) cannot contain any hook of
length pk) and for 0 ≤ i < k we have that(

α(pk)

)
i

= wpi
(
α(pk)

)
− pwpi+1

(
α(pk)

)
= wpi(α)− pk−iwpk(α)− pwpi+1(α) + ppk−jwpk(α)
= wpi(α)− pwpi+1(α)
= αi.

The results that we have proven from the definition of the αi until now
hold for any p, not necessarily for p a prime, even if we will be using them
only in the case when p is prime.

Lemma 62. If m is maximal such that pm|n! we have that

m = (n− a0 − a1 − . . .− ak)/(p− 1).

Proof. As n = a0 + pa1 + . . . + pkak is the p-adic decomposition of n it is
easy to see that for each 1 ≤ i ≤ k the number of numbers between 1 and n
which are divisible by pi is equal to [n/pi] = (n−a0−pa1− . . .−pi−1ai−1)/pi,
where for any real number x, [x] is the largest integer not bigger than x. So
we have that

m =
∑k

i=1(n− a0 − pa1 − . . .− pi−1ai−1)/pi
=

∑k
i=1 p

k−i(n− a0 − pa1 − . . .− pi−1ai−1)/pk
=

∑k
i=1 p

k−in/pk −
∑k

j=0

∑k
i=j+1 p

k−ipjaj/p
k

= n(
∑k−1

i=0 p
i)/pk −

∑k
j=0 aj(

∑k−j−1
i=0 pi)/pk−j

= (n− a0 − a1 − . . .− ak)/(p− 1)− n/(pk(p− 1)) +
∑k

j=0 aj/(p
k−j(p− 1))

= (n− a0 − a1 − . . .− ak)/(p− 1)− (n− a0 − pa1 − . . .− akpk)/(pk(p− 1))
= (n− a0 − a1 − . . .− ak)/(p− 1)
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as for any h we have that(
1 + p+ . . .+ ph−1

)
(p− 1) = ph − 1

and so(
1 + p+ . . .+ ph−1

)
/ph =

(
ph − 1

)
/
(
ph(p− 1)

)
= 1/(p−1)−1/

(
ph(p− 1)

)
.

Lemma 63. If m is maximal such that pm|
∏

(i,j)∈α h
α
i,j we have that

m = (n− α0 − α1 − . . .− αk)/(p− 1).

Proof. By theorem 47 we have that the number of hooks of α with length
divisible by pj is equal to wpj(α). By lemma 60 we then have that the number
of hooks with length divisible by pj is equal to

∑
i≥j αip

i−j. Also as αi = 0

for i > k we actually have that this number is equal to
∑k

i=j αip
i−j. In

particular, as no hook of α can be longer than n, and so no hook can be
divisible by pj for j > k, we have that

m =
∑k

j=1

∑k
i=j αip

i−j

=
∑k

i=1 αi
∑i

j=1 p
i−j

=
∑k

i=1 αi
∑i−1

l=0 p
l

=
∑k

i=1 αi(p
i − 1)/(p− 1)

=
(∑k

i=1 αip
i − αi

)
/(p− 1)

= (n− α0 − α1 − . . .− αk)/(p− 1)−
(
n− α0 − pα1 − . . .− pkαk

)
/(p− 1)

= (n− α0 − α1 − . . .− αk)/(p− 1)

again as for any h we have that
(
1 + p+ . . .+ ph−1

)
(p− 1) = ph − 1 and as

n = α0 + pα1 + . . .+ pkαk by lemma 60 with j = 0.

Lemma 64. If α ` n and the coefficients αi are as in definition 35 we have
that the maximal m for which pm divides the degree of χα, the irreducible
representation of Sn indexed by α, is(∑

i≥0

αi −
∑
i≥0

ai

)
/(p− 1).

Proof. This follows easily from lemmas 62 and 63 and from the hook formula.
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Proof of theorem 59. Assume that p divides the degree of χα and that π is
of p-adic type. By lemma 64 we need to have that(∑

i≥0

αi −
∑
i≥0

ai

)
/(p− 1) 6= 0.

In particular there exists some j for which αj 6= aj. Let i be maximal such
that αi 6= ai. Such an i exists as αj = aj = 0 for j > k. By recursively
applying lemma 61 we have that αi < ai, in particular, as π is of p-adic type,
by lemmas 58 and 60 we have that

wpi(α) = αi + αi+1p+ . . .+ αkp
k−i < ai + ai+1p+ . . .+ akp

k−i = wpi(π),

as αj = aj for j > i and so by theorem 51 we have that χα(π) = 0 and so, as
this holds for any χα of degree divisible by p, we have that any p-adic type
conjugacy class is also p-vanishing.

Until now in this section we have been proving that conjugacy classes
of p-adic type are also p-vanishing. In the next part we will try to classify
p-vanishing conjugacy classes. This work has been originated on a question
of Navarro about which conjugacy classes are 2-vanishing. In order to do
this we will study partitions and see which partitions are p-vanishing.

Lemma 65. If α ` n is such that αi 6= ai for some i, where the αi are defined
as in definition 35, then

∑
i αi 6=

∑
i ai. In particular in this case p divides

the degree of χα.

Proof. The last part follows immediately from lemma 64 and the first part of
the lemma, so we only need to prove the first part. Also in order to prove the
first part of the theorem it is enough to prove that if n =

∑
i≥0 bip

i, where
all bi ∈ N and that if

∑
i bi ≤

∑
i ai then bi = ai for all i, as then we would

have that if
∑

i αi =
∑

i ai then αi = ai for all i. Also it is easy to see that
by definition of k whenever

∑
i bip

i = n and bi ∈ N for each i we need to
have that bi = 0 for all i > k.

The fact that bi = ai for all i if n =
∑

i≥0 bip
i, all bi ∈ N and

∑
i bi ≤

∑
i ai

clearly holds when k = 0. So assume that it holds for k − 1 and that∑
i bip

i = n =
∑

i aip
i,
∑

i bi ≤
∑

i ai and bi ∈ N for each i. As n − a0 and
n − b0 are both divisible by p we have that bi and ai are equivalent mod p.
Also as 0 ≤ a0 < p and b0 ≥ 0 we then need to have that b0 = a0 + pc, for
some c ∈ N. Let

b′i =


bi i 6= 0, 1
b1 + c i = 1
a0 i = 0.
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Then we have that b′i ∈ N for all i,∑
i

b′ip
i = a0 +(b1 +c)p+

∑
i≥2

bip
i = b0−cp+b1p+cp+

∑
i≥2

bip
i =

∑
i

bip
i = n

and∑
i

b′i = a0 + b1 + c+
∑
i≥2

bi = b0 + b1 + c(1− p) +
∑
i≥2

bi ≤
∑
i

bi ≤
∑
i

ai.

Also as b′0 = a0 we also have that
∑

i≥1 b
′
i ≤

∑
i≥1 ai and as the p-adic

decomposition of (n− a0)/p is a1 + a2p+ . . .+ akp
k−1 and

∑
i≥1

b′ip
i−1 =

(∑
i≥1

b′ip
i

)
/p = (n− b′0)/p = (n− a0)/p

we can conclude by induction that b′i = ai for each i ≥ 1. So, as we already
now that b′0 = a0, we have that b′i = ai for all i ≥ 0. As if c was ≥ 1 we
would have that

∑
i b
′
i <

∑
i bi ≤

∑
i ai =

∑
i b
′
i, we need to have that c = 0

and so bi = b′i = ai for all i and so the lemma is proved.

Definition 36. α ` n is of class m ≥ 0 if it isn’t possible to recursively
remove from α a sequence of hooks with hook-lengths given by the partition(
(pk)ak , (pk−1)ak−1 , . . . , (pm)am

)
.

Lemma 66. If α is of class m for some m, we have that the degree of χα is
divisible by p.

Proof. This follows by recursively applying lemma 61 and by lemma 65.

Theorem 67. If (c1, . . . , ch) ` n, with ch ≥ 1, is p-vanishing, p 6= 2, 3 and i
is maximal such that pi|n, then ch ≥ pi. Also the same result is true if p = 2,
i 6= 1, 2 or if p = 3 and i 6= 1.

If p = 2 and i = 2 then ch ≥ 4 or (c1, . . . , ch) is either (2, 1, 1) or ends by
(d, 2, 1, 1), for some d ≥ 4 and both of these possibilities actually occur.

If p = 2, 3, i = 1 and ch < p, then ch = 1.

Proof. If i = 0 there is nothing to prove, as then we would have that pi = 1.
Also the theorem is trivial in the case where p = 2 and i = 1. So assume
that i 6= 0 (and that i 6= 1 if p = 2).

The proof of the theorem will now proceed considering the following cases:

Case 1: 2 ≤ ch < pi,
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Case 2: pi ≥ 4 and (c1, . . . , ch) ends by (1, 1, 1, 1), (c, 1), (c, 1, 1), (2, 1, 1, 1),
(2, 2, 1) or (2, 2, 1, 1) with c ≥ 3,

Case 3: pi ≥ 4, (c1, . . . , ch) ends by (c, 1, 1, 1), (c, 2, 1, 1) with c ≥ 3, (c1, . . . , ch) 6=
(3, 3, 1, 1, 1) and doesn’t end by (d, 3, 3, 1, 1, 1) or (d, 2, 1, 1) with d ≥ 4,

Case 4: pi ≥ 4 and (c1, . . . , ch) ends by (c, 2, 1) with c ≥ 3,

Case 5: pi ≥ 5, (c1, . . . , ch) = (3, 3, 1, 1, 1) or ends by (d, 3, 3, 1, 1, 1) or (d, 2, 1, 1)
with d ≥ 4, (c1, . . . , ch) 6= (4, 2, 1, 1) and doesn’t end by (e, 4, 2, 1, 1)
with e ≥ 5,

Case 6: pi ≥ 5 and (c1, . . . , ch) = (4, 2, 1, 1) or ends by (e, 4, 2, 1, 1) with e ≥ 5,

Case 7: pi = 4 and (c1, . . . , ch) ends by (d, 3, 3, 1, 1, 1),

Case 8: If pi = 4 there exists (c1, . . . , ch) ending with (d, 2, 1, 1) with d ≥ 4
which is 2-vanishing.

As when p = 3 and i = 1 if we have an exception to the theorem we need
to be in case 1 and the cases (c1, . . . , ch) = (1, 1, 1), (2, 1, 1), (2, 1) are within
the special cases of the theorem (when ch < pi), it can be easily checked that
these cases cover all possibilities where ch < pi.

Case 1.
We will first show that for any n, p and any i ≥ 1, if 2 ≤ ch < pi then
(c1, . . . , ch) is not p-vanishing.

Let α = (n− ch, ch). As ch < pi ≤ n we have that h ≥ 2 and so

0 < ch ≤ c1 ≤ c1 + . . .+ ch−1 = n− ch

and so α is actually a partition. We will show that χα(c1,...,ch) 6= 0 and χα has
degree divisible by p. By lemma 66 to show that the degree of χα is divisible
by p it is enough to show that α is of class i. If n = pi then as the second
row of α contains at least 2 nodes we have that α doesn’t contain any hook
of length pi = n, as in this case hα1,1 < pi, and so we are done.

So assume that pi < n. As ch < pi ≤ pj for each j ≥ i if it was possible
to recursively remove a sequence of hooks of lengths ((pk)ak , . . . , (pi)ai) from
α, we would have that all hooks which are recursively removed from α are
of the form R1,l for some l. Assume first that ch ≤ pi/2. Then as we have
hα1,ch+1 = n − 2ch ≥ n − pi, it is easy to see that we can remove ak hooks
of length pk, then ak−1 hooks of length pk−1 and so on until we remove ai+1

hooks of length pi+1 and then remove ai− 1 (ai > 0) hooks of length pi from
α in a unique way and that in this way we obtain the partition (pi − ch, ch).
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As ch ≥ 2 we cannot remove the last hook of length pi and so again α is of
class i.

Assume now that ch > pi/2. As n isn’t a power of p as n 6= pi and by def-
inition of i, we have that any sequence of hooks of lengths ((pk)ak , . . . , (pi)ai)
contains at least 2 hooks. Let pj be the length of the second last hook of
such a sequence. Then we have that hα1,ch+1 = n − 2ch ≥ n − pi + pj and
so we can now remove all hooks in the sequence apart for the last two in a
unique way and that the partition we obtain this way is (pi + pj − ch, ch).
Also as ch < pi ≤ pj, if there is any hook of length pj in (pi + pj − ch, ch)
this must be on the first row. If there is no hook of length pj we are done.
Otherwise notice that in order to be possible to remove a hook of length pi

from the partition we would obtain we need to have that the second row
of the partition we obtain this way must contain at most 1 node. So, as
ch ≥ 2 we need to have that the hook that we remove must be either Rα

1,1

or Rα
1,2, and in these cases we have that the resulting partitions are given by

(ch − 1) and (ch − 1, 1) respectively. But ch − 1, ch < pi, which means that
hα1,1, h

α
1,2 > pj and then it is not possible to remove first a pj hook and then a

pi hook from (pi + pj − ch, ch) and so we cannot remove a sequence of hooks
of lengths

((
pk
)ak , . . . , (pi)ai) in this case either. So also in this case α is of

class i and then we only need to show that χα(c1,...,ch) 6= 0.

Let m be such that cm > ch and cm+1 = ch (m = 0 if c1 = ch). While

j ≤ m,h−2, as then ch < cj and h
(cj+...+ch−1,ch)
1,ch+1 = cj + . . .+ ch−1− ch ≥ cj, it

is easy to see that we can remove a hook of length cj form (cj + . . .+ch−1, ch)
in a unique way and the resulting partition is (cj+1 + . . . + ch−1, ch). So we
can remove the first s = min{m,h−2} hooks of length cj from α in a unique
way and we obtain the partition (cs+1 + . . .+ ch−1, ch).

Assume now that m = h − 1. Then we have that s = h− 2 and (cs+1 +
. . .+ ch−1, ch) = (ch−1, ch). As ch−1 > ch there cannot be any hook of length

ch−1 on the second row and as it is easy to see that h
(ch−1,ch)
1,2 = ch−1, as

ch ≥ 2, we can remove a hook of length ch−1 from (ch−1, ch) in a unique way
and we obtain the partition (ch − 1, 1), for which obviously h1,1 = ch. So
if 2 ≤ ch < ch−1 we can recursively remove hooks of length cj from α in a
unique way, and so by the Murnaghan-Nakayama formula we have that in
this case χα(c1,...,ch) 6= 0.

Let now m < h − 1. Then s = m. After removing the first s hooks of
length cj from α we are left with (cs+1 + . . .+ ch−1, ch) = ((h− s− 1)ch, ch)
and we need to remove h− s ≥ 2 hooks of length ch from this partition. We
need to see in how many ways we can do this and see what the sum of the
leg-lengths modulo 2 is in any of this cases. If we remove one of the first
h −m − 2 hooks of lengths ch from the second row then all other ch-hooks
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must be removed from the first row and in this case it is easy to see that
all hooks have leg-length 0. This can be done in h − s − 2 different ways.
Otherwise we need to remove the first h − s − 2 hooks of length ch from
the first row and as h

((h−s−1)ch,ch)
1,ch+1 = (h− s− 2)ch and h

((h−s−1)ch,ch)
1,ch+1 = 0, we

have that the hooks we have removed up to this point have leg-length 0 and
this way we obtain (ch, ch) from which we need to removed 2 ch-hooks. As

χ
(ch,ch)
(ch,ch)

= χ
(ch)
(ch)
−χ(ch−1,1)

ch)
= 2. Putting all of this together we have by lemma

54 that χα(c1,...,ch) = h− s 6= 0.

So we have that if 2 ≤ ch < pi, then there is some irreducible character
χα of Sn of degree divisible by p such that χα(c1,...,ch) 6= 0 and so (c1, . . . , ch)
is not p-vanishing. This proves the theorem for the part where p = 3 and
i = 1.

Case 2.
Assume now that (c1, . . . , ch) ends by (1, 1, 1, 1), (c, 1), (c, 1, 1), (2, 1, 1, 1),
(2, 2, 1) or (2, 2, 1, 1) with c ≥ 3, that i ≥ 1 and that p 6= 2, 3 or p = 2, 3 and
i ≥ 2. We want to show that also in this case (c1, . . . , ch) is not p-vanishing.
First we will show that if β = (n − 2, 2) then p| deg(χβ). Notice that by
assumption in this part we always need to have n ≥ pi ≥ 4, so β is actually
a partition. Also we have that pi ≥ 4. So all parts of

((
pk
)ak , . . . , (pi)ai) are

bigger then 2 and then as hα2,1 = 2 if we can remove a sequence of hooks of

lengths
((
pk
)ak , . . . , (pi)ai) all hooks must be on the first row. Then by as

hβ1,3 = n−4 ≥
∑k

i=i+1 akp
k +(ai−1)pi and lβ1,3 = 0 we can remove all but the

last hooks of the sequence from β in a unique way and we obtain (pi − 2, 2).

As h
(pi−2,2)
1,1 = pi − 1 we cannot remove the last hook of the sequence and so

again we have that β is of class i and so p| deg
(
χβ
)

by lemma 66.
We will show that if (c1, . . . , ch) ends with (1, 1, 1, 1), (c, 1), (c, 1, 1),

(2, 1, 1, 1), (2, 2, 1) or (2, 2, 1, 1), where c ≥ 3, then χβ(c1,...,ch) 6= 0. This is

always true if (c1, . . . , ch) = (1n), as (c1, . . . , ch) is the cycle partition of 1
and χβ(1) = deg(χβ) 6= 0, so we can assume that c1 ≥ 2.

Assume that (c1, . . . , ch) = (c1, . . . , cj, 1
m), with cj ≥ 3, m ≥ 1 andm 6= 3.

As hβ2,1 = 2 < cl for l ≤ j the first j hooks must always be removed from the

first row. First assume that m ≥ 4. Then as hβ1,3 = n − 4 ≥ c1 + . . . + cj
we can remove the first j hooks in a unique way obtaining (m− 2, 2). As all
1-hooks have leg-length 0 and we can always remove some 1-hook from any
partition of any positive integer, we can then conclude by lemma 54 that in
this case χβ(c1,...,ch) 6= 0. Assume now that m = 2. Then as hα1,3 = n − 4 ≥
c1 + . . . cj−1 we can remove the first j − 1 hooks in a unique way and we

obtain (cj +m−2, 2) = (cj, 2). Now we have that h
(cj ,2)
1,2 = ci−1+1 = cj and

so as we need to remove the i-th hook from the first row we again can remove
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the i-th hook in a unique way and so as again 1-hooks have leg-length 0 we
need to have that χβ(c1,...,ch) 6= 0. So let now m = 1. Then we again have that
hα1,3 = n − 4 ≥ c1 + . . . cj−1 and so as the first j − 1 hooks must be on the
first row we can remove the first j − 1-hooks in a unique way and we now

obtain (cj +m− 2, 2) = (cj − 1, 2). As h
(cj−1,2)
1,1 = cj we can remove also the

i-th hook in a unique way, obtaining (1), from which we need to remove a
1-hook, and so again χβ(c1,...,ch) 6= 0.

So assume now that (c1, . . . , ch) = (c1, . . . , cj, 2
l, 1m), with l = 1 and

m ≥ 3 or l ≥ 2 and m ≥ 1. First assume that l = 1 and m ≥ 3. As
hβ1,3 = n− 4 ≥ c1 + . . .+ cj we can remove the first j hooks in a unique way
and we obtain (m, 2), as these hooks must be removed from the first row, as
any hook in the second row as at most length 2 < cl for any l ≤ j. If m = 3
it is easy to see that there is only one hook of length 2, H

(m,2)
2,1 , and so as

afterward we only need to remove 1-hooks, which have leg-lengths 0, we need
to have that in this case χβ(c1,...,ch) 6= 0. If m > 3 then we can either remove

R
(m,2)
2,1 or R

(m,2)
1,m−1. As anyway the leg-length of this hook is 0 and afterward

we only need to remove 1-hooks, we have by lemma 54 that χβ(c1,...,ch) 6= 0.
So assume that l ≥ 2 and m ≥ 1. Again, by the same reasons as in the

previous case, we can remove the first j hooks in a unique way obtaining
(m+ 2l− 2, 2). If m ≥ 4 as h

(m+2l−2)
1,3 ≥ 2l and as l

(m+2l−2)
1,3 = 0 we have that

if at any step we remove some of the l hooks of length 2 from the first row,
then this hook must have leg-length 0. Also if we remove any 2-hook from
the second row it must have also in this case leg-length 0. As any 1-hook as
leg-length 0 we then have that the sum of the leg-lengths of the hooks we
recursively remove from β is always the same (is always 0) and so again by
lemma 54 we need to have that χβ(c1,...,ch) 6= 0, as it is possible to remove from

(m+ 2l − 2, 2) some sequence of l 2-hooks and m 1-hooks.
Assume now that l ≥ 2 and m = 3. After having removed the first

j hooks (which can be done in a unique way), we obtain (2l + 1, 2). As

h
(2l+1,2)
1,3 = 2l − 1 > 2(l − 1) and l

(2l+1,2)
1,3 = 0, we again have as before that

the first l − 1 hooks of length 2 that we remove from (2l + 1, 2) must have
leg-length 0. Now there are two possibilities. The first one is that we obtain
(5), if one of the l − 1 hooks of length 2 was removed from the second row.

This can be done in l − 1 different ways. In this case the only 2-hook, H
(5)
1,4 ,

has leg-length 0. Otherwise all of the l − 1 2-hooks were removed from the
first row, as we can remove at most one 2-hook from the second row, and in
this case we obtain (3, 2). Again the only 2-hook, H

(3,2)
2,1 , has leg-length 2. So

the sum of the leg-length of the sequence of hooks we removed is constant
(= 0) and so again χβ(c1,...,ch) 6= 0.
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Now assume that m = 2. Then (m+2l−2, 2) = (2l, 2). As h1,3 = 2(l−1),
the first l − 1 2-hooks must again have leg-length 0. If one of the 2-hooks
was removed from the second row we obtain (4). This can be done in l − 1
different ways and we can remove the last 2-hook and the 2 1-hooks in a
unique way and all of these hooks have leg-length 0. In the second case all
l−1 hooks are removed from the first row. This can be done in a unique way
and we obtain (2, 2). We can now remove the last 2-hook in two different
ways, in one we have that the leg-length of the 2-hook is 0 (when we remove

H
(2,2)
2,1 ) and in the other is 1 (when we remove H

(2,2)
1,2 ). In any case we have

that the two 1-hooks can be removed in a unique way from the partition we
obtain. So we have that there are l− 1 + 1 = l paths in removing the hooks
from β in for which the sum of the leg-lengths is 0 (the first j hooks we
removed always have leg-length 0) and one path in which it is 1. By using
lemma 54 we then have that χβ(c1,...,ch) = l − 1 > 0 as l ≥ 2 and so we have

again that χβ(c1,...,ch) 6= 0.

The last case is when m = 1. Here (m + 2l − 2, 2) = (2l − 1, 2) and

h
(2l−1,2)
1,3 = 2(l − 1)− 1 > 2(l − 2) and l

(2l−1,2)
1,3 = 0, so the first l − 2 2-hooks

must all have leg-length 0. After having removed these hooks we either
obtain (5) or (3, 2). If we obtain (5) we must remove the last hooks in a
unique way and they would all have leg-length 0, if we obtain (3, 2) we must
first remove the hook corresponding to (2, 1) and then that corresponding to
(1, 2) and the remove (1, 1). All these three hooks have leg-lengths 0, and so
again we have that in any sequence of hooks of lengths (c1, . . . , ch) which are
recursively removed from β, all leg-length are 0 and it is possible to remove
at least one such sequence of hooks from β, we have again that χβ(c1,...,ch) 6= 0.

Case 3.
Assume now that (c1, . . . , ch) ends by (c, 1, 1, 1), (c, 2, 1, 1) with c ≥ 3,
(c1, . . . , ch) 6= (3, 3, 1, 1, 1) and doesn’t end by (d, 3, 3, 1, 1, 1) or (d, 2, 1, 1)
with d ≥ 4. As n ≥ pi ≥ 4 (as we have already proved the theorem when
pi = 1, 2, 3). None of these situations is possible if n = 4, 5, so we actually
have that n > 5. Also n = 6 is not possible as pi ≥ 4 need to divide n. So
we have that n ≥ 7. Let γ = (n − 3, 3). We will show that p| deg(χγ). As
pi ≥ 4 and hγ2,1 = 3, it is easy to see that all hooks of the sequence with
hook-lengths ((pk)ak , . . . , (pi)ai), which are recursively removed from γ, must
be on the first row, so that this can be done in at most one way. Assume
first that pi ≥ 7. Then as hγ1,4 = n − 6 ≥

∑k
j=i+1 ajp

j + (ai − 1)pi, we can
removed all of them apart maybe for the last one and after having done this

we obtain (pi − 3, 3). Now as h
(pi−3,3)
1,1 = pi − 2 we cannot remove the last

hook of the sequence and so in this case by lemma 66 we need to have that
p divides the degree of χγ. So let now pi = 4, 5 and let pj be the second
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smallest part of
((
pk
)ak , . . . , (pi)ai). Notice that as pi < 7 ≤ n such a part

must exists. Then again it can be seen that all hooks can be remove apart
maybe for the last two and this way we obtain (pi + pj − 3, 3). If pi = 5 we

have that h
(pj+2,3)
1,3 = pj + 1 and h

(pj+2,3)
1,4 = pj − 1, so in this case we cannot

remove the hook of length pj. If pi = 4 then h
(pj+1,3)
1,3 = pj and so we need

to remove now the hook corresponding to (1, 3). After having removed this
hook we get (2, 2) which doesn’t have any 4-hook, and so again we cannot
remove a sequence of hooks of lengths

((
pk
)ak , . . . , (pi)ai) from γ. So also

when pi = 4, 5 we have by lemma 66 that p| deg(χγ).
We will now show that if (c1, . . . , ch) ends by (c, 1, 1, 1) or (c, 2, 1, 1), with

c ≥ 3 and (c1, . . . , ch) 6= (3, 3, 1, 1, 1) or it doesn’t end with (d, 3, 3, 1, 1, 1)
or (d, 2, 1, 1) for some d ≥ 4, then χγ(c1,...,ch) 6= 0. First assume that we have

(c1, . . . , ch) = (c1, . . . , cm, d, 1, 1, 1) for some d ≥ 4. Then the first m hooks
of lengths cj must be removed from the first row (as the second row only
contains 3 nodes) and as hγ1,4 = n− 6 > c1 + . . .+ cm we can remove them in

a unique way obtaining (d, 3). Now as d ≥ 4 > h
(d,3)
2,1 and h

(d,3)
1,2 = d we can

remove the hook of length d in a unique way and so as we now only need to
remove 1-hooks, which have always leg-length 0, we have by lemma 54 that
χγ(c1,...,ch) 6= 0.

So assume first that (c1, . . . , ch) =
(
c1, . . . , cm, 3

l, 13
)
, with m ≥ 0 and

where cm ≥ 4 and l ≥ 1. As the first m-hooks must again be removed from
the first row and hγ1,4 = n − 6 ≥ c1 + . . . + cm it is easy to see that we can
remove these m-hooks in a unique way and we obtain (3l, 3). Now we can
either remove one of the first l − 1 hooks of length 3 from the second row,
and then all other must be removed from the first row and all hooks have
leg-length 0, which can be done in l− 1 ways, or we remove all the first l− 1
hooks of length 3 from the first row and in this case all hooks removed up
to this point have leg-length 0. This last case can be done in a unique way
and would get (3, 3) from which we must remove first a 3-hook and then
3 hooks of length 1. If we remove the last hook from the second row then
we need to remove the 3 1-hooks in a unique way and all hooks would have
leg-length 0. Otherwise we need to remove the hook corresponding to (1, 2),
which has leg-length 1. Now we obtain (2, 1) and we can remove the 3 1-
hooks in 2 different ways. So there are l ways to remove the hooks of length
(c1, . . . , cm, 3

l, 13) from γ for which the sum of the leg-length is 0 and 2 ways
for which the sum of the leg-lengths is 1. In particular by using lemma 54
we have that in this case χγ(c1,...,ch) 6= 0 unless l = 2.

Let (c1, . . . , ch) = (c1, . . . , cm, 3
l, 2, 1, 1) for some l ≥ 1, where cm ≥ 4. As

hγ2,1 = 3 < cj if j ≤ m and hγ1,4 = n − 6 ≥ c1 + . . . + cm we can recursively
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remove the first m hooks of a sequence of hooks of lengths (c1, . . . , ch) from γ
in a unique way obtaining (3l+ 1, 3). All these m hooks have leg-length 0. If
we remove any of the first l−1 3-hooks from the second row we need to remove
all others in a unique way and all hooks would have leg-length 0. This can
be done in l−1 ways. Otherwise we remove all of the first l−1 3-hooks from
the first row obtaining (4, 3). Also these l − 1 hooks have leg-length 0 and

this can be done in a unique way. Now we can remove R
(4,3)
2,1 , in which case

we can only finish removing the 3 1-hooks in a unique way and also here all
hooks have leg-length 0, or we remove R

(4,3)
1,3 , which has leg-length 1. In this

case we get (2, 2). Now we can remove the last 3 hooks in two different ways,
which correspond to the following sequences of nodes ((2, 1), (1, 2), (1, 1)) or
((1, 2), (2, 1), (1, 1)). In the first case the sum of the leg-lengths of all the
hooks in the sequence is 1, while in the second case it is 2. So using lemma
54 we have that in this case χγ(c1,...,ch) = l − 1 + 1− 1 + 1 = l 6= 0.

Case 4.
We will now consider the case of (c1, . . . , ch) ending by (c, 2, 1), with c ≥ 3.
Let now λ = (n− 4, 2, 2). As n ≥ c+ 2 + 1 ≥ 6, we have that λ ` n. We will
now show that p| deg

(
χλ
)
. As hλ2,1 = 3 and pi ≥ 4, we need to have that all

hooks of a sequence with hook-lengths
((
pk
)ak , . . . , (pi)ai) are removed from

the first row and so we can remove the sequence of hooks in at most one way.
Assume first that pi ≥ 7. Then it is easy to see that after having removed
all but the last hooks of the sequence (which we can actually do, as can be

easily seen by looking at Hλ
1,3) we obtain (pi − 4, 2, 2). As h

(pi−4,2,2)
1,1 = pi − 2

we cannot remove the last hook of the sequence. If instead pi = 4, 5, let pj

be the second smallest part of
((
pk
)ak , . . . , (pi)ai) (which must exists). After

having removed all but the last 2 hooks we obtain (pi + pj − 4, 2, 2). Now we

have that h
(pi+pj−4,2,2)
1,2 = pj + pi − 3 > pj and h

(pi+pj−4,2,2)
1,3 = pj + pi − 6 < pj

and so in this case we cannot remove the second last hook of the sequence
and so λ is of class i and so by lemma 66 we have that p| deg

(
χλ
)
.

We will show that χλ(c1,...,ch) 6= 0 whenever (c1, . . . , ch) ends by (c, 2, 1),
for some c ≥ 3. First assume that c ≥ 4. Then again as the hooks on the
second and third row are all at most of length 3, we need to remove all hooks
until that of length c from the first row, and it can be seen that this can be
actually be done in a unique way obtaining (13). Now from this partition we
can again remove in a unique way the last hooks, one of length 2 and one of
length 1, and so we have by the Murnaghan-Nakayama formula that in this
case χλ(c1,...,ch) 6= 0.

So assume now that (c1, . . . , ch) = (c1, . . . , cj, 3
l, 2, 1) for some l ≥ 1 and

cm ≥ 4. Again, as hγ1,3 = n−6 ≥ c1+ . . .+cj and hγ2,1 = 3, we can remove the

first j hooks in a unique way obtaining (3l − 1, 2, 2). Also as h
(3l−1,2,2)
2,2 = 2
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there cannot be any 3-hook on the third row. If we remove one of the l
hooks of length 3 from the second row all other 3-hooks must be removed
from the first row and it isn’t hard to see that after having removed all of
the 3-hooks we obtain (2, 1), from which we cannot remove any 2-hook. So
we must remove all 3-hooks from the first row and in this case, after having
removed all 3-hooks, which again can easily be seen to be done in a unique
way as they are all on the first row (remove the hooks corresponding to
(1, 3l − 3), (1, 3l − 6), . . . , (1, 3), (1, 2)), we obtain (13), from which again we
can remove the last 2 hooks in a unique way and so we have again by the
Murnaghan-Nakayama formula that χλ(c1,...,ch) 6= 0.

Case 5.
We will now consider the cases where (c1, . . . , ch) = (3, 3, 1, 1, 1) or ends by
(d, 3, 3, 1, 1, 1) or (d, 2, 1, 1) with d ≥ 4, (c1, . . . , ch) 6= (4, 2, 1, 1) and doesn’t
end by (e, 4, 2, 1, 1) with e ≥ 5 for pi ≥ 5. If n = 7 none of these possibilities
for (c1, . . . , ch) as above are possible. Let δ = (n− 4, 4). δ is a partition of n
as n ≥ 8. We will show that p divides the degree of χδ and that in these cases
χδ(c1,...,ch) 6= 0. First assume that pi 6= 5, 7. Then pi ≥ 8 and so (unless n = 8)

as hδ1,5 = n − 8, lδ1,5 = 0, hδ2,1 = 4 and all parts of
((
pk
)ak , . . . , (pi)ai) are

bigger then 4, we can remove all but the last part in a unique way obtaining

(pi − 4, 4) (if n = 8 we already start like this). Now h
(pi−4,4)
1,1 = pi−3 < pi and

so we cannot remove the last hook of the sequence we are trying to remove
from δ. If pi = 5, 7 let pj be the second smallest part of

((
pk
)ak , . . . , (pi)ai).

pj must exists as pi < n. Again, as hδ1,5 ≥ n− pi − pj and hδ2,1 = 4 < pi ≤ pl

for any l ≥ i, we can remove all but the last two hooks of the sequence
of hooks of hook-length

((
pk
)ak , . . . , (pi)ai) in a unique way and we obtain

(pi + pj − 4, 4). In order to be able to remove the last hook we need to have
that after having removed the pj-hook there is at most one node on the

second row. So we first need to remove either R
(pi+pj−4,4)
1,1 or R

(pi+pj−4,4)
1,2 , as

we need to remove a hook on the first row. In the first case we would be left
with (3), while in the second case with (3, 1). As 3, 4 < pi this means that

h
(pi+pj−4,4)
1,1 and h

(pi+pj−4,4)
1,1 are bigger then pj and so δ is of class i and so we

again have by lemma 66 that p divides the degree of χδ.
Assume now that (c1, . . . , ch) = (c1, . . . , cm, 3, 3, 1, 1, 1), for some m ≥ 0

and for which cm ≥ 4. First assume that cm > 4. Then as hδ2,1 = 4 we need to
remove the first m hooks from the first row. Also as hδ1,5 = n−8 > c1+. . .+cm
and lδ1,5 = 0, we can remove these m-hooks in a unique way and we obtain
(5, 4) and it is easy to see that these m hooks all have leg-length 0. If we now
remove the hook corresponding to (2, 2) we obtain the partition (5, 1) and
we next need to remove the hook corresponding to (1, 3), which would give
the partition (2, 1). Now we can remove the 3 1-hooks in two different ways,
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but in both ways we have that all hooks in the sequence with hooks-length
(c1, . . . , ci, 3, 3, 1, 1, 1) have leg-length 0. Otherwise we first need to remove
the hook corresponding to (1, 4) obtaining the partition (3, 3). This hook has
leg-length 1. If we next remove the hook corresponding to (2, 1) we obtain
(3) and so there is a unique way to remove the 3 1-hooks and these last 4
hooks have all leg-length 0. Otherwise the second 3-hook we remove must
be the one corresponding to (1, 2), which has leg-length 1 and which would
leave the partition (2, 1). There are two ways to remove the final 1-hooks.
So putting all of this together there are 2 ways to remove the sequence of
hooks for which the sum of the leg-lengths is 0, 1 for which the sum of the
leg-lengths is 1 and 2 for which the sum of the leg-lengths is 2. By lemma
54 we then have that χδ(c1,...,ch) = 3 6= 0.

If now (c1, . . . , ch) = (c1, . . . , cm, 4
l, 3, 3, 1, 1, 1), for some m ≥ 0 and for

which cm > 4 and l ≥ 1 we can again remove the first m hooks in a unique
way (they all must be on the first row) from δ and these hooks all have leg-
length 0. After having done this we can either remove all 4-hooks from the
first row, which would leave (5, 4) as before. This can be done in a unique
way. Proceeding as before we have there are 4 ways to remove the sequence
of hooks for which the sum of the leg-lengths is even and one way for which
it is odd. Otherwise we need to remove exactly one of the l hooks of length
4 from the second row and then all other hooks must be removed from the
first row and all hooks of the sequence have leg-length 0. Putting all of this
together and using lemma 54 we have that χγ(c1,...,ch) = l + 3 6= 0 also in this
case.

Assume now that (c1, . . . , ch) = (c1, . . . , cm, 4
l, 2, 1, 1), for some m ≥ 0

and for which cm > 4 and l ≥ 0. First let l = 0. Then m ≥ 1. Again as
hδ1,5 = n − 8 ≥ c1 + . . . + cm−1, l

δ
1,5 = 0 and hδ2,1 = 4 we need to remove the

first m − 1 hooks in a unique way and we obtain (ci, 4). Now as we need

to remove the m-th hook from the first row and as h
(cm,4)
1,2 = cm we need to

remove this hook and this way we obtain (3, 1), from which we can remove
the last hooks in a unique way (there is a unique 2-hook and after having
removed it we get (12)), and so by the Murnaghan-Nakayama formula we
must have that χδ(c1,...,ch) 6= 0 in this case.

Let now l ≥ 1. As in this case hδ1,5 = n − 8 ≥ c1 + . . . + cm, lδ1,5 = 0
and hδ2,1 = 4 we must now remove the first m hooks from the first row in a
unique way and we get (4l, 4). These m hooks all have leg-length 0. Now we
can either remove one of the l 4-hooks from the second row, and then all the
other must be removed in a unique way (they are all in the first row) and all
hooks have leg-length 0. This can be done in l different ways. Or all l hooks
of length 4 are removed from the first row. In this case we get (3, 1) and the
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first l − 1 4-hooks have leg-length 0, while the last one has leg-length 1. We
can now remove the last hooks in a unique way and these last hooks all have
leg-length 0. So by lemma 54 χδ(c1,...,ch) = l− 1 and the χδ(c1,...,ch) 6= 0 if l ≥ 2.

Case 6:
The only cases left when pi ≥ 5 are when (c1, . . . , ch) = (4, 2, 1, 1) or it ends
with (e, 4, 2, 1, 1), for some e ≥ 5.

If (c1, . . . , ch) = (4, 2, 1, 1) then n = 8 and p = 2. It is easy to check that

2| deg(χ(3,3,2)) and that χ
(3,3,2)
(4,2,1,1) 6= 0, so that (4, 2, 1, 1) isn’t 2-vanishing.

If (c1, . . . , ch) ends with (e, 4, 2, 1, 1) with e ≥ 5 then as the last two rows
of (n − 5, 3, 2) don’t contain any hook of length ≥ e we need to remove
all hooks until that of length e from the first row in a unique way and at
this point we get (3, 3, 2) from which we need to remove hooks of lengths

(4, 2, 1, 1) and so we can conclude that also in this case χ
(n−5,3,2)
(c1,...,ch)

6= 0 by the
the previous part and the Murnaghan-Nakayama formula.

We will now show that if i ≥ 1, i ≥ 3 when p = 2 and i ≥ 2 when
p = 3 are as in the text of the theorem then p divides the degree of χ(n−5,3,2).
As pi ≥ 5 and hooks in the last two rows are all at most 4, we need to
remove all hooks from the first row. If pi ≥ 8, then as h

(n−5,3,2)
1,4 = n − 8 ≥

akp
k+ . . . ai+1p

i+1+(ai−1)pi and l
(n−5,3,2)
1,4 = 0 we can remove all but the last

hooks of the sequence of hooks with lengths
((
pk
)ak , . . . , (pi)ai) in a unique

way and we obtain (pi − 5, 3, 2). As we have that h
(pi−5,3,2)
1,1 = pi − 3 we

cannot remove the last hook. If instead pi ≤ 7, let pj be the second smallest
part of

((
pk
)ak , . . . , (pi)ai), which must exist as now pi < n. As pi ≥ 5 and

pj ≥ pi we have that pi + pj ≥ 8 and so we can in any case remove all but
the last two hooks of the sequence and we obtain (pi + pj − 5, 3, 2). If pi = 7

then we have that (pi + pj − 5, 3, 2) = (pj + 2, 3, 2). As h
(pj+2,3,2)
1,4 = pj − 1,

h
(pj+2,3,2)
1,3 = pj + 1 and any hook of length pj must be on the first row we

cannot remove a pj-hook. Otherwise we need to have that pi = 5. In this

case (pi + pj − 5, 3, 2) = (pj, 3, 2) and h
(pj ,3,2)
1,3 = pj − 1, h

(pj ,3,2)
1,2 = pj + 1 and

h
(pj ,3,2)
2,1 = 4, so we cannot remove any hook of length pj. So in any case

(n− 5, 3, 2) is of class i and so by lemma 66 we can conclude that p divides
the degree of χ(n−5,3,2).

So the theorem is proved for p 6= 2 or for p = 2 and i 6= 2.
Case 7.

We will now show that if p = 2 and i = 2 then (c1, . . . , ch) cannot end
with (d, 3, 3, 1, 1, 1), for d ≥ 4 when (c1, . . . , ch) is p-vanishing. We will first
show that 2 divides the degree of χ(n−6,3,1,1,1). As n ≥ 12 as 4|n, 8 6 |n and
n > 3 + 3 + 1 + 1 + 1 = 9 we have that n− 6 ≥ 6 and so (n− 6, 3, 1, 1, 1) is a
partition of n. Again let 2j the second smallest part of

((
2k
)ak , . . . , (2i)ai).
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Here we need to have that 2j ≥ 8, as 2j > 2i = 4 (as al = 0, 1 for any l when
p = 2) and so as h1,4 = n− 9 ≥ n− pi − pj and as all hooks not on the first
row are at most of length 6, we must remove all hooks apart for the last two
from the first row and we obtain (2i + 2j − 6, 3, 1, 1, 1) = (2j − 2, 3, 1, 1, 1).

Now h
(2j−2,3,1,1,1)
1,2 = 2j−2 and h

(2j−2,3,1,1,1)
1,1 = 2j +2, so we cannot remove any

hook of length 2j from (2j − 2, 3, 1, 1, 1) and so we need to have by lemma
66 that 2 divides the degree of χ(n−6,3,1,1,1).

We will show that χ
(n−6,3,1,1,1)
(c1,...,ch)

6= 0 whenever (c1, . . . , ch) is ending by

(d, 3, 3, 1, 1, 1) with d ≥ 4. As the hooks not on the first row are either 6 or
at most 3, we can remove all hooks of the lengths that appear in (c1, . . . , ch)
which are bigger then 3 and not equal to 6 in a unique way, if we remove
them in decreasing order of length. Now, if there were l 6’s in (c1, . . . , ch)
we are left with (6l + 3, 3, 1, 1, 1). If we remove some of the 6-hooks from
the second row we have that this hook has leg-length 3 and all other hooks
must be removed in a unique way and they all have leg-length 0. This can
be obtained in l different ways. Otherwise we remove all 6-hooks from the
first row and it is easy to see that they must all have leg-length 0 and that
we obtain (3, 3, 1, 1, 1). As χ

(3,3,1,1,1)
(3,3,1,1,1) = −3 we have that

χ
(n−6,3,1,1,1)
(c1,...,ch)

= −l − 1− 1− 1− 1 + 1 = −l − 3 6= 0

for any l and so χ
(n−6,3,1,1,1)
(c1,...,ch)

6= 0 for any (c1, . . . , ch) ending by (d, 3, 3, 1, 1, 1)
with d ≥ 4.

Case 8.
So by theorem 59 in order to finish proving the theorem we only need to show
that when p = 2 and i = 2 then there is some 2-vanishing (c1, . . . , ch) ending
by (d, 2, 1, 1) for some d ≥ 4. Let n = 2m1 + . . . + 2ml , with mj < mj+1

for each j, be the 2-adic decomposition of n (m1 = i = 2 and ml = k).
Let (c1, . . . , ch) = (2ml , . . . , 2m2 , 2, 1, 1). We want to show that in this case
χα(c1,...,ch) = 0 for any χα of even degree. By lemmas 61 and 65 if α is a

partition of n such that 2| deg(χα), we cannot remove a sequence of hooks
of lengths (2ml , . . . , 2m1) from α. So assume that β is obtained by α by
removing a sequence of hooks of lengths (2ml , . . . , 2m2). Then β ` 4 and β
cannot contain any 4-hook. So β = (2, 2). It is easy to see that we can
remove a sequence of one 2-hook and two 1-hooks from β in two different
ways, one with sum of the leg-lengths equal to 0 and one with the sum
of the leg-lengths equal to 1. So any time we can remove a sequence of
hooks of lengths (2ml , . . . , 2m2) from α we can remove from what we obtain a
sequence of one 2-hook and two 1-hooks in two different ways and these ways
have different sum of the leg-lengths modulo 2. So using lemma 54 we need
to have that (c1, . . . , ch) is 2-vanishing and so the theorem is proved.
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Lemma 68. If for some j, a0 + . . . + ajp
j 6= 0, n and α = (c, 1n−c), with

a0 + . . .+ ajp
j ≤ n− c < pj+1, we have that p divides the degree of χα.

Proof. As n 6= a0 + . . .+ajp
j we need to have that n ≥ pj+1 (as then we need

to have that ai 6= 0 for some i > j and so n ≥ aip
i ≥ pj+1, actually n > pj+1,

but n ≥ pj+1 is enough here) and so α is a partition of n, as n − c < pj+1.
Also as hα2,1 = n − c < pj+1, if we can remove a path of hooks of lengths
((pk)ak , . . . , 1a0), we need to remove all the hooks of length ≥ pj+1 from the
first row. Let pm be the minimal of such lengths. Notice that pm exists as
n 6= a0 + . . .+ ajp

j. As

hα1,2 = c− 1 = n− (n− c)− 1 ≥ n− pj+1 ≥ n− pm
≥ akp

k + . . .+ am+1p
m+1 + (am − 1)pm

and lα1,2 = 0, we can remove from α in a unique way a sequence of hooks with
lengths ((pk)ak , . . . , (pm+1)am+1 , (pm)am−1) and we obtain

(c−(akp
k+. . .+am+1p

m+1+(am−1)pm), 1n−c) = (a0+. . .+ajp
j+pm−n+c, 1n−c).

Now we have that in this partition h2,1 = n− c < pj+1 ≤ pm,

h1,1 = a0 + . . .+ ajp
j + pm > pm

as a0 + . . .+ ajp
j 6= 0 and

h1,2 = a0+. . .+ajp
j+pm−n+c−1 = pm−1+(a0+. . .+ajp

j)−(n−c) ≤ pm−1

and so there is this partition has no hook of length pm. So we have that
we cannot recursively remove from α a sequence of hooks with hook-lengths
((pk)ak , . . . , (pm)am), that is α is of degree m and so by lemma 66 we have
that p divides the degree of α.

Theorem 69. Let i be minimal such that ai 6= 0. If (c1, . . . , ch) is p-vanishing
with ch ≥ 1 we have that ch ≤ aip

i.

Proof. Assume that ch > aip
i. As

∑
cj = n =

∑
ajp

j we then need to have
that n 6= aip

i, by the minimality of i such that ai 6= 0. So we have that
(n−aipi, 1aip

i
) is actually a partition of n. By the previous lemma with j = i

we have that p divides the degree of χα and it is easy to see by the Murnaghan-

Nakayama formula that χ
(n−aipi,1aip

i
)

(c1,...,ch)
= (−1)aip

i
(all cj > aip

i = h
(n−aipi,1aip

i
)

2,1

and so all hooks must be removed from the first row).

Corollary 70. Let i be maximal such that pi|n (i minimal such that ai 6= 0).
If ai = 1, i 6= 1 if p = 3 and i 6= 1, 2 if p = 2 and if (c1, . . . , ch) ` n is
p-vanishing and ch ≥ 1, we need to have that ch = pi.
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Proof. By theorem 67 we have that in this case ch needs to be at least pi,
while by theorem 69 we have that this part needs to be at most aip

i = pi, as
such an i is also minimal such that ai 6= 0.

Until now we have proved results on the smallest part of a p-vanishing
partition. Now we will turn to study the largest parts of a p-vanishing parti-
tion. In the following k′ is any non-negative integer, so we are not assuming
that k′ ≤ k, where k is maximal such that ak 6= 0.

Lemma 71. Let n = a + bpk
′

with 0 ≤ a ≤ pk
′ − 1 and b ≥ 0. If we cannot

recursively remove a sequence of b hooks of length pk
′

from α ` n then χα is
of class k′ and so the degree of χα is divisible by p.

Proof. This follows easily from the definition of a partition of class k′, lemma
66 and as removing a sequence of hooks of lengths ((pk)ak , . . . , (pk

′
)ak′ ) is

equivalent to remove a sequence of b =
∑

j≥k′ ajp
j−k′ hooks all of length

pk
′
.

Definition 37. For a given partition (c1, . . . , ch) and a given k′ ∈ N, define

dk′ =
∑
cj≥pk′

cj,

that is dk′ is the sum of the parts of (c1, . . . , ch) which are greater or equal to
pk
′
.

From theorem 72 until conjecture 76 we will let d = dk′ =
∑

cj≥pk′ cj.

Theorem 72. Let n = a + bpk
′

where 0 ≤ a ≤ pk
′ − 1 and b ≥ 0. Let

(c1, . . . , ch) be p-vanishing with ch > 0. If d = bpk
′

then cj is a multiple of
pk
′

whenever cj ≥ pk
′
.

Proof. If b = 0 the theorem clearly holds, as then, as for all a ≤ pk
′ − 1, we

have that n < pk
′

and so in this case no part of (c1, . . . , ch) can be ≥ pk
′
. So

we can assume that b > 0.
Assume that d = bpk

′
but not all for all j for which cj ≥ pk

′
we have that

cj is a multiple of pk
′
. We want to show that in this case (c1, . . . , ch) isn’t

p-vanishing. Let l be maximal such that cl ≥ pk
′

and pk
′ 6 |cl. Notice that

we cannot have that pk
′

= 1 in this case. Also by definition of d and l we
need to have that bpk

′
= d ≥ 2cl (as there needs to be some l′ < l such that

pk
′ 6 |cl′ and so d ≥ cl′ + cl ≥ 2cl). The proof of this theorem will be divided

in the following cases:

Case 1: n = bpk
′
,



81 12 p-vanishing classes

Case 2: n 6= bpk
′

and cl = cpk
′
+ e with a ≤ e < pk

′
,

Case 3: n 6= bpk
′

and cl = cpk
′
+ e with 1 ≤ e < a.

These cases cover all the possibilities, as cl isn’t divisible by pk
′
.

Case 1.
Assume that n = bpk

′
. In this case cj ≥ pk

′
for all j ≤ h. Consider α ` n

given by (n − cl, 2, 1cl−2). As cl > pk
′ ≥ 2 and n − cl ≥ cl > 2 we have that

α is a partition of n. Let m = min{j : cj = cl} ∪ {h− 1}. By definition of l
it is easy to see that l ≥ 2 (as cl appears in the summation d =

∑
cj≥pk′ cj,

as pk
′|d and l is maximal such that pk

′ 6 |cl, there must exists some j < l such
that pk

′ 6 |cj), so that we have h ≥ 2 and then m ≥ 1. As all cj ≥ 2, j ≤ h,
we have that hα1,3 = n − cl − 2 ≥ c1 + . . . + cm−1 (m − 1 < l, h − 1). As
we also have hα2,1 = cl < cj for all j ≤ m − 1 and as lα1,3 = 0 we can then
remove the first m − 1 hooks of any sequence with of hooks with lengths
(c1, . . . , ch) in a unique way from α and we obtain (cm+ . . .+ch−cl, 2, 1cl−2).
If cm > cl we need to have that m = h− 1 and l = h and then the partition
we obtain is (ch−1, 2, 1

cl−2). Here h2,1 < ch−1 and h1,2 = ch−1, so we can
remove also the next hook of the sequence in a unique way, which would
leave (1cl), for which h1,1 = cl. So in this case we have by the Murnaghan-
Nakayama formula that χα(c1,...,ch) = ±1 6= 0. Next assume that cm = cl and
l = h. So we now need to remove l −m+ 1 ≥ 2 hooks all of lengths cl from
(cm+ . . .+ch−cl, 2, 1cl−2) = ((l−m)cl, 2, 1

cl−2). If we remove one of the first
l−m−1 of these hooks from the second row then this hook must be H2,1 and
we then need to remove all other hooks in a unique way (they all must be
removed from the first row). Also the hook we would remove from the second
row would have leg-length cl−2 and all others would have leg-length 0. This
can be done in l−m−1 different ways. Otherwise all the first l−m−1 hooks
of length cl must be removed from the first row and they all have leg-length 0
(as in ((l−m)cl, 2, 1

cl−2), h1,3 ≥ (l−m−1)cl and l1,3 = 0). Now we would get
(cl, 2, 1

cl−2). Now we can either first remove H2,1 and then H1,1 or first H1,2

and then H1,1. In the first case the last two leg-lengths are cl−2 and 0, while
in the second case they are 1 and cl−1. So by lemma 54 we have that in this
case χα(c1,...,ch) = (−1)cl−2(l −m) + (−1)cl = (−1)cl(l −m+ 1) 6= 0 as m ≤ l.
The last case is when cm = cl and l < h. If we remove one of the cl-hooks from
the second row then this hook would need to be H2,1, it would have leg-length
cl−2 and all other hooks would need to be removed from the first row and they
would all have leg-length 0. This can be done in l−m+1 ≥ 1 different ways.
Otherwise all cl-hooks must be removed from the first row. Assume this is
possible. Then as the partition we obtain must be a partition of a non-zero
multiple of pk

′
by definition of l, the last hook we removed cannot have been
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H1,1 or H1,2 (in the first case we would be left with either (0) or (1), while in
the second case with (1cl) and cl isn’t a multiple of pk

′
). So the partition we

obtained is of the form (e, 2, 1cl−2), for some e ≥ 2 such that pk
′|e + cl. We

will show that we cannot remove a sequence of (e+cl)/p
k′ hooks of length pk

′

from (e, 2, 1cl−2), which also will prove that α is of class k′ by lemma 71. As
any maximal sequence of pk

′
-hooks that we remove from (e, 2, 1cl−2) consists

of the same number of hooks, it is enough to show that there is a maximal
sequence of pk

′
-hooks which are recursively removed from (e, 2, 1cl−2) which

contains less than (e + cl)/p
k′ hooks. Let m1 and m2 maximal such that

m1p
k′ ≤ e− 2 and m2p

k′ ≤ cl − 2 respectively. As (m1 +m2)p
k′ ≤ e+ cl − 4

we have that m1 +m2 < (e+ cl)/p
k′ . Now we can recursively remove first m1

pk
′
-hooks from the first row of (e, 2, 1cl−2) and then m2 p

k′-hooks from the
first column of the resulting partition and it is easy to see that this way we

obtain (e−m1p
k′ , 2, 1cl−m2pk

′−2). In this partition we have that h2,2 = 1 6= pk
′
,

h1,1 = e + cl − (m1 + m2)p
k′ − 1, which isn’t divisible by pk

′
as pk

′ |e + cl,
h1,2 = e−m1p

k′ ≤ pk
′
+ 1, h2,1 = cl−m2p

k′ ≤ pk
′
+ 1 by definition of m1 and

m2, so that h1,i ≤ h1,3 = h1,2 − 2 < pk
′

and hi,1 ≤ h3,1 = h2,1 − 2 < pk
′

for

any i ≥ 3 (when (1, i) or (i, 1) is a node of (e−m1p
k′ , 2, 1cl−m2pk

′−2)) and as

pk
′ 6 |e, cl, we then have that no hook of (e−m1p

k′ , 2, 1cl−m2pk
′−2) has length

equal to pk
′

and so any maximal sequence of pk
′
-hooks which are recursively

removed from (e, 2, 1cl−2) contains m1 + m2 < (a + cl)/p
k′ hooks and so we

have that also when m = h − 1 and ch 6= cl then χα(c1,...,ch) 6= 0 and that we

always have that when n = bpk
′

then the degree of χα is divisible by p. So
we have proved the case where n = bpk

′
.

Case 2.
Assume now that n 6= bpk

′
and that, when we write cl = cpk

′
+ e, with

0 ≤ e < pk
′
, then e ≥ n − bpk′ = a. Notice that as cl isn’t a multiple of pk

′
,

e 6= 0, so this is always the case when n− bpk′ = 1. Let β = (n− cl, 1cl). As
n > bpk

′
> cl, as cl is not a multiple of pk

′
and cl ≤ d = bpk

′
, we have that

β is a partition of n. Let m be minimal such that cm = cl. As n 6= bpk
′

and
d = bpk

′
, we need to have that m ≤ l < h. So as

hβ1,2 = n− cl − 1 ≤ n− cl − ch ≤ c1 + . . .+ cm−1,

lβ1,2 = 0 and h2,1 = cl < cj for j < m, we can remove the first m − 1
hooks of a sequence with hook-lengths (c1, . . . , ch) from β in a unique way
and we obtain (cm+1 + . . . + ch, 1

cl) (as cm = cl). If we remove some of the
cl-hooks from the second row, this hook must be H2,1 and it must have leg-
length cl − 1. All other hooks must be removed from the first row and they
must have leg-length 0. This can be done in l −m + 1 ≥ 1 different ways.
Otherwise we must have removed all cl-hooks from the first row. If this is
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possible, after having removed these hooks we must obtain a partition of the
form (f, 1cl). As this partition is obtained from β by removing a sequence
of hooks, all from the first row, whose sum of the lengths is a multiple of
pk
′
, we need to have that f + cl ≡ n ≡ n − apk′ mod p. So as removing a

qpk
′
-hook is equivalent to removing a certain sequence of q hooks of length

pk
′
, in order to show that χβ(c1,...,ch) 6= 0 and that p divides the order of χβ,

it is enough to show that whenever λ = (f, 1g), such that f + g = spk
′
+ t

and f = rpk
′
+ u, for some s, r ≥ 0 and 1 ≤ t ≤ u < pk

′
, then we cannot

remove from λ a sequence of s hooks of length pk
′
. As 1 ≤ t < pk

′
we

have that hλ1,1 = f + g is not divisible by pk
′
. So whenever hλi,j = pk

′
,

then we have that (i, j) = (1, c) or (i, j) = (c, 1) for some c ≥ 2. We can
remove a hook from the first row if and only if f > pk

′
and in this case

h1,f−pk′+1 = pk
′ − 1 + 1 = pk

′
, so after having removed this hook and we

obtain (f − pk′ , 1g) and now f − pk′ + b = (s− 1)pk
′
+ t and g = rpk

′
+u. We

can remove a hook from the first column if and only if g ≥ pk
′

and in this
case hg−pk′+2 = g− 1− (g− pk′ + 2) + 1 = pk

′
and after having removed this

hook and we obtain (f, 1g−p
k′

) and we have that f + g − pk′ = (s− 1)pk
′
+ t

and f − pk
′

= (r − 1)pk
′
+ u. So we can remove a pk

′
-hook from λ if and

only if f > pk
′

or g ≥ pk
′

and in any way we remove any such hook from it
we obtain a partition of the form (f ′, 1g

′
), where f ′ + g′ = (s− 1)pk

′
+ t and

g′ = r′pk
′
+ u. So we have that after having removed any maximal sequence

of pk
′
-hooks from λ we obtain a partition (f ′′, 1g

′′
), where 1 ≤ f ′′ ≤ pk

′
and

0 ≤ g′′ < pk
′

and f ′′ and g′′ satisfy f ′′ + g′′ = s′pk
′
+ t and g′′ = r′′pk

′
+ u,

for some s′, r′′ ≥ 0. As g′′ < pk
′

we need to have that r′′ = 0 and so g′′ = u.
We want to show that s′ ≥ 1, as then we cannot remove any pk

′
-hook from

(f ′′, 1g
′′
) and as we then need to have that this partition is obtain from λ by

removing less then s pk
′
-hooks we have that we cannot remove any sequence

of s pk
′
-hooks from λ. But the fact that s′ ≥ 1 follows from the fact that

t ≤ u and e ≥ 1, and so we have that if n 6= bpk
′
, cl = cpk

′
+ f ′′, with

n− apk′ ≤ f ′′ < pk
′

and β = (n− cl, 1cl), then p divides the order of χβ and
χβ(c1,...,ch) 6= 0, in particular (c1, . . . , ch) is not p-vanishing in this case.

Case 3.
In this case we have again that n 6= bpk

′
but differently from the previous

case we now have that cl = cpk
′
+ e for some 1 ≤ e < n − bpk′ . Notice that

a = n − bpk′ ≥ 2 in this case. Here let γ = (n − cl, n − bpk
′
, 1cl−n+bp

k′
). As

cl < bpk
′
, n 6= bpk

′
and n − bpk′ < pk

′
< cl we have that γ is a partition of

n. We want to show that p divides the degree of χγ and that in this case
χγ(c1,...,ch) 6= 0. We will actually show that this holds whenever 1 ≤ e < pk

′
and

e 6= n−bpk′ . As hγ2,1 = cl is not divisible by p and hγ2,2 = n−bpk′−1 < pk
′
, any
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pk
′
-hook of γ must be either on the first row or is of the form (q, 1), for some

q ≥ 3. If we remove a pk
′
-hook of the form Hγ

q,1, we are left with a partition

of the form (f, n − bpk′ , 1g), for some f, g such that f + g is divisible by pk
′

(the partition we obtain is a partition of n−pk′ = (b−1)pk
′
+n− bpk′) but g

isn’t divisible by pk
′
, as n−bpk′+g+pk

′
= cl 6≡ n−bpk′ mod pk

′
. Also we still

get a partition of the form (f, n− bpk′ , 1g) with pk
′ |(f + g), pk

′ 6 |g whenever
we remove a pk

′
-hook from the first row of γ and hγ

1,n−bpk′+1
≥ pk

′
(in this

case g = cl−n+bpk
′
). So repeating this argument, while h1,n−bpk′+1 ≥ pk

′
we

have that whichever pk
′

hook we remove from the partition we obtained at
the previous stage we always get a partition of the form (f, n− bpk′ , 1g) with
pk
′|(f + g), pk

′ 6 |g. Also as long as h1,n−bpk′+1 ≥ pk
′

we always can remove

a pk
′
-hook from this partition, as l1,n−bpk′+1 = 0. So we can assume that

h1,n−bpk′+1 < pk
′
, that is n− bpk′ ≤ f < n− (b− 1)pk

′
. Now if g ≥ pk

′
we can

still remove a hook of the form Hq,1, for some q ≥ 3, getting again a partition
of the same kind as before, or we can remove, if possible, a pk

′
-hook from

the first row. If f = n− bpk′ + pk
′ − 1 we have that h1,n−bpk′+1 = pk

′ − 1 and

h1,n−bpk′ = pk
′
+1, so we cannot remove pk

′
-hooks from the first row and so, as

the only possible pk
′
-hooks which we can recursively remove from this point

are those of the form Hq,1, for q ≥ 3, after having removed as many pk
′
-hooks

as possible we would get a partition of the form (n−bpk′+pk′−1, n−bpk′ , 1g),
and as n− bpk′ 6= 0 we have that this is a partition of a number which is at
least pk

′
, so by definition of b (b is the biggest integer such that bpk

′ ≤ n) we
cannot remove a sequence of b pk

′
-hooks from γ and so in this case we have

that p divides the degree of χγ by lemma 71.
So assume now that when we obtain the partition (f, n − bpk′ , 1g) with

n− bpk′ ≤ f < n− (b− 1)pk
′

we have that

f 6= n− bpk′ + pk
′ − 1 = n− (b− 1)pk

′ − 1.

Then f < n − (b − 1)pk
′ − 1. If f ≥ pk

′
it can be easily seen that in this

partition h1,f−pk′+2 = pk
′
, as in this case 2 ≤ f − pk′ + 2 ≤ n− bpk′ . Also as

we now either have to remove this hook or a hook of the form Hq,1, q ≥ 3, we
have that h1,f−pk′+2 is constant as long as we don’t remove the corresponding
hook. So, again as if we remove Hq,1, q ≥ 3 we still get a partition of the
kind (f, n − bpk′ , 1g), we have that at some point we would need to remove
H1,f−pk′+2, and after having done this we obtain (n− bpk′−1, f −pk′ + 1, 1g),

with pk
′ |(f + g) and pk

′ 6 |f, g. Now we have that h2,1 = f + g − pk
′ − 1

and h1,1 = n − bpk
′

+ g are not divisible by pk
′
. As we also have that

h1,2 = n−bpk′−1 < pk
′
we have that any pk

′
-hook of (n−bpk′−1, f−pk′+1, 1g)

must be of the form Hq,1, for some q ≥ 3. After having removed if possible
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this hook (which exists if and only if g ≥ pk
′
), we are still left with a partition

of this kind and so we can repeat the argument until we obtain a partition
of the kind (n− bpk′ − 1, f − pk′ + 1, 1g) with g < pk

′
, which doesn’t have any

pk
′
-hook. This partition is a partition of n−bpk′−1+f−pk′+1+g > n−bpk′

as f ≥ pk
′
, pk

′ 6 |f and g cannot be negative. So as if it would be possible
to remove a sequence of b pk

′
-hooks from γ we would obtain a partition of

n−bpk′ , we cannot remove such a sequence in this case either and so we have
that also in this case χγ has degree divisible by p.

So assume now that when we obtain (f, n − bpk
′
, 1g) with n − bpk

′ ≤
f < n − (b − 1)pk

′
, we have that f < pk

′
. In this case h1,2 = f < pk

′
and

h1,1 = n − (n − bpk′ − 1) = bpk
′
+ 1, which isn’t divisible by pk

′
, so in this

case there is no pk
′
-hook on the first row. Proceeding as in the case where

f = n− (b− 1)pk
′ − 1 we get to the case where g < pk

′
, in which case are no

more pk
′
-hooks. The partition we now have is (f, n − bpk′ , 1g), where both

f, g < pk
′

and f + g is divisible by pk
′
. Also as f ≥ n − bpk′ we have that

f + g > 0, so this partition is a partition of a number bigger than n − bpk′

and so again we have that p divides the degree of χγ. So we have that in any
case the degree of χγ is divisible by p and so we only have left to show that
when n − bpk′ ≥ 2, cl = cpk

′
+ e for some 1 ≤ e < pk

′
and e 6= n − bpk′ , we

have that χγ(c1,...,ch) 6= 0.

Now as hγ2,1 = cl, h
γ

1,n−bpk′+1
≥
∑

cj>cl
cj and lγ

1,n−bpk′+1
= 1, if m is

maximal such that cm > cl (let m = 0 when c1 = cl), we can remove the first
m hooks of a sequence of hooks of lengths (c1, . . . , ch) from γ in a unique

way, obtaining a partition of the kind (f, n − bpk′ , 1cl−n+bpk
′
). After having

done this we can remove one of the cl-hooks from the second row, in which
case this hook must be H2,1 and has leg-length cl − n + bpk

′
, and then all

other hooks must be removed in a unique way (they are all on the first row)
and they all must have leg-length 0. This can be done in at least one way
and by the considerations we just made on the leg-lengths we have that the
sum of the leg-lengths is constant in all these cases. Otherwise, if possible
we must have removed all the hooks of length cl from the first row. By the
maximality of l such that cl ≥ pk

′
and pk

′ 6 |cl and as d = n − bpk
′
, the

partition we obtained this way must be a partition of a number of the form
n−bpk′+spk

′
, for some s ≥ 0. If one of the hooks we removed was H1,1, then

the partition we obtained must be (f), for some f < n − bpk′ , which gives
a contradiction. Also as if at some step we removed some hook of the form
H1,q, with q ≤ n− bpk′ = a as all hooks we removed are on the first row after

having removed this hook we must have obtained (n−bpk′−1, q−1, 1cl−n+bp
k′

)
and as now h1,2 = n − bpk

′ − 1, n − bpk
′ − 2 < pk

′
< cl, this hook must

have been the last one we removed. So the partition we obtain removing,
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if possible, all hooks of length ≥ cl from the first row of γ must either be

a partition of the form (f, n − bpk′ , 1cl−n+bpk
′
) or (n − bpk′ − 1, q, 1cl−n+bp

k′
),

from which we first need to remove a sequence of hooks of lengths multiple
of pk

′
and then some hooks of total length equal to n − bpk′ . We will show

that if (f, n − bpk′ , 1cl−n+bpk
′
) or (n − bpk′ − 1, q, 1cl−n+bp

k′
) is a partition of

n−bpk′+spk′ , then it is not possible to remove from this partition a sequence
of s pk

′
-hooks. The first case is done just like when we proved that p divides

the degree of χγ (f = (n− bpk′ + spk
′
)− cl), so it is enough to show this for

the second case. In this case we have that

q = n− bpk′ + spk
′ − n+ bpk

′
+ 1− cl + n− bpk′ = n− bpk′ + spk

′ − cl + 1,

h1,2 = n− bpk′ − 1, n− bpk′ − 2 < pk
′
,

h1,1 = n− bpk′ + spk
′ − q + 1 = cl > pk

′

and so any pk
′
-hook must be of the form Ht,1, t ≥ 3. As removing this

hook, if it exists, we obtain (n − bpk′ − 1, q, 1g) for g = cl − n + bpk
′ − pk′ ,

and we have that H1,2 remains the same, H1,1 is decreased by pk
′

and so it
still isn’t divisible by pk

′
by definition of l, we have that we can remove pk

′
-

hooks only as long as g′ ≥ pk
′

and we always obtain a partition of the from
(n−bpk′−1, q, 1g

′
) for some g′ = cl−n+bpk

′−ipk′ for some i. As we have that
cl 6≡ n− bpk′ mod p, we also need to have that g′ is always positive. So after

having removed some pk
′
-hooks from (n − bpk

′ − 1, q, 1cl−n+bp
k′

) we obtain
(n− bpk′ − 1, q, 1g

′
), with 1 ≤ g′ < pk

′
. This partition doesn’t have any more

pk
′
-hooks and it is a partition of n− bpk′−1 + q+ g′ > n− bpk′ . In particular

we cannot remove a sequence of s pk
′
-hooks from (n− bpk′ − 1, q, 1cl−n+bp

k′
),

and so when we can remove all hooks with lengths ≥ cl of the sequence with
lengths (c1, . . . , ch) from γ from the first row we cannot finish removing such
a sequence of hooks. So whenever removing such a sequence of hooks from
γ we always need to remove one cl-hook from the second row and all other
hooks from the first row and so by the previous considerations we have by
lemma 54 that if n − bpk

′ ≥ 2, cl = cpk
′

+ e for some 1 ≤ e < pk
′

and
e 6= n − bpk′ then χγ(c1,...,ch) 6= 0 and so as we have finished considering also
case 3, we have that the theorem is proved.

Theorem 73. Let n = a + bpk
′

with 0 ≤ a ≤ pk
′ − 1 and b ≥ 0. Let

(c1, . . . , ch) be p-vanishing. We have that d ≤ bpk
′

in the following cases:

• p 6= 3,

• p = 3, k′ ≥ 2,

• p = 3, k′ = 1, n 6≡ 2 mod 3.
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In addition we have in the case where p = 3, k′ = 1 :

• If n = 2 then d = 0,

• If n = 5 and d > 3 then (c1, ...) = (4, 1),

• If n = 8 and d > 6 then (c1, ...) = (4, 3, 1).

Proof. Here too we can assume that b > 0, as if b = 0 then n < pk
′

and so
the theorem clearly holds in this case. Also as the particular cases (when
n = 2, 5, 8, p = 3 and k′ = 1) can be easily checked by finding the character
table of Sn (the case n = 2, p = 3 and k′ = 1 follows also by the fact that
in this case b = 0), we will only prove the first part of the theorem. This is
done by considering the following cases:

Case 1: n = bpk
′
,

Case 2: n 6= bpk
′

and d = n,

Case 3: a = n− bpk′ 6= 0, pk
′ − 1 and bpk

′
< d < n,

Case 4: n− bpk′ = pk
′ − 1 6= 0, bpk

′
< d < n and n− d > d− bpk′ ,

Case 5: n− bpk′ = pk
′ − 1 6= 0, bpk

′
< d < n and n− d < d− bpk′ ,

Case 6: n−bpk′ = pk
′−1 6= 0, bpk

′
< d < n, n−d = d−bpk′ and n−bpk′ ≥ 4,

Case 7: n−bpk′ = pk
′−1 6= 0, bpk

′
< d < n, n−d = d−bpk′ and n−bpk′ = 2.

It is easy to see that this way we cover all cases where d > bpk
′
, as in cases

6 and 7 n− bpk′ needs to be even and non-zero.
Case 1.

Let n = bpk
′
. Then we have that

d =
∑
cj≥pk′

cj ≤
∑
i

ci = n = bpk
′

for any (c1, . . . , ch) ` n, so the theorem clearly holds in this case too.
Case 2.

Assume now that n 6= bpk
′

and d = n. Let α =
(
bpk

′
, 1a
)
. By lemma 68

we have that p divides the degree of χα. We will show that if d = n then
χα(c1,...,ch) 6= 0. When d = n we have that cj ≥ pk

′
for any 1 ≤ j ≤ h.

Again as hα2,1 < pk
′

we have that any hook in a sequence of hooks of lengths
(c1, . . . , ch) which are recursively removed from α must be on the first row. So
we can remove them in at most one way and so by the Murnaghan-Nakayama
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formula in order to show that χα(c1,...,ch) 6= 0 it is enough to show that it is
actually possible to remove such a sequence. As

hα1,2 = (c1, . . . , ch)p
k′ − 1 = n− a− 1 ≥ n− pk′ ≥ c1 + . . .+ ch−1

as ch ≥ pk
′
, we can remove the first h− 1 hooks of this sequence and obtain

(ch − a, 1a), for which h1,1 = ch and so we can recursively remove a sequence
of hooks of lengths (c1, . . . , ch) and then we have that χα(c1,...,ch) 6= 0 when
d = n.

Case 3.
Assume now that a = n − bpk

′ 6= pk
′ − 1, and that bpk

′
< d < n. Let

β =
(
bpk

′ − 1, n− d+ 1, 1d−bp
k′
)

. We will show that β is a partition of n,

that χβ has degree divisible by p and that χβ(c1,...,ch) 6= 0 in this case. As b 6= 0

we have that bpk
′ − 1 ≥ pk

′ − 1. Also as d > bpk
′

and n− bpk′ 6= pk
′ − 1 (so

that we actually have that n − bpk′ < pk
′ − 1) and as we need to have that

d < n, we have that

2 ≤ n− d+ 1 < n− bpk′ + 1 < pk
′ − 1 + 1 = pk

′
.

So as d− bpk′ > 0 and

bpk
′ − 1 + n− d+ 1 + d− bpk′ = n

we have that β is a partition of n.
We will now show that we cannot remove a sequence of b hooks of length

pk
′

from β, from which we will have that the degree of χβ is divisible by p by
lemma 71. First notice that as

hβ2,1 = n− d+ 1 + d− bpk′ = n− bpk′ + 1 < pk
′ − 1 + 1 = pk

′

we have that any hook of any sequence of pk
′
-hooks which are recursively

removed from β must correspond to some node on the first row. So if we can
remove any sequence of b pk

′
-hooks from β we can do this in a unique way.

As n− d + 1 < n− bpk′ + 2 < pk
′ − 1 + 2 = pk

′
+ 1 ≤ bpk

′
+ 1 we have that

n− d+ 2 ≤ bpk
′ − 1 and so (1, n− d+ 2) ∈ β. Also as lβ1,n−d+2 = 0 and

hβ1,n−d+2 = bpk
′ − 1− (n− d+ 2) + 1 = −(n− bpk′) + d− 2

> −(pk
′ − 1) + bpk

′ − 2 = (b− 1)pk
′ − 1

so that hβ1,n−d+2 ≥ (b−1)pk
′
and as lβ1,n−d+2 = 0 we can recursively remove b−1

hooks of length pk
′
from β and this way we obtain

(
pk
′ − 1, n− d+ 1, 1d−bp

k′
)

.
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Now as d > bpk
′

we have that this partition has at least three rows, and so
in it we have that h1,1 ≥ pk

′ − 1 + 2 = pk
′
+ 1. As in this partition we also

have that h2,1 ≤ hβ2,1 < pk
′

(the inequality is actually an equality but we

don’t need that here) and h1,2 = pk
′ − 1− 1 + 1 = pk

′ − 1 we have that this
last partition doesn’t contain any hook of length pk

′
and so, as it is the only

partition we can obtain from β by recursively removing b−1 hooks of length
pk
′
, we cannot remove a sequence of b pk

′
-hooks from β and so we have that

p| deg
(
χβ
)
.

So we only need to show that χβ(c1,...,ch) 6= 0 in order to finish the case

when n − bpk′ 6= pk
′ − 1 and bpk

′
< d < n. Let l be such that cl ≥ pk

′
and

cl+1 < pk
′
. As d > bpk

′
we need to have that c1 ≥ pk

′
, so such an l exists and

l ≥ 1. Then

hβ1,n−d+2 = bpk
′ − 1− (n− d+ 2) + 1

= n− (n− bpk′)− (n− d)− 2
> n− (pk

′ − 1)−
∑

j>l cj − 2

= c1 + . . .+ cl − pk
′ − 1

≥ c1 + . . .+ cl−1 − 1

and so hβ1,n−d+2 ≥ c1 + . . . + cl−1 and then as lβ1,n−d+2 = 0 and hβ2,1 <

pk
′ ≤ cj for j ≤ l, we can remove the first l − 1 hooks of any sequence

of hooks with hook lengths (c1, . . . , ch) in a unique way and we obtain(
cl − 1− d+ bpk

′
, n− d+ 1, 1d−bp

k′
)

(what we obtain must be a partition

of cl + . . .+ ch and the all rows apart from the first one must be as in β). In
this partition we have that h1,1 = cl − 1− d+ bpk

′
+ 1 + d− bpk′ = cl, so we

can now remove a hook of length cl in a unique way and we obtain (n− d),
from which we can remove the last hooks of the sequence in a unique way.
So by the Murnaghan-Nakayama formula we have that χβ(c1,...,ch) 6= 0 when

n− bpk′ 6= pk
′ − 1 and bpk

′
< d < n.

Case 4.
Let now d, bpk

′ 6= n, n − bpk′ = pk
′ − 1, d > bpk

′
and n − d > d − bpk′ . Let

γ =
(
bpk

′
+ 1, 2d−bp

k′
, 1n−2d+bp

k′−1
)

. As d− bpk′ ≥ 1,

n− 2d+ bpk
′ − 1 = (n− d)− (d− bpk′)− 1 ≥ 0

and bpk
′
+ 1 ≥ pk

′
+ 1 ≥ 3 (pk

′
must be at least 2 as n 6= bpk

′
) we have that γ

is actually a partition. Also as bpk
′
+ 1 + 2(d− bpk′) + n− 2d+ bpk

′ − 1 = n
we have that γ ` n. We will now show that p| deg (χγ). As hγ2,1 = d− bpk′ +
n− 2d+ bpk

′
= n− d < pk

′
, hγ1,3 = bpk

′ − 1 ≥ (b− 1)pk
′

and lγ1,3 = 0, we can

recursively remove b−1 hooks of length pk
′
from γ in a unique way obtaining
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(
pk
′
+ 1, 2d−bp

k′
, 1n−2d+bp

k′−1
)

. Now we have that h1,2 = pk
′
+ d− bpk′ > pk

′

(as d > bpk
′
), h1,3 = pk

′−1 and h2,1 < pk
′
and so we cannot remove any more

pk
′
-hooks and so we have that the degree of χγ is divisible by p by lemma 71.
Also if l is again such that cl ≥ pk

′
and cl+1 < pk

′
as then hγ2,1 < pk

′
,

hγ1,3 = bpk
′ − 1 = n − pk

′ ≥ c1 + . . . + cl−1 (as cl ≥ pk
′
) and lγ1,3 = 0, we

can remove from γ the first l − 1 hooks of a sequence of hooks with lengths

(c1, . . . , ch) and we obtain
(
cl + bpk

′ − d+ 1, 2d−bp
k′
, 1n−2d+bp

k′−1
)

. As here

we have that h2,1 < pk
′ ≤ cl and h1,2 = cl + bpk

′ − d + 1 − 1 + d − bpk′ = cl
we can remove the next hook in a unique way and after having done this we
obtain

(
1n−d

)
, from which we can remove the remaining hooks in a unique

way. So by the Murnaghan-Nakayama formula we get that χγ(c1,...,ch) 6= 0 in

the case where d, a′k′p
k′ 6= n, n− bpk′ = pk

′ − 1, d > bpk
′

and n− d > d− bpk′

and so also in this case (c1, . . . , ch) isn’t a p-vanishing partition.
Case 5.

Assume now that d, bpk
′ 6= n, n − bpk′ = pk

′ − 1, d > bpk
′

and that we now

have n−d < d− bpk′ . Let δ =
(
bpk

′
+ 1, 2n−d, 12d−n−bpk′−1

)
. As bpk

′
+ 1 ≥ 3,

n − d ≥ 1, 2d − n − bpk′ − 1 = (d − bpk′) − (n − d) − 1 ≥ 0 and bpk
′
+ 1 +

2(n− d) + 2d− n− bpk′ − 1 = n, we have that δ ` n. We will now show that
p divides deg(χδ). As hδ2,1 = n + d + 2d− n− bpk′ − 1 + 1 = d− bpk′ < pk

′
,

lδ1,3 = 0 and hδ1,3 = bpk
′ − 1 ≥ (b− 1)pk

′
we can remove b− 1 hooks of length

pk
′

from δ in a unique way and we obtain
(
pk
′
+ 1, 2n−d, 12d−n−bpk′−1

)
and

as for this partition we have that h2,1 < pk
′
, h1,2 = pk

′
+ n − d > pk

′
, as

n−d ≥ 1, and h1,3 = pk
′−1, we cannot remove any more pk

′
-hooks and then

we have that p divides the degree of χδ again by lemma 71.
Now as hδ1,3 = bpk

′ − 1 = n − pk′ ≥ c1 + . . . + cl−1 and as again lδ1,3 = 0

and hδ2,1 < pk
′ ≤ cj for j ≤ l, we can recursively remove from δ the first l− 1

hooks of a sequence of hooks (c1, . . . , ch) in a unique way and this way we

obtain
(
cl − d+ bpk

′
+ 1, 2n−d, 12d−n−bpk′−1

)
. In this partition we have that

h1,1 = cl− d+ bpk
′
+ 1 +n− d+ 2d−n− bpk′ − 1 = cl, so we can now remove

in a unique way also the l-th hook of the sequence. It is easy to see that after
having removed this hook we obtain

(
1n−d

)
, from which we can remove the

remaining hooks in a unique way. So by the Murnaghan-Nakayama formula
we have that in this case χδ(c1,...,ch) 6= 0 and so (c1, . . . , ch) isn’t p-vanishing

when d, bpk
′ 6= n, n− bpk′ = pk

′ − 1, d > bpk
′

and n− d < d− bpk′ .
Case 6.

The last case we need to consider is when d, bpk
′ 6= n, n − bpk

′
= pk

′ − 1,
d > bpk

′
and n− d = d− bpk′ . Assume now that n− bpk′ ≥ 4. We can easily
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see that this case can only occur when p is odd, as pk
′ ≥ 2 as n 6= bpk

′
and

n− bpk′ = pk
′ − 1 must be even as n− d = d− bpk′ . Let λ = (bpk

′
, 2n−d). As

bpk
′ ≥ pk

′ ≥ 3, n − d ≥ 1 and bpk
′
+ 2(n − d) = bpk

′
+ n − d + d − bpk′ = n

we have that λ is a partition of n. We will show that χλ has degree divisible
by p and that in this case χλ(c1,...,ch) 6= 0. As

hλ2,1 = n− d+ 1 ≤ 2(n− d) = n− bpk′ = pk
′ − 1,

lλ1,3 = 0 and hλ1,3 = bpk
′ − 2 ≥ (b − 1)pk

′
we can remove in a unique way a

sequence of b − 1 hooks all of length pk
′

from λ. After having done this we
obtain (pk

′
, 2n−d) and we now have h2,1 ≤ hλ2,1 < pk

′
, h1,2 = pk

′−1+n−d > pk
′

as n−d = (n−bpk′)/2 ≥ 2 and h1,3 = pk
′−2 (pk

′ ≥ 5 as pk
′−1 = n−bpk′ ≥ 4,

so that (1, 3) ∈ (pk
′
, 2n−d)). So we cannot remove any more pk

′
-hooks, in

particular we cannot recursively remove from λ any sequence of b hooks of
length pk

′
and so we have by lemma 71 that p must divide the degree of χλ.

Here too we have that hλ1,3 = bpk
′ − 2 ≥ n− cl − . . .− ch = c1 + . . .+ cl−1

as cl+1 + . . . + ch = n − d ≥ 2 and as again hλ2,1 < pk
′ ≤ cj for j ≤ l and

lλ1,3 = 0 we can remove the first l − 1 hooks of a sequence of hooks with

length (c1, . . . , ch) in a unique way and we obtain (cl + bpk
′ − d, 2n−d), for

which h1,1 = cl + b − d + n − d = cl as n − d = d − bpk′ . So we can remove
also the next hook of this new sequence in a unique way and after having
removed this hook we are left with (1n−d), from which we again can remove
the last hooks in a unique way and so, as again we can recursively remove a
sequence of hooks with length (c1, . . . , ch) from λ in a unique way we have
by the Murnaghan-Nakayama formula that χλ(c1,...,ch) 6= 0 from which follows

that also when d, bpk
′ 6= n, n− bpk′ = pk

′ − 1, d > bpk
′
, n− d = d− bpk′ and

n− bpk′ ≥ 4 we have that (c1, . . . , ch) isn’t p-vanishing.
Case 7.

The only case we have left is when d, bpk
′ 6= n, n − bpk′ = pk

′ − 1, d > bpk
′
,

n−d = d− bpk′ and n− bpk′ = 2 and n−d = d− bpk′=1, as n− bpk′ must be
even and non-zero. In this case we have that pk

′−1 = 2, so pk
′
= 3, in which

case we need to have that k′ = 1 and we need to have that a = 2, so that
n ≡ 2 mod 3 in this case and so we have that the theorem is proved.

Definition 38. If k′ ∈ N we define a′k′ by

a′k′ =
∑
j≥k′

ajp
j−k′ .

It can be easily seen that

n = a0 + . . .+ ak′−1p
k′−1 +

(∑
j≥k′

ajp
j−k′
)
pk
′
= a0 + . . .+ ak′−1p

k′−1 + a′k′p
k′ .
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In lemma 74, theorem 75 and conjecture 76 we will let a′k′ =
∑

j≥k′ ajp
j−k′ .

Lemma 74. If (c1, . . . , ch) is p-vanishing, n 6= a′k′p
k′ and d < a′k′p

k′, then∑
cj<n−a′pk′

cj > n− a′k′pk
′
.

Proof. Assume that for some j 6= h we have that n − a′k′pk
′ ≤ cj < pk

′
and∑h

i=j+1 ci ≤ cj let α = (n−cj, 1cj). χα has degree divisible by p by lemma 68.
Also as hα2,1 = cj when removing any sequence of hooks of lengths (c1, . . . , ch)
from α we need to remove all hooks of length > cj from the first row. Let m
maximal such that cm > cj (m = 0 if c1 = cj). Now we have that

hα1,2 = n− cj − 1 ≥ n− cj − ch ≥ c1 + . . .+ cm

and as lα1,2 = 0 we can then remove in a unique way the first m hooks of the

sequence and we obtain ((m−j−1)cj+e, 1
cj), where 1 ≤ e =

∑h
i=j+1 ci ≤ cj.

If we remove one of the first m− j − 1 hooks of length cj (there are at least
m−j values for i such that ci = cj) from the second row it is easy to see that
this hook has leg-length cj − 1 and all other hooks must be removed from
the first row and have leg-length 0. Otherwise the first m − j − 1 hooks of
length cj are all removed from the first row, and we can easily see that after
having done this we would be left with (e, 1cj). As 1 ≤ e ≤ cj we have that
in this partition h1,2 = e − 1 < cj, h1,1 = e + cj > cj and so as h2,1 = cj we
have that this is the only hook of this partition with length cj. Also in this
case this hook has leg-length cj − 1 and all the other hooks have leg-length
0, so by lemma 54 we have that in this case χα(c1,...,ch) 6= 0.

If
∑

cj<n−a′k′p
k′ cj ≤ n−a′k′pk

′
and n−d =

∑
cj<pk

′ cj > n−a′k′pk
′

we need

to have that (c1, . . . , ch) has at least one part of length between n−a′k′pk
′
and

pk
′ − 1. Let l be maximal such that n− a′k′pk

′ ≤ cl ≤ pk
′ − 1. If l < h we can

conclude by the previous part with j = l that (c1, . . . , ch) is not p-vanishing
in this case. If l = h we also need to have by theorem 69 that cl ≤ n − a′k′
so that cl = ch = n − a′k′ and as n − d > n − a′k′pk

′
we need to have that

ch = n−a′k′pk
′ ≤ ch−1 < pk

′
and so in this case we can conclude again by the

previous part, now with j = h− 1, that (c1, . . . , ch) is not p-vanishing.

Theorem 75. Let p = 2, 3. If (c1, . . . , ch) is p-vanishing we need to have
that d ≥ a′k′p

k′ if

• p = 2 and k′ 6= 1, 2,

• p = 2, k′ = 2 and n 6≡ 4 mod 8,
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• p = 2, k′ = 1 and n is odd or divisible by 8,

• p = 3 and k′ 6= 1,

• p = 3, k′ = 1 and n 6≡ 3, 5, 6, 8 mod 9.

In addition if n < 8 and p = 2 or if n < 9 and p = 3 we have that if for
some k′ we have that d < a′k′p

k′, then (c1, . . . , ch) is one of the following:

• (1, 1) ` 2, (2, 1, 1) ` 4 or (4, 1, 1) ` 6 if p = 2,

• (2, 1) ` 3, (1, 1, 1) ` 3, (2, 1, 1, 1) ` 5, (3, 2, 1) ` 6, (3, 1, 1, 1) ` 6 or
(3, 2, 1, 1, 1) ` 8 if p = 3.

Proof. The last statement can be checked using the Murnaghan-Nakayama
formula and the hook formula, that is first by finding by the hook-formula all
irreducible characters of degree divisible by p and then by the Murnaghan-
Nakayama formula finding those equivalence classes on which they vanish.
So we will only prove the first part of the theorem.

The theorem is trivial when a′k′ = 0 , as then pk
′
> n. We may thus

assume that a′k′ 6= 0. Also the theorem clearly holds when k′ = 0 as in this
case pk

′
= 1 and so we have that for any partition d = n = a′k′p

k′ .
Assume that n 6= a′k′p

k′ . In order to prove the theorem we only need
to show, by the previous lemma, that if

∑
cj<n−a′k′p

k′ cj > n − a′k′p
k′ then

(c1, . . . , ch) is not p-vanishing, for those k′ for which we want to prove the
theorem for the given p and n. The proof of the theorem will be divided in
the following cases:

Case 1: p = 2, n odd and k′ = 0 or 8|n and k′ = 0, 1, 2 or n ≡ 4 mod 8 and
k′ = 3,

Case 2: p = 2, n ≡ 2 mod 4 and k′ = 2,

Case 3: p = 2, n = a′k′2
k′ and k′ ≥ 3 or n 6= a′k′2

k′ and the theorem holds for
k′ − 1,

Case 4: p = 3, k′ ≥ 2 and the theorem holds for k′ − 1,

Case 5: p = 3, n ≡ 0, 1, 4, 7 mod 9 and k′ = 1,

Case 6: p = 3, n ≡ 3, 6 mod 9 and k′ = 2,

Case 7: p = 3, n ≡ 2 mod 9 and k′ = 1 or n ≡ 5, 8 mod 9 and k′ = 2.
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As we have already noticed that the theorem always holds for k′ = 0 we have
that these cases include all the other cases that we need to consider.

For cases 1, 2 and 3 let p = 2.
Case 1.

As we have already seen that the theorem always holds for k′ = 0, it needs to
hold in particular for n odd and k′ = 0. Also when n is divisible by 8 we have
that the theorem holds for k′ = 0, 1, 2 by theorem 67. When n ≡ 4 mod 8
and k′ = 3 we have that the theorem easily holds by theorem 67 and lemma
74 (here n 6= 2k

′
a′k′ as ak′−1 = a2 = 1).

Case 2.
We will now show that the theorem holds for n ≡ 2 mod 4 and k′ = 2.
Again by the lemma we only need to show that whenever

∑
cj=1 cj > 2, then

(c1, . . . , ch) isn’t p-vanishing. In order to do this we will use (n − 2, 1, 1),
(n − 3, 2, 1) and (n − 3, 1, 1, 1). As we are assuming that n ≡ 2 mod 4 and
n ≥

∑
cj=1 cj ≥ 3 we need to have that n ≥ 6, so that these are actually

partitions of n. The degree of χ(n−2,1,1) and χ(n−3,1,1,1) are divisible by 2 by
lemma 68. Using the hook formula it can be easily seen that the degree of
χ(n−3,2,1) is n(n − 2)(n − 4)/3 (the degree of χα, for any α ` n is equal to
the product of the numbers between 1 and n which are not equal to the
hook-lengths of the hooks on the first row of α divided by the product of the
hook-lengths of the hooks on the lower rows of α) and as n is even we then
have that also this degree is divisible by 2.

So let now (c1, . . . , ch) = (c1, . . . , cl, 3
r, 2s, 1t) with cl ≥ 4 and assume

that t ≥ 3. First assume that s 6= (t− 1)(t− 2)/2. In this case we can show

that χ
(n−2,1,1)
(c1,...,ch)

6= 0. To see this notice that whenever we are removing from

(n− 2, 1, 1) a sequence of hooks with lengths (c1, . . . , ch), we need to remove
all hooks of length at least 3 them from the first row. As by assumption
t ≥ 3, we can remove the first h − s − t hooks of this sequence in a unique
way and we obtain (2s + t − 2, 1, 1). Now, as again t ≥ 3, it isn’t hard to
see that we can either remove one 2-hook from the second row and all other
hooks from the first row. This can be done in s different ways and the sum
of the leg-lengths in this case is 1. Otherwise we need to remove all 2-hooks
from the first row, which would leave (t− 2, 1, 1) and then remove t 1-hooks
from this partition. In this case we have that the sum of the leg-length is 0.
It can be easily seen that {h(t−2,1,1)1,i : 2 ≤ i ≤ t − 2} = {1, 2, . . . , t − 3} and
then using the hook formula we have that

χ(t−2,1,1)(1) =
t!

2t
∏t−3

i=1 i
=

(t− 1)(t− 2)

2
.

As we are assuming that s 6= (t − 1)(t − 2)/2 we have by lemma 54 that
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χ
(n−2,1,1)
(c1,...,ch)

= (t − 1)(t − 2)/2 − s 6= 0 and so in this case (c1, . . . , ch) isn’t
p-vanishing.

Assume now that s = (t− 1)(t− 2)/2 and r 6= t(t− 2)(t− 4)/3. As t(t−
2)(t− 4)/3 < 0 when t = 3 this can never happen in this case. We will show

that in this case χ
(n−3,2,1)
(c1,...,ch)

6= 0. In this case
∑

cj=1,2 cj = qt+(t−1)(t−2) ≥ 5

as we are assuming that t ≥ 3. So as h
(n−3,2,1)
1,3 = n − 5, l

(n−3,2,1)
1,3 = 0 and

h
(n−3,2,1)
2,1 = 3, we can recursively remove from (n − 3, 2, 1) in a unique way

the hooks of length at least 4 of a sequence with lengths (c1, . . . , ch) and after
having done this we obtain (3r+ 2s+ t− 3, 2, 1). Now we can remove one of
the 3-hook from the second row and all other hooks from the first row. This
can be done in r different ways and here the sum of the leg-lengths is equal to
1. Otherwise we need to remove all 3-hooks from the first row, in which case
all hooks removed up to this point have leg-length 0, as again

∑
cj=1,2 cj ≥ 5,

and in this case after having removed also all the 3-hooks of the sequence we
obtain (2s + t − 3, 2, 1). If t = 3 then s = 1 and this partition is equal to

(2, 2, 1) and so in this case χ
(n−3,2,1)
(c1,...,ch)

= −r − 1 6= 0 for any r ≥ 0. If t = 4

then s = 3 and so (2s + t − 3, 2, 1) = (7, 2, 1) and χ
(n−3,2,1)
(c1,...,ch)

= −r 6= 0, as

r 6= t(t− 2)(t− 4)/3 = 0.
So assume now that t ≥ 5. As the hooks in the second and third row of

(2s+t−3, 2, 1) have all odd length, when we remove any sequence of 2-hooks
from (2s + t − 3, 2, 1) we need to have that all these hooks are on the first
row. As we now want to remove from this partition a sequence s 2-hooks and
h
(2s+t−3,2,1)
1,3 = 2s+t−5 ≥ 2s as t ≥ 5 and l

(2s+t−3,2,1)
1,3 = 0, we can remove such

a sequence of 2-hooks (which all have leg-length 0). After having removed

them we get (t− 3, 2, 1). As {h(t−3,2,1)1,j } = {t− 1, t− 3, t− 5, t− 6, . . . , 1} we
have by the hook formula that

χ
(t−3,2,1)
(1t) = χ(t−3,2,1)(1) =

t!

3(t− 1)(t− 3) · (t− 5)!
=
t(t− 2)(t− 4)

3
.

So putting all of this together we have that when t ≥ 5, s = (t− 1)(t− 2)/2
and r 6= t(t− 2)(t− 4)/3 then

χ
(n−3,2,1)
(c1,...,ch)

= −r + t(t− 2)(t− 4)/3 6= 0.

As we already know that χ
(n−3,2,1)
(c1,...,ch)

6= 0 when t = 3, 4, s = (t − 1)(t − 2)/2

and r 6= t(t− 2)(t− 4)/3 we have that in any of these cases (c1, . . . , ch) isn’t
p-vanishing.

So the only case we have left to consider is when t ≥ 4, s = (t−1)(t−2)/2

and r = t(t− 2)(t− 4)/3. In this case we will show that χ
(n−3,1,1,1)
(c1,...,ch)

6= 0. As
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here we have that t ≥ 4, h
(n−3,13)
1,2 = n− 4, l

(n−3,13)
1,3 = 0 and h

(n−3,13)
2,1 = 3, we

can remove the hooks of length at least 4 of a sequence of hooks with lengths
(c1, . . . , ch) that are recursively removed from (n− 3, 1, 1, 1) in a unique way.
These hooks all have leg-length 0 and after having removed them we obtain
(3r + 2s + t− 3, 1, 1, 1). Now we need to recursively remove r 3-hooks from
this partition. We can remove one of the 3-hooks from the second row and
all other from the first row, which can be done in r different ways and in
which case the sum of all leg-lengths is always equal to 2. Otherwise we need
to remove all 3-hooks from the first row, which can be done as t ≥ 4 and
after having done this we obtain (2s + t− 3, 1, 1, 1), from which we need to
remove s 2-hooks. We can remove one of these 2-hook from the third row and
then it can be easily seen that all other 2-hooks must be removed from the
first row, in which case after having removed all 2-hooks we obtain (t− 1, 1).
This can be done in s different ways and the sum of all leg-lengths of the
hooks removed until now is 1. Otherwise we need to remove also all 2-hooks
from the first row, again this can be done as t ≥ 4, after having done this we
obtain (t − 3, 1, 1, 1). In this case (which can be done in a unique way) we
have that the sum of the leg-lengths of the hooks removed up to this point
is 0. Now using the hook formula we can easily see that

χ
(t−1,1)
(1t) = χ(t−1,1)(1) =

t!

t · (t− 2)!
= t− 1

and

χ
(t−3,13)
(1t) = χ(t−3,13)(1) =

t!

3 · 2t · (t− 4)!
=

(t− 1)(t− 2)(t− 3)

6
.

Putting all of this together we have that when t ≥ 4, s = (t − 1)(t − 2)/2
and r = t(t− 2)(t− 4)/3 then

χ
(n−3,13)
(c1,...,ch)

= r − sχ(t−1,1)(1) + χ(t−3,13)(1)

= t(t−2)(t−4)
3

− (t−1)2(t−2)
2

+ (t−1)(t−2)(t−3)
6

= 2t3−12t2+16t−3t3+12t2−15t+6+t3−6t2+11t−6
6

= −6t2+12t
6

= −t(t− 2)

and so as in this case we have that χ
(n−3,13)
(c1,...,ch)

6= 0 and so (c1, . . . , ch) is not
p-vanishing.

So we need to have that if n ≡ 2 mod 4 and (c1, . . . , ch) is p-vanishing
then

∑
cj<4 cj ≤ 2 and so the theorem holds in this case for k′ = 2.

Case 3.
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If now a0 + 2a1 + . . . + 2k
′−1ak′−1 = n − 2k

′
a′k′ = 0 and k′ ≥ 3 the theorem

holds by theorem 67. So assume now that n− 2k
′
a′k′ 6= 0 and that∑

cj<2k′−1

cj ≤ a0 + 2a1 + . . .+ 2k
′−2ak′−2

(that is the theorem holds for k′ − 1). Using theorem 73 we then have that∑
cj<pk

′−1 cj = a0 + a12 + . . . + ak′−22
k′−2 and then by theorem 72 we have

that cj is a multiple of 2k
′−1 whenever cj ≥ 2k

′−1. So we have that for some
l, (c1, . . . , ch) = (2k

′−1b1, . . . , 2
k′−1bl, cl+1, . . . , ch) for some

(b1, . . . , bl) ` (n− a0 − a12− . . .− ak′−22k
′−2)/2k

′−1 = ak′−1 + 2a′k′

and cl+1 < 2k
′−1. In order to prove the theorem as in this case n−2k

′
a′k′ 6= 0,

it is enough to show, by what we already proven, that if∑
cj<a0+a12+...+ak′−12

k′−1

cj > a0 + a12 + . . .+ ak′−12
k′−1

then (c1, . . . , ch) isn’t p-vanishing. Also as∑
cj<2k′−1

cj = a0 + a12 + . . .+ ak′−22
k′−2

we have ∑
cj<a0+a12+...+ak′−12

k′−1

cj > a0 + a12 + . . .+ ak′−12
k′−1

if and only if ∑
2k′−1≤cj<a0+a12+...+ak′−12

k′−1

cj > ak′−12
k′−1

if and only if ∑
bj<ak′−1+(a0+a12+...+ak′−22

k′−2)/2k′−1

bj > ak′−1.

As ak′−1 ≤ 1 and a0 +a12+ . . .+ak′−22
k′−2 < pk

′−1 it is enough to prove that
if
∑

bj=1 bj > 1, then (c1, . . . , ch) isn’t p-vanishing. Notice that in this case

we need to have that a′k′ ≥ 1. Let α be the partition with core α(2k′−1) =

(a0 + a12 + . . . + ak′−22
k′−2) and quotient α(2k

′−1) = ((2a′k′ , 1), 0, . . . , 0). It
is easy to see that we cannot recursively remove a sequence of a′k′ hooks of
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length 2 from α(2k
′−1) (a′k′ 6= 0) and so we cannot remove a sequence of a′k′

hooks of length 2k
′

from α and then by lemma 71 we have that p divides the
degree of α. As here the quotient contains only a partition which is different
from 0, using theorem 55 we have that

χα(c1,...,ch) = ±χ(a0+a12+...+ak′−22
k′−2)

(cl+1,...,ch)
χ(2a′

k′ ,1)(b1, . . . , bl) = ±χ(2a′
k′ ,1)(b1, . . . , bl).

Now as h
(2a′

k′ ,1)

2,1 = 1, h
(2a′

k′ ,1)

1,2 = 2a′k′ − 1 and
∑

bj>1 bj < 2a′k′ as we are

assuming that
∑

bj=1 bj > 1, we can remove the hooks of length bigger than

1 of a sequence with hook-length (b1, . . . , bl) from (2a′k′ , 1) in a unique way
and as 1-hooks always have leg-length 0 we then have by lemma 54 that
χ(2a′

k′ ,1)(b1, . . . , bl) 6= 0 and so we also have that χα(c1,...,ch) 6= 0.

As when k′ ≥ 3 or n 6= 2k
′
a′k′ and

∑
cj<pk

′−1 cj ≤ a0+2a1+ . . .+2k
′−2ak′−2

we have that
∑

cj<pk
′ cj ≤ a0 + 2a1 + . . . + 2k

′−1ak′−1 and as we now that

the theorem holds for k′ = 0, 1, 2 when n ≡ 0 mod 8, for k′ = 0 when
n ≡ 1 mod 2, for k′ = 2 when n ≡ 2 mod 4 and for k′ = 3 when n ≡ 4 mod 8
we have that the theorem is proved for the case p = 2.

Case 4.
In all the remaining part of the proof we will have that p = 3. Assume first
that k′ ≥ 2 and ∑

cj<3k′−1

cj ≤ a0 + 3a1 + . . .+ 3k
′−2ak′−2.

If n = 3k
′
a′k′ we have that the theorem holds by theorem 67, so we can assume

that n 6= 3k
′
a′k′ . Also we can assume by the first part of the proof that a′k′ 6= 0.

Using theorems 72 and 73 we then have that if (c1, . . . , ch) is p-vanishing then
(c1, . . . , ch) = (3k

′−1b1, . . . , 3
k′−1bl, cl+1, . . . , ch), with (b1, . . . , bl) ` ak′−1+3a′k′

and cl+1 + . . .+ ch = a0 + 3a1 + . . .+ 3k
′−2ak′−2 < 3k

′−1. In order to prove the
theorem it is enough to show, by lemma 74, that if (c1, . . . , ch) is of this form
and

∑
bj≤ak′−1

bj > ak′−1, then (c1, . . . , ch) isn’t p-vanishing. If ak′−1 = 0 this

is obvious, as no such (c1, . . . , ch) exists. If ak′−1 = 1 let α have core α(3k′−1) =

(a0+3a1+. . .+3k
′−2ak′−2) and quotient α(3k

′−1) = ((3a′k′ , 1), 0, . . . , 0). α(3k′−1)

is a 3k
′−1-core as a0 + 3a1 + . . . + 3k

′−2ak′−2 < 3k
′−1. As we cannot remove

a sequence of a′k′ 3-hooks from α(3a′
k′ ) we have that 3 divides the degree of α

by lemma 71. Also as in this case we can apply theorem 55 we get that

χα(c1,...,ch) = ±χ
α
(3k
′
)

(cl+1,...,ch)
χ
(3a′

k′ ,1)

(b1,...,bl)
= ±χ(3a′

k′ ,1)

(b1,...,bl)
.

As (b1, . . . , bl) has at least two parts equal to 1 (as
∑

bj≤ak′−1
bj > ak′−1 and

ak′−1 = 1) and (3a′k′ , 1) only has one node which isn’t on the first row, it
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is easy to see by lemma 54 that in this case χ
(3a′

k′ ,1)

(b1,...,bl)
6= 0. In particular

χα(c1,...,ch) 6= 0 when ak′−1 = 1 and
∑

bj≤ak′−1
bj > ak′−1, so that in this case

(c1, . . . , ch) isn’t p-vanishing.
So let now ak′−1 = 2. As we are assuming that k′ ≥ 2, we have that

3k
′−1 > 2. Assume that

∑
bj≤ak′−1

bj > ak′−1 = 2. First it is easy to see

that if α has core α(3k′−1) = (a0 + 3a1 + . . . + 3k
′−2ak′−2) (this is a 3k

′−1-

core as a0 + 3a1 + . . . + 3k
′−2ak′−2 < 3k

′−1) and quotient α(3k
′−1) equal to

either ((3a′k′ , 1, 1), 0, . . . , 0) or ((3a′k′ , 1), (1), 0, . . . , 0) then 3 must divides the
degree of χα (as we cannot remove a′k′ 3-hooks from the quotient and so we
cannot even remove a′k′ hooks of length 3k

′
from α and by lemma 71). As

h
(3a′

k′ ,1,1)

2,1 = 2, h
(3a′

k′ ,1)

2,1 = 1, h
(3a′

k′ ,1,1)

1,2 = h
(3a′

k′ ,1)

1,2 = 3a′k′ − 1 ≥
∑

bj>2 bj, as we

are assuming that
∑

bj≤2 > 2 and
∑

bj
= 3a′k′+2, and l

(3a′
k′ ,1,1)

1,2 = l
(3a′

k′ ,1)

1,2 = 0,
if s is the number of bj equal to 1 and t is the number of bj equal to 2, it
is easy to see that we can recursively remove the first l − s − t hooks of a

sequence with lengths (b1, . . . , bl) from α(3k
′−1) in a unique way and this way

we obtain ((s+ 2t− 2, 1, 1), 0 . . . , 0) or ((s+ 2t− 2, 1), (1), 0 . . . , 0).

If s = 0 let α(3k
′−1) = ((3a′k′ , 1, 1), 0, . . . , 0). In this case t ≥ 2 and after

having removed from α(3k
′−1) the hooks with length ≥ 3 of the sequence with

lengths (b1, . . . , bl) we have obtained ((2t − 2, 1, 1), 0 . . . , 0). Now we need
to remove t ≥ 2 hooks of length 2 from (2(t − 1), 1, 1). In order to do this
we need to remove one of the first t− 1 of these hooks from the second row
and the other from the first row. The hook we removed from the second row
has leg-length 1 and the others have leg-length 0. So using lemma 54 and
theorem 67 we have that in this case

χα(c1,...,ch) = ±χ(a0+a12+...+ak′−23
k′−2)

(cl+1,...,ch)
χ(3a′

k′ ,1,1)(b1, . . . , bl)

= ±χ(3a′
k′ ,1,1)(b1, . . . , bl) = ±(1− t)

and so in this case (c1, . . . , ch) is not p-vanishing.

If s = 1 use α(3k
′−1) = ((3a′k′ , 1), (1), 0, . . . , 0). In this case (b1, . . . , bl) =

(b1, . . . , bl−1, 1) and bl−1 = 2. As bj ≥ 2 for j ≤ l − 1 it is easy to see that

whenever we recursively remove from α(3k
′−1) a sequence of hooks with lengths

(b1, . . . , bl), we need to remove the first l− 1 from the first component of the
quotient. As (3a′k′ , 1) is a partition of b1+. . .+bl−1 in this case, all nodes apart
for one are on the first row and bl−1 ≥ 2, it is easy to see that we can actually
do this in a unique way. After having done this we have that the new quotient
is (0, (1), 0 . . . , 0), from which we can remove the last hook of the sequence
(in a unique way). As we can remove also in a unique way a sequence of
hooks of lengths (cl+1, . . . , ch) from α(3k′−1) = (a0 + 3a1 + . . . + 3k

′−2ak′−2),
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we have, by definition of bj that in this case we can recursively remove in a
unique way from α a sequence of hooks with lengths (c1, . . . , ch) and so by the
Murnaghan-Nakayama formula we have that in this case χα(c1,...,ch) = ±1 6= 0.

If s = 2 let α(3k
′−1) = ((3a′k′ , 1, 1), 0, . . . , 0). As

∑
bj=1,2 bj > 2 and∑

bj=1 bj = 2 in this case, we need to have that t ≥ 1. It is now easy to
see that we can remove the hooks of length bigger than 2 of a sequence with
lengths (b1, . . . , bl) from (3a′k′ , 1, 1) in a unique way (and all these hooks have
leg-length 0) and after having removed these hooks we obtain (2s, 1, 1). It
isn’t hard to see that in order to remove a sequence of t 2-hooks from this
partition we need to remove exactly one of them from the second row and
the other from the first row. This can be done in t way and the sum of the
leg-lengths of the 2-hooks is always equal to 1. After having done this we get
(2), from which we now need to remove 2 1-hooks. So using theorem 55 we
have that

χα(c1,...,ch) = ±χ
α
(3k
′−1)

(cl+1,...,ch)
χ
(3a′

k′ ,1,1)

(b1,...,bl)
= ∓t 6= 0

and so also in this case (c1, . . . , ch) isn’t p-vanishing.

The last case we need to consider is when s ≥ 3. Here let α(3k
′−1) =

((3a′k′ , 1), (1), 0, . . . , 0). As in this case h
(3a′

k′ ,1)

1,2 = 3a′k′ − 3 ≥
∑

bj>1 bj,

l
(3a′

k′ ,1)

1,2 = 0, h
(3a′

k′ ,1)

2,1 = 1 and h
(1)
1,1 = 1, we can recursively remove the hooks

of length ≥ 2 of a sequence of hooks with lengths (b1, . . . , bl) from α(3k
′−1) in

a unique way and after having done this we have that the new quotient is
((t−2, 1, 1), (1), 0 . . . , 0), from which we now only need to remove a sequence
of t 1-hooks. So the sum of the leg-lengths of all the hooks in any sequence

of hooks with lengths (b1, . . . , bl) which are removed from α(3k
′−1) is always

the same and as we can remove such sequence in at least one way and as

χ
α
(3k
′−1)

(cl+1,...,ch)
= 1 we have by theorem 55 that χα(c1,...,ch) 6= 0.

So if p = 3, k′ ≥ 2 and
∑

cj<3k′−1 cj ≤ a0 + 3a1 + . . .+ 3k
′−2ak′−2 (that is

the theorem holds for k′ − 1, we have that the theorem holds for k′.
Case 5.

As the theorem always holds for k′ = 0, it is now enough to prove it for
k′ = 1 when n ≡ 0, 1, 2, 4, 7 mod 9 and for k′ = 2 when n ≡ 3, 5, 6, 8 mod 9
If n ≡ 1 mod 3 then the theorem holds for k′ = 1 by lemma 74, as here
a0 = 1. Also by theorem 67 we have that the same is true for n ≡ 0 mod 9.

Case 6.
If n ≡ 3, 6 mod 9 and the theorem doesn’t hold for k′ = 2, then it cannot
hold for k′ = 1 either by what we just saw in case 4, so in this case we
need to have that

∑
cj<3 cj > a0 = 0 and so by theorem 67 we need to have

that in this case ch = 1. Using the hook formula it is easy to see that the



101 12 p-vanishing classes

degree of χ(n−2,2) is n(n − 3)/2 and so it is divisible by 3 in this case. If
(c1, . . . , ch) = (c1, . . . , cl, 2

b, 1a), with cl ≥ 3, it isn’t hard to see that

χ
(n−2,2)
(c1,...,ch)

=


a(a− 3)/2 + b a ≥ 4
b a = 3
−1 + b a = 1, 2

and so we have that if (c1, . . . , ch) is p-vanishing we must have that a = 3
and b = 0 or a = 1, 2 and b = 1. Now consider (n − 4, 2, 1, 1). Again using
the hook-formula it is easy to see that the degree of χ(n−4,2,1,1) is given by
n(n−2)(n−3)(n−5)/8 and as n ≡ 3, 6 mod 9 we have that then the degree of
χ(n−4,2,1,1) is divisible by 3. Write now (c1, . . . , ch) = (c1, . . . , cl′ , 4

e, 3c, 2b, 1a),

with cl′ ≥ 5. It can be easily seen that χ
(n−4,2,1,1)
(c1,...,cl′ ,4

e,3c,2,12) = e + 1, that

χ
(n−4,2,1,1)
(c1,...,cl′ ,4

e,3c,2,1) = e and that χ
(n−4,2,1,1)
(c1,...,cl′ ,4

e,3c,13) = e (we can or have to remove

at most one 4-hook from the second row and all other hooks of length at
least 3 must be removed from the first row). In particular if (c1, . . . , ch) is
p-vanishing we must have that e is always 0 and also a = 3 and b = 0 or
a = 1 and b = 1. This, together with lemma 74 shows that the theorem holds
for k′ = 2 when n ≡ 3 mod 9, as then we need to have that

∑
cj<3 cj ≤ 3.

If n ≡ 6 mod 9 consider next (n− 5, 3, 1, 1). In this case, if
∑

cj<6 cj > 6,
we need to have that n ≥ 15, so that this is a partition of n in this case.
Again using the hook formula it is easy to see that the degree of χ(n−5,3,1,1)

is n(n− 1)(n− 3)(n− 4)(n− 7)/20, which is the divisible by 3. If now we let
(c1, . . . , ch) = (c1, . . . , cl′′ , 5

f , 3c, 2b, 1a) with cl′′ ≥ 6 it can easily be seen that
any hook of length at least 6 of a sequence of hooks of lengths (c1, . . . , ch)
which are recursively removed from (n− 5, 3, 1, 1) must be removed from the
first row. As

h
(n−5,3,1,1)
1,1 = n− 1 > c1 + . . .+ cl′′+f ,

h
(n−5,3,1,1)
1,2 = n− 4 < c1 + . . .+ cl′′+f ,

l
(n−5,3,1,1)
1,2 = 1 and l

(n−5,3,1,1)
1,3 = 0, it can be seen that we cannot remove all

hooks of length ≥ 5 of such a sequence from the first row. So whenever
we are recursively removing a sequence of hooks of lengths (c1, . . . , ch) from
(n− 5, 3, 1, 1) we must remove one 5-hook from the second row and all other

hooks from the first row. So it can be easily seen that χ
(n−5,3,1,1)
(c1,...,cl′′ ,5

f ,3c,2,1)
=

χ
(n−5,3,1,1)
(c1,...,cl′′ ,5

f ,3c,13)
= f and so if (c1, . . . , ch) is p-vanishing we must have that

f = 0.
So if (c1, . . . , ch) is p-vanishing and n ≡ 6 mod 9 we need to have that

(c1, . . . , ch) = (c1, . . . , cl′′ , 3
c, 2, 1), (c1, . . . , cl′′ , 3

c, 1, 1, 1), with cl′′ ≥ 6. We
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will now show that c ≤ 1. Assume that c ≥ 2 and consider (n − 6, 3, 2, 1).
The corresponding irreducible character has degree

n(n− 1)(n− 2)(n− 4)(n− 6)(n− 8)/45

which is divisible by 3 as 3|n and 9|(n − 6). As again in this case we have

that n ≥ 15, this is a partition of n. As cl′′ ≥ 6, h
(n−6,3,2,1)
2,1 = 5,

h
(n−6,3,2,1)
1,4 = n− 9 ≥ c1 + . . .+ cl′′

as c ≥ 2 and l
(n−6,3,2,1)
1,4 = 0, we have that χ

(n−6,3,2,1)
(c1,...,cl′′ ,3

c,2,1) = χ
(3c−3,2,1)
(3c,2,1) and

χ
(n−6,3,2,1)
(c1,...,cl′′ ,3

c,13) = χ
(3c−3,2,1)
(3c,13) . If we remove 2 of the first c− 2 3-hooks from the

second or third row of (n−6, 3, 2, 1) we then must remove all other hooks from
the first row. It can be seen that this can be done in 2 ·

(
c−2
2

)
= (c− 2)(c− 3)

different ways and in each of these ways we have that the sum of the leg-
lengths is odd. Otherwise at most one of the 3-hooks can be removed from
the second or third row (and all others must be removed from the first row).
If we remove one of the first c − 2 hooks of length 3 from the second row
this hook must be R2,2. If we remove one of the first c− 2 3-hooks from the
third row this hook must be R3,1. In each of these last two cases, as we need
to remove at most one of the first c− 2 hooks of length3 from the second or
third row, we have that the sum of the leg-length of the first c − 2 3-hooks
we remove from (3c − 3, 3, 2, 1) is 1 and each of these cases can be done in
c − 2 different ways. In the first of these two cases after having recursively
removed the first c− 2 3-hooks we obtain (6, 13), while in the second one we
obtain (6, 3). Otherwise all of the first c − 2 3-hooks that we remove from
(3c − 3, 3, 2, 1) must be on the first row. In this case all these hooks have
length 0 and we obtain (3, 3, 2, 1). Putting all of this together, if a+ 2b = 3,
we have that

χ
(n−6,3,2,1)
(c1,...,cl′′ ,3

c,2b,1a)
= χ

(3c−3,2,1)
(3c,2b,1a)

= −(c− 2)(c− 3)− (c− 2)χ
(6,13)

(32,2b,1a)
− (c− 2)χ

(6,2,1)

(32,2b,1a)

+χ
(3,3,2,1)

(32,2b,1a)

from which we easily get, as c ≥ 2, that χ
(n−6,3,2,1)
(c1,...,cl′′ ,3

c,2,1) = −(c−2)(c+1)−2 < 0

and similarly χ
(n−6,3,2,1)
(c1,...,cl′′ ,3

c,2,1) = −(c − 2)(c + 3) − 4 < 0 and so if c ≥ 2 we

have that (c1, . . . , cl′′ , 3
c, 2, 1) and (c1, . . . , cl′′ , 1

3) aren’t p-vanishing. So by
this and what we have already proven we have that when n ≡ 6 mod 9 then∑

cj<9 cj ≤ 6 and so also in this case the theorem holds for k′ = 2.
Case 7.
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At last we need to show that the theorem holds for k′ = 1 when n ≡ 2 mod 9
and for k′ = 2 when n ≡ 5, 8 mod 9. So assume that n ≡ 2 mod 3. By what
we just proved in case 4, we have that if the theorem doesn’t hold for k′ = 2
then it cannot hold for k′ = 1 either, that is we need to have that

∑
cj=1 cj >

3, so that (c1, . . . , ch) must have at least 3 parts equal to 1 in each of these
cases. Also any n for which the theorem might not hold must be bigger or
equal to 11, so that all the partitions we will consider in the next part are
actually partitions of n. By lemma 68 we have in this case that χ(n−2,1,1)

has degree divisible by 3. Write (c1, . . . , ch) = (c1, . . . , cl, 4
q, 3r, 2s, 1t), with

cl ≥ 5. If (c1, . . . , ch) is p-vanishing we need to have that s = (t− 1)(t− 2)/2
by what we proved in case 2.

Next consider (n − 4, 2, 1, 1). Using the hook formula we have that the
degree of χ(n−4,2,1,1) is n(n− 2)(n− 3)(n− 5)/8 and so it is divisible by 3 as

n ≡ 2 mod 3. If t = 3 then s = 1 and so as h
(n−4,2,1,1)
1,2 = n − 4 >

∑
cj≥3 cj,

h
(n−4,2,1,1)
1,3 = n−6 <

∑
cj≥3 cj and l

(n−4,2,1,1)
1,3 = 0 it can be seen that whenever

we recursively remove from (n − 4, 2, 1, 1) a sequence of hooks with lengths
(c1, . . . , ch), some hook of length ≥ 3 must be removed from a row different
from the first row. As such a hook can only have length 4 (it must have

length at most 4 as h
(n−4,2,1,1)
2,1 = 4 and if this hook had length 3 then as the

previously removed hooks had length > 1 it would need to be removed from
(14) and after having removed it we would get (1) which gives a contradiction
as then we need to remove 1 2-hook and 3 1-hooks) and so we easily have

that χ
(n−4,2,1,1)
(c1,...,ch)

= q. So if t = 3 and (c1, . . . , ch) is p-vanishing we need to
have that q = 0. So let now t ≥ 4. Then s ≥ 3 and so it can be easily seen
that when we recursively remove from (n − 4, 2, 1, 1) a sequence of hooks
with lengths (c1, . . . , ch) we can either remove all hooks ≥ 3 from the first
row or remove one 4-hook from the second row and all other hooks from
the first row. So we have that in this case χ

(n−4,2,1,1)
(c1,...,ch)

= q + χ
(2s+t−4,2,1,1)
(2s,1t) .

When t = 4 we have that s = 3 and so χ
(n−4,2,1,1)
(c1,...,ch)

= q − 10 and when t = 5

we have that s = 6 and χ(n−4,2,1,1)(c1, . . . , ch) = q − 45. So let now t ≥ 6.
If we want to recursively remove s 2-hooks from (2s + t − 4, 2, 1, 1) (where
s = (t−1)(t−2)/2 ≥ 3), we can remove all 2-hooks from the first row, which
can be done in a unique way and in which case all 2-hooks have leg-length
0 and after we obtain (t − 4, 2, 1, 1). Otherwise we can remove one 2-hook
from the third row and all other from the first row, which can be done in s
ways and in which case the sum of the leg-lengths of the 2-hooks is 1 and
in which case we obtain (t− 2, 2). Otherwise we need to remove one 2-hook
form the third row and one 2-hook from the second row. This can be done
in s(s − 1)/2 ways, here too the sum of the leg-lengths of the 2-hooks is 1
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and after having done this we obtain (t). So as now we only need to remove
1-hooks, the degrees of χ(t−4,2,1,1) and χ(t−2,2) are t(t− 2)(t− 3)(t− 5)/8 and
t(t − 3)/2 respectively and s = (t − 1)(t − 2)/2 we have that putting all of
this together when t ≥ 6

χ
(n−4,2,1,1)
(c1,...,ch)

= q + t(t−2)(t−3)(t−5)
8

− t(t−1)(t−2)(t−3)
4

− t(t−1)(t−2)(t−3)
8

= q − t(t−2)(t−3)(t+1)
4

.

So we have that if (c1, . . . , ch) is p-vanishing then q must be given by

q =


0 t = 3
10 t = 4
45 t = 5
t(t−2)(t−3)(t+1)

4
t = 6.

Let’s now consider (n − 5, 3, 2). We have that the degree of χ(n−5,3,2) is
n(n−1)(n−2)(n−5)(n−7)/24 and as n ≡ 2 mod 3, so that 3|(n−2), (n−5),
we have that 3 divides the degree of χ(n−5,3,2). If t = 3 then

∑
cj=1,2 cj = 5

and so it can be seen by looking at the Young diagram of (n−5, 3, 2) that we
cannot remove from this partition all hooks of length at least 3 of a sequence
of hooks with lengths (c1, . . . , ch) from the first row. So it can be easily seen
that in this case

χ
(n−5,3,2)
(c1,...,ch)

= −rχ(3,12)

(2,13) − qχ
(4,1)

(2,13) = −2q.

If t ≥ 4 then s ≥ 6 as s = (t− 1)(t− 2)/2 and so
∑

cj=1,2 cj > 8 in this case,
so it can be easily seen that here

χ
(n−5,3,2)
(c1,...,ch)

= −rχ(2s+t−2,12)
(2s,1t) − qχ(2s+t−1,1)

(2s,1t) + χ
(2s+t−5,3,2)
(2s,1t)

= −rχ(2s+t−2,12)
(2s,1t) − qχ(t−1,1)(1) + χ

(2s+t−5,3,2)
(2s,1t)

= −q(t− 1) + χ
(2s+t−5,3,2)
(2s,1t) .

Using this we have that χ
(n−5,3,2)
(c1,...,ch)

is equal to −3q+6 when t = 4, to −4q+60
when t = 5, to−5q+270 when t = 6 and to−6q+840 when t = 7. When t ≥ 8
and we are recursively removing s 2-hooks from (2s+t−5, 3, 2) we can remove
either 0,1 or 2 of them from the second and third row. In any case the sum of
the leg-lengths of the 2-hooks must be 0. If we don’t remove any 2-hook from
the lower rows we get (t − 5, 3, 2) and we need to remove the 2-hooks in a
unique way. If we remove 1 2-hooks from the lower rows we get (t−3, 3) and
this can be done in s different ways. If we remove 2 2-hooks from the second
and third row we get (t− 1, 1). This can be done in s(s− 1)/2 different ways
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(we need to choose 2 hooks out of s). As the degrees of χ(t−5,3,2), χ(t−3,3) and
χ(t−1,1) are t(t−1)(t−2)(t−5)(t−7)/24, t(t−1)(t−5)/6 and t−1 respectively
and as s = (t − 1)(t − 2)/2, putting all of this together and simplifying we

have that if t ≥ 8 then χ
(n−5,3,2)
(c1,...,ch)

= (1 − t)(q − t(t − 2)(t − 3)2/4). So from

all of this we get that if (c1, . . . , ch) is p-vanishing then q is equal to 0 if
t = 3, to 2 if t = 4, to 15 if t = 5, to 54 if t = 6, to 140 if t = 7 and to
t(t − 2)(t − 3)2/4 if t ≥ 8. As t(t − 2)(t − 3)2 6= t(t − 2)(t − 3)(t + 1) for
t ≥ 8 and checking singularly the cases t ≤ 7 and comparing these numbers
with those we got in the previous paragraph, if we have an exception to the
theorem for n ≡ 2 mod 3, then we need to have that t = 3, s = 1 and q = 0
whenever (c1, . . . , ch) is 3-vanishing.

If now n ≡ 2 mod 9 we have that the degree of χ(n−3,2,1) is equal to
n(n− 2)(n− 4)/3 and so is divisible by 3. Using what we just proved for the
case n ≡ 2 mod 3 and the results we got while considering the case p = 2
and n ≡ 2 mod 4 we have that in this case if (c1, . . . , ch) is 3-vanishing then
t ≤ 2 and so in this case the theorem holds for k′ = 1.

If n ≡ 5 mod 9 by what we have seen until now we need to show that if
(c1, . . . , ch) is p-vanishing then (c1, . . . , ch) = (c1, . . . , cl, 3

r, 2, 13), with cl ≥ 5.
We will now show that r = 0. In order to do this consider (n− 4, 2, 2). The
corresponding irreducible character has degree n(n − 1)(n − 4)(n − 5)/12

which is divisible by 3 as 9|(n − 5). Also as h
(n−4,2,2)
1,2 = n − 3 >

∑
cj≥3 cj,

h
(n−4,2,2)
1,3 = n − 6 <

∑
cj≥3 cj, l

(n−4,2,2)
1,3 = 0 and h

(n−4,2,2)
2,1 = 3, we have that

whenever removing a sequence of (c1, . . . , ch)-hooks from (n−4, 2, 2) we need
to remove one 3-hook from the second row and so we have that

χ
(n−4,2,2)
(c1,...,ch)

= −rχ(4,1)

(2,13) = −2r

from which we have that if (c1, . . . , ch) is 3-vanishing we need to have that∑
cj<5 cj ≤ 5 and so from lemma 74 we have that the theorem holds for

k′ = 2 when p = 3 and n ≡ 5 mod 9.
To finish proving the theorem for p = 3, we now only have left to prove

it for k′ = 2 and n ≡ 8 mod 9. Write now

(c1, . . . , ch) = (c1, . . . , cl′ , 7
g, 6f , 5e, 4q, 3r, 2s, 1t)

with cl′ ≥ 8. We know that if there is any exception to the theorem then this
happens when q = 0, s = 1 and t = 3. We will now show that if (c1, . . . , ch) =
(c1, . . . , cl′ , 7

g, 6f , 5e, 3r, 2, 13) and (c1, . . . , ch) is 3-vanishing, then r = 1 and
e, f, g = 0, which would then prove the theorem for p = 3. Start with
considering (n − 6, 3, 3). By the hook-formula the corresponding character
has degree n(n − 1)(n − 2)(n − 3)(n − 7)(n − 8)/144 and as n ≡ 8 mod 9
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we then have that 3 divides it (as then we also have that 3|(n − 2)). First

assume that r ≥ 2. Then as h
(n−6,3,3)
2,1 = 4, h

(n−6,3,3)
1,4 = n − 9 >

∑
cj≥3 cj − 6

and l
(n−6,3,3)
1,4 = 0 when we recursively remove from (n− 6, 3, 3) a sequence of

hooks of lengths (c1, . . . , ch), we can either remove the first h − 5 hooks (so
that we removed all hooks of the sequence apart for 2 3-hooks and the 2- and
1-hooks) from the first row or remove 1 or 2 of the 3-hooks from the lower
rows. As when we remove 2 of the first r − 2 3-hooks from the second and
third row we need to remove R3,1 and R2,1 or R2,2 and R2,1, we can easily see
that

χ
(5,3,3)
(c1,...,ch)

= χ
(5,3,3)

(32,2,13) + (r − 2)χ
(8,3)

(32,2,13) − (r − 2)χ
(8,2,1)

(32,2,13) + (r − 2)(r − 3)

= (r + 1)(r − 1) 6= 0.

So if (c1, . . . , ch) is p-vanishing we need to have r = 0, 1. If r = 0, then as

h
(n−6,3,3)
1,2 = n − 5 =

∑
cj≥5 cj and l

(n−6,3,3)
1,4 = 0, it can be easily seen by just

looking at the Young-diagram of (n− 6, 3, 3) that

χ
(n−6,3,3)
(c1,...,ch)

= χ
(2,2,1)

(2,13) = −1

from which we have that if (c1, . . . , ch) is p-vanishing then r = 1.
Consider now (n−5, 15). Here we have that the degree of the correspond-

ing character is (n−1)(n−2)(n−3)(n−4)(n−5)/120 and so as n ≡ 8 mod 9

we have that it is divisible by 3. As h
(n−5,15)
1,2 = n− 6 > n− 8 =

∑
cj≥5 cj and

l
(n−5,15)
1,2 = 0, we have that

χ
(n−5,15)
(c1,...,ch)

= χ
(5e+3,15)

(53,3,2,13) = eχ
(8)

(3,2,13) + χ
(3,15)

(3,2,13) = e

and so as we want (c1, . . . , ch) to be 3-vanishing we need to have that e = 0.
If we now consider (n − 7, 22, 13) we have that χ(n−7,22,13) has degree

n(n− 1)(n− 3)(n− 4)(n− 5)(n− 7)(n− 8)/(9 · 40) from which we have that
in this case 3 divides the degree of χ(n−7,22,13). As

h
(n−7,22,13)
1,3 = n− 9 < n− 8 =

∑
cj≥6

cj,

l
(n−7,22,13)
1,3 = 0, h

(n−7,22,13)
1,2 = n − 6 > n − 8 =

∑
cj≥6 cj and h

(n−7,22,13)
2,1 = 6,

we need to have that

χ
(n−7,22,13)
(c1,...,ch)

= fχ
(7,1)

(3,2,13) = 2f

as then we need to remove one 6-hook from the second row whenever remov-
ing a sequence of hooks of lengths (c1, . . . , ch), and so we need to have that
f = 0 as we are assuming that (c1, . . . , ch) is 3-vanishing.
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At last consider (n − 7, 2, 15). The corresponding character has degree
n(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 8)/(3 · 280), which then is divisible
by 3. For reasons just like those in the previous point we have that

χ
(n−7,2,16)
(c1,...,ch)

= −gχ(8)

(3,2,13) = −g

and so we need to have that g is also 0 when (c1, . . . , ch) is 3-vanishing.
So if n ≡ 8 mod 9 and (c1, . . . , ch) is p-vanishing then

∑
cj<8 cj ≤ 8 and

so by what we have already proven we have that also in this case the theorem
holds for k′ = 2. As this was the last case we had to consider for p = 3, we
also have that the theorem holds for p = 3.

Conjecture 76. Let p 6= 2, 3. If (c1, . . . , ch) is p-vanishing we need to have
that d ≥ a′k′p

k′.

Proof. Assume that
∑

cj<pk
′−1 cj ≤ a0+a1p+. . .+ak′−2p

k′−2, where k′−1 ≥ 0,

and assume that for every n′ = a + bp, with 0 ≤ a ≤ p − 1 and b ≥ 0, and
(d1, . . . , ds) ` n′ is p-vanishing we need to have that

∑
dj<p
≤ a. We want to

show that then we have that
∑

cj<pk
′ cj ≤ a0 + a1p+ . . .+ ak′−1p

k′−1, that is

that d ≥ a′k′p
k′ . By theorem 73 (as p 6= 3) we have that whenever∑

cj<pk
′−1

cj ≤ a0 + a1p+ . . .+ ak′−2p
k′−2

we actually need to have that∑
cj<pk

′−1

cj = a0 + a1p+ . . .+ ak′−2p
k′−2,

so that we can apply theorem 72 and we get that cj is a multiple of pk
′−1

whenever cj ≥ pk
′−1. Let l be maximal such that cl ≥ pk

′−1. Then

(c1, . . . , ch) = (pk
′−1b1, . . . , p

k′−1bl, cl+1, . . . , ch)

for some (b1, . . . , bl) ` a′k′p+ak′−1. Also as the ai < p (they are the coefficients
of the p-adic decomposition of n) we have that

cl+1 + . . .+ ch = a0 + . . .+ ak′−2p
k′−2 < pk

′−1.

Assume that
∑

cj<pk
′ cj > a0 + a1p + . . . + ak′−1p

k′−1. As we are assum-

ing that
∑

cj<pk
′−1 cj = a0 + . . . + ak′−2p

k′−2 this happens if and only if∑
pk′−1≤cj<pk′ cj > ak′−1p

k′−1, which happens if and only if
∑

bj<p
bj > ak′−1.
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Now (b1, . . . , bl) is a partition of ak′−1 + a′k′p and 0 ≤ ak′−1 < p and a′k′ ≥ 0,
so by assumption we can find χβ, an irreducible character of Sak′−1+a

′
k′p

, of

degree divisible by p and such that χβ(b1,...,bl) 6= 0. Let α be the partition of n

with core α(pk′−1) = (a0+. . .+ak′−2p
k′−2) and quotient α(pk

′−1) = (β, 0, . . . , 0).
As the degree of β is divisible by p so is that of χα by lemmas 61, 64 and 65

and the fact that removing q-hooks from α(pk
′−1) (which in this case must be

removed from β) corresponds to removing qpk
′−1-hooks from α. Also as in

this case we can use theorem 55 we have that

χα(c1,...,ch) = ±χ
α
(pk
′−1)

(cl+1,...,ch)
χβ(b1,...,bl)

as here β is the only non-zero partition in α(pk
′−1). As χ

α
(pk
′−1)

(cl+1,...,ch)
= 1 as

α(pk′−1) = (a0 + . . .+ ak′−2p
k′−2) and χβ(b1,...,bl) 6= 0 we have that χα(c1,...,ch) 6= 0

in this case and so we have that under these assumptions, if (c1, . . . , ch) is
p-vanishing we need to have that d ≥ a′k′p

k′ .
As when n = a′k′p

k′ and p 6= 2, 3 we have that the theorem is always
satisfied by theorem 67 and by using what we proved earlier for the case
when n 6= a′k′p

k′ , we have that in order to prove the theorem for the case
where p 6= 2, 3 it is then enough, by what we proved until now, to prove the
following lemma, which is clearly always satisfied when a = 0.

As the cases where p = 2, 3 have already been proven, this conjecture is
proved up to the next condition.

Condition 77. Let n = a + bp, where p is a prime different from 2 and 3,
0 ≤ a < p and b ≥ 0. If (c1, . . . , ch) is p-vanishing we need to have that∑

cj<a
cj ≤ a.

Using lemma 74 it can be easily seen that this condition is equivalent to
conjecture 76 for k′ = 1.

Even if we cannot prove this condition in the general case, it can be proved
when a = 0, 1, 2 for any p. For a = 0, 1 the condition is trivial, while for
a = 2 it can be proved as in theorem 75 for the case p = 2 and n ≡ 2 mod 4
(case 3).

Theorem 78. Let π ∈ Sn, α(π) = (c1, . . . , ch), with ch > 0, and define
dk′ =

∑
cj≥pk′ cj for any 0 ≤ k′ ≤ k. If dk′ = ak′p

k′ + . . . + akp
k for any

m ≤ k′ ≤ k and l is maximal such that cl ≥ pm we have that π is p-vanishing
if and only if the conjugacy class of Sn−ampm−...−akpk = Sa0+...+am−1pm−1 with
cycle partition (cl+1, . . . , ch) is p-vanishing.

Proof. By theorem 72 we have that whenever dk′ = ak′p
k′ + . . .+ akp

k and π
is p-vanishing, all cj which are at ≥ pk

′
must be multiples of pk

′
, in particular
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in this case we need to have that wpk′ (π) = ak′ + . . .+ akp
k−k′ . As this holds

for each k′ ≥ m it is easy to see that α(π) is of the form(
b
(k)
1 pk, . . . , b

(k)
hk
pk, . . . , b

(m)
1 pk, . . . , b

(m)
hm
pk, cl+1, . . . , ch

)
,

where for each m ≤ k′ ≤ k, (b
(k′)
1 , . . . , b

(k′)
hk′

) ` ak′ , and cl+1 < pm. Assume
that α ` n such that the degree of χα is divisible by p and assume that β is
obtained by α by removing a sequence of hooks of lengths(

b
(k)
1 pk, . . . , b

(k)
hk
pk, . . . , b

(m)
1 pk, . . . , b

(m)
hm
pk
)
.

Then β can also be obtained by α by removing a sequence of hooks of lengths
((pk)ak , . . . , (pm)am) and so by lemmas 61, 64 and 65 applied to both α and β
we have that p divides also the degree of χβ and so if the conjugacy class of Sn
with cycle partition (cl+1, . . . , ch) is p-vanishing, we have that χβ(cl+1,...,ch)

= 0

and so we also have χα(π) = 0 for any χα irreducible character of degree
divisible by p, that is π is p-vanishing in this case.

Let now β = (b1, b2, . . .) ` n−ampm−. . .−akpk be such that χβ has degree
divisible by p. Let α = (b1 +amp

m+ . . .+akp
k, b2, b3, . . .). Then α ` n and as

hα2,1 < n−ampm− . . .−akpk < pm, hα1,b1+1 = amp
m+ . . .+akp

k and lα1,b1+1 = 0,

we can remove from α a sequence of hooks of lengths ((pk)ak , . . . , (pm)am)
in a unique way and doing this we obtain β. So again by lemmas 61, 64
and 65 we have that p divides the degree of α. Assume that π ∈ Sn is p-
vanishing and that dk′ = ak′p

k′ + . . . + akp
k for any m ≤ k′ ≤ k. As again

hα2,1 < n− ampm− . . .− akpk < pm ≤ cj, j ≤ l, hα1,b1+1 = amp
m + . . .+ akp

k =
dm = c1+. . .+cl and lα1,b1+1 = 0, we can remove the first l hooks of a sequence
with hook-lengths (c1, . . . , ch) from α in a unique way and we obtain β. So by
the Murnaghan-Nakayama formula we have that χβ(cl+1,...,ch)

= ±χα(π) = 0,

in particular χβ(cl+1,...,ch)
= 0 and as this holds for any β ` n−ampm−. . .−akpk

such that p divides the degree of χβ we have that in this case the conjugacy
class with cycle partition (cl+1, . . . , ch) is p-vanishing and so the theorem is
proved.

The next theorem completely classify 2-vanishing and 3-vanishing conju-
gacy classes of Sn.

Theorem 79 (Classification of 2- and 3-vanishing elements of Sn). Let p =
2, 3 and

• pi = 8 if p = 2,

• pi = 9 if p = 3.
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Write n = m+pis with 0 ≤ m < pi and s ≥ 0. Let π ∈ Sn. π is p-vanishing if
and only if α(π), the cycle partition of π, is of the form (b1, . . . , bh, e1, . . . , et),
where (b1, . . . , bh) ` pis is the cycle partition of a p-adic type conjugacy class
of Spis and (c1, . . . , ct) ` m is the cycle partition of a p-vanishing conjugacy
class of Sm.

Proof. By theorems 73 and 75 we know that if l ≥ i then
∑

cj≥pl cj = al +

pal+1 + . . .+akp
k−l, where n = a0 +akp

k is the p-adic decomposition of n and
then by theorem 72 we need to have that wpl(π) = al + pal+1 + . . . + akp

k−l

and so applying lemma 58 we have that α(π) = (b1, . . . , bh, e1, . . . , et), where
(b1, . . . , bh) ` pis and the corresponding conjugacy class is of p-adic type.
Using theorem 78 we also know that (c1, . . . , ct) is the cycle partition of a
p-vanishing conjugacy class of Sm and so one direction of the theorem is
proved.

The proof of the other direction follows easily from theorem 78.

The following theorem classify p-vanishing conjugacy classes of Sn, for
p 6= 2, 3 up to conjecture 76, which is proved up to condition 77.

Theorem 80 (Conjecture on p-vanishing elements of Sn for p 6= 2, 3). As-
sume conjecture 76. Let p 6= 2, 3. Then π ∈ Sn is p-vanishing if and only if
it is of p-adic type.

Proof. Assume that π is p-vanishing. Then by theorems 73 and conjecture
76 for each i we have that

∑
cj≥pi cj = ai + pai+1 + . . . + akp

k−i, where

n = a0 + . . . + akp
k is the p-adic decomposition of n. Now by theorem 72

we easily have that wpi(π) = ai + pai+1 + . . .+ akp
k−i for each i, and so π is

of p-adic type by lemma 58. As we already now the opposite implication by
theorem 59, we have proved this theorem.

As condition 77 holds for a = 0, 1, 2 it can be seen by the proof of conjec-
ture 76 up to condition 77 that conjecture 76 holds when all the ai are equal
to 0, 1 or 2, and so we then have that theorem 80 allows us to completely
classify p-vanishing element of Sn when p 6= 2, 3 and all ai = 0, 1, 2.

13 Sign classes

In this last section we will consider sign classes of Sn. Parts of this section
are from [6].

Definition 39 (Sign conjugacy class). A conjugacy class of Sn is a sign
conjugacy class if it takes values 0, 1 or -1 on all irreducible characters of
Sn.
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A partition of n is a sign partition if it is the cycle partition of a sign
conjugacy class of Sn.

We will start with the following theorem, which is lemma 6 of [6].

Theorem 81. If (a1, . . . , ah) is a sign partition then ah appears only once in
(a1, . . . , ah), unless ah = 1 in which case it can appear twice.

Proof. First assume that ah > 1 and it appears m ≥ 2 times in (a1, . . . , ah) `
n. Then it is easy to see that (n− ah, ah) is a partition of n and

χ
(n−ah,ah)
(a1,...,ah)

= χ
((m−1)ah,ah)
(amh ) = m ≥ 2

and so in this case (a1, . . . , ah) isn’t a sign partition.
If ah = 1 and ah appears m ≥ 3 times in (a1, . . . , ah) we have that

χ
(n−1,1)
(a1,...,ah)

= χ
(m−1,1)
(1m) = m− 1 ≥ 2

and so also in this case (a1, . . . , ah) isn’t a sign partition.

We will only state the next theorem

Theorem 82. If α ` n and for 0 ≤ j ≤ k − 1, αji are all the partitions that
we can obtain by adding an hook of length k and leg-length j to α, we have
that

k−1∑
j=0

∑
i

(−1)j[αji ] =
k−1∑
j=0

(−1)j[α][(k − j, 1j)].

A proof of this can be found in the proofs of lemma 21.5 and theorem
21.1 of [1]. This proof uses the Littlewood-Richardson rule (theorem 2.8.13
of [2]).

Lemma 83. If no part of (c1, . . . , ch) ` n+ k is equal to k and αji are as in
the previous theorem we have that

k−1∑
j=0

∑
i

(−1)jχ
αji
(c1,...,ch)

= 0.

Proof. This lemma follows by the previous theorem, by theorem 10, which
gives a formula for the induced character, by the fact that if β ` k then

χβ(k) 6= 0 if β 6= (k − j, 1j) for some 0 ≤ j < k in which case χ
(k−j,1j)
(k) = (−1)j

(theorem 33) and by characters relations of the second kind (theorem 9).

The next theorem is theorem 7 of [6].
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Theorem 84. In a sign partition the only part that can be repeated is 1,
which can appear at most two times.

Proof. Write α = (a1, . . . , ai, a
s, ai+s+1, . . . , ah), where ai > a and ai+s+1 < a

and assume that s ≥ 2 if a > 1 or s ≥ 3 if a = 1 (i could be 0). We want to
show that then α is not a sign partition. If a = 1 we know that the result
is true from the previous theorem, so we can assume that a ≥ 2. Also still
by the previous theorem we can assume that ai+s+1 + . . . + ah 6= 0 (that
is ah 6= a). First assume that we can find β ` as + ai+s+1 + . . . + ah such
that hβ2,1 ≤ a and χβ(as,ai+s+1,...,ah)

6= 0,±1. We will show that in this case

α isn’t a sign partition. Let γ = (β1 + a1 + . . . + ai, β2, β3, . . .). Then as
hγj,l ≤ hγ2,1 = hβ2,1 ≤ a whenever j ≥ 2, if we want to recursively remove from
γ a sequence of hooks of lengths (a1, . . . , ah) we need to remove the first i of
these hooks from the first row and as hγ1,β1+1 = a1 + . . . + ai and lγ1,β1+1 = 0
we can remove the first i hooks of such a sequence from γ in a unique way
and so by the Murnaghan-Nakayama formula we have that

χγα = χβ(as,ai+s+1,...,ah)
6= 0,±1

and so α isn’t a sign partition.
We will now show that we can always find such a β. Let t = ai+s+1+ . . .+

ah. First assume that 1 ≤ t ≤ a. In this case let β = (a(s − 1) + t, 1a). As
a(s − 1) ≤ hβ2,1 < as, it is easy to see that if we want to recursively remove
s a-hooks from β we need to remove one of them from the second row and
the others from the first row and so we have by the Murnaghan-Nakayama
formula that

χβ(as,ai+s+1,...,ah)
= (−1)a−1sχ

(t)
(ai+s+1,...,ah)

= (−1)a−1s 6= 0,±1

as s ≥ 2, and so in this case α isn’t a sign partition.
By theorem 81 we can now assume that a ≥ 3. Assume now that we have

a < t < 2a. In this case (t−a)(a) = ((0), . . . , (0)) and so we can add an a-hook
to (t − a) in a different ways, which give the following partitions β0 = (t),
βj = (a− j, t− a+ 1, 1j−1), for 1 ≤ j ≤ 2a− t− 1 and βj = (t− a, a− j, 1j)
for 2a − t ≤ j ≤ a − 1. Notice that for each 0 ≤ j ≤ a − 1, the a-hook we
need to add to (t− a) in order to get βj has leg-length j. As al < a for each
l ≥ i+ s+ 1, we have by lemma 83 that

a−1∑
j=0

(−1)jχ
βj
(ai+s+1,...,ah)

= 1 +
a−1∑
j=1

(−1)jχ
βj
(ai+s+1,...,ah)

= 0

and so, as a ≥ 3, so that the last summation is over at least 2 terms, we can
find 1 ≤ j ≤ a− 1 such that (−1)jχ

βj
(ai+s+1,...,ah)

≥ 0.
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If 1 ≤ j ≤ 2a−t−1 let β = (t+a(s−1), a−(j−1), 1j−1). Then β ` t+as
and hβ2,1 = a. As hβ1,t+1 = a(s − 1) and lβ1,t+1 = 0 as a − (j − 1) ≤ a < t, if
we want to recursively remove s− 1 hooks of length a from β we can either
remove all of them from the first row or we have to remove one of them from
the second row and all others from the first row. So by the Murnaghan-
Nakayama formula we have that

χβ(as,ai+s+1,...,ah)
= χ

(t,a−(j−1),1j−1)
(a,ai+s+1,...,ah)

+ (−1)j−1(s− 1)χ
(t+a)
(a,ai+s+1,...,ah)

and as the only a-hooks of (t, a − (j − 1), 1j−1) are H
(t,a−(j−1),1j−1)
2,1 and

H
(t,a−(j−1),1j−1)
1,t−a+2 (as a − j + 1 ≥ a − 2a + t + 1 + 1 = t − a + 2 > 2) we

have that

χβ(as,ai+s+1,...,ah)
= (−1)j−1(s− 1) + (−1)j−1χ

(t)
(ai+s+1,...,ah)

− χ(a−j,t−a+1,1j−1)
(ai+s+1,...,ah)

= (−1)j−1s− χβj(ai+s+1,...,ah)

= (−1)j−1
(
s+ (−1)jχ

βj
(ai+s+1,...,ah)

)
and as s ≥ 2 and (−1)jχ

βj
(ai+s+1,...,ah)

≥ 0, we have that χβ(as,ai+s+1,...,ah)
6= 0,±1

and so (a1, . . . , ah) isn’t a sign partition in this case.
If instead 2a − t ≤ j ≤ a − 1, let β = (t + a(s − 1), a − j, 1j). Again

β ` t+ as, hβ2,1 = a and if we want to remove s− 1 a-hooks from β we either
need to remove all of them from the first row or remove one of the from the
second row and the others from the first row (as again hβ1,t+1 = a(s− 1) and

lβ1,t+1 = 0). Also as here a − j ≤ a − 2a + t = t − a, we have that the only
a-hooks of (t, a− j, 1j) are H1,t−a+1 and H2,1 and so we have that

χβ(as,ai+s+1,...,ah)
= χ

(t,a−(j−1),1j−1)
(a,ai+s+1,...,ah)

+ (−1)j−1(s− 1)χ
(t+a)
(a,ai+s+1,...,ah)

= (−1)j(s− 1) + (−1)jχ
(t)
(ai+s+1,...,ah)

+ χ
(t−a,a−j,1j)
(ai+s+1,...,ah)

= (−1)js+ χ
βj
(ai+s+1,...,ah)

= (−1)j
(
s+ (−1)jχ

βj
(ai+s+1,...,ah)

)
and as again s ≥ 2 and (−1)jχ

βj
(ai+s+1,...,ah)

≥ 0, we have that also in this

case χβ(as,ai+s+1,...,ah)
6= 0,±1, from which follows that (a1, . . . , ah) isn’t a sign

partition in this case either.
The last case we need to consider is when t ≥ 2a. In this case one of

the partitions which appear in (t − a)(a) is of the form (c), for some c ≥ 1
and all the other partitions appearing in the a-quotient are (0). So we can
add an a-hook to (t − a) in a + 1 ways, which give the partitions (t) and
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βj = (t−a, a− j, 1j), for 0 ≤ j ≤ a−1. Here too we have that the leg-length
of the a-hook we add to (t− a) to obtain βj is j and so again by lemma 83
we have that

1 +
a−1∑
j=0

(−1)jχ
βj
(ai+s+1,...,ah)

= 0

and as a ≥ 3 we can find 0 ≤ j ≤ a−1 such that χ
βj
(ai+s+1,...,ah)

≥ 0. Again let

β = (t+a(s−1), a− j, 1j). As here again we have that t−a+ 1 > a ≥ a− j,
we have by the same calculations as in the previous case that

χβ(as,ai+s+1,...,ah)
= (−1)j

(
s+ (−1)jχ

βj
(ai+s+1,...,ah)

)
and as here too s ≥ 2 and (−1)jχ

βj
(ai+s+1,...,ah)

≥ 0 we need to have that

χβ(as,ai+s+1,...,ah)
6= 0,±1 and so also in this case (a1, . . . , ah) isn’t a sign parti-

tion and so the theorem is proved.

Theorem 85. If (a1, . . . , ah) is a sign partition and ai+1 + . . .+ ah ≤ ai + 1
then also (ai+1, . . . , ah) is a sign partition.

Proof. Let β = (β1, β2, . . .) be any partition of ai+1 + . . . + ah and define
α = (β1 +a1 + . . .+ai, β2, β3, . . .). If β2 = 0 then β = (ai+1 + . . .+ah) and so
χβ(ai+1,...,ah)

= 1. If β2 6= 0 then hα2,1 = hβ2,1 < ai+1 + . . .+ ah ≤ ai + 1 ≤ aj + 1

for j ≤ i. First assume that hβ2,1 < ai. Then as hα1,β1+1 = a1 + . . . + ai and

lα1,β1+1 = 0 we have that χβ(ai+1,...,ah)
= χα(a1,...,ah) = 0,±1.

Otherwise we have that hβ2,1 = ai. As

hβ2,1 ≤ β2 + β3 + . . . = ai+1 + . . .+ ah − β1 ≤ ai + 1− β1

and β1 ≥ β2 > 0 we need to have that β1 = 1 and so β = (1aI+1+...+ah) and
then χβ(ai+1,...,ah)

= ±1 and so we have that the theorem is true.

The previous theorem is a generalization of one direction of proposition
2 of [6], which is the next theorem.

Theorem 86. If (a1, . . . , ah) ` n is such that a1 > a2 + . . .+ah we have that
(a1, . . . , ah) is a sign partition if and only if (a2, . . . , ah) is a sign partition.

Proof. Assume that (a2, . . . , ah) is a sign partition and let α be any partition
of n. If α doesn’t have any a1-hook we have by the Murnaghan-Nakayama
formula that χα(a1,...,ah) = 0. Otherwise as α is a partition of n < 2a1 we need
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to have that wa1(α) = 1, so that α has a unique a1-hook. Let β be obtained
by α by removing this a1-hook. Then β ` a2 + . . .+ ah and

χα(a1,...,ah) = ±χβ(a2,...,ah) = 0,±1

as (a2, . . . , ah) is a sign partition and so also (a1, . . . , ah) is a sign partition.
As the opposite direction of the theorem follows by the previous theorem

with i = 1, we have that the theorem is proved.

By this last theorem in order to classify all sign partitions, and so also all
sign conjugacy classes, it is enough to classify those sign partitions (a1, . . . , ah)
for which a1 ≤ a2+. . .+ah. In all of the following we will assume that ah 6= 0.

Theorem 87. If (a1, a2) is a sign partition then a1 = a2 if and only if
(a1, a2) = (1, 1)

Proof. This is actually an easy corollary of theorem 81, as it is clear that
(1, 1) is a sign class.

Theorem 88. If a1 ≤ a2 + a3 then (a1, a2, a3) is a sign partition if and only
if (a1, a2, a3) = (a1, a1 − 1, 1) and a1 ≥ 2.

Proof. If (a1, a2, a3) is a sign partition then by theorem 81 we clearly have
that a1 ≥ 2 (as we are assuming that a3 ≥ 1). First assume that a2+a3 > a1.
Then we have that

χ
(a2+a3,1a1 )
(a1,a2,a3)

= (−1)a1−1χ
(a2+a3)
(a2,a3)

+ χ
(a2+a3−a1,1a1 )
(a2,a3)

= (−1)a1−1 + (−1)a2−1χ(a2+a3−a1,1a1−a2 )

= (−1)a1−1 + (−1)a2−1(−1)a1−a2

= (−1)a1−12 6= 0,±1

as h
(a2+a3−a1,1a1 )
1,2 = a2 + a3 − a1 − 1 < a2 ((1, 2) ∈ (a2 + a3 − a1, 1

a1) as
a2 +a3 > a1), and so (a1, a2, a3) is not a sign partition when a2 +a3 > a1. So
if (a1, a2, a3) is a sign partition we need to have that a2 +a3 = a1. If a1 = 2, 3
as we are assuming that a3 ≥ 1, we have that (a1, a2, a3) = (a1, a1 − 1, 1) is
the only possibility in which this can happen. So assume now that a1 ≥ 4
and that a3 ≥ 2. Then

χ
(a1,3,1a1−3)
(a1,a2,a3)

= (−1)a1−3χ
(a1)
(a2,a3)

− χ(2,1a1−2)
(a2,13)

= (−1)a1−3 − (−1)a2−1χ
(2,1a1−a2−2)
(a3)

= (−1)a1−3 − (−1)a2−1(−1)a1−a2−2

= (−1)a1−32 6= 0,±1
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and so we have that (a1, a2, a3) isn’t a sign partition when it is equal to
(a1, a1 − a3, a3) with a3 ≥ 2. So we have that whenever (a1, a2, a3) is a sign
partition and a1 ≤ a2 + a3 then (a1, a2, a3) = (a1, a1 − 1, 1) and a1 ≥ 2.

Assume now that (a1, a2, a3) = (a1, a1 − 1, 1) and a1 ≥ 2. As (a1 − 1, 1)
is a sign partition by theorem 86 if a1 ≥ 3 or, when a1 = 2 by the fact that
(1, 1) is a sign partition, we easily have that χα(a1,a1−1,1) = 0,±1 whenever α
contains at most one a1-hook. So we only need to show that the same holds if
α has 2 hooks of length a1. As α is a partition of 2a1 this happens if and only
if α isn’t a hook (in which case α only has one a1-hook, as it also contains a
2a1-hook) and α can be obtained by adding an a1-hook to an a1-hook. Also as

χ
(a1−c,1c)
(a1−1,1) = 0 if c 6= 0, a1− 1, in which cases (a1− c, 1c) = (a1), (1

a1), we have
that if χα(a1,a1−1,1) 6= 0,±1 then α must have 2 a1-hooks and removing either

one of them we need to obtain (a1) or (1a1). It is easy to see that if we add an
a1-hook to (a1) or (1a1) and we don’t obtain an hook partition we must obtain
(a1, c, 1

a1−c) or (a1 − c+ 2, 2c−1, 1a1−c) for some 2 ≤ c ≤ a1. For any of these

values of c we have that h
(a1,c,1a1−c)
1,2 = h

(a1−c+2,2c−1,1a1−c)
2,1 = a1 and if we remove

the corresponding hook we obtain (c−1, 1a1−c+1) or (a1−c+2, 1c−2). If c 6= 2
these partitions are not equal to either (a1) or (1a1). So if α 6= (a1, 2, 1

a1−1)
we have that χα(a1,a1−1,1) 6= 0 and as

χ
(a1,2,1a1−2)
(a1,a1−1,1) = (−1)a1−2χ

(a1)
(a1−1,1) − χ

(1a1 )
(a1−1,1) = (−1)a1−2 − (−1)a1−2 = 0

we have that if a1 ≥ 2 then (a1, a1 − 1, 1) is a sign partition and so the
theorem is proved.

Theorem 89. If h ≥ 4 and (a1, . . . , ah) is a sign partition we have that
a1 6= a2 + . . .+ ah.

Proof. First assume that h is even and that a1 = a2 + . . .+ ah. Then by the
Murnaghan-Nakayama formula we have that

χ
(a1,2,1a1−2)
(a1,...,ah)

= −χ(1a1 )
(a2,...,ah)

+ (−1)a1−2χ
(a1)
(a2,...,ah)

= −(−1)
∑h
j=2(aj−1) + (−1)a1

= (−1)a1−h + (−1)a1

= (−1)a12

and so in this case (a1, . . . , ah) isn’t a sign partition.
So assume now that h is odd and again a1 = a2 + . . . + ah. Consider

(a1, a1 − ah−1 + 1, 1ah−1−1). As

ah−1 = a1 − a2 − . . .− ah−2 − ah ≤ a1 − h+ 2 ≤ a1 − 3
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and ah−1 ≥ 1, we have that 2 ≤ a1 − ah−1 + 1 ≤ a1 from which follows that
(a1, a1 − ah−1 + 1, 1ah−1−1) is a partition of a1 + . . . + ah = 2a1. Using the
Murnaghan-Nakayama formula we have that

χ
(a1,ah−1+2,1a1−ah−1−2)

(a1,...,ah)
= (−1)a1−ah−1−2χ

(a1)
(a2,...,ah)

− χ(ah−1+1,1a1−ah−1−1)

(a2,...,ah)
.

By theorem 84 we have that aj 6= ah−1 if j < h− 1, from which follows that

χ
(ah−1+1,1a1−ah−1−1)

(a2,...,ah)
= (−1)(a2−1)+...+(ah−2−1)+(ah−1) as when we are removing

from (ah−1 + 1, 1a1−ah−1−1) a sequence of hooks of lengths (a2, . . . , ah) the
second last hook we remove needs to be the one corresponding to the node
(1, 2) and all other hooks must be on the first column. So we have that

χ
(a1,ah−1+2,1a1−ah−1−2)

(a1,...,ah)
= (−1)a1−ah−1 − (−1)a2+...+ah−2+ah+h−2 = (−1)a1−ah−12

as a2 + . . . + ah−2 + ah = a1 − ah−1 and h is odd and so (a1, . . . , ah) isn’t a
sign partition in this case either and so the theorem is proved.

Theorem 90. If h ≥ 4 and (a1, . . . , ah) is a sign partition then we have
a2 + . . .+ ah 6= a1 + 1, unless if (a1, . . . , ah) = (3, 2, 1, 1), (5, 3, 2, 1).

Proof. It can be easily checked that (3, 2, 1, 1) and (5, 3, 2, 1) are sign parti-
tions, so we will only prove the other direction. This will be done dividing the
proof in the following cases, which is easy to see that cover all possibilities,
by theorem 84.

Case 1: h odd,

Case 2: h even and ah ≥ 2,

Case 3: h even, ah−1, ah = 1 and ah−2 ≥ 3,

Case 4: h even, ah−1, ah = 1 and ah−2 = 2,

Case 5: h even, ah = 1 and ah−1 ≥ 3,

Case 6: h even, ah = 1, ah−1 = 2 and ah−2 6= 3,

Case 7: h even, ah = 1, ah−1 = 2 and ah−2 = 3.

Case 1.
Assume first that h is odd and a2 + . . . + ah = a1 + 1. By the Murnaghan-
Nakayama formula we then have that

χ
(a1+1,1a1 )
(a1,...,ah)

= χ
(1a1+1)
(a2,...,ah)

+ (−1)a1−1χ
(a1+1)
(a2,...,ah)

= (−1)
∑h
j=2(aj−1) + (−1)a1−1

= (−1)a1+1−(h−1) + (−1)a1−1

= (−1)a1−12
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and so (a1, . . . , ah) isn’t a sign partition in this case.
Case 2.

So we can now assume that h is even and a2 + . . .+ ah = a1 + 1. At first let
ah ≥ 2. Notice that in this case we have a1 = a2 + . . .+ah−1 > ah+h−3 ≥
ah + 1 as h ≥ 4. As ah−1 6= ah by theorem 84, it can be easily seen by the
Murnaghan-Nakayama formula that

χ
(a1+1,ah+1,1a1−ah−1)
(a1,...,ah)

= (−1)a1−ah−1χ
(a1+1)
(a2,...,ah)

− χ(ah,2,1
a1−ah−1)

(a2,...,ah)

= (−1)a1−ah−1 − (−1)a2−1+a3−1+...+ah−2−1+ah−1−2

= (−1)a1−ah−1 − (−1)a2+a3+...+ah−2+ah−1−h−3−2

= (−1)a1−ah−1 + (−1)a2+a3+...+ah−2+ah−1

= (−1)a1−ah−12

as h is even and a2 + a3 + . . .+ ah−2 + ah−1 + ah = a1 − 1.
Case 3.

Assume now that ah−1, ah = 1 and ah−2 ≥ 3. Then

χ
(a1+1,a1)
(a1,...,ah)

= χ
(a1+1)
(a2,...,ah)

− χ(a1−1,2)
(a2,...,ah)

= 1− χ(ah−2,2)

(ah−2,1,1)

= 1 + χ
(1,1)
(1,1) = 2

as aj ≥ 3 for j ≤ h − 2 and H
(ah−2,2)

(1,2) is the only hook of (ah−2, 2) of length

ah−2 and has leg-length 1. So in this case we have that (a1, . . . , ah) isn’t a
sign partition.

Case 4.
Let now ah−1, ah = 1 and ah−2 = 2. If h = 4 then a1 = 3 and so (a1, . . . , ah) =
(3, 2, 1, 1). If h ≥ 6 consider (a1 + 1, ah−3 + 1, 1a1−ah−3−1). This is a partition
as h ≥ 6 (so that h− 3 6= 1). Then we have that

χ
(a1+1,ah−3+1,1a1−ah−3−1)

(a1,...,ah)
= (−1)a1−ah−3−1χ

(a1+1)
(a2,...,ah)

− χ(ah−3,2,1
a1−ah−3−1)

(a2,...,ah)

= (−1)a1−ah−3−1 − χ(ah−3,2,1
a1−ah−3−1)

(a2,...,ah)
.

As h
(ah−3,2,1

a1−ah−3−1)
1,2 = ah−3 < ai for i < h − 3 by theorem 84 and as

h
(ah−3,2,1

a1−ah−3−1)
3,1 = a1−ah−3−1 ≥ a2 + . . .+ah−4 and a

(ah−3,2,1
a1−ah−3−1)

3,1 = 0
we have that

χ
(ah−3,2,1

a1−ah−3−1)

(a2,...,ah)
= (−1)a2−1+a3−1+...+ah−4−1χ

(ah−3,2,1,1)

(ah−3,2,1,1)

= (−1)a2+a3+...+ah−4−h+5χ
(ah−3,2,1,1)

(ah−3,2,1,1)

= (−1)a1−ah−3−5−h+5χ
(ah−3,2,1,1)

(ah−3,2,1,1)

= (−1)a1−ah−3χ
(ah−3,2,1,1)

(ah−3,2,1,1)
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as h is even and ah−2 +ah−1 +ah = 4. By theorem 84 we have that ah−3 ≥ 3.

If ah−3 = 3 then χ
(3,2,1,1)
(3,2,1,1) = 1 and if ah−3 = 4 then χ

(4,2,1,1)
(4,2,1,1) = 2. If ah−3 ≥ 5

we have that h
(ah−3,2,1,1)
2,1 = 4 < ah−3 and then we have that (ah−3, 2, 1, 1) has

a unique hook of length ah−3 and so χ
(ah−3,2,1,1)

(ah−3,2,1,1)
= −χ(14)

(2,1,1) = 1. So in any

case χ
(ah−3,2,1,1)

(ah−3,2,1,1)
≥ 1, from which we have that

χ
(a1+1,ah−3+1,1a1−ah−3−1)

(a1,...,ah)
= (−1)a1−ah−3−1(1 + χ

(ah−3,2,1,1)

(ah−3,2,1,1)
) 6= 0,±1

and so (a1, . . . , ah−3, 2, 1, 1) isn’t a sign partition when h ≥ 6.
Case 5.

Now assume that ah = 1 and ah−1 ≥ 3. Then

χ
(a1+1,a1)
(a1,...,ah)

= χ
(a1+1)
(a2,...,ah)

− χ(a1−1,2)
(a2,...,ah)

= 1− χ(ah−1−1,2)
(ah−1,1)

= 1 + χ
(1)
(1) = 2

and so (a1, . . . , ah) is not a sign partition.
Case 6.

Let now ah = 1, ah−1 = 2 and ah−2 6= 3. By theorem 84 if (a1, . . . , ah)
is a sign partition we then need to have that ah−2 > 3. As all hooks of
(a1 + 1, a1 − 1, 1) which are on the second or third row have length either 3
or 1 and as a1 > ah + ah−1 + 1 = 1 + 2 + 1 = 4, we have that

χ
(a1+1,a1−1,1)
(a1,...,a2)

= −χ(a1+1)
(a2,...,ah)

− χ(a1−2,2,1)
(a2,...,ah)

= −1− χ(ah−3,2,1)

(ah−3,2,1)

= −1 + χ
(1,1,1)
(2,1) = −2

and so also in this case (a1, . . . , ah) isn’t a sign partition.
Case 7.

At last let ah = 1, ah−1 = 2 and ah−2 = 3. If h = 4 we need to have that
a1 = 5 and so (a1, . . . , ah) = (5, 3, 2, 1) in this case. If h ≥ 6 is even consider
(a1 + 1, ah−3 + 1, 1a1−ah−3−1). Again this is a partition as h ≥ 6, so that
h − 3 6= 1. By the same calculation as in the case where ah−1, ah = 1 and
ah−2 = 2 we have that

χ
(a1+1,ah−3+1,1a1−ah−3−1)

(a1,...,ah)
= (−1)a1−ah−3−1 − χ(ah−3,2,1

a1−ah−3−1)

(a2,...,ah)

and similarly again to the case where ah−1, ah = 1 and ah−2 = 2 we have that

χ
(ah−3,2,1

a1−ah−3−1)

(a2,...,ah)
= (−1)a1−ah−3χ

(ah−3,2,1
4)

(ah−3,3,2,1)



120 13 Sign classes

(now as ah−2 + ah−1 + ah = 6). Here we need to have that ah−3 ≥ 4 by

theorem 84. If ah−3 = 4 then χ
(4,3,2,14)
(4,3,2,1) = 1, if ah−3 = 5 then χ

(5,3,2,14)
(5,3,2,1) = 1 and

if ah−3 = 6 then χ
(6,3,2,14)
(6,3,2,1) = 2. So let now ah−3 ≥ 7. As h

(ah−3,2,1
4)

3,1 = 6 < ah−3

we have that χ
(ah−3,2,1

4)

(ah−3,3,2,1)
= −χ(16)

(3,2,1) = 1 and so we have that χ
(ah−3,2,1

4)

(ah−3,3,2,1)
is

always ≥ 1, from which we have that

χ
(a1+1,ah−3+1,1a1−ah−3−1)

(a1,...,ah)
= (−1)a1−ah−3−1(1 + χ

(ah−3,2,1
4)

(ah−3,3,2,1)
) 6= 0,±1

and so also in this case (a1, . . . , ah) isn’t a sign partition and we then have
that the theorem is proved.

Theorem 91. If (a1, . . . , ah) is a sign partition with a2 + . . .+ ah > a1 and
a3 + . . .+ ah ≤ a1, then ah ≤ a1 − a2.

Proof. Assume that a2 + . . .+ ah > a1, a3 + . . .+ ah ≤ a1 and ah > a1 − a2.
Then we have that

χ
(a2+...+ah,1

a1 )
(a1,...,ah)

= (−1)a1−1χ
(a2,...,ah)
(a2,...,ah)

+ χ
(a2+...+ah−a1,1a1 )
(a2,...,ah)

= (−1)a1−1 + (−1)a2−1χ
(a2+...+ah−a1,1a1−a2 )
(a3,...,ah)

= (−1)a1−1 + (−1)a2−1χ
(ah−a1+a2,1a1−a2 )
(ah)

= (−1)a1−1 + (−1)a2−1(−1)a1−a2 = (−1)a1−12,

where the first equality follows from the fact that a2 + . . . + ah > a1, the
second equality follows from the fact that a2 + . . . + ah − a1 − 1 < a2 as
a3 + . . .+ah ≤ a1 and the third equality from the fact that a1−a2 < ah ≤ aj
for 3 ≤ j ≤ h.

So as χ
(a2+...+ah,1

a1 )
(a1,...,ah)

= (−1)a1−12 6= 0,±1, we have that if a2+. . .+ah > a1,

a3 + . . . + ah ≤ a1 and ah > a1 − a2 then (a1, . . . , ah) isn’t a sign partition
and so the theorem is proved.

Lemma 92. If (a3, . . . , ah) is a sign partition with

1 ≤ a3 + . . .+ ah < a1 − 1

we have that if χα(a1,a1−1,a3,...,ah) 6= 0,±1 then any β-set for α is of the form

X = {y1, . . . , yk−2, yk−1 + a1, yk + a1}, where Y = {y1, . . . , yk} is a β-set for
a partition of a3 + . . .+ ah − 1 and we have that yk−1 + a1, yk + a1 6∈ Y and
yk−1+1 6∈ Y or yk−1+a1−1 ∈ Y and similarly yk+1 6∈ Y or yk+a1−1 ∈ Y .

Proof. As by theorem 86 we have that (a1 − 1, a3, . . . , ah) is a sign partition
and as

a1 + (a1 − 1) + a3 + . . .+ ah < 3a1,
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so that for any α ` a1 + (a1 − 1) + a3 + . . .+ ah contains at most 2 hooks of
length a1, we easily get that if α contains at most 1 hook of length a1 then
χα(a1,a1−1,a3,...,ah) = 0,±1. Now again as a1 + (a1− 1) + a3 + . . .+ ah < 3a1, we
have that α contains 2 hooks of length a1 if and only if the a1-quotient of α
is α(a1) = (α0, . . . , αa1−1) with two of the αi equal to (1) and all others equal
to (0). From this as

a1 + (a1 − 1) + a3 + . . .+ ah − 2a1 = a3 + . . .+ ah − 1 ≥ 0

we easily get that if χα(a1,a1−1,a3,...,ah) 6= 0,±1 we can write any β-set of α as

X = {y1, . . . , yk−2, yk−1 + a1, yk + a1}, with Y = {y1, . . . , yk} is a β-set for a
partition of a3 + . . .+ ah − 1 and yk−1 + a1, yk + a1 6∈ Y .

We will show that if yk + 1 ∈ Y and yk +a1−1 6∈ Y then we need to have
that χα(a1,a1−1,a3,...,ah) = 0,±1. In order to shorten notation if Z is a β-set let

χZ = χP
∗(Z). Assume that yk + 1 ∈ Y and yk + a1 − 1 6∈ Y . Then we have

that

χα(a1,a1−1,a3,...,ah) = ±χ{y1,...,yk−1,yk+a1}
(a1−1,a3,...,ah) +±χ{y1,...,yk−2,yk−1+a1,yk}

(a1−1,a3,...,ah) .

If we can prove that χ{y1,...,yk−2,yk−1+a1,yk} = 0 then we would have that
χα(a1,a1−1,a3,...,ah) = 0,±1 in this case, as (a1− 1, a3, . . . , ah) is a sign partition.

By the Murnaghan-Nakayama formula, to show that χ{y1,...,yk−1,yk+a1} = 0
it is enough to show that {y1, . . . , yk−1, yk + a1} doesn’t have any hook of
length a1 − 1. As yk + a1 − (a1 − 1) = yk + 1 ∈ Y , so that it must also be in
{y1, . . . , yk−1, yk +a1}, if {y1, . . . , yk−1, yk +a1} has any hook of length a1− 1
we need to have that yj−a1+1 6∈ {y1, . . . , yk−1, yk+a1} and yj−a1+1 ≥ 0 for
some 1 ≤ j ≤ k−1 by theorem 45. If we would also have that yj−a1+1 6= yk,
we would then have that Y has also an hook of length a1 − 1, which gives
a contradiction as Y is a β-set for a partition of a3 + . . . + ah − 1 < a1 − 1.
So we must have that yj − a1 + 1 = yk, which gives a contradiction with the
fact that we are assuming that yk + a1 − 1 6∈ Y . So when yk + 1 ∈ Y and
yk + a1 − 1 6∈ Y then {y1, . . . , yk−1, yk + a1} doesn’t have any hook of length
a1 − 1 and so we have that in this case χα(a1,a1−1,a3,...,ah) = 0,±1.

Using the symmetry between yk−1 and yk we then also have that if
χα(a1,a1−1,a3,...,ah) 6= 0,±1 then we also need to have that yk−1 + 1 6∈ Y or
yk−1 + a1 − 1 ∈ Y and so the theorem is proved.

Theorem 93. If a ≥ 4 then (a, a− 1, 2, 1) is a sign partition.

Proof. The case where a = 4 can be checked by showing that χα(4,3,2,1) = 0,±1
for any α ` 10.
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Assume now that a ≥ 5. Here we can apply lemma 92 as (2, 1) is a sign
partition. Using the lemma it is enough to show that χα(a,a−1,2,1) = 0,±1 when

α has β-set X = {y1, . . . , yk−2, yk−1 + a, yk + a} for some Y = {y1, . . . , yk}
β-set of a partition of 2, with yk−1 + a, yk + a 6∈ Y and yk−1 + 1 6∈ Y or
yk−1 + a− 1 ∈ Y and yk + 1 6∈ Y or yk + a− 1 ∈ Y . As the only partitions of
2 are (2) and (1, 1), we can assume that Y is equal to {0, . . . , 2a− 2, 2a+ 1}
or {0, . . . , 2a − 3, 2a − 1, 2a} (we need to have that 0, 1, . . . , a − 1 ∈ Y ). In
the first case we have that the y ∈ Y such that y + 1 6∈ Y or y + a1 − 1 ∈ Y
are a− 1, a+ 2, 2a− 2, 2a+ 1, while in the second case those y are a− 2, a+
1, 2a − 3, 2a. So for each of these two possibilities for Y we have 6 =

(
4
2

)
possibilities for X and so we need to check that χX(a,a−1,2,1) = 0,±1 for 12
possible X. From each of these X we can remove an a-hook in two different
ways and after having removed an a-hook we can always remove a hook of
length a− 1 in a unique way. Using the Murnaghan-Nakayama formula and
theorem 45 we have that

χ
{0,...,a−2,a,a+1,a+3,...,2a−1,2a+1,2a+2}
(a,a−1,2,1) = (−1)a−2χ

{0,...,a−2,a...,2a−1,2a+1}
(a−1,2,1)

+(−1)a−2χ
{0,...,a+1,a+3,...,2a−2,2a+1,2a+2}
(a−1,2,1)

= (−1)a−2(−1)a−2χ
{0,...,2a−3,2a−1,2a+1}
(2,1)

+(−1)a−2(−1)a−4χ
{0,...,2a−2,2a+2}
(2,1)

= χ
(2,1)
(2,1) + χ

(3)
(2,1) = 1

and similarly it can be proved that also in all the other choices of X that
we need to consider we have that χX(a,a−1,2,1) = 0,±1 and so we have that

also when a ≥ 5, (a, 1 − 1, 2, 1) is a sign partition and then the theorem is
proved.

Even if in the proof of the theorem we considered both partitions obtained
by adding 2 a-hooks to (2) and to (1, 1), it is enough to consider only those
obtained by adding 2 a-hooks to (2), as the others are their conjugates and
χα
′
(π) = sign(π)χα(π).

Theorem 94. If a1 ≥ 5 then (a1, a1 − 1, 3, 1) is a sign partition.

Proof. The case where a1 = 5 can be checked by calculating χα(5,4,3,1) for any
α ` 13.

Assume now that a1 ≥ 6. In this case we can apply lemma 92 as (3, 1)
is a sign partition by theorem 86. The only partitions of 3 are (3), (2, 1)
and (1, 1, 1) and β-sets for them are {0, 1, . . . , 2a− 2, 2a+ 2}, {0, 1, . . . , 2a−
3, 2a− 1, 2a+ 1} and {0, 1, . . . , 2a− 4, 2a− 2, 2a− 1, 2a} respectively. If Y is
one of these β-sets then those y ∈ Y such that y+1 6∈ Y or y+a−1 ∈ Y are
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a− 1, a+ 3, 2a− 2, 2a+ 2 in the first case, a− 2, a, a+ 2, 2a− 3, 2a− 1, 2a+ 1
in the second case and a−3, a+1, 2a−4, 2a in the last case. So by lemma 92
we only need to check that χX(a,a−1,3,1) = 0,±1 when X is obtained by Y by
increasing by a two of the given elements of Y . So we only need to consider(
4
2

)
+
(
6
2

)
+
(
4
2

)
= 27 partitions of 2a+ 3. We will now show one of these cases

χ
{0,...,a−2,a...,2a−1,3a+2}
(a,a−1,3,1) = χ

{0,...,a−2,a...,2a−1,2a+2}
(a−1,3,1)

+(−1)a−1χ
{0,...,2a−2,3a+2}
(a−1,3,1)

= (−1)a−2χ
{0,...,2a−3,2a−1,2a+2}
(3,1)

+(−1)a−1χ
{0,...,2a−2,2a+3}
(3,1)

= χ
(3,1)
(3,1) + (−1)a−1χ

(4)
(3,1) = (−1)a−1.

As the other cases can be checked similarly and in all of them we have that
χX(a,a−1,3,1) = 0,±1, we have that (a, a− 1, 3, 1) is a sign partition.

Also in this theorem like in the previous one we could consider less par-
titions, as the partitions obtained by adding two a-hooks to (1, 1, 1) are the
conjugates of those obtained by adding two a-hooks to (3).

We will finish by stating a conjecture by Olsson (the conjecture at the end
of [6]) which would allow by theorem 86 to completely classify sign partitions
of n and so also sign conjugacy classes of Sn.

Conjecture 95. If (a1, . . . , ah) is a sign partition and a1 ≤ a2 + . . . + ah
then (a1, . . . , ah) is one of the following:

• (1, 1), (3, 2, 1, 1) or (5, 3, 2, 1),

• (a, a− 1, 1) for some a ≥ 2,

• (a, a− 1, 2, 1) for some a ≥ 4,

• (a, a− 1, 3, 1) for some a ≥ 5.
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