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Resumé

Dette speciale omhandler irreducible karakterer i de endelige symmetriske
grupper. Der er en naturlig korrespondence mellem partitioner af n og ir-
reducible karakterer af den symmetrisk gruppe S,. Denne korrepondence
er specielt synlig i Murnaghan-Nakayama-formlen. Formlen muligger at
beregne veerdien af den irreducible karakter, hgrende til partitionen « rekur-
sivt ved at betragte a’s Young diagram. Forbindelsen mellen de irreducible
karakterer og partitioner viser sig ogsa i den sakaldte hook-formel, som an-
giver graden af den irreducible karakter hgrende til o ved hjeelp af “hook-
leengderne” i . Hook-formlen kan ogsa ses some en anvendelse af Murnaghan-
Nakayama-formlen (eller af forgreningsreglen, som er et specielt tilfaelde af
den).

Jeg starter med at praesentere et bevis for Murnaghan-Nakayama-formlen og
sa giver jeg nogle eksempler pa anvendelser. Den forste anvendelse er en
formel for x*(m), veerdien af den irreducible karakter, hgrende til « pa m, i
det tilfeelde hvor for et naturligt tal ¢, ¢-veegten af 7 er storre end eller lig a’s
g-veegt. De andre anvendelser af Murnaghan-Nakayama-formlen er studier af
“p-vanishing”- og “sign”-konjugationsklasser i S, dvs. konjugationsklasser
i .5, hvor alle irreducible karakterer af grad delelig med p antager veerdien 0
eller hvor alle irreducible karakterer kun tager vaerdierne 0,1 eller -1.



Abstract

In this thesis I will study the irreducible characters of the finite symmetric
groups. They are labeled in a natural way by the partitions of n. This way
of labeling irreducible partitions of .S,, becomes even more natural when we
study the Murnaghan-Nakayama formula. This formula allows us to find
the values of the irreducible character labeled by « in a recursive way by
looking at the Young diagram of a. The connection between the irreducible
characters of S,, and the partitions of n appears also in the hook formula,
which allows us to calculate the degree of the irreducible character labeled by
a in terms of the hook lengths of . The hook formula may actually be seen
as an application of the Murnaghan-Nakayama formula (or of the branching
rule, which is a special case of it), as the degree of a character is equal to its
value on the element 1.

I will start by presenting a proof of the Murnaghan-Nakayama formula and
then use it in some applications. The first application is to find a formula
for x*(m), the value of the irreducible character labeled by a on =, in the
case where for some ¢, the g-weight of 7 is at least as big as that of . The
other applications of the Murnaghan-Nakayama formula that I will present
are to study p-vanishing and sign classes of S,,, that is conjugacy classes of
S, where all irreducible characters of degree divisible by p take the value 0
or where all irreducible characters take value 0,1 or -1 respectively.



4 Introduction

Introduction

After having given some definitions and results about representations of a
finite group, in particular when the ground field is algebraic closed and has
characteristics 0 in section [T} and about partitions in section[2] I begin study-
ing irreducible characters of S,. Even if in sections [3 and [ I consider rep-
resentations both in characteristic 0 and in positive characteristics, starting
from section [5| I will only be considering ordinary irreducible characters of
S,, that is irreducible characters of S,, over C.

In section [5| I show that the ordinary irreducible representation of S,
are labeled by the partitions of n in such a way that if [«] is the irreducible
representation corresponding to «, where « is a partition of n, I have that [a]
is the only common irreducible component of Indgz(f Sa) and Ind2" (AS.),
where o is the partition associated to «, for any H C S,,, [ H is the identity
representation of H and AH is the sign representation of H and for any [
partition of n, Sg is a Young subgroup corresponding to /3, that is a subgroup
of S, isomorphic to Sz, x Ss, x ---. I also show that [a] appears only
once in any decomposition of Indgz(f Se) and Indgzl(ASa/) in irreducible
representations and that [o] is also a representation of S,, over Q.

In section [6]I find a method to compute the irreducible characters of S,,,
even if this method isn’t really useful when n is large, as it would require a
really large number of calculations.

In section [7] I prove the determinantal form, i.e. that [a] = |[oy + j — i]],
where ;
[n4] - [ng] = Indszii'f-'ingnk (I(Sp, X -+ % Sy,))

when all n; > 0 and is 0 otherwise, which gives an easier method to find the
values of the irreducible characters of S,, on all conjugacy classes, as thanks
to this formula I then only need to find the characters of the representations
[ag + (1) = 1] - - - [ag + 7(k) — k] for m € S, for some big enough k (k needs
to be such that a; = 0 for j > k), which are either induced characters from
the identity representation of some Young subgroup or they are 0.

This is used in section |8 to prove first the branching rule (one part of
which is a particular case of the Murnaghan-Nakayama formula) and then
the Murnaghan-Nakayama formula, which says that

X = Y (=)™ (p)

(i.j)€ach =k

where for any partition /3, x? is the character of the irreducible representation
labeled by 3, and 7, p and k are such that 7 € S,,, p € S,,_ and the cycle
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partition of p is obtained by the cycle partition of 7 by removing a part equal
to k (in particular I need to have that 7 has at least one k-cycle).

The proof of the Murnaghan-Nakayama formula I present in sections from
to 8] follows a book from James and Kerber ([2]).

I then prove in section [J] some results on cores, quotients and -sets of a
partition, which, together with the Murnaghan-Nakayama formula are used
to prove in section (10| a formulas for y“(7) in the case where the g-weight
of m is at least as big as that of a, where ¢ is any positive integer. I focus
mainly on the case where w,(7) = wy(a) (as if w,(7m) > w,(a) I have that
Xx*(m) = 0) and in this case if 7 = po, where p consists cycles of lengths g\,
where A - w,(7) and o and p acts on distinct sets of elements, I prove that

X)) = §y(a) £ @ (o)

where §,(a), a'? and o, are the g-sign, the g-quotient and the g-core of a
respectively and f/‘\"(q) depends on '@ and A only and I find a formula for

f\l(Q). This section generalizes formula 2.7.25 from the book of James and
Kerber [2], in which p consists of cycles all of length q.

In section [I1]I present a proof of the hook-formula, which gives the degree
of an irreducible representation of S,, and which says that if f* is the degree
of [ then

n!
Miigea iy
The proof of the hook-formula which is presented is taken from some lecture
notes written by Olsson ([5]).

The Murnaghan-Nakayama and the hook formulas are then used in sec-
tion [12| to find informations about p-vanishing conjugacy classes of S,,, that
is those conjugacy classes of S, which are 0 on all irreducible characters
of S,, of degree divisible by p, where p is a prime. In particular if I let
n = ay+ a1p + ... + axp® be the p-adic decomposition of n, I prove that
when wy: (1) = a; + a;pap+ ... + app®" for all 0 < i < k, that is when =
is of p-adic type, then 7 is p-vanishing. This part of this section is based
on results by Malle, Navarro and Olsson, which may be found in section 4
of [3]. Afterward I prove some new results trying to prove that p-vanishing
elements are of p-adic type. This is not true for p = 2,3, even if in this I
completely classify p-vanishing elements and show that they are really close
to be of p-adic type. In the case where p # 2,3 I have a conjecture that p-
vanishing elements are exactly elements of p-adic type. Even if I haven’t been
able to completely prove this conjecture I have been able to prove different
results which support it. The work in this last part has been originated by
a question of Navarro about which conjugacy classes of S, are 2-vanishing.

fOé
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Finally in section [I3] I study p-vanishing classes of S, that is conjugacy
classes of S,, which always take value 0,1 or -1 on all irreducible characters.
Some results from this section are taken from an article from Olsson ([6])
or are generalizations of results from this article, while I have proved other
results in this section myself.

Through all of my thesis N always contains 0.

1 Basics on Group Representation Theory

In this section we want to give an overview about results on representations
of finite groups. The results from this section have been taken from [§], where
proofs of these results can be also found. Let V' be a vector space over a field
K and let G be a group.

Definition 1 (Representation). A representation of G over V is a homo-
morphism

p:G— GL(V),
where GL(V') is the group of automorphisms of V.

If Dimg (V') = n we say that p has degree n.

A basic example of representation is given by the identity representation,
which has degree 1 and for which p(g) = id for all g € G.

An other example of representation is the reqular representation, which
has degree |G|. Let V be the vector space with basis {e;, : ¢ € G}. The
regular representation is given by extending

p(9)(en) = €gn

by linearity.

A representation is called irreducible if V' # 0 and no proper subspace of
V' is stable under G.

If py and py are two representations of G over V' and W respectively we
can define the direct sum of py and py by

oy ®pw: G — GL(Vae W)
pv(g) 0
9= ( 0 pw(Q))'

It is easy to see that py @ pw is also a representation of G.
Let now p be a representation of G over V and ¢ be a representation of
H over W. We can define the tensor product of p and ¢

pR¢:Gx H—GLV W),
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by
PR d(g,h)(vew)=plg)(v)®dh)(w),Yg € G,h € HveV,weW.

It can be seen that p® ¢ is a representation of G x H (see section 3.2 of [§]).
In all of the following we will assume that V' is finite dimensional.

Definition 2 (Character of a representation). Let p be a representation. The
character of p is given by

x(g) = Tr(p(g)), g€G.

A character is called irreducible if it is the character of an irreducible
representation. Also it is clear by the properties of the trace that isomorphic
representations have the same character.

We will now assume that K has characteristic 0 and is algebraic closed
and that G is finite. We then have that (theorem 2 and proposition 1 of [8])

Theorem 1. Every representation is a direct sum of irreducible representa-
tions.

Theorem 2. If x is the character of a representation of degree n we have
that

1) x(1) =n,

i) x(g7") = x(g) for g € G,

iii) x(hgh™") = x(g) for g,h € G.

Even if K doesn’t need to be contained in C, x(g) € C for any g € G, as
it is the sum of the eigenvalues of p(g) (x is the character of p) and if \; is
an eigenvalue for g then )\LGI is an eigenvalue for ¢!¢! = 1 and so )\LG‘ =1 and
then \; € Q% C C, where Q¥ is the algebraic closure of Q.

The last condition in the theorem says that any character is constant over
conjugacy classes.

We will now define a bilinear form on the set of characters of a group.
Let x, v be characters of G. Then (x, 1) is defined by

06 ) =1/1G1 ) x(9)dg™) =1/IG] Y x(9)v ().
geG geG

It easy to see from the definition that (x,v) = (¢, x) for any two characters
x and 1 of G.
It can be seen that (theorem 3 of [§])
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Theorem 3 (Character relations of the first kind). i) If x is an irreducible
character we have that (x, x) = 1.

ii) If x and ) are irreducible characters of non-equivalent representations
we have that (x,¢) = 0.

From this theorem it follows easily that (theorem 4 of [§])

Corollary 4. Let p and ¢ be representation and assume that ¢ is irreducible.
Let x and i) be the characters of p and ¢ respectively. If p = @®; p;, where p;
are irreducible representations, we have that (x,v) is equal to the number of
pi which are equivalent to ¢.

Corollary 5. If p1 = Y, m;¢; and ps = Y, n;¢; are representations of G,
where the ¢; are pairwise non-equivalent irreducible representations of G, and
X; s the character of p; we have that

(X1, x2) = Z m;n;.

This last corollary follows easily from the previous one and from the fact
that from the definitions of the direct sum of two representations and of the
character of a representation we have that the character of p @ ¢ is the sum
of the character of p and the character of ¢.

In particular we have that (theorem 5 of [§])

Theorem 6. A representation with character x is irreducible if and only if
(i x) =1

We can also define

Definition 3 (Intertwining number). Let p and ¢ be representations of G
over V- and W respectively. The intertwining number of p and ¢ is defined
by

i(p, ) = Dimg (Homg(V,W)).

From lemma 2 of [8] we have that that the intertwining number i(p, ¢)
is equal to (,%), where x is the character of p and 1 is the character of ¢,
when the characteristic of the field K is 0, but the intertwining number can
also be defined when the characteristic of K is different from 0.

By this formula it can be easily shown that if p is an irreducible repre-
sentation of G and ¢ is an irreducible representation of H then p ® ¢ is an
irreducible representation of G x H, as if x is the character of p and v is
the character of ¢ then the character of p® ¢ at (g, h) is given by x(g)¥(h).
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In the following we will write x ® 1 for the character of p ® ¢. Actually it
can be proved that all irreducible representations of G x H are of this form
(theorem 10 of [§]).

In particular if p is the regular representation and x is its character we
have by proposition 5 of [§] that x(1) = |G| and x(g) = 0 if g # 1, so that if
¢ is any irreducible representation, 1 is its character and n is the degree of
¢, then (x,1) = n, so we have corollary 1 to proposition 5 of [§]

Theorem 7. Any irreducible representation is contained in the reqular rep-
resentation with multiplicity equal to its degree.

From this last theorem we have in particular that all the irreducible rep-
resentations appear in (any) decomposition of the regular representation in
irreducible representations.

Also it can be proved that (theorem 7 of [§])

Theorem 8. The number of distinct irreducible characters of a group G is
equal to the number of conjugacy classes of G.

Let now H be a subgroup of G. We will now show how we can construct
representations of H by representations of G and vice-versa.

The following theorem (proposition 7 of [8]) shows how characters tables
of two conjugacy classes of G relates

Theorem 9. [Characters relations of the second kind] If g,h € G, Cy and C,
are the conjugacy classes of g and h in G and x1, - . ., Xn are all the irreducible
characters of G, we have that

S G
SNl = 1 b
i g

Definition 4 (Restriction of a representation). Let p be a representation of
G over V. The restriction of p to H is defined by

ResG(p): H — GL(V)
h +—  p(h).

It is easy to see that if y is the character of a representation p of G and
Res% () is the character of Res%(p), then x(h) = Res%(x)(h) for any h € H
and that p and Res% (p) have the same degree.

We will now describe how it is possible to obtain a representation of GG
from a representation of H. Let ¢ be a representation of H over W. For any
o € G/H let W, be a copy of W. Set

V= @ W,.

oceG/H
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Then if any element of V' can be written like ZUeG /i Wos where each w, €
W,, in a unique way. Also let S be a system of representatives of the left
cosets of H in G. Let g € G. Then we can write g = hs for some h € H and
s € S in a unique way. Define for any ¢ € G/H and any w, € W,

p(9)(wy) = ¢(h)(ws) € Wi

It can be shown that extending p by linearity to V' does actually define a
representation which doesn’t depend on S (up to equivalence). For a proof
of this see section 3.3 of [§].

Definition 5 (Induced representation). p as it has just been defined is called
the induced representation of ¢ and is denoted by Ind%(¢).

It is easy to see by the definition that if the degree of ¢ is n, then the
degree of Ind%(¢) is equal to n - |G/H|.
Also it can be proved that (theorem 12 of [§])

Theorem 10. Let ¢ be the character of ¢ and IndS, (1)) be the character of
Ind$(¢). Let S be a system of representatives of left cosets of H in G. Then
forany g € G

Ind§(@)g) = 3 w<s1gs>=|—1| S wgn).

If p and ¢ are two representations of G' over V' and W respectively we
can define a representation of G over V @ W by extending by linearity p ®
o(g)(v@w) = p(g)(v) ® ¢(g)(w). It can be shown that p ® ¢ is actually a
representation and that if y is the character of p and v is the character of ¢
we have that the character of p ® ¢ is given by x.

Theorem 11. If p is a representation of G and ¢ is a representation of H,
where H is a subgroup of G we have that

p © Ind(¢) = Indf(Resf(p) ® ¢).

The last theorem can be proved by showing that the two representations
have the same character (remark (3) to theorem 13 of [§]).

If p is a representation of H, where H is a subgroup of G and g € G it is
easy to see that p(9(ghg™") := p(h) defines a representation on 9H = gHg™".

Theorem 12 (Frobenius’ reciprocity law). If p is a representation of G and
@ is a representation of H, which is a subgroup of G we have that

i(p,Ind$;(¢)) = i(ResF (p), ¢)
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and so if x and 1 are the characters of p and ¢ respectively we have that

i(x, Indf (v)) = i(Resf(x), ¥).

Theorem 13 (Mackey’s subgroup theorem). Let H and K be subgroups of
G and let p be a representation of H. If S is a set of representatives of the
double cosets KgH in G we have that

Res% (Ind% (p) Z Ind% .. ;(Resi L. (p').

sES

Theorem 14 (Mackey’s intertwining number theorem). Let H and K be
subgroup of G and p and ¢ be representations of H and K respectively. If S
1s a set of representatives of the double cosets HgK in G we have that

i(Ind% (p), Ind% (¢ Zz Rest o1 (p), Resi o (6©))).

sES

For a proof of the theorems [12| and [13| see theorem 13 and proposition 22
of [8] respectively. For the proof of theorem in the case where H = K
and p = ¢ see proposition 23 of [§]. The proof in the general case can be
obtained similarly.

2 Some definitions about partitions

In this section we will give some basics definitions about partitions.

Definition 6 (Partition). A sequence of non-negative integers
a=(ag,a,...)

is a partition of n if
1) (073 > [e7AN} \4) > 1,

i) Y .op=n

If o is a partition of n we write o - n. Also «; are called the parts of a.
As a; € N for all ¢ and ), a; converges if « is a partition we have that if «
is a partition we can find h € N such that o; = 0 if ¢ > h. For such an h we
can write
a=(ag,...,0p).

In order to get uniqueness in writing o = (o, ..., ;) we can choose h to be
minimal, that is choose h such that aj # 0 and o; = 0 for all > h. As « is
a partition we have that with this choice of h, a; # 0 for any ¢ < h.
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For example the partitions of 5 are given by
(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1).

For n € N, p(n) is the number of partitions of n.
If o is a partition of n and, for i = 1, - - - ,n, we define a; to be the number
of parts of @ equal to i (all parts of a are < n as a - n), we can also write

a=(n . 1),

Usually i* is left out if a; = 0.
In this notation the partitions of 5 are given by

(5, (45,19, (3%,27). (3, 1%) . (2, 17) , (2%, 1) . (1)

Sometimes a mix of these two ways to write a partition is used, especially
when we are only focusing on how many parts equal to one or more certain
numbers a partition has. For example if o, = ;01 = ... = ay35_1 but
1, Qs # o we could write

S
(o1, o an) = (a1, oy 01, O, Qligsy o ooy Q).
Let a be a partition of n.

Definition 7 (Young diagram). The Young diagram for a consists of an
array where each the i-th row contains co; nodes and such that the rows are

left-justified.

In the following we will indicate the Young diagram of « still by a.
For example the Young diagram of the partition (3,2) is given by

If « is a partition we can define a new partition o which is called the
associated partition of « in the following way

Definition 8 (Associated partition). Let « be a partition. For any i let o
be the number of parts of o which are bigger or equal to i. o = (o], s, .. .)
1s the partition associated with «.

For example (3,2) = (2,2,1).

Looking at the Young diagram of « it can be easily sen that the Young
diagram of o’ is obtained by reflecting the Young diagram of « across the
diagonal, from which it easily follows that if « is a partition of n then also



13 2 Some definitions about partitions

o/ is a partition of n and that (/) = a. If &/ = « we say that « is a self
associated partition.

If v is a Young diagram and (i, ) is such that j < «(i) we call the j-th
node on the i-th row of « the (i, j)-node of a.

We will now give some definitions about hooks of a partition.

Definition 9 (Hook). If (i, j) is a node of a we denote by HY; the (i, j)-hook
of a, that is the set of nodes of a of the form (i,j") for some j' > j or (7', 7)
for some i’ > i.

Definition 10 (Hook-length). Let (i,5) be a node of . The hook-length
h; of (i,7) is equal to the number of nodes in H;.

Definition 11 (Leg-length). Let (i,j) be a node of a. The leg-length I, of
(i,7) 1is equal to the number of nodes of a of the form (i, j), i' > 1.
Definition 12 (Arm-length). Let (i,j) be a node of . The arm-length af;
of (i,7) is equal to the number of nodes of a of the form (i,j"), j' > j.

/_

It follows easily from the definition that ai'; = «; —j and that 7', = o] —1,

where o/ is the partition associated to a.

Definition 13 (Rim of «). Let o be a Young diagram. The rim of o, R*,
is the set of nodes (i,7) of a such that (i +1,j + 1) is not in «.

Definition 14. If (i, j) is a node of a, RY; is the set of nodes of the rims of
the form (', 7") with i" > and j' > j.

It can be easily seen that |RY;| = h{; and that Rf; consists of the partition
of the rim between (7, ;) and (o}, j) (see lemma 1.1 of [4]).
Definition 15 (Improper partition). A sequence A = (A1, g, ...) is called
an improper partition of n if

If X is an improper partition of n we write A = n.
Also in the case of an improper partition if \; = 0 for all ¢ > h we can

write A = (Aq, ..., Ap).
Let now 7 € S,,. We can write

T = H;gl) (cjym(cy), - ,Wo‘f(”)_l(cj))

where the (c;, 7(c;), ..., m(™=1(¢;)) are disjoint cycles, each i € {1,...,n}
appears in exactly one of those cycles and the «;(7) are non-increasing. Also
let a;(7) be the number of the o;(7) which are equal to 1.



14 3 Young Subgroups of S,

Definition 16.
a(m) = (ai(m),. .., e (m))

is called the cycle partition of m and

a(m) = (ar(m),...,ay(m))
is called the cycle type of .

Even if the cycles (cj, e, Y (’T)*l(cj)) which appear in the previous de-
composition of 7 are not uniquely determined (we can start the j-th cycle
with 7(c;) instead of ¢; or we can switch the i-th and the j-th cycle if they
have the same length), it is easy to see that ¢(7r) and the a;(7) are uniquely
defined, so that «(7) is well defined for any partition 7 € S,, and so the
same is true also for a(m). By definition a(m) is known if if know «(w).
Also as m € S, so that a(7) F n and so all parts of are < n we have that
afn) = (n®™ . 19) and so we can find a(7) if we know a(n), from
which we have that knowing «(7) is equivalent to knowing a(7).

By the definitions of a(7) and a(w) for any 7 € S, and as two elements
of S, are conjugate if and only if they have the same cycle partition, we
have that o,p € S, are conjugate if and only if a(o) = a(p) if and only if
a(o) = a(p) (lemma 1.2.6 of [2]).

3 Young Subgroups of 5,

This section is based on section 1.3 of [2].

Let n = {1,...,n} and let A be an improper partition of n. Let n} be
pairwise disjoint subsets of n such that |n}| = ); and let S? be the subgroup
of S, consisting of the elements which fixes all the elements of n \ n?, that
is 52 is the symmetric group over n?

7

Definition 17 (Young subgroup).
Sy = S xS X

is called the Young subgroup corresponding to n* = (n},n3,...).

It is easy to see that S\ = Sy, x S, X --- and that this is actually a finite
product as Sy, = {1} whenever \; = 0.

If we write A as a diagram where in each row there are \; position filled
with the numbers in n} (that is if we consider a A-tableau), then Sy is the
subgroup of .S,, which fixes the rows of the diagram.
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If H is any subgroup of S, there are two trivial representations of H of
degree 1, which then need to be irreducible. These two representations might
be equal, and in fact it is easy to see that they are the same if and only if
H C A, when we are in characteristics # 2 and that they are always the
same if we are in characteristics 2. The first one is the identity representation
of H, which will be denoted by IH. The second one is the alternating
representation of H, denoted by AH, that is the representation of H over V,
where V' is a one dimensional vector space, given by

AH: Sy —  GL(V)
T+ sign(m) - idy.

We will now show how we can calculate i <Ind§7j\(l SA), Indgz(l Su)) and

i (Indgz(IS)\), Indgz(ASM)) where \ and g are improper partitions of n.

Let {n} be representatives of the double cosets SypS, in S,. Using
Mackey’s intertwining number, theorem we have that

i (Indgg([&), Indgz(ISu)) - Y (Resgimsu(ISA), Resg " s (Is,(f)))
= 2SN T8L), ISy N TS5y))
e Zﬂ_ 1
as 1(S\N™S,) is an irreducible representation. So i(Indgz(IS,\), Indgz(ISn))
is equal to the number of double cosets SypS), in S,. Also we have that

. . *Su ™
i (Indgz([S,\), Ind‘sqz(ASn)> = > i <Resgimsu(15,\), Resg firsg, <AS£ )>>
= Y _i(I(SxN7S,),AS,xNTS,)).

As I(SyN7S,) and A(SyN7S,) are both irreducible representations we have
that
1 I(SxN7S,) =A(SxN7S,)
0 I(SxN7S,) #A(S,NTS,)
By the previous considerations we have that 1(Sy N "S,) = A(SxN"S,) if
and only if SxN™S,, C A, when the characteristics of the field we are working

with is # 2 (in particular when it is equal to 0). By definition of Sy and S,
we have that

SN WS,U, = (HzSn;\> M W(Hjsné.‘)ﬂ-_l = Hi,ang\ﬁw(n;‘) (1)

iW(I(SxNTS,), A(SANTS,)) = {

and so it is easy to see that S\ N ™S, C A, if and only if S N ™S, = 1, that
is, if we are in characteristics # 2, i (Indg’;([ Sy), Indgz(ASu)) is equal to the
number of double cosets S\mS,, for which Sy N ™S, = 1.
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We will now give some methods for finding the number of double cosets
S\pS, and the number of such cosets satisfying Sy N ™S, = 1.
This lemma is lemma 1.3.8 of [2].

Lemma 15. p € S\wS,, if and only if [n} Nan}| = [n} N pn}| for all i and
k.

Proof. = Assume that p € Sy7S,. Then p = ont for some o € S\ and
7 € Su. Then we have

A o A B A B A H
n; Npn, =n; Nonrn) =on; Norn, = o(n; Nn})

for any i and k as o fixes each set n} and 7 fixes each set nj, by definition of
Sy and S,,. In particular we have that |n} N7nf| = [n} N pn}| for all i and
k.

< As for each ¢ and k, n} N 7n} and n} N pn} have the same number of
elements and they are both contained in n}, we can find o; € S} for each i
such that o; (n} N7n}) = n} Npn} for every k. As n} = () for all ¢ such that
Ai = 0 and there are only finitely many j such that \; # 0, we have that
only finitely many o; are different from 1, and so we can define 0 = o109 - - - .
It is easy to see that o (n} N7wn}) = o; (n} Nmn}) for all ¢ and k and that

by definition of Sy we have that ¢ € S). So we have that for each i and &
o (n} N7nf) = n} Nomn} = n} N pn}.

Taking the union over ¢ we obtain omn} = pn). and so by definition of S, we
can find 7 € S, such that o7 = p. As o € Sy and 7 € S, we then have that
p e S,\ﬂ'SM. 0

The next theorem is theorem 1.3.10 of [2].

Theorem 16. Let A and p be improper partitions of n and Sy and S, be the
corresponding Young subgroups. Then the map

fSmS, = (zip = |nz>\ ﬂwnﬁ‘)

is a bijection between the set of double cosets of Sy and S, in S, and the set
of infinite matrices (z; 1) over N satisfying

Zzi,k =\, Z Zij = Mk-

k 7
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Even if in the theorem we are considering infinite matrices as the coeffi-
cients are non-negative we have that the i-th row (the k-th column) is 0 when
i (pr) is 0, so that if A; = 0 for @ > h and pg = 0 for & > [ then the number
of infinite matrices over N satisfying the conditions in the theorem is the
same as the number of A x [ matrices over N satisfying the same conditions,
so that we only need to consider big enough finite matrices and not infinite
matrices when we want to find the number of double cosets S\mS, in S,.

Proof. We know by lemma [15| that f is well defined (it does not depend on
the choice of the element of the double coset Sy75,) and that f is injective.
So we only need to show that it is surjective. Let (2; ) satisfy the properties
in the theorem. As ), 2zix = ju, for all k we can find a dissection nj’; of nj
such that ‘nf“k‘ = z; for each 4,k (that is nj = Uinﬁk is a disjoint union
and |n!, | = z; ;). Similarly for each i we can find a dissection 0}, of n} such
that ‘ng\k| = 2k As |n;\k| = ‘nfk‘ for each ¢ and £ we can find 7 € S,, such
that = (ni‘k) = ng\’k for all 7, k. It is easy to see that for such a m we have
that f(S\1S,) = (zix) and so we have that f is surjective and then that f
defines a bijection from the set of double cosets of Sy and S, in S, to the set
of infinite matrices (2;;) over N satisfying >, zip = N and ), 2z = . O

In particular we have the following
Corollary 17. If X and p are improper partitions, i <Ind§;‘(15>\), Indgz (ISM)>

is equal to the number of infinite matrices (z; ) over N with row sums \; and
column sums fi.

We will now show how to find the number of double cosets S\mS,, satis-
fying SxN7S, = 1.

Lemma 18. S\ N 7S, =1 if and only if |n;\ N 7T1’1Z‘ =0,1 for all i, k.

Proof. By equation we have that Sy N 75, = I xSprar(ne) from which
we have that [Sy N ™S,| =1L [n} Nx(n})|!. In particular [Sy N ™S,| =1 if

and only if all the [n} N (n})| are either 0 or 1. O

Form this lemma and theorem [16| we have the following corollary (corol-
lary 1.3.13 of [2])

Corollary 19. The number of double cosets SymS,, satisfying SxN ™S, =1
15 equal to the number of infinite matrices with coefficients 0 and 1 with row
sums \; and column sums fi.

and so
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Corollary 20. If we are working in characteristics # 2 and A and p are
improper partitions we have that (Indgz(]S,\), IndéZ(ASQ) is equal to the

number of infinite matrices with coefficients 0 and 1 with row sums X\; and
column sums fiy.

Also in this case even if in the corollaries we are considering infinite
matrices we could just consider some big enough finite matrix.

4 The Dominance Order

This section is based on section 1.4 of [2].
We know want to find for which partitions «, 3 of n we have that

i(Indg (1S,), Indg:(ASs)) # 0.
To do this we will first define a partial order on the set of partitions of n.

Definition 18 (Dominance order). Let a and [ be two partitions of n. We
say that o < 3 if for all i we have that

7 7
<y B
j=1 j=1

The order defined by < on the set of partitions of n is called the dominance
order.

It is easy to see that if @ < then a <  where < is the lexicographic
order, that is we can find ¢ such that a; = f; for j < i and o; < f; (unless
a=f).

The next theorem is one direction of the Gale and Ryser’s theorem (the-
orem 1.4.17 of [2]).

Theorem 21. Let o and 3 be partitions of n. If there exists 0-1 matrices
with rows sums o; and column sums B, where B’ is the partition associated
to B, then a < 3.

Proof. Assume that such a matrix (z;;) exists. Let d;; be the number of
columns for which Z?:l 2z, = Jj (that is d; is the number of columns of (z; )
which contain exactly j 1’s in the first h rows) and let e; be the number of
parts of ' which are equal to j. Then for any h we have that

h h h—1 [e%S) h
ST SIS NS S o)
j=1 j=1 j=1 m=h Jj=1
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as if the first h rows of column k of (z; ) contain exactly j 1’s then f; > 7,
and so o < f3. O

From this theorem and corollary [20| we have the following, which is one
direction of Ruch and Schonofer’s theorem (theorem 1.4.18 of [2])

Theorem 22. If o and [ are partitions of n and S, and Sz are Young
subgroups for the partitions o and (' respectively and the characteristic of

the ground-field is not 2, we have that if i (Indgz(ISa),Indgg,(ASﬁz)> 0
then o < f3.

5 The Ordinary Irreducible Representations
of S,

This section is based on section 2.1 of [2].

We will now be considering representations of S,, over C (the ordinary
representations of S,,) and show that any irreducible representation over C
can actually be realized over Q. In order to do this we will first show that

i (]ndgz(lsa), Indy, (ASO/)) =1 for any « partition of n.
By section [3| we have that i (Indgz (1S,), Ind?n/(ASa,)> is equal to the

number of 0-1 matrices with row sums «a; and column sums o}. In any such
matrix (2; ;) we need to have oy 1’s in the first row and as o has exactly oy
non-zero parts we can only fill up the first row in a unique way, that is by
having 2 ; equal to 1 if £ < oy and equal to 0 if £ > «;. Assume that we
have now filled up until row ¢ — 1 so that for any j < ¢ we have that z;, =1
it k <ajand 2, = 0if & > «a;. If now & > o; we have that the number
of 1’s in the kth column in the first ¢ — 1 rows is equal to the number of «;
which are bigger or equal to & (as the parts of a are non-increasing), that is
Z;;ll zj) = o, and so as we also need to have that 3, 2j; = «j, and all
zik € {0,1}, we need to have that z;;, = 0 for all & > ;. If now k < a; we
have that z;, = 1 for all j <7 and so Z;;ll zjr =1 —1 < aj, and so we can
set z; 1 to be equal to 1 in this case. As we have exactly a; columns for which
2z, can be equal to 1, Y, 2, needs to be o; and all z;;, = 0,1, we need to
have that z;, = 1 if & < ;. So we have that the only 0-1 matrix with row
sums «; and column sums ), is given by (z; ) where

Zik = 0 k> a.
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In particular we have that i (Indgz (1S,), Indgnl(ASa/)> =1 for any a F n.

As both IS, and AS, can be defined over Q we have that the same is true
for ]ndgz(ISa) and Ind2" (AS,) and as

i (Jndgg (IS4), Inds, (ASO/)) —1

we have that Indg" (1S,) and Indg" (AS.) contain a unique common rep-
resentation which is irreducible over @, which appears exactly once in each
one of them. Let [a] be this representation. This representation satisfies

1 <i(la],[a]) < (Indgz(ISa), Ind$ (Aso,)) —1

and so
i(la],[a]) = 1
and then we have that [a] is irreducible also over C and [a] needs to be the

only irreducible representation over C which appears in both ndg’; (1S,) and

Indg" (ASy). So we have that the following theorem (theorem 2.1.3 of [2])
is true

Theorem 23. If a is a partition on n and S, and Sy are Young sub-
groups corresponding to o and o respectively we have that Indgg(]Sa) and
Ind3r (ASy) have evactly one ordinary irreducible component [a] in com-

mon. We also have that [o] appears in each one of]ndgz (I1S.) and Ind2",(AS.)
only once and that [] can be realized over Q.

For example if we let o = (1™) we have that o/ = (n) and we have that
S, =1and Sy = S,, and so we have that

Indg" (15,) = Indg" (AS,) = Ind3" (RS,) = RS,

where RG denotes the regular representation on any group G, as IS,, AS,
and RS, are actually the same representation as S, = 1 and as Ind%(RH) =
RG for any H C G (example 1 in section 3.3 of [§]), and that

Ind§" (1Sy) = 1Sy, Indgs, (ASw) = AS,

as Sy = S,. So as IS, and AS, are irreducible and they appear in the
decomposition of RS, into irreducible representations we have that

[(1™)] = AS,, and [(n)] = IS,.
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The fact that [(1")] = AS,, = AS, ® IS, = AS,, ® [(n)] is not casual. If now
« is any partition of n we have by theorem [11] that

Indg" (AS,) = Ind3" (AS, ® IS,) = AS, ® Indg" (1S,).

Also as AS,, has degree 1 we have that any representation p is irreducible
if and only if AS,, ® p is irreducible (it can be easily seen by considering
the characters). Then we have that AS, ® [a] is irreducible and appears in
the decomposition of both Indgzl(ISa/) and Ind3" (AS,) (as if p = @®p; is
a decomposition of any representation p then AS, ® p = G(AS, ® p;) is a
decomposition of AS, ®p) and so AS, ®[a] needs to be the unique irreducible
representation which appears in both Indg”, (15,/) and Indg" (AS,), and then
for any o - n we have that ’

o] = AS, ® [a].

We now want to show that {[a]} is the complete set of ordinary irreducible
representations of S,,. The next lemma is lemma 2.1.10 of [2].

Lemma 24. If i (Indg" (1S.), [8]) # 0 then a < B.

As [f] is an irreducible representation the lemma is saying that if [f]
appears in the decomposition of Indé’;([ Sq) in irreducible representations
then a < 6.

Proof. As [B] is a subrepresentation of Indggl(ASg/) we have that whenever

i(Indgz(ISa), [8]) # 0 then also i(Indgz (ISQ),Indgzl (ASB/)) is non-zero

and so by theorem [22| we have that o < . O]
The following theorem is theorem 2.1.11 of [2].

Theorem 25. {[a] : a b n} is a complete set of equivalence classes of the
ordinary irreducible representations of S,,.

Proof. We will first prove that if [a] = [5] then o = 5. Assume that [a] = [f]
(here equality means that [a] and ] are equivalent as representations of S,).
Then by definition of [a] and [5] we have that

i (IndZ" (18.), [8]) =i (Indg" (IS.), [o]) =1

and
i(Indgg(ISg), [a]> — (Indgg(ISﬂ), [@]) — 1.
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Applying the previous lemma we then have that o < 5 and § <« and so we
need to have that a = 3, as by definition of the dominance order we then
get by induction that «; = 3; for each i.

So we have that the representations [«], a F n, are pairwise non-equivalent,
and so as the number of conjugacy classes of S,, and so from theorem [8| we
have that the number of equivalence classes of irreducible representations of
Sy, is equal to the number of partitions of n, and so we have that {[a] : a - n}
is a complete set of equivalence classes of the ordinary irreducible represen-
tations of S,,. O

6 The representations Indgz(] Se)

This section follows section 2.2 of [2].

We have seen that the regular irreducible representations of S, are ex-
actly the representations {[a] : a F n}. We still don’t know however the
representations [a] or their characters. We will now show how they can be
found.

Let p(n) be the number of partitions of n. We can put the partitions of
n in order, so that

(1M =o' <a® <...<a?™ = (n)
where < is given by the lexicographic order. We can now define a matrix

M, = (mix) =1 (Indgzi (1S,), [akD .

As whenever o < 8 we also have that o < S we have by lemma [24] that if
i > k (that is if o' > o¥) then m;; = 0. Also by definition of [af] we have
that m;,; = 1 for any ¢ and so we have that M, is an upper triangular matrix
with 1’s on the diagonal. If o and [ are partitions of n, let (* and £¢ denote
the characters of [a] and Ind§" (1S.) respectively and (g and &§ their value
on the conjugacy class of .S, with cycle partition 8. By theorem [25| and by
definition of m, ; we then have that

7 k
€= mil™.
k

If we now define two new matrices 7, and =, by

Z,y = ((f;;) , =, = (5;“2)
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we can easily seen that
=, = M,Z,.

As M, is a matrix over Z and has determinant equal to 1 (as it is upper
diagonal and all the diagonal entries are equal to 1) we have that M, is
invertible and the inverse is also a matrix over Z. In particular we have that
the characters of [a'] can be obtained as a linear combination with coefficients
in Z of the characters of Indgzk (1Sqk).

In particular we have the following theorem (theorem 2.2.10 of [2])

Theorem 26. The ring char(S,,) = @Z(O‘i of generalized ordinary characters
of Sy, has also {&€* : a = n} as a Z-basis.

Even if we have that Z, = M, 'S, we still don’t know the coefficients
Mk, as these are defined in terms of [a*] which we still don’t know, and so
we haven’t found yet the characters of the irreducible representations of S,,.
Though if we consider the scalar product of the i-th and the j-th rows of M,
we have by definition of m,; and corollary |5 and the note after definition

that | | -
S = 3 (6. 0) - (e ¢0) = ().
k k

So we have a way to evaluate ), m; ;m;; as we can find the characters §ak
by theorem [I0] As we also know that M, is upper triangular and has 1’s on
the diagonal this can be used to actually find M,,, as we already know the
last row and as if we know the last p(n) — i rows (M, has size p(n) x p(n))
we can find the coefficients m; x, & > i inductively starting with k£ = p(n) by

) k
Mg = <£°‘17€a ) = mimy.

i>k

We will now give an other method to find £%(7) for any = € S,, and any
akn.

Definition 19 (Tableau). We say that t is a tableau of shape o, where a
s a partition of n, if t is obtained by the Young diagram of o by placing the
numbers from 1 ton in the nodes of «, so that each of these numbers appears
exactly once in t.

Definition 20 (Tabloid). A tabloid of shape « is an equivalence class of
tableaux of shape o consisting of all the tableaux which contains the same
elements on each row.
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For example if a = (3,1) we have that

1 2 3
4

is a tableau of shape o and the corresponding tabloid is given by

123 132 213 231 312 3 21
{ 4 "4 "4 "4 "4 "4 } '

If ¢ is a tableau we write {¢} for the tabloid containing t.

If ¢t is a tableau let n; be the set of elements which are in row ¢. Let
H(t) = Sp, X Sn, X -+ be the row stabilizer of ¢ (that is any element of
H(t) move any number on the i-th row of ¢ to some number still on the i-th
row of ¢ for any 7). Then we have that ¢ and ¢’ are in the same tabloid if
and only if ¢ = 7t for some © € H(t). Also it clear that if ¢ has shape «
then H(t) is a Young subgroup for « and any Young subgroup for a can be
obtained this way. So if S, is any Young subgroup for a we have that laterals
of S, correspond bijectively to the tabloids of shape a and that the action of
S, on the laterals of S, is equivalent to the action of S,, on the a-tabloids,
and so it can be seen that Indgz (IS,) is equivalent to the representation
pof S, on V = @y Kegy, where K is the ground-field, and p is given by
extending by linearity p(m) (e{t}) = emxy- In particular it is easy to see (as p
is a permutation representation) that we have that

Cm= > 1
{t}:{t}={rt}

that is £*(m) is equal to the number of a-tabloids fixed by .

7 The Ordinary Irreducible Characters as Z-
linear Combinations of Permutations Char-
acters

This section follows section 2.3 of [2].

Even if in the previous section we found a method to compute the char-
acters of the representations [«], the method we found requires many calcu-
lations, so we would like to find an easier one. This is what we will do in this
section. If a® F n; we have that [Oz(i)] are representations of .S,, and so we

have that
[a(l)] ®-® [a(k)}
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is a representation of
Spy X oo X Sn C Sty -

Let
[a] - [a®W] = Ind>m+-+m ([aV] ®-- @ [a®]).

Snq X=X Sn,,

If o) = (n;) we know by section [5| that [a?] = IS, and so if we let
a = (ag,...,ox) and Sy = Sy, X -+ X S, (S, under the identification of
Spy X -+- xSy, as a subgroup of S+ 4y, is actually a Young subgroup for
«) we have that

(n)] @+ @[(ng)] = ISn, @ - @IS, = IS,

and so
[(n1)] -+ [(ng)] = Tndg™ =+ (1S,,).

Let now a = (ai,...,ap) be a partition of n. If we let [a| = 0 whenever
a <0,[0] =1 and [a] = [(a)] if @ > 0 we have that

[ozl]l lr +1] ... [oq—l—Z—;]
s + j — ]| = [0425— ] [042] [042—1-E — 2] ()
[O./h+1—h] [ah+2—h] [Ozh]

is a generalized representation of \S,, as any term of the determinant is of the

form

sign(7) H[ai + (i) — i
with 7 € 5, and as we have that []J[o; + 7(i) — 4] is either 0 if some term
a; + (i) —i < 0 or else it is a representation of S, as if all oy + (i) — ¢ are
non-negative we have that (a; +7(1) — 1,...,ap +m(h) — h) is an improper
partition of

h h h h h
daita(i)—i=Y o+ wi)=> i=Y a=n (3
i=1 i=1 i=1 i=1 i=1

Letting [a] = 0 for @ < 0 and [0] = 1 makes sure that the determinant in

equation ([2)) is independent of the choice of h such that «; = 0 for ¢ > h, as
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we have that for any such h

[041] [Cn + 1] Ce [011 + (h + 1) — 1]
s — 1] ™ B e
e 1= (h+1)] Jonss+2—(h+1)] .. o]
( [Oél] [Oél—l—]_] [Oél—f—h—]_] [Oél+(h+1>—1] )
[Ozg—l] [012] [Ojg+h—2] [a2+(h+1)—2]
an+1—h [an+2—h .. [on] o + 1]
\ 0 0 0 1 )

as apy1 = 0 and so a1 +k— (h+1) <0 for all K < h+ 1 and so we have
that |[a; + j — i]| depends only on a. We want to show that

o] = [lou + 5 =]l

In order to do this we will also need to consider compositions of n, that is
sequences A = (A1, Ag,...) over Z such that ) . A\; = n. The fact that the
sum of the )\; is n forces \; to be equal to 0 for i big enough. A composition
of n is an improper partition of n if and only if all terms are non-negative.
We can extend the definition of £%, o - n, and define £* for any composition

of n as follows S
e = Indg"(ISy) A En
0 A n.

Let Sy be the group of permutations over N, that is the group of bijections
from N into itself fixing all but finitely many points (that is Sy is the union
of S,, n € N). Asif k£ > 0 we have that A,, = A,,.x NS, we can define a sign
function on Sy in an obvious way. If for 7 € Sy and A\ a composition of n we
let

Aom = ()\ﬂ.—l(l), )\ﬂ.—l(g), .. )

we have that £ = €27 as if \ is not an improper partition of n then \ has
some negative parts and so also A o 7 must have some negative part, while
if A = n then also A o 7 is an improper partition of n and as clearly any
Young subgroup Sy of A is also a Young subgroup Syo, of Aom we have that
Indgz(]S)\) = Indg’;m(IS,\ o) and so also in this case £ = £*°7. If \ is again
any composition of n and m € Sy, we can also define

A—id+m=AN—-14+7(1),\—2+7(2),...).

As (i) # i for only finitely many i we have that (A —id + 7); # A; only
on finitely many i. Also as \; # 0 for only finitely many ¢ we have that the
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same is true for (A —id + m); from which we have that > (A —id +); is well
defined and then similarly to equation (3)) we have that >, (A —id+7); = n,
so that A —id + 7 is a composition of n for any A is a composition of n and
T € SN.

If A and p are compositions of n and k respectively we can define A —
by (A — u); = A\; — ;. It can be easily seen that A — p is a composition of
n—k.

Assume now that \; = 0 for ¢ > h and that = € Sy \ Sy, that is 7 does
not fix all & > h. Let k be the biggest k which is not fixed by 7 (k exists as
7 fixes all but finitely many &’s). Then we need to have that 7(k) < k and
as k > h we have that A = 0 and so A\ —k+7 (k) < 0. So A —id + 7 isn’t
an improper partition of n if A\; = 0 for all ¢ > h and 7 ¢ S),. In particular
A —id + 7 | n for only finitely many 7 from which ¢*714™ £ ( only for
finitely many m, so that it makes sense to define

X)\ — Z Sign(ﬂ_)f)\—id-‘ﬂr‘

TESN

It is easy to see by the previous remark and by the definition of the determi-
nant that if a - n then y* is the character of |[o; + 7 — ]|
The next lemmas are lemmas 2.3.9 and 2.3.10 of [2].

Lemma 27. If \ is a composition of n and

= (A, A, A — LA+ 1L A, )
for some i € N, we have that

X' ==x"
Proof. Let 7 = (i,i+1) € Sy. Then for any m € Sy we have that if j # ¢,i+1
(p—id+m);=p; —j+a(j) =X —j+7(r(j) = (A—id+77);.

Also we have that
(p—id4+7m)i=p—i+m(i) = g —1—i+7n(r(i+1)) = (N—id+ 7)1,

(p—1d4+7m)is1 = piv1—(i+1)+7(i+1) = \i+1—i—1+7(7(i)) = (A—id+77);.
That is we have that

p—id+m=A—id+77)o7
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and so
é&,u—id—‘ﬂr _ 5(A—id+7r’r)07’

From this we have that

O = T, sien(met
SE () X, sign(rr)EO 47
sign(7) Y- e, sign(77)EAid4nT
A
_X .

Lemma 28. Let \ be a composition of m + k. Then we have that

and that

Proof. If A £ m + k and p |= k then A — p = m as we can then find 7 such
that \; < 0 and so, as p; > 0, we have that (A — u); < 0. In particular if
A isn’t a generalized partition of m 4 k then ¢*~# = 0 for all x4 generalized
partitions of £ and so

Resg™ s (€) = Resg i (0) =0 = doge=> e
puEk pEk

So assume now that A = m + k. Then & = Ind m““(IS)\) and so from
Mackey’s subgroup theorem (theorem |13] . we have that

Resg" s (€)= D Indfpsst o (I((Smx Sp)naSym ).

(SmXSk)ﬂ'S)\

As S, x Sk is a Young subgroup of (m, k) we have by lemma (15| that the
double cosets of S, x S, and Sy in S,,.x are completely determined by
knowing the [mNzn}| and |((m+k)\k)N7wn}|. Also as by definition
of n; we have that [mNan}| + |((m+k)\ k) Nan}| = A; we have that
the double cosets (S, x Sk)mSy are completely determined by knowing the
|((m + k) \ k) N mn?}|. Let

u:(|((m—|—k \ k) ﬂ7rn1| | (m+k)\ ﬂ?Tn2|
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Then we have that p = k and as A; — p; > 0 for all i we have that A\—p = m.
By equation (|1)) we have that

(Sm X Sk) ﬁﬂ'S}ﬂl’_l = SA_H X SM
for some Young subgroups S\_, and S, of A — p and p. So we have that

Ind(g % mgant (1 (S x Sp) NaSin ™)) = Indgr ™S (1(Sa-p X )
— In dsmxsk (IS, ®15,)
- Ind%:w(IS)_#)GQIndSZ(ISp)

Let now pu = m+k. If \—p = m, we can find a double coset (S, X Sy)mS) for
which ¢ = (|(m+k)\ k)N WH?L, |((m+k)\k)Nnmn3|,...) (just choose
7 that sends \; of the elements n; to elements of m and sendmg the other
elements of n} to elements of (m + k) \ k) and if A\— u = m then ¢} H* @&+ =
0 ® &* = 0 we have again by lemma [15] that

Ressm;’fgk (f’\) = Zf’\_“ ® &
wEk

and so the first formula is proved also for the case that A = m + k. For the
second formula we now have that

Ressmilqu (x") = > res, sign(m)EATidT _
_ ZﬂESN Sign(w) Zm:k 6/\—1d+7r—u ® 5#
= Zu):k (ZTI’ESN Sign(ﬂ)gA_“_id—i—w) ® SH
- Zu#k XAH® &R,

[]

Let A be a composition of n, ¢ a composition of £ and 7 € Sy. Let h be
such that \; = g; = 0 and 7(¢) =i for all i > h. Then

A—id— (p—id)om); = A\ — i — (jtpr(yy — 7 2(1)) = A — jtr = 0

for all 7 > h. As

>iA—id—(p—id)om); = > ,(A—id); = > ;((n—id)om);
= 2 (A —id)y = > (p —id);
= Zi)‘i_Zj/Lj

we have that A—id— (u—id)o7 is a composition of n—k for any A composition
of n, p composition of £ and 7 € Sy.
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Also let h be such that \; = p; = 0 for all ¢ > h and let —h' = min{y;}.
—h' <0 as 0is a part of u. Assume that ™ & Spyp. Let k be the maximum
of the elements not fixed by w. Then as k > h + h’ > h we have that

A—id—(p—id)om)g =M=k — prpapy +7 (k) =7 (k) =k — pi1 .
If 7='(k) > h we have that a1 = 0 and so (A—id—(p—id)om)y < 0 by the
maximality of k. If 77*(k) < h we have that 7= *(k) —k < —h as k > h+ 1/
and so as p,—1 ) > —h' we again have that (A —id — (u—id)o7)z < 0. So in

any case we have that ¢} 14-w=ider — 0 if 1 & S, and so EX~1d=(k—id)or —
for all but finitely many 7 € Sy and then we can define

X)\/u — Z Sign(ﬂ_)g)\—id—(u—id)mx"

TESN
The next lemma is lemma 2.3.12 of [2].

Lemma 29. If X is a composition of m + k we have that

Resgts (xY) =Y M @y’
BFk

Proof. From the last part of the proof of lemma [28 and as for a given 7 € Sy
and for any n, pu +— p o m gives a bijection between the set of improper
partitions of n, we get that

TESN porEk

Resgrils, (X*) = D_ sign(m) Y &4 ider g gn, (4)

TESN pEk

As \; > 0 as A = k we have that \; — i > —i and so for any j there are
at least j’s ¢ for which (A —id); > —j. Let o € Sy be such that the parts
of (A —id) o 07! are non-increasing. o exists as if \; = 0 for ¢ > h then
Ai —i < A\, —k forall i > h and all £ < 7, so any bijection ¢ for which the
parts of (A —id) o 0! are non-increasing fixes all i > h, and so any such
o € S, C Sy. Even if such a o is not uniquely defined (A —id) o o™ ! is
uniquely defined, so also 8 = (A —id) o 0! + id is uniquely defined. So we
have that
(B—id)oo =X —id.
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Now it is easy to see that the number of ¢ which satisfy this properties is
equal to cg = HjeZ a;, where a; is the number of parts of 5 — id which are
equal to 7. As we have already seen that only the first A parts of A —id can
be repeated (h is such that A; = 0 for ¢ > h) and the parts of 5 — id are the
same and with the same multiplicity of the parts of A —id (they are just in
a different order) we have that cs is finite. Also as for any j, A — id has at
least j parts which are bigger or equal to —j the same is true for g —id, and
so as  —id is obtained by A —id by reordering the parts so that they are in
non-increasing order we have that (8 —id); > —j for all j and so 3; > 0 for
all 7. Also as it is clear that

Z@-:Z((A—id) I 4+id); Z)\_k

i

we have that ( is also an improper partition of k. Also as if (5 —id) oo +id
isn’t an improper partition of k¥ we have that ¢¥B=id°eo+id — (0 (50 that we
may add terms corresponding to such decompositions of k£ in the summation
in equation (4))) we have that

ReSﬁZiksk (XY) = Yres, sign(m) Y s, 25 1/% gk—id—(ﬁ—id oo g g(B-id)or-+id
= Zﬂ,g sign() ng 1/cg £X714- —id)ooor & £( —1d)oa+1d
= > osign(m) > ;1/cs A —id—(B=id)ogor g ¢f—id+o
- ZB 1/cs Zp,e (51gn( ) r-id=(5-id) O”) ® (s1gn( )€~ id+9)
= 25 1/(35 (Zp Sign(p) 5)\ id— ld)op> ® (29 sign(&)fﬁ—idw)
= Y.l/cs M8 ® xP.

where [ varies between those 8 = n satisfying 8; —i > ;1 —i — 1 for any
i and where p = o and 6 = 0!, so that Zp,e = ng. Also even if we are
rearranging terms this doesn’t change the result, as in all summations there
are only finitely many non-zero terms.

Also assume that for some S that appears in the summation we have that
for some 7, 8; —i = Biz1 — i — 1. Then 8; = Bi;1 — 1 and so by lemma
we have that in that case Y’ = —x? and so x” = 0. So actually the only 3
which appear in the summations are those of the form 5; —i > ;0,1 —1—1
for all ¢. For these 3 the parts of 8 — id are all distinct and so c¢g = 1. Also
for any such  we have that §; > 841 — 1 and so §; > ;41 and as 8 = k we
then have that (8 is actually a partition of k. Putting all of this together we
have that

which is what we wanted to prove. ]
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The next theorem is theorem 2.3.12 of [2].
Theorem 30. Let aFn and B F k, where k < n. Then we have that

i) if x*/% # 0 we have that a; > B; for all 1,

g 1 o> 6> Vi
a/f ¢c(n—k)\ — i Z Mi Z G4l
i) (X N ) { 0 otherwise.

Proof. As o and S are partitions of n and k& < n respectively, we have by the
remarks before lemma [29| that £2—14=(8=id)em — ( if 7 & G and it is so easy
to see by the definition of x*/# that

XP = e —i = (8; = DI

Assume now that 8, > a4, for some h. As «,, —m and (,, — m are strictly
decreasing we have that then if i > h and j < h we have that a;—1 < ap—h <
Bp—h<p;—jandsoo; —i—(8; —j) <0andso [a; —i— (5; —j)] =0if
i > h and j < h. So as there is a block of size (n — h+ 1) x h which contains
only 0’s in a matrix of size n X n, we need to have that the determinant of
the matrix is 0, so x*/# = 0 if there is some h for which 3, > ay, and so 1)
holds.

By section We have that £"~% =[S, ;. Let now A be any composition
of n — k. If A £ n — k then &* = 0 and so (&, ™) =0 when A e n — k
If instead A = n — k we have by theorem (12| and by the symmetry of i(-,-)
that

(.60 P) = IndﬁZ*k(ISA),ISn,k)
i ISA,Resgj"“(ISn_kD
— (IS, ISy)
—

and so (5)‘,5(”*’“)) = 1if A En—k. So we have that (5)‘,5(”*’“)) is either
equal to 1 or 0 depending on whether all parts of A are non-negative or not.
By definition of x*/# we now have that

(0, E00) = (5, s -0, c0-0)
= e, stn() (€T gl
= ZwGSN SlgIl<7T)H 5(@ id—(B—id)om);>0-

As a and (3 are partitions of n and k < n respectively we have that if 7 € .5,
then a —id — (8 —id) o m £ n — k, so that if (¢x71d7(Fd)em c(n=k)) o ( we
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need to have that 7 € S,,. Also asif i > n, sothat a; = 5; =0 and 7 € S,
we have that (o —id — (8 —id) o7); = oy — i — (8; — i) = 0 we have that

n

(Xa/ﬁ’f(nfk)) = Z sign(ﬁ) H(S(Q_id_(g_id)oﬂ)izo = ‘5a¢7i7ﬁj+j20‘

TES, i=1

where in the matrix 7 and j vary between 1 and n. Also as «; — 7 is strictly
decreasing and —f3; + j is strictly increasing we have that if 04, ;—g,4j>0 = 1
then do,—i—p,+j>0 = 1 for all ' <7 and j' > j, while if 6a,—;—g;+;>0 = 0 then
(Sai,_i/_gj,+j/20 =0foralli >iand j' < j. So we have that two rows 7 and ¢’
are equal and non-zero if and only if 64, —i—g,+j>0 = 0, da;—i—p, 1 +j+150 = 1,
Oay—ir—p;+j>0 = 0 and 0, g, 1154150 = 1, for some 1 < j < n, or if
Oa;—i—pri+1>0 = 1 and 0o, g 1150 = 1, as for each ¢« < n we have that
o; > Ppand so a; —1— B, +n =« — B, +n—1 > 0. So there are
exactly n different possible non-zero rows and so each one of them must
appear in {5ai_i_5j+j20} if the determinant must be non-zero. Also by the
remarks we just made we need to have that {5ai_i_5j+j20} has 0’s under the
diagonal and 1’s above and on the diagonal if it has non-zero determinant
in which case the determinant is 1. So we have that ‘5%,@-,5#]-20! = 1if
Oa;—i—p;+j>0 = 1 if and only if j > 4 and ‘5ai—i—ﬁj+j20‘ = 0 otherwise. Also
6ai—i—ﬂj+j20 = 1 if and OIlly if ] Z 1 if and only if 5ai—i—ﬂi+i20 = 1 for
1 <4< nand dq —i—1-gi+i>0 = 0 for 1 < 4 < n, that is if o > §; for
i <nand f; > a;p1 — 1 (that is 5; > «;11) for i < n. As when j > n we
have that o; = 3; = 0 we then have that ’5a¢7i75j+j20| = 1 if and only if
a1 > 1 > g > P > ... and the determinant is zero otherwise. So as

(Xx*/P, 6 F)) = |60, —i—p,+j20]
we have that

(Xa/,B g(n—k)) _Jlazfize=zf>. .
’ 0 otherwise

as we wanted to prove. O
We will now prove theorem 2.3.14 of [2].

Theorem 31 (Young’s rule (First version)). Let A = n be an improper
partition of n such that \; = 0 for @ > n and let o = n. Then we have that
(x*, &) equals the number of (n — 1)-tuples (B, ..., 3"~V satisfying

i) B(i)FZ;.ZIAj for1<i<n-—1,

i) B](-l) < B](-Q) <...< 5;-"71) <« forany j > 1,
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i) B( < Bj( Y for any 7 > 1 and any 1 < i < n, where 3 = (0) and
5(") =

Proof. Let now 8% be a partition of Z )\ , Where )\y) = 0if j > 4. Then
we have by lemma [29| and by Frobenius’s re(nprocity law that

. . ENO) (@) . @) @) (i)
(XB(Z)agA(I)> - (Res o Xﬁmag()\l N 1) ®§<)\i ))

S o N XS
Agl>+..,+>\§7'_)l>< AEZ)

Q.

i i i— QNN (@)
Zﬂu—wz?—h@ X @ X 1)75(/\1 -A) ® €<AZ )
1= J
-1 (APl @ pt-1 (AP
Zﬁ(lil)kz‘;;ll A§i) X,B , 6( 1 )) (Xﬁ //B 3 5( )) .

and by theorem [30| we have that

(Xﬁ(i),ﬁw)) _ Z (Xﬁ“—l)’§(A§i)7---7kﬁi’1)) _

i—1 i—1,(7)
('f< ('):)Z;=<1')Aj
;> 28 viz1

Let now A® = (A1,...,;,0,...) and 8 = a. Then we have that

Q (n ) B
(X 7£>\) = Zﬂ(n—l) ( ! 75 >\n 1))
Z/B(n 1) Zﬁ(’ﬂ 2) ( 5(”'_2) , 5()\17...,)\’”,2))

M
Zg(n b e (X 75(’\1)>

S o Do (17760)
D g1 -+ 2 pm 1

where the last equality follows by the fact that Indgg (ISy) = 1Sy, where
So = {1} and as © —id + 7 £ 0 if 7 # 1 and where the summations
are taken with g~ > ' \; such that a; > B}nil) > ajyq for j > 1,
B® 1 3% A such that 5](?“ > pY > @.i;” for 0 < i < n — 2 and where
BO =(0,0,...) is the only partition of 0. It is now easy to see that (Xa, §>‘) is
equal to the number of (n — 1)-tuples (81, ..., B=V) satisfying conditions
i), ii) and iii). O
Theorem 32. If « is a partition of n we have that x* = (.

Proof. We will first show that if (Xa,gA) # 0, where \ is an improper par-
tition of n for which A\; = 0 for i« > n (which we can always assume up
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to reordering the parts of )\, which would not change &) then we have
that A < a. By Young’s rule we have that if (X",§>‘) # 0 then there ex-
ist (ﬁ(l), o ,B(”_l)) satisfying conditions i), ii) and iii) in the text of the
previous theorem. In particular by iii) we have that 52'(2]' < ﬁ](»o) = 0 for any

i,7 > 1 and so as 5 is a partition we need to have that ﬁ,(j) =0 for k >1
and so by properties i) and ii) we have that, if h <n

h h h
D A=2_8" =3 8" <} e
i=1 i i=1 i=1

Also as \; = a; = 0if ¢ > n and as A F n and a - n we have that
Z?:l A < Z?:l a; also for h > n and so if (x*,&*) # 0 we need to have that
A <a.

Now again by Young’s rule we have that (x®,£%) is equal to the number
of (n —1)-tuples (BW, ..., 3("=) satisfying properties i), ii) and iii). Again
we need to have that ﬁ @ — 0 if k > i and so we have that 511 = a1 and so
by ii) 51 = ay for all 7. Assume now that 7 > 2 and for all £ < j we have
that ﬁk is equal to ay, if k < z and is 0 if £ > i. Then by property ii) we
also have that o; = 62-(] V< BZ- < o for any ¢ < j and so

- , : -
JZOQ; +5J('j) = iﬁi(j) = i%’ = JZO% +
i=1 i=1 i=1 i=1

and so we also need to have that Bj(j) = aj. As we know that ﬁi(j) =0ifi>y

we then need to have that 6](-h) is equal to «; if h > j and is equal to O if
h < j. So there is only one possible (n — 1)-tuple satisfying the conditions,
that is the one with 3% = (a,...,q;,0,...) and it is easy to see that this
(n — 1)-tuple actually satisfies properties i), ii) and iii), so that (x®,£%) = 1.

We now want to show that y® is plus or minus an irreducible character.
In order to do this it is enough to show that (x, x*) = 1, as by definition
of x® and theorem [26| we can write xy* = > ng(? for some ng € Z and then
we have that (x*, x*) = >_nj and this is equal to 1 if and only if only one
ng = 1 and all the other ng = 0. By the previous part and by definition of
X“ it is enough to show that ( @ fo‘*id“r) = 0 for m # 1. So assume that
7w # 1. Let i be the smallest element which is not fixed by 7. Then 7 (i) > ¢

and so .
7

Z(a—ld—l—wk—Zak—z—iﬂr Zak

k=1 =
and so a — id + 7 Aa and so by the first part we need to have that
()(‘,5“‘“””) =0 for 7 # 1 and so we need to have that (y“, x*) = 1.



7 The Ordinary Irreducible Characters as Z-linear Combinations of
36 Permutations Characters

If we can now show that (x“, (%) = 1 we would then have that y* = (*
as x“ is plus or minus an irreducible character. As if 7 # 1 we have that
a —id + m da we have by lemma that ({'O‘*i‘”“, Ca) =0if 7 # 1. So we
have that

(x*,¢%) = <Zwsign(ﬂ)5a—id+7r’ Ca) () =1

and so we have that

and so as we also have that

i + 5 =] = [a].

For example for (n — 1,1) we have that

[n—1] [n]
[0] 1]

As we saw in section |§| Indgzil(] Sn—1) is equivalent to the representation p

on V', where V has a basis {e{t}} indexed by the tabloids of shape (n—1,1),
and such that p(7)(eyy) = eqmy. Also it is easy to see that a tabloid of
shape (n — 1,1) is completely determined by knowing the unique element
which is on the second line of any tableau in the tabloid, so that actually p is
equivalent to the permutation ¢ on W, where W has basis {e;},_, , such
that ¢(m)(e;) = ex(;), which is called the natural representation of S,. It is
easy to see that £~ 1Y (7) is equal to the number of elements of n fixed by
7, that is that €™~ 5V (1) = ay(n), where a,(7) is the number of 1-cycles in
the decomposition of 7 in disjoint cycles. So we also have that

n—1,1] = ‘ =[n-1][1] —[n] = Indngl(fsn—ﬂ —15,.

C("*l’l)(ﬂ') =ay(m) — 1.
Theorem 33.

a =) a=-n1"),0<r<n
C((ln))_{ 0 otherwise

This theorem (theorem 2.3.17 of [2]) is actually a special case of the
Murnaghan-Nakayama formula.
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Proof. If a = (n) = (n — 0,1°) we already know that (“ is the character of
IS, and so (™ ((1---n)) = 1.

Assume now that a = (n — r,1") for some 1 <r <n — 1. Then we have
that

m—r] n—r+1 ... pn—r+r—1] [n—r+r]
. 1 1] [r—1] [r]
&= : : : :
0 0 1 1]

Also the only the only Young subgroup of S,, containing an n-cycle is .S,
as an n-cycle cannot be written as a product of disjoint cycles of length less
than n. So if A is any improper partition of n for which Sy # S,, we have that
[A1][A2] -+ ((1---n)) = 0, as then Sy cannot contain any element conjugate
to (1---m). So we get a contribution to (“((1---n)) only from those terms
which appear in the determinant which contain [n]. As [n] appears in the
right-top corner of the matrix and as for any other coefficient [a; ] of the
matrix a;; < n (as the a;  are strictly increasing in k and strictly decreasing
in 7), we have that the sum of the terms of the determinant which contain

[n] is

1 [a] ... [r—=1]

- 0 1 . [r—2]
T :
0o 0 ... 1

As this smallest matrix is upper triangular and as 1’s on the diagonal we
have that the only term containing [n] which appears in (* is (—1)"[n| and
so as [n]((1---n)) =1 we have that

C(nfr,l’“) — (_ 1)7“

So we now only need to show that if a # (n —r,1") then (*((1---n)) = 0.
Let h minimal such that o; = 0 for ¢ > h. Then a = (v, ..., a;) and a; # 0
for j < h. As a# (n —r,1") for any r we have that for some 2 < j < h we
have that o; > 1 (that is we need to have that as > 1 as a is a permutation).
Then h — 1 < Z?:zaj and so a; + h — 1 < n. As [a; + h — 1] is the upper
right coefficient of {[a; + j —i]}, 7,7 < h, and for all other coeflicients [a; ]
we have that a; ; < a; +h — 1 we have that [n] is not contained in any term
of [[a; + 7 —i]] and so ¢*((1---n)) =0if a # (n —1r,17). O

In the following we will indicate by x¢, where o - n, the character of the
irreducible representation labeled by « of S,,.
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8 The Murnaghan-Nakayama Formula

In this section we will prove the Murnaghan-Nakayama formula. This section
is based on the first part of section 2.4 of [2].
Let A be a composition of n. For any ¢ we can define

>\i7 = ()‘17 .- '7>\i—17)\i - 17)\i+17 .- ')7
A= (A e N+ L A, ).

For any ¢ we have that A\~ is a composition of i — 1 and A\** is a composition
of ¢ + 1. Also if \; = 0 we have that (\7); < 0 and so A’ is an improper
partition of n for at most finitely many i, so that £~ = 0 for all but finitely
many .

Lemma 34.

Resg; , (€)= ¢

()

Proof. By lemma @ and as all improper partitions of 1 are of the form u?,
where uj» = ¢;; we have that

Resy (€)=Y " ee =3 & g

which is the formula in the lemma as S; = 1 and so &+ = ¢1) = 1. O

Theorem 35 (Branching rule). Let o = (o, a,...) F n. Then we have that
Resg"  ([a]) = Z [o/‘]
110G > Q41

and that

Imdg™+ ([a]) = > o]

o<1

where ayg = 00.

The first part of the branching rule is a particular case of the Murnaghan-
Nakayama formula.

Proof. Applying the previous lemma and theorem [32| we have that

Resg'  (x*) = X, sign(m)&rdtn
= X sign(m) Sy
— Zizﬁsign<ﬂ.)£oﬂ’—id+ﬂ
= ZiXaz_-
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Also by lemma if a; = «;y1, that is if af’ = afjrl — 1 we have that

x* =0 and so the last summation can be considered only over those i for

which «; # a;41. As « is a partition, so that we always have that o; > a1

this means that _
Resg: ,(x) = D x" .

ilai>ai+1

Also as « it is easily verified that if c; > a4 then o'~ is a partition and so

we also have that .
Resg"  ([a]) = Z [a”]

20 >0
as x? is the character of [3] for any partition 3 by theorem [32| and as two
representations are equivalent if and only if they have the same character by
corollary
Using this part of the theorem and theorem [12]if 5 F n + 1 we now have
that

(mag (o)) = (¢ ResZ (F) =[x X N

1:8i>Pit1
As (X“,Xﬁi_> = 0,5~ and all the = are distinct we need to have that

(Indgzﬂ(xo‘), Xﬁ) is equal to 1 if there exists 7 such that = = « and is
0 otherwise. Also o = 3~ if and only if 8 = o't and as 3 needs to be a
partition we need to have that a; < a;_1. So the only possible § for which [f]
can appear in Indgz+1 ([a]) are those of the form § = o'" with o; < a;_1, and
as in this case §; > B;;1 we have that [3°"] actually appears in Resg;”l([ﬁ])
and so in this case [§] does appear in Indgz+1 ([]). Putting all of this together

we have that ‘
Indgzﬂ([a]) = Z [azﬂ

B <1

and so the theorem is proved. O

Let prj, = (1)1, ()2, - - ) be given by (u3); =k - 3.
Lemma 36. Let A be a composition of n =m+k and w € S,,. Assume that
7 contains a k-cycle and has cycle type (ay(w),as(w),...). Let p € S, have
cycle type
(ay(m), ... ak_1(m), ar(m) — 1, ags1(m),...).
Then we have that

X(r) = Z XA (p).
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Proof. This follows easily from lemma and as if 4 = k we have that
§4(1--+-k) = 0 unless if u = uj, for some i, as only in this case S, contains

a conjugate of (1---k). The formula then follows as & = 1 as it is the
character of 15},. O

Theorem 37 (Murnaghan-Nakayama formula). Let o be a partition of n
and let w and p be as in lemma |36 Then

Xy = D0 (1) (p),

i.j:hg =k

Proof. In order to prove the Murnaghan-Nakayama formula it is enough to
show that x®#k = 0 if there is no hook of length % in the i-th row and that
if hf'; = k then x*~ meo = (=1)% xS as we then would get the formula
by lemma and by the fact that in each row there is at most one hook of
length k. '

In order to show that y® #k = 0 when there is no hook of length & in the
i-th row we will show that if y* #k # 0 then we can find j such that hi; = k.
If a; — k > ;41 we can easily see that A, ., = k, so let’s assume that
a; — k < ap1. As x* Mk # 0 we then need to have that a; — k < a1 — 2 as
if oy —k = a1 — 1 we would get a contradiction by lemma 27} In particular
Qg1 — 1> —k+1. Let oV = (ay, ..., 05 1, g1 — Lo — k+1, 049, ...).
We will now construct o™ inductively until we would get an o which is a

partition. As long as a§ +)h < &E_}i)h 4 let

h h h h
ottt — (ag A >az(+)hfl7 a§+)h+1 -1, O‘E+)h + 1,0 hyo, .-
= (C(l, ey O, O — 1, vy Qg — 1, oy — k —+ h -+ 1, iy pht2, - - )
As oz:r)h is strictly increasing and ali)h ., are non-increasing we need to find
some minimal & for which a(+)h > 04(+)h+ .- By the minimality pf h we need to
(h—1) (h—1) a) _ a
have that o, i < Lg and as again by lemm? , X¢ = <j1) x* #0
h) _ 0D (h—1) N

we need to have that g = +h Lt 1 < oy~ 1 = O Gy and as
it is easy to see that ozyjr)l < ) for j # i+ h,i +h —1 we have that

o™ is a partition, as all of its terms must be non-negative as a( ) =0 for

j big enough as for j > i + h, a; R _ a; and « is a partition. We will

now show that A . - = k. First it is easy to see that h<k-1as

a;—k+k—1+1=a; >a;forall j >i. So (i,ai—k+1+_ﬁ) is a node of a.
Now the set of nodes of the form (i, j) for j > a; — k+ 1+ h clearly contains
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k — h nodes. So in order to show that hz'ofarkﬂ%

that the set of nodes (h, a;—k+1-+h) with A > i contains exactly h nodes. As

(h—1) (h-1) _ T (h—1) (h—1)
h o T k+h—1 and o 0 >a s+ 1

as Xa(ﬁfm # 0 we get that o, 3 > a; — k+h+1 and then we need to have that

(i+h, c;—k+1+h) is anode of o, while as o, 3, = O‘ETEH < O‘Ei)ﬁ = a;—k+h
we need to have that (i +h+1,a; —k+ 1+ h) is not a node of « and so as «
is a partition we need to have that the set of nodes (h,a; — k + 1+ E), with
h > i contains exactly h points and so P o —ki14n = k and so if XM #£ 0
we can find j such that h; = k.

Assume now that hy; = k. By looking at the Young diagram of « it is

easy to see that

= k it is enough to show

we have that a;, 7 = «

Qp h <iorh>i+I
(@\ R = ¢ anp1—1 i <h<i+l
az‘—k—l—lffj h:z’—i—lgj
so that
Oé\RZO:] = (Oé17-.-705i—1705i+]_ - 1,...,@i+li0ij —1,01]_ _k+liojj70éi+liojj+l7"')

and so « '\ R}, can be obtained by o — i by applying lemma [27| recursively

onii+1,...,i+1 —1. As we need to apply the lemma [?'; times we have

] [e% [e% « (7 ’j
that y* #k = (=15 = (1) *\E where the last equality follows

from theorem (32| and so we have that the theorem is proved. O

Let h maximal such that a, > h (that is h is maximal such that (h, h) is
in the Young diagram of «).

Corollary 38.

h !
i=1 %

X((lh‘f‘yl,.“,hg’h) =(-1)

Proof. We will first prove that for any 5 F n if k is maximal such that (&, k)
is in the Young diagram and g' = (3 \ Rf’l then hfz = hf+1,i+1 and that
(BY), =Bl —1forany 1 <i<k—1.

If i < k we have that (3,41, 8/, > 0 and so it is easy to see that (5'), =
Biv1 — 1 and (ﬁl); = Bi,, — 1. Also it is easy to see that for any partition
v and any (4, j) node of v we have that h/; = v+ —i —j + 1 and so we
have that

hzﬁi - (51)1 + (ﬁl); —2i+1=fin—1 +ﬁz{+1 —1+2i+1= h?—i—l,z’—i—l'
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If we define 8 inductively by g* = 71\ Rfl_ " for i < k we then have that
hﬁ = hiﬁ+1,i+1 and that (51),1 = Big1 — i
Applying this to a and using the Murnaghan-Nakayama formula and as
the only hook of length h$, is HY'; and this has leg length o} — 1 we have
that o
Xhg yoeiy )~ (=1) /1 X(hg,w'/"vhz,h)2
(_1)a171(_1>a272xa

(hg,sv""h%,h)

L o o
= (—1) 1 1(_1) h—1 h—HX(hih

— (D)

]

Corollary 39. If x§ # 0 then 8 < (hy,...,hG,), where d is such that
(d,d) € R*, that is d is mazimal such that (d,d) € a.

Lemma 40. Let a - n and let (i,7) be a node of o which doesn’t belong to

o\ R§
the rim of . If (h,l) is an other node of o we have that h”\ "> RS

Proof. First as (i,7) € o\ R* we have that (i + 1,7 + 1) € a and that

(4,5) € Ry, 80 hgyy 504 and h:J\.Rg’l are defined. Assume that ¢ < h or i > o],
where o' is the partition associated with «. Then it is easy to see that
(@ \ Ry))i = i > a1 — 1, as a is a partition. If h <4 < o) then it can be
seen by considering the Young diagram of a that (a\ Ry;); = ;41 — 1. Also
when i = q; it can again be easily seen that (a\ R} ;); > (a\ By ))iv1 = Qg

So we always have that (a\ Rf;); > ;1 — 1. Similarly it can be seen that
(a\ Rf)) > af,, — 1. Putting these two things together we get that

a\Ry, a\Ry, a\RY N\ ..
Z ai+1—1+a;+1—1—i—j+1
= Gt = i+ 1) = (1) +1
hi1 1
and so the lemma is proved. ]

We will now prove corollary [39

Proof. Assume that for some 7 we have that

7 7
D B> kg
j=1 j=1
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If i = 1 we can conclude by the Murnaghan-Nakayama formula as then
B1 > h{, and so a doesn’t have any hook of length ;. Assume now that
i > 1 and that x5 = 0if > 5,; 6, > > h!.. Then we have that

7<i—1"%3,5"
Y+ -+ h§,=n=>pF; and as the §; are non-negative we need to have

that ¢ < d and
Zﬁj < Z hy = hitqim -+ hag

7> >t

Ra
From the previous lemma if i < j < d and hj; = f; we have that hj} >
he , and so we have that

JH+Lj+
a\Ry a\Rhl
§:6j<hi,i + .. dldlSE:h
j>t j>i—1

and so the sum of the first i — 1 terms of (52, fs,...) needs to be bigger

than A} \ ot .+ h, \1;”1 and so we have that X([;Rg; y = 0 for any (h,1)
such that hhl = 51 and then by induction and by applying the Murnaghan-
Nakayama formula we have that x§ = 0 whenever 8 #A(h{,, ..., hg,) and so
the theorem is proved. O]

9 [-sets, cores and quotients

In this section we will define (-sets, cores and quotient and show how we can
them to determine informations about hooks of a partition.

Definition 21 (S-set). A [-set is a finite set of N, that is a $-set is a finite
set of non-negative integers.

Assume now that X = {yi,...,yx} is a [-set and that y; > y;1 for i
from 1 to k — 1 (we can always assume this up to reordering the y;). Then
we have that
for 0 < ¢ < k and so we have that

(yl_k+17y2_k+277yk)
is a partition (by what we just saw we have that y; — k + 1 > y, > 0 for all
Definition 22. If X = {y1,...,yx} is a 5-set and the y; are decreasing we

say that
P X)=(p—k+1Lyo—k+2,...,u)

18 the partition associated to X .
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If X ={y1,...,yx} is a B-set and s > 0 is an integer we can define a new
[-set by
XY=y, ...,yp,s—1,8—2,...,0}.

It is easy to see that (just use the definition)

Theorem 41. If X is a §-set and s > 0 is an integer we have that
P*(X) = P*(X™).
Also if @ = (ay, ..., ap) is a partition with «a; > 0 and

Xo = {htll,la SO }014,1}

it can be easily seen that X, the set of first column hook-lengths of «, is a
p-set and that P*(X,) = a. So for any partition o we can find some [-set
X for which P*(X) = a.

It is easy to see that

Theorem 42. If X is a $-set and « is a partition we have that P*(X) = «
if and only if X = X} for some s > 0.

Lemma 43. If a = (ay,...,qp) is a partition and oy > 0, we have that for
any 1 <1< hand any 1 <k < «;,

h [e73
« « a _ L«
I (ngs = n5y) T bt = B!
j=it1 o=k

Proof. As the hi,, are strictly decreasing in both [ and m we have that all
terms in the products in the left hand side are between 1 and Af;. Also
by choice h we have that [} = h — ¢ and so the number of terms in the
first product is equal to the leg-length of (i,k). As in the second product
there are af'y +1 = a; — k + 1 terms, we have that the left hand side of the
equation we want to prove consists of exactly h{; terms, just like the right
hand side. So in order to show that the two sides are equal it is enough to
show that all terms in the left hand side are different. As the (hf‘k - h;"k)
are pairwise different and the same is true for the i, we only need to show
that ( E hjo‘k) =+ hgv foreach i +1 < j < h and each 1 < v < ¢;. As the
( e h;“k) are increasing and the h{, are decreasing it is enough to show
that one of the following must hold

3 (7 o (e}
i) hg, < h'y = D'y g

11 o o o
ii) he, > hy — hi g,
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iii) hgy, —h$y < hf, < by, — RS, for some i < j < h.

Let j = o), where o is the partition conjugated to . We need to have that
i <j<has(i,v) € o and as by definition of h we have that o) < h for any
[. Assume that j = 4. Then v > ;41 and so we have that

hi, = aita,—i—v+1 < apth—i—(k=1)= (i1 +h—j—1—(k=1)) = b, —h{y

and so i) holds in this case.
Assume now that j = o/ = h. Then v < o, and so we have that

hiy=ai+o,—i—v+1>a+h—i—(k—1)—(an—(k—=1)) = hi, — hj

and then ii) holds in this case.
So assume now that i < j = o, < h. We want to show that iii) holds in
this case. By definition of j we have that o; > v and o411 < v. So

he, = aital—i—v+1 < aith—i—(k—1)—(a;1+h—j—1—(k—1)) = h%—h,, ,
and
hy, = aita,—i—v+1>a;+h—i—(k—1)—(oy+h—j—(k—1)) = hi\, —h3),

and then we have that hi, — h$, < hi, < h) — RS, ., that is iii) holds.
So we have that the (hf‘k - h;’k) and the h{, are pairwise different and
then the lemma is proved. O

Lemma 44. If a = (ay,...,qy) is a partition and oy > 0, we have that for
any 1 <1< hand any 1 <k < «;,

h a
155 TI (hf = hg) = ny!

j=i v=k+1

Proof. 1t follows by the previous lemma by considering «/, as for any (j,v)
node of a we have that hf, = hﬁlj. O

We will now use this lemma to prove the following theorem, which shows
how we can remove hooks from a partition by simply considering one of its
[-sets.

Theorem 45. Let X = {yi,...yx} be a B-set and let « = P*(X). Assume
that the y; decreasing. Then we have that for fixed i and h > 0 we can find j
such that h'; = h if and only if y; —h & X and y; —h > 0. In this case we
have that if

X' ={vi, - Y1, ¥ — b Yir1, - Yk}

then P*(X') = o\ RY; and we have that I¢'; is equal to the number of 1 for
which y; — h <y, < y;.
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Proof. Assume that hi; = h and that ¥ = X*° s € N. By definition of
X% and as y; is the i-th biggest element of X, we have that if y; —h &€ X
and y; — h > 0 then we have that y; + s is the i-th biggest element of Y,
(yi+s)—h €Y and (y;+s)—h > 0. If instead X = Y ™* we need to have that
as P*(Y) = aand (¢, 5) is a node of «, Y needs to contain at least i elements.
As y; — h ¢ X we need to have that (y; —s) — h € Y. Also y; is the i-th
biggest element of X, so y; — s needs to be the i-th biggest element of Y (as
Y has at least ¢ elements) and asy; —h € X, y;—h >0and 1,2,...s—1€ X
we need to have that y; —h > s and so (y; —s) — h > 0. So if we can prove
that y; — h € X and y; — h > 0 for some f-set X such that P*(X) = «,
where y; is the i-th biggest element of X, then we have that for any g-set Y
such that P*(Y') = a we have that if z; is the i-th biggest element of Y then
zi—h &Y and z; — h > 0, so it is enough to show that this property holds
for one (-set for a. Let X = X, be the set of first column hook-lengths of
«. Then we have that y; = hf.

By the last lemma we have that if we can find j such that A{; = h then
h¢'y — h # hg | for any i’ > i (this is trivial if j = 1 as then h; —h = 0) and
as h{"y —h < h$y < R, for any ¢ <4, and so if for some j we have that
he; = h then hy —h & X,. Also it is clear that in this case we have that
h < h;’jl, so that we also have that hﬁl —h>0.

Assume now that hgl —h >0and hffl —h & X,. As h > 1 we in particular
need to have that 1 < h < hffl and hffl —h # hf{l for any i' > i, that is
h # hy — kg, for any i’ > i and so again by the lemma we need to have
that h = h{; for some j, (we can apply the lemma if h # h{) and if h = A,
we can just take 7 = 1) and so we have that the first part of the theorem is
true.

As for any s > 0, if X5 = {y;,...,yx}, where the y; are decreasing, we
have that y; —h < y; < y; it and only if A"} —h < hfy <Ry wheny;—h >0
and y; —h ¢ X[* and as by definition of X* we then need to have that
yi —h > s, it is easy to see that in order to show that [, is equal to the
number of [ for which y; — h'; < y; < y; for any f-set X = {y1,...yx} for ,
it is again enough to show it for X,.

Let a = (v, ..., ap,), with ay;, > 0. Then we have that hiy =ar+m—1
for any 1 <1 < m. As the arm-length of (i, 7) is equal to o; — j, we have
that the leg-length of (i, j) is equal to hi; — 1 — a; + j, so, as the hf; are
decreasing, in order to prove this part of the theorem it is enough to prove
that

« (e} o
he —1—aitjt+il = hi'y — hiy
and that

(e} o «
he —aitjtil < hiy — hiy,
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if i, +i=hj—1—a;+j+i<m. When hf; — 1 —a; +j+i=m (it
can never be bigger than m) we have that [, = m — i and in this case we
would have proven by the previous point and by the fact that the hj , are
decreasing that iy — hfy < hy 1 if and only if 7 > 1, and so also in this case
we would have that if hgﬁj_l_amm > hity — h{) then the leg-length of (4, 7)
is equal to the number of [ for which h{y — b, < by < hy.

By definition of leg-length we need to have that Qhe 1 +jt+i = 7, SO

[ e o . JR— a_ —_— . y y
mﬁfkmﬂ+wm = ng 1ot T — (A — 1 — i+ j + i)
. (0%
> o +m—i—h
J— (e [0}
= Ny —hi;

and as again by definition of leg-length we need to have that Qpe —aitjti < 7,
whenever hj‘j —a; + 7+ 1 < m, we have that in this case

o B o S
he —aitjt+itl,l T Qhe  —atj+i +m — (hi,j —l—a;+7+ Z)
< oa+m—1i— h?j
—_ 0% (7
= hiy = hi;

and so we always have that the leg-length of (i, j) is equal to the number of
[ for which y; — h < y; < y;, where X = {yy,...,yx} is any S-set of a.

Assume that i, = h and that [{'; = s. Looking at the Young diagrams
of a and of o'\ RY; and as o\ R, - n — h, it is easy to see that

o l<iorl>1+s
(a\RZ-ij)l: a1 — 1 1<l<i+s
a;—h+s l=1+s.

As a\ R{; has at most k parts different from 0 as the same is true for o as
| X| = k we can write

a\jo = ((Q\jo)lv-”’(a\jo)Q

and so we have that
v={(a\B), + k=1L (a\ B), + k=2, (a\ Bp), |

is a f-set for '\ RY;. We will show that ¥ = X".
As X ={ag+k—1l,aa+k—2,...,04} = {v1,...,yx} we have that
Yy = a; + k — [. Then we have that

a+k—1=y Il<iorl>1+s
(Oz\Rffj)l+k—l: o —1+k—Il=yy 1<I<i+s
a;—h+k—i=y;—h l=1+s.
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and so we have that Y = {y; : [ # i} U{y; — h} = X’ and then X' is a [-set
for '\ R¢; and so the theorem is proved. O

Corollary 46. Remouving a kq-hooks is equivalent to removing a certain se-
quence of k hooks all of length q.

Proof. Suppose that we are removing a kg-hook from a partition with S-set
X ={v1,...,yx} by changing y;, to y,—kq. Assume that the y; are decreasing
and let h =1, > ... > 4; be those indexes j for which y, — k¢ < y; <y and
yn — y; is divisible by g. We can recursively change in the following way the
elements of X

Yip = Y, — G Yy — 4= Y, —2¢, ..., yn — kq+q — yn — kq,
yil_l _>yil_1 _Q7"'7y’il+q_>yila

yh_>yh_Q7"'7yi2+q_>yi2'

As the y;, —are decreasing, y, — kq > 0, y, — kq € X and by definition of
the indexes i,,, it can be easily seen that each of these steps corresponds
to removing a ¢-hook, that the [-set we obtain at the end is given by
{v1,-- -, Yn-1,Yn — kq, Yn+1, - - ., yx r and that the number of hooks we remove
this way is exactly k, and so the corollary is proved. O]

In order to give the definitions of the ¢-core and the g-quotient of a
partition for any positive integer ¢ we will first introduce the g-abacus.

Definition 23 (g-abacus). The g-abacus consists of q vertical runners index
starting from the left with the numbers 0,1,...,q — 1. The i-th runner con-
tains positions i,q+1,2q+1, . .. starting from the top and moving downwards.

For example the 4-abacus is given by

01 2 3
4 5 6 7

8 9 10 11

If X is a B-set we can place a bead on the g-abacus on the numbers which
are contained in X. For example if X = {1, 3,9} we have that the 4-abacus
for X is given by

0D 2 O

4 5 6 7

8 @ 10 11
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Definition 24 (g-core). Let a be a partition. The q-core of « is obtained by
recursively removing q-hooks from o until we obtain a partition which doesn’t
contain any q-hook. The q-core of « is indicated by o).

By theorem 45| we can easily see that if X is a [-set for a then we can
obtain a 3-set for a(, by moving each bead on the g-abacus of X as high
as possible, leaving each bead in its runner and without overlapping beads.
This way it can also be seen that the ¢-core of a partition is unique, that is
it doesn’t depend on which sequence of ¢g-hooks we recursively remove from
a.

If we look again at the previous example we have X = {1,3,9}, so a =
(7,2,1), and the 4-abacus for a(y) is

0D 2 Q
4G 6 7

so we have that {1,3,5} is a 8-set for o) and then o) = (3,2,1).

Definition 25 (g-quotient). Let « be a partition and let X be a [5-set for a
such that q divides the cardinality of X. The q-quotient of a is given by a
q-tuple of partitions

al® = (g, ... 1),

where o; = P*(X;) and j € X; if and only if ¢j +1 € X.

It is easy to see that for any o we can find a S-set X such that ¢||X| and
P*(X) = a and that a(? doesn’t depend on the choice of such an X, as if
Y satisfies the same properties of X we have that Y = X1k or X = Y+ha
for some k > 0 (we can assume that Y = X% and then it is easy to see
that ¥; = Xj ¥ and so the «; are well defined. If we labeled positions on each
runners of the g-abacus starting with 0, it can be easily seen that each X;
consists of the positions of the i-th runner of the g-abacus which correspond
elements of X.

Definition 26 (¢-weight). The q-weight of a partition « is the number of
q-hooks that we need to recursively remove from o in order to obtain ag).
The q-weight of « is indicated by w, ().

As if v F n and ¢ is obtained by v by removing a ¢-hook we have that
§ = n —q we also have that as o) is unique also w,(c) is well defined, that is
it doesn’t depend on which hooks we are removing. More precisely if a - n
and o g = m we have that wy(a) = (n —m)/q.
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Definition 27. If « is a partition of n we define |a| = n.

Theorem 47. If a is a partition and o'? = (ay, ..., a, 1) we have that
D el = wy(a)

and for any positive integer k, there is a bijective correspondence between kq-
hooks of a and k-hooks of a'9. Also this correspondence is preserved after
removing any kq-hook from a and the corresponding k-hook from o).

In the theorem a hook of a(? is just a hook of one of the ;.

Proof. We will start by proving the second part of the theorem. Let X be
a [-set for o such that ¢||X| and let X; = {i:ig+j € X} for 0 < j < q.
Then by definition we have that X; is a -set for a; for all j. So let now
map the hook of a which corresponds to changing iq + j to (i — k)qg + j in
X to the hook of a; which corresponds to changing i to ¢ — k in X,. It is
easy to see that by theorem [45| this gives a bijection between the kg-hooks
of a and the k-hooks of a9, as (i — k)g +j ¢ X if and only if i — k € X;
and (1 —k)g+ 7 >0ifand only if i — &k > 0 as 0 < j < ¢g. Also it is easy
to see that this bijection is preserved by removing a kg-hook of a and the
corresponding k-hook of o).

In order to prove now the first part of the theorem we can notice that by
the second part of the theorem, removing a sequence of m hooks of length ¢
from a corresponds to removing a sequence of m hooks of length 1 from (@,
By definition of w,(a) we know that we can remove a sequence of w,(«)
hooks from «, so in particular a!? must contain at least w,(a) nodes, as
removing a 1-hook means that we are removing a node from o(?. Also if
a'? would contain more than w,(a) nodes we could, after having removed
the other w, () 1-hooks, remove at least one more 1-hook, as then at least
one of the partition obtained from the o after removing the w,(«) 1-hooks
from o'? would need to have some part different from 0, and so we could
remove at least onel-hooks from that partition. But this would mean that
we could actually remove a g-hook from «y,), as after removing w,(a) hooks
of length ¢ from a we always obtain «,). This gives though a contradiction
as by definition a4 doesn’t have any hook of length ¢q. So we need to have
that '@ contains exactly w,(a) nodes and so, as the nodes of a'? are the
nodes of the partitions o, we need to have that

S lail = wya)
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Corollary 48. If B is obtained by a by removing | hooks of length ¢ we have
that w,(f) = wy(a) — L.

Proof. This is an easy application of 47| as then 3@ is obtained by a(? by
removing [ nodes. O

It can also be proved that there exists a unique partition which has a
given g-core and a given g-quotient. This can be seen by considering a [-set
of the g-core with sufficiently with cardinality sufficiently big and divisible
by q.

We will now show how we can define a g-sign for a partition.
Definition 28 (Natural numbering). Let X be a §-set. The natural num-
bering on X is given by numbering the elements of X in increasing order.

Definition 29 (g-numbering). Let X be a (-set. Let x,y € X be the j-th
bead (we start count them in increasing order) on the i-th runner and the
j1-th bead on the i1-bead of the q-abacus of X respectively. The q-numbering
of X 1is the one for which x s indexed by a smaller number then y if and
only if j < 71 orj =j1 and 1 < iy.

So for example if X = {1,3,6,9} we have that the natural numbering is

0O 2 O

4 5 ©; 7

8 ©, 10 11
and the 4-numbering of X is

0O 2 O

4 5 ©, 7

8 @, 10 11

Definition 30 (g-sign). Let X is a -set and o = P*(X). Let w be the
permutation which sends the natural numbering of X in the g-numbering of
X. The q-sign of X and « is given by

0y(X) = 04(cv) = sign(m).

In the previous example we have that

(1 2 3 4
Tm\1324
and so m = (2 3) and so 04(X) = 6,(4,2,1) = —1.
We will now show that the ¢-sign of a partition « is well defined.
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Theorem 49. Let X = {x1,...,x} be 5-set ordered with the natural num-
bering. Assume that xv; —h & X and x; —h > 0. Let Y ={xq, ..., x; 1,2 —

hyxii1, ..., o}, Let
and let Y = {y1,...,yx} be the natural numbering on Y. Let o = P*(X)

and let (I,m) be the node of o whose removal corresponds to changing X
to Y. If m is the permutation for which zr;) = y; for all j we have that

sign(m) = (—1)%m.

Proof. Notice that by theorem |45 we have that [ = kK — 7 + 1. By the same
theorem we also have that m = (k —i — I, + 1,k —i =1}, +2,... ., k—i+1)
and so 7 is a cycle of length /" + 1 and then sign(r) = (—1)lﬁm. O

Corollary 50. Let X and Y be B-sets and let Y be obtained by recursively

removing a series of hooks from X (that is by removing hooks from the corre-

(1) -

sponding partitions). That is X = {x; xkl } with the natuml numbering

on X andY = {gzjlh+1 - h“ } for some h+1, where the x are obtained
recursively by
o l’g-l*l) J# i
i =) L0y, .
%H — -1 ] = U1

for some i; and h; such that a: —h; # x for any j and x — h; > 0.

Let 1; be the leg-length of the hook removed at step j. Assume that :vgl) is
the natural numbering of X andY = {yi,...,yx} is the natural numbering

onY. Let m be such that x(]”)l) =vy; . Then

h

sign(m) = (—1)2i=14,

Proof. For each 1 < j < h let m; € S} be such that xifjlll)) > xffja)) if and
()

only if ng ) > x;,’. It isn’t hard to see that each 7; is given by the theorem

when we consider the ordering on {1,...,k} given by i; >’ iy if and only if
(J) > :UEJ), instead of the ordering 1 < 2 < ... < k. Even if we consider a
new order on the set {1, ..., k} we still have by theorem [45| that 7; is a cycle
of length [; 4 1.
We want to show that 7 = m,...7, from which the corollary follows
easily. Using the theorem we have that this is clearly satisfied when h = 1.
So assume that the theorem is true When Y is obtained by X by removing a

sequence of h — 1 hooks. As {3[:1 N )} is obtained from X by removing
h — 1 hooks we have that 2™ > ¢ if and only if 41 > 5.

Th—1...m1(i1) Th—1...71 (i2)
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(h+1) (h+1)

Now using the definition of 7, we have x , ,

TpTh—1--71(i1) TpTh—1.-71 (41
(h) s g™ ‘
Th—1...m1(i1) Th—1...71 (G2
of m we also have that a:fr}a;) > xgz:;) if and only if 4; > iy we then need to

have that m = 7, ... m and so the corollary is proved. O

) if and

only if x ) if and only if 7; > iy and as by definition

In particular when we apply this corollary to the case where P*(X) = «
and P*(Y) = aq) and all hooks removed have length ¢ it can be seen that
xfrl()z) is the g-numbering of X (as beads on the same runner of the g-abacus
cannot jump each other while removing ¢g-hooks) and so 7 sends the natural
numbering of X in the g-numbering of X, and so §,(X) = ,(a) = sign(m).
So as 04(cv) by definition doesn’t depend on the choice of hooks which are
recursively removed from a we have that (—1)2% is also constant and so the
sum of the leg-lengths of the hooks which are recursively removed from « to
obtain «/g is also well defined up to a multiple of 2.

10 Weights and characters values

In this section we will define the g-weight of a permutation and show that
if @ is a partition of n, o € S, and x*(o) # 0 then we need to have that
wy(o) < wy(a) for any positive integer g. After having done this we will give
a formula that can be used to find x*(0) when wy(0) = wy(c). This formula
is a generalization of formula 2.7.25 from [2].

Definition 31 (¢-weight of a permutation). Let o be a permutation and let
b; be the lengths of the cycles of o which are divisible by q, counted with
multiplicity. The q-weight of o is given by

wq(o) = Zbi/Q-
So for example we have that wo((1,2)(3,4,5,6)(7,8,9)) =142 = 3.

Theorem 51. Let a = n and o € S, be such that for some q, wy(c) > w,(@).
Then x*(o) = 0.

Proof. Let by, ..., b, be the lengths of the cycles of ¢ which are divisible by
q. We can write b; = q;, for some positive integers 7;. By assumption we
have that > ~; > w,(«). By recursively applying the Murnaghan-Nakayama
formula if x*(o) was different from 0, we could find a partition 8, which is
obtained by « by recursively removing hooks of length ¢v;. By corollary
we would then have that § could be obtained by a by removing a sequence
of >~ hooks all of length ¢. As > 7; > wy(a) and we cannot recursively
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remove more then w,(«) hooks of length ¢ from a we have a contradiction
and so we have that xy*(o) = 0 when w,(0) > w,(a) for some gq. O

We will now apply the results of the previous section to obtain a formula
for x*(pm), where a F n has g-weight w,(a) = w, p has cycle partition ¢y
where v = w and p and 7 act on distinct elements of n. We want to show
that

X (pm) = 8y() ' (7)x @ (7) (5)

where f‘)‘@ () only depends on « and the g-quotient of .. In particular, as
in the following we will also find a formula for fo (), this gives a formula
for x*(o), when w,(0) = wy(c) as in this case we can write ¢ = pm, where
p is the products of the cycles of o with length divisible by ¢ and 7 is the
product of the other cycles of ¢ and we then have that p and 7 satisfy the
assumption we have just defined for them.

Let S be obtained from «a by removing recursively hooks of length ¢~;.
As by corollary [46] we have that § can also be obtained by « by removing
>~ 7 hooks all of length ¢ and as > v; = w = w,(a) we need to have that
B = a).

So if (ip, jn) are the nodes corresponding to the hooks removed at each
step and v = (7,...,7) we have by recursively applying the Murnaghan-
Nakayama formula that

Xlom) = > (=Dt e (), (6)

((i1,91) e (isl))

where [;, ;, is the leg-length of the hook removed at step h. So in order to
prove formula (j5)) it is enough to show that

> (DR = g, (a) 2 () (7)

((G1,91) 5 (ieslie))

for some f*” () depending on a(@ and ~ only.

Using theorem [47] we have that the removal of any sequence of k;q-hooks
from « correspond bijectively to the removal of a sequence of k;-hooks from
a9, Let ((i,5;)) be a sequence of nodes of a and ((i}, j;)) the corresponding
sequence of nodes of a(?, such that hi 5 = qvi and hy j = ~; in the partition
from which they are removed. If [; ; and [ ; are the leg-lengths of these
hooks (again in the partition from which they are removed), in order to prove
equation it is enough to prove that

(— 1)t Hin = 6 () (1) 4o (8)
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as in this case we would have that

Z (_1)li1,j1+---+lik,jk — 5(1(0() Z (_1>li/1,ji+~..+li;c,j;€

((i1,91) 5 (ieslie)) (8,315 (3:1,))

and it is clear that

only depends on o'? and 7.

Theorem 52. If (i1, ji) and (i}, j]) are defined as before we have that
(—1)li11j1+'“+likvjk _ (Sq(Oé)<—1)li/17j/1+m+li;c’j;€,

Proof. Let X = {xy,..., 2} be a f-set for a such that ¢||X|. We can assume
that the z; are increasing.

In order to prove the theorem we will use corollary Let @ =
(ap,...,aq-1). Let m be given by the corollary for recursively removing the
hooks R;, j, from X and let 7’ be the permutation that sends the natural
numbering of X in the ¢g-numbering of X. By the notes after corollary
we have that 7’ is the permutation given by the same corollary for removing
recursively any maximal sequence of g-hooks from X. For each 0 <1 < ¢
let J; be the set indexes s for which x;, = ¢ + gt for some t € N. Let
X; ={(xs—1i)/q: s € J;} and let m; be given by corollary [50| by removing
from X; those hooks of the sequence (Ri;,j;) of hooks of a!? which belong to
«;, where the elements of X; are labeled by the indexes which belong to J;
(just let X; = {2, : s € J;} with 2, = (x5 —i)/q).

We want to prove that

™ = 7T/7T0 crTg—1
as then we would easily have by corollary |50 that
(=)t = 5, (o) (—1) 44T

as each hook Ry i of a(@ belongs to exactly one of the ;.

Notice that as the m; act on distinct numbers they all commute with
each other, so it doesn’t matter which order we multiply them in. To show
that m = n'mg - - - my—1 we need to show that if we write X = {0, bl

o

with the natural numbering (we just have that x5’ = x4 for each s) and
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Y = {a:§’““’, oy } is obtained by X as in the text of corollary [50| for
the sequence of hooks R;, ;, we have that

(k+1) (k+1)
/o mg—1(4) < xW’FO“'Wq*I(j)

if and only if 2 < j.

First as we have already noticed we have that P*(Y) = «(,) as we are remov-
ing from « hooks of length v, and ) v, = w,(«). Also as all hooks that we

are removing have lengths divisible by ¢ we have that if xl(-l) is on the h-th

(k+1)

runner of the g-abacus of X then x; is on the h-th runner of the ¢g-abacus

of Y. So we will first show that if xi ) and mg-l) are on the same runner of the

g-abacus of X then x(kH) ) S x(kﬂ) 1f and only if 7 < 7. But as when

removing a hook from aa bead jumps an other bead on the same runner if
and only if in when removing the corresponding hook in !? the bead corre-
sponding to the first one jumps the one corresponding to the second one, we
have that if xﬁ” and 335 ) are on the h-th runner then x(iJ(rl)) < Sfﬂ if and
only if + < j. Also as if s ## h we have that 7, fixes all indexes of the beads

on the A-th runner and 7, acts only on these indexes we need to have that

g * D < gD ) if and only if 7 < j

7o mg—1(1) — “mo-mg—1(J

when acgl) and xgl) are on the same runner of the g-abacus of X and so it

follows by the definition of «’ that

(k+1) (k+1)
' mg—1(4) < xW'WO"'qul )

if and only if 7 < j

and then the theorem is proved.
O

Lemma 53. If 0 = (01,...,0;) is a partition of w,(«), there is a bijec-
tion between the set of sequences ((i}, 1), .., (i}, j.)) of nodes of a'? cor-
responding to hooks of lengths (01, ...,dx) which are recursively from § and
q-tuples of nodes ((z’sl,jsl) ey <i5k57j5ks)) corresponding to hooks of lengths
((531, e ,5Sks) which are recursively removed from «g, the s-th component of
al® such that

{501,...,5%}u...u{5q_11,...,5q_1kq71} ={1,...,k}

is a disjoint union and for each 0 < s < q—1 we have that 05, + ...+ ds, =
|aus] -

In particular we have that this bijection satisfies that (i}, j]) € as if and
only if | = s; for some t and in this case we have that (i}, 7)) = (is,, Js,). In
particular if Ly j and l;,, ;,, are the leg-length of the corresponding hooks in

the partition from whzch they are removed, we have that ly j =i, ., -
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Proof. This bijection is given by the second part of the lemma. The fact that
s, +...+ 0, = |a| is due to the fact that 0 - w,(a), so that 6, 4... 40 =
|ao| + . .. +]ay—1| and so whenever we recursively remove a sequence of hooks
of lengths (d1,...,dx) the sum of the hook-lengths of the hooks which are
removed from a; needs to be |ag]. O

Lemma 54. If a, 8+ n we have that

i= o ), (pEte

((31,91) - (Pk,J8))

where k is such that B > 0 and Brr1 = 0, the nodes (i, j;) are such that
hi,j, = Bi in the partition obtained by recursively removing from o the rim-
hooks corresponding to the first | — 1 nodes and l;, ;, is the leg-length of the
node (i, J;) in the same partition.

Proof. This lemma is actually an easy corollary of the Murnaghan-Nakayama
formula. O

Theorem 55. If a, p, m and v are defined as at the beginning of this section
we have that

q—1

X (pm) = 04(cx) Z XC(YV . ) X*@ ()
(017""Ok07"'7q_11,---7,q—1kq71)izo L Ty

where the sequences (s1,...,8k.), 0 < s < q, respect the same properties as
in lemma |59 and o9 = (ag, ..., 04 1).

Proof. By the equation @ and theorem [52| we have that

X (pm) = 8y(a) ' (7)x @ ()

where

N D D A

((74:31) 5 (T:0%))

where the sequences ((#}, j1), . .. (i}, 1}.)) satisfy the same properties as in the
previous part of this section. Also by applying lemma [53] we have that

P Y > (1St
(01,-~-7q—1kq71> ((iol ,j01)7"'7(i(‘1*1)kq1 ’j(qfl)ktn ))
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and by lemma [54] we have that

=Y 1Ix¢

'Yz yeey Vi
(017 (q=Dry_ ) ' h>

from which the theorem follows. O

11 The hook-formula

Theorem 56 (Hook formula). If a = n we have that the degree of o], the
irreducible representation of S, indexed by «, is

n!

Liijyea hy

Proof. By definition of f* we have that f* = x®(1). Using the branching
rule and as a has a 1-hook on row ¢ if and only if a; > «a;,1, that is if and
only if a’~, as defined at the beginning of section , is a partition, we have

that , .
==

where the summation is taken over those ¢ such that o; > ;1.
By lemma [43] we have that

I -y

(i,J)€Ea

fo=

hffl!
hiofl - h?;)

i’>i(
As when «; > a1 we have that

e _ [ 5 j#i
il a1 j=i

we need to have that have that

1 H1<k<k/<h(hk1 ha )

Mk yeai- hiy i b !
_ H1<k<k’<h k k’;éz(hk 1 k/,1) Hk<i(hi,1—h§f1+1) Hk>i(h31_hg,1_1)
H;m (hy —1)'

Hk’>k —h$ +1
— o k 1 i,1
- hl 1 [k ! ha ] Hk<2 1—hey Hk>l h"‘ —ho‘

— po [ s i (P =i H —1
- 2,1 HZ lha 1 k’;ﬁl ho‘ _hg,l :

-1
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If for some ¢ < h we have that a; = a;11 then Ay = hf,; + 1, so that
hiy —hiy; 1 —1 =0 and as in this case we need to have that ¢« < h, as a; >0
and apq1 = 0, we have that A", — hf,; | — 1 appears in [, (A4 — hify — 1),
so that

o wsi(hiy —hig ) yp hin —hia — 1 _

a _ ha
Hk 1hgll k+#i hi,l hk,l

11

in this case.

As the hook-formula clearly holds when n = 1 we can proceed by in-
duction and assume that it holds for any partition of n — 1. Then we have
that

fa = Zi:ai>ai+1 fah H
k' >k o
= Zi‘oci>0¢i+1 h’Lal( - ) 1>_[h k;la |k Hk;;éz ha hOé
h (ks e -1
= X g — 1yt ';;a 0 ;z

o n'Hk’>k(hk,1_ k ,1 1 Z H 7,1 1
- : Hk LR ! i= 1 1 k;éz ha —ha

-1

n!

_ 1 @ 1
a mm@unzlllnwzm_m.
In order to prove the hook formula it is then enough to prove that

hig,—1

Zh Hl’l—:n.

— h¢
i=1 ki Z,l k,1

Let g(z) = szl(x — hi;). Then for any 1 <i < h we have that

h
g(h?,l - 1) = H(hz‘ofl —-1- gl) = - H(h?fl -1- gl)
k=1 k#i
and i
gl(hffl) = Z H(h?,l - 31) = H(h% - 2,1)7
J=1 k#j ki
so that ,
Zh H 1,1 hk 1 _ Z _hz'oflg(h’ijl - 1)'
i=1 ki hiy = hg,l i1 g'(hiy)

As Z?ﬂh% = Z o t+h—i= n—f—zj Oj n + (g), in order to prove
the hook-formula it is enough to prove the following lemma
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Lemma 57. If x1,...,x,. are non-zero and pairwise distinct and

r

g(@) = [ — )

i=1

we have that

P i SR 4]

i=1
Proof. Let a= )7/ x;and b=3" ;.. ziv;. It is easy to see that
g(x) =2" —ax"' +ba"? + f(x)

where f(z) is a polynomial of degree < r — 3 (here we don’t need the z; to
be non-zero nor pairwise different). As g(z — 1) = [[_,(z — (z; + 1)) and
Yol +1)=r+>" jz;=a+r and

Z (z;4+1)(z;+1) :b—l—in—i-ij—l—Z(r—i) :b+(r—1)a+(g),

1<i<j<r j#i i#j i=1

we have by the formula we just found that

ﬂx—D:wV—w+rW“L+GH{T—D&+(D>$“I+ﬁ@)

for some f; of degree at most r — 3. We can see that

22z —1) = (:ﬁ —rz+ (72") - a) 9(x) + h(z)

where h(x) is a polynomial of degree < r — 1. When x = 0 this gives
((5) —a) g(0) + h(0) = 0 and as g(0) = [],(—z;) # 0 as the z; are non-zero,
we have that 1(0)/g(0) = (3) —a = (}) — >, @ Also as for 1 <i < r we
have that g(x;) = 0 we need to have that

h(x;) = z; ; —1)
(x:) Zwkg 7 l;[gj_x

as the x; are pairwise different and when k # ¢ then (z; — z;)/(zx — x;) =0
appears in the product. As the x; are pairwise distinct and as both A and

Zxkgxk—l ka_x _ng :Uk—l H(a?—xj)
J

J#k i#k
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are polynomial of degree at most » — 1 and they take the same value on all
the z;, which are r different numbers, as ¢'(z;) = Zle [Lis(zr — ) =
H#k(mk — x;), we need to have that they are the same polynomial. Now we
have that

x xp—1 x x r
ho) = i W(;;() >§#k<—xj> — Sohy 2D T (—a)
x xr
= Zk; 1 L9 xkk) 9(0)

and so we have that
rrg(zy — 1)  h(0) <r> d
ye -1 ()-%

and so Y ;,_; % Sz — (1) as we wanted to prove. O

Having proven this lemma we then also have that the hook-formula is
true. [

12 p-vanishing classes

In this section we want to show that for any prime p, there are some conjugacy
classes of .S, on which all irreducible characters of degree divisible by p vanish.
The first part of this section is based on part 4 of [3].

Definition 32 (p-vanishing conjugacy class). A conjugacy class of S, is
called p-vanishing if all wrreducible characters of degree divisible by p vanish
on 1t.

A partition is p-vanishing if it is the cycle partition of a p-vanishing con-
Jugacy class of S, and an element m € S,, is p-vanishing if its conjugacy class
18 p-vanishing.

Definition 33 (p-adic decomposition). Let n be a positive integer and p be
a prime. The p-adic decomposition of n is given by

n:a0+pa1+...+pkak
with 0 <a; <p—1, ap # 0.

As the 0 < a; < p—1 and a; # 0 it is easy to see that we can write n
like ag + pa; + ... + pFay in a unique way, so that the p-adic decomposition
of n is unique. Throughout this section we will use the notation that the a;
are the coefficients of the p-adic decomposition of n.
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Definition 34 (p-adic type conjugacy class). A partition (cq,...,cp) of n is
of p-adic type if it satisfies

Z ¢i/p' = a;

jipi\cj,
pit1le;
for every 1 > 1 (a; =0 fori>k).
A conjugacy class or an element of S, are of p-adic type if their cycle
partition is of p-adic type.

For example if n = 11 we have that n = 84241 and so the only partition
of n of 2-adic type is (8,2,1), while as n = 9 + 2 - 1 the partitions of n of
3-adic type are (9,2) and (9,1, 1).

If (c1,...,cp) is of p-adic type and we write ¢; = p"id; with p fd; (which
we can always do for j < h if we assume ¢, > 0) we have by the definition of
a partition of p-adic type that Zj:hj:i dj=a;<p—1landsoalld; <p-—1.
So we easily have that (c1,...,cp) is of p-adic type if and only if we can write
it as

(pkdku cee 7pkdkhkapk_1dk:—117 e apkdk—lhk717 cee )d017 cee 7d0h0>

where for each 1 <1 < k we have that

(dil"'.7dihi> l—ai
and d;, >0 (let ip, = 0 if a; = 0).

Lemma 58. m € S, is of p-adic type if and only if for any i we have that
wyi () = a; + ajap+ ... +app"

Proof. If wyi(7) = a; + aiap+ ... + app®~* for any i we have that the sum
of the lengths of the cycles of 7 divisible by p’ but not by p’*! is equal to

piij (m) — leij“(ﬂ') = piaj

and so 7 is of p-adic type in this case.
If instead 7 is of p-adic type and a(7) = (cq, ..., cp) we have that

Wy () = Z Z c;/p' = Zpl’ial =a;+ ... +ap"

lZl ]pl|cj, ZZ'L
plt1le;

and so the lemma is proved. ]
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The next theorem, which will be proved after some lemmas, is a general-
ization of theorem 4.1 of [3].

Theorem 59. Any p-adic type conjugacy class of S, is p-vanishing.

Definition 35. If « is a partition define
o = wyi(a) — pwyivi(a).

Lemma 60. If a; are as defined before we have that a; € N for each i and

Wy (a) = Zpi_ja_i-

(]

Proof. As by corollary 46| we have that removing a p'™! hook is equivalent
to removing a certain sequence of p hooks all of length p?, it follows by the
definition of w,: (7) and wyi+1 () that each &; € N.

As @; =0 for i > k as when 7 > k we have that both w,:(7) and wyi+1 ()
are 0, we have that

Wy (1) = wyp (1) = P e (m) = @+ AP AE =) pm

as we wanted to prove. O
The next lemma is proposition 4.6 of [3].

Lemma 61. Let o - n.
i) If ag # ax we cannot recursively remove ay, hooks of length p* from .

i) If ag = aj, we can recursively remove ay hooks of length p* from .. The
resulting partition is agry and we have that (Oé(pk)) =q; for0<i<k

i

and (Oé(pk))k =0.

Proof. As @; = 0 for ¢ > k we have by the previous lemma that @ = w, (o).
So in order to prove i) it is enough to show that for any «, aj < ay, as then
when @, # ar we actually need to have that wy: (o) = @, < a; and so in
this case we cannot recursively remove a; hooks of length p* from a. As
n = ag + paj + ...+ pFa; is the p-adic decomposition of n we have that all
a; < p and so we need to have that

ag+par+... +p e <(p—1) (L+p+...+p"") =p" -1 <ph,

that is we have that n < (1 + az)p®. As all @ > 0 and by the previous
lemma with j = 0 we need to have that n =, @;p' (as wi(8) = | 3| for any
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partition 3) we in particular need to have that azp® < n < (1 + ay)p* and
so we have that @y < a; for any o F n and so part @) is proved.

Assume now that @, = a,. Then we have that a, = wy(a), again as
w1 (a) = 0, and so we can recursively removed ay, hooks of length p* from
« and the resulting partition needs to be o). By corollary 48 and as for
any 0 < j < k we have that the removal of a p*-hook corresponds to the

removal of p*~7 hooks of length p’, we have that for any 0 < j < k
Wy (apry) = wpi () — P wp ().

So we have that
Wk (Qpr)) =0

(which we could already have obtained as o, cannot contain any hook of
length p*) and for 0 < i < k we have that

(apm);, = wy (ap )) Pyt () |
wyi (@) — PPl wpr (@) — pwyig () + pp I wpe (@)
Ep( a) — PWyi +1<0‘)

]

The results that we have proven from the definition of the @; until now
hold for any p, not necessarily for p a prime, even if we will be using them
only in the case when p is prime.

Lemma 62. If m is maximal such that p™|n! we have that
m=n—ay—a;—...—a)/(p—1).

Proof. As n = ag + pa, + ... + p*a;, is the p-adic decomposition of n it is
easy to see that for each 1 < ¢ < k the number of numbers between 1 and n
which are divisible by p’ is equal to [n/p‘] = (n—ag—pa; —...—p"ta;_1)/p’,
where for any real number z, [z] is the largest integer not bigger than z. So
we have that

m = Zle(n —ag —paj — ... — pi_lai,l)/pi

= Yar i — a0 —par - = p i)t
P P/t = Zi_oZ L P ag
(Zz op)/p _Z] o%(zk ! P’/

= (n—a—ar—...—a)/(p—1)—n/P*(p— 1)+ X5 _a;/(p"(p— 1))
= n—ay—ay—...—ap)/(p—1)— (n—ag—pay — ... — app®)/(P"(p — 1))
— (—a—a— ... —ay)/(p—1)
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as for any h we have that

(I4+p+...+p" ) -1 =p"—1

and so
(I+p+. 4" Y =0"-1)/0"@-1)=1/0p-D)-1/("P-1)).
[
Lemma 63. If m is mazimal such that p™|[]; ;c, hi; we have that
m=Mn—-ag—a;—...—ag)/(p—1).

Proof. By theorem [47] we have that the number of hooks of o with length
divisible by p’ is equal to wy; (). By lemmawe then have that the number
of hooks with length divisible by p’ is equal to . @p'7. Also as @ =0
for ¢ > k we actually have that this number is equal to Zf:j ap. In
particular, as no hook of a can be longer than n, and so no hook can be
divisible by p’ for j > k, we have that

m = Z Dy jaap™
= Z 1047«2; P
Zz 10%2; (1)pl
@' —=1)/(p-1)
- ( L —a@) /(- 1)
(mn—ap—ar—...—ax)/(p—1)— (n—ap — pag — ... — p"ax) /(p — 1)
(n—ap—a7 — ...—oz_k)/(p—l)

I
@
I

Q
&

again as for any h we have that (1 +p+...+ph*1) (p—1)=p"—1and as
nza_o+pa_1+...—l—pka_kbylemmawithj:(). O

Lemma 64. If a b n and the coefficients @; are as in definition [35 we have
that the maximal m for which p™ divides the degree of x“, the irreducible
representation of S,, indexed by «, is

(Z@—Zai) /(p—

Proof. This follows easily from lemmas 62| and [63|and from the hook formula.
m
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Proof of theorem[59 Assume that p divides the degree of x* and that 7 is
of p-adic type. By lemma 64| we need to have that

(Zm—zai) /(p—1) #0.

120 >0

In particular there exists some j for which @; # a;. Let ¢ be maximal such
that @; # a;. Such an ¢ exists as @; = a; = 0 for j > k. By recursively
applying lemma [61| we have that @; < a;, in particular, as 7 is of p-adic type,
by lemmas [5§] and [60] we have that

wyi(a) =0 +@p+ ..+ " < ait+ aap+ .+ app" = wy (),

as @; = a; for j > 7 and so by theorem [51) we have that x®(7) = 0 and so, as
this holds for any y® of degree divisible by p, we have that any p-adic type
conjugacy class is also p-vanishing. O

Until now in this section we have been proving that conjugacy classes
of p-adic type are also p-vanishing. In the next part we will try to classify
p-vanishing conjugacy classes. This work has been originated on a question
of Navarro about which conjugacy classes are 2-vanishing. In order to do
this we will study partitions and see which partitions are p-vanishing.

Lemma 65. If o & n is such that a; # a; for some i, where the a; are defined
as in deﬁm’tion then Y .0G # > . a;. In particular in this case p divides
the degree of x“.

Proof. The last part follows immediately from lemmal[64] and the first part of
the lemma, so we only need to prove the first part. Also in order to prove the
first part of the theorem it is enough to prove that if n = Y., b;p’, where
all b; € N and that if >, b; < >, a; then b; = q; for all i, as then we would
have that if ), @; = ). a,; then &; = q; for all 4. Also it is easy to see that
by definition of k& whenever >, b;p" = n and b; € N for each i we need to
have that b; = 0 for all 7 > k.

The fact that b; = a; forall iif n = >~ b;p’, allb; € Nand >, b; < >~ a;
clearly holds when & = 0. So assume that it holds for & — 1 and that
Soubipt=n=>a;p", Y ;b <> ,a; and b; € N for each i. As n — ay and
n — by are both divisible by p we have that b; and a; are equivalent mod p.
Also as 0 < ag < p and by > 0 we then need to have that by = ag + pc, for
some ¢ € N. Let

b; i #£0,1
b; = bl + C Z = ]_
Qo 1= 0.
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Then we have that b, € N for all 7,

Zb/p = ap+ (b1 +c¢) p+Zblp —bo—cp+b1p+cp+Zblp —szp =n

i>2 1>2
and
Zb’—ag+bl+c+2b—bo—l—b1+cl— )+ > b <Zb <Zaz
1>2 1>2

Also as by = ag we also have that Zz>1b; < Zi21ai and as the p-adic
decomposition of (n — ag)/p is a; + asp + ... + app®~! and

> b = (Zbépi) /p=(n—"by)/p=(n—ao)/p

i>1 i>1

we can conclude by induction that b = a; for each i > 1. So, as we already
now that b = ag, we have that b, = q; for all ¢ > 0. As if ¢ was > 1 we
would have that ) .0, <> . b; <> .a; =), b, we need to have that ¢ =0
and so b; = b, = q; for all i and so the lemma is proved. ]

Definition 36. o = n is of class m > 0 if it isn’t possible to recursively
remove from « a sequence of hooks with hook-lengths given by the partition

(%), (PP 1), (p™)m).

Lemma 66. If o is of class m for some m, we have that the degree of x*
divisible by p.

Proof. This follows by recursively applying lemma 61| and by lemma [65] [

Theorem 67. If (¢1,...,cp) Fn, with ¢, > 1, is p-vanishing, p # 2,3 and i
is mazimal such that p‘|n, then ¢, > p'. Also the same result is true if p = 2,
1# 1,2 o0rif p=3 and i # 1.
Ifp=2andi=2 thenc, >4 or (c1,...,cp) is either (2,1,1) or ends by
(d,2,1,1), for some d > 4 and both of these possibilities actually occur.
Ifp=2,3,1=1 and ¢, <p, then ¢, = 1.

Proof. If i = 0 there is nothing to prove, as then we would have that p’ = 1.
Also the theorem is trivial in the case where p = 2 and ¢ = 1. So assume
that i # 0 (and that i # 1 if p = 2).

The proof of the theorem will now proceed considering the following cases:

Case 1: 2 < ¢, < ',
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Case 2: p' > 4 and (cy,...,c,) ends by (1,1,1,1), (¢, 1), (c,1,1), (2,1,1,1),
(2,2,1) or (2,2,1,1) with ¢ > 3,

Case 3: p' >4, (¢1,...,cp) endsby (¢,1,1,1), (¢,2,1,1) with ¢ > 3, (¢, ..., cn) #
(3,3,1,1,1) and doesn’t end by (d,3,3,1,1,1) or (d,2,1,1) with d > 4,

Case 4: p' >4 and (cy,...,cp) ends by (¢,2,1) with ¢ > 3,

Case 5: p* > 5, (c1,...,¢c,) = (3,3,1,1,1) orends by (d,3,3,1,1,1) or (d,2,1,1)
with d > 4, (¢1,...,¢n) # (4,2,1,1) and doesn’t end by (e,4,2,1,1)
with e > 5,

Case 6: p* > 5and (cy,...,cn) = (4,2,1,1) or ends by (e, 4,2,1,1) with e > 5,
Case 7: p' =4 and (cy,...,c) ends by (d,3,3,1,1,1),

Case 8: If p' = 4 there exists (cy,...,c;) ending with (d,2,1,1) with d > 4
which is 2-vanishing.

As when p = 3 and 7 = 1 if we have an exception to the theorem we need
to be in case 1 and the cases (c1,...,¢,) = (1,1,1),(2,1,1),(2,1) are within
the special cases of the theorem (when ¢;, < p'), it can be easily checked that
these cases cover all possibilities where ¢, < p.

Case 1.
We will first show that for any n, p and any i > 1, if 2 < ¢, < p' then
(¢1,...,¢p) is not p-vanishing.

Let a = (n —cp,cp). As ¢, < p' < n we have that h > 2 and so

O<ep,<ag<cag+...4+c_1=n-—c¢y,

and so « is actually a partition. We will show that X{er,mon) # 0 and x“ has
degree divisible by p. By lemma |[66|to show that the degree of x* is divisible
by p it is enough to show that « is of class i. If n = p’ then as the second
row of o contains at least 2 nodes we have that a doesn’t contain any hook
of length p' = n, as in this case ht, < p’, and so we are done.

So assume that p* < n. As ¢, < p' < p? for each j > i if it was possible
to recursively remove a sequence of hooks of lengths ((p*)?, ..., (p")%) from
a, we would have that all hooks which are recursively removed from « are
of the form Ry, for some [. Assume first that ¢, < p’/2. Then as we have
hf. +1 =n—2c, > n—p' it is easy to see that we can remove a; hooks
of length p*, then aj_; hooks of length p*~! and so on until we remove a;;;
hooks of length p"*! and then remove a; — 1 (a; > 0) hooks of length p' from
« in a unique way and that in this way we obtain the partition (p* — ¢z, cp).

i
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As ¢, > 2 we cannot remove the last hook of length p’ and so again « is of
class 1.

Assume now that ¢, > p'/2. As n isn’t a power of p as n # p* and by def-
inition of 7, we have that any sequence of hooks of lengths ((p*)%, ..., (p)%)
contains at least 2 hooks. Let p’ be the length of the second last hook of
such a sequence. Then we have that h{, ., = n —2c, > n —p' +p/ and
so we can now remove all hooks in the sequence apart for the last two in a
unique way and that the partition we obtain this way is (p' +p/ — cp, cp).
Also as ¢, < p* < p’, if there is any hook of length p’ in (p' + p’ — cp, cp)
this must be on the first row. If there is no hook of length p/ we are done.
Otherwise notice that in order to be possible to remove a hook of length p
from the partition we would obtain we need to have that the second row
of the partition we obtain this way must contain at most 1 node. So, as
cn > 2 we need to have that the hook that we remove must be either R,
or R, and in these cases we have that the resulting partitions are given by
(cn — 1) and (¢, — 1,1) respectively. But ¢, — 1, ¢, < p’, which means that
h$y, h{y > p’ and then it is not possible to remove first a p’ hook and then a
p’ hook from (p’ + p’ — cp, ¢) and so we cannot, remove a sequence of hooks
of lengths ((pk)ak yeees (pi)ai) in this case either. So also in this case « is of
class ¢ and then we only need to show that X?q,...,ch) #0.

Let m be such that ¢,, > ¢, and ¢p1 = ¢ (m = 0if ¢ = ¢,). While
Jj <m,h—2, as then ¢, < ¢; and h(lféj;ﬁch‘l’ch) =ci+...+opm1—cp > ¢, it
is easy to see that we can remove a hook of length ¢; form (¢; +...4+c¢p_1,cp)
in a unique way and the resulting partition is (¢j41 + ... 4+ ¢h_1,¢). So we
can remove the first s = min{m, h — 2} hooks of length ¢; from « in a unique
way and we obtain the partition (cs11 4+ ...+ cp_1,cp)-

Assume now that m = h — 1. Then we have that s = h — 2 and (cs41 +
oot cep1,cn) = (eho1,cn). AS cp_1 > ¢ there cannot be any hook of length
cp—1 on the second row and as it is easy to see that hg‘fg’l’ch) = Cp_1, S
cp > 2, we can remove a hook of length ¢, from (¢;_1, ¢) in a unique way
and we obtain the partition (¢, — 1, 1), for which obviously h1; = ¢,. So
it 2 < ¢, < ¢p—1 we can recursively remove hooks of length ¢; from « in a
unique way, and so by the Murnaghan-Nakayama formula we have that in
this case x{, . # 0.

Let now m < h — 1. Then s = m. After removing the first s hooks of
length ¢; from a we are left with (41 + ... +cpo1,0n) = (h— s —1)cp, ¢p)
and we need to remove h — s > 2 hooks of length ¢;, from this partition. We
need to see in how many ways we can do this and see what the sum of the
leg-lengths modulo 2 is in any of this cases. If we remove one of the first
h —m — 2 hooks of lengths ¢;, from the second row then all other c¢,-hooks
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must be removed from the first row and in this case it is easy to see that
all hooks have leg-length 0. This can be done in A — s — 2 different ways.
Otherwise we need to remove the first h — s — 2 hooks of length ¢, from
the first row and as hg(ﬁh_jl_l)%ch) = (h —s—2)c, and h§fi‘;j;”ch’ch) =0, we
have that the hooks we have removed up to this point have leg-length 0 and
this way we obtain (¢, ¢,) from which we need to removed 2 ¢j,-hooks. As
X(ZZZB = XEEZ; — =1 = 9 Putting all of this together we have by lemma

that X{(erren) :hl)z —s#0.

So we have that if 2 < ¢, < p*, then there is some irreducible character
X“ of S, of degree divisible by p such that x{, ., # 0 and so (cy,...,cp)
is not p-vanishing. This proves the theorem for the part where p = 3 and
1= 1.

Case 2.
Assume now that (cy,...,¢,) ends by (1,1,1,1), (¢, 1), (¢,1,1), (2,1,1,1),
(2,2,1) or (2,2,1,1) with ¢ > 3, that 4 > 1 and that p # 2,3 or p = 2,3 and
i > 2. We want to show that also in this case (ci, ..., ¢p) is not p-vanishing.
First we will show that if 3 = (n — 2,2) then p|deg(x”). Notice that by
assumption in this part we always need to have n > p* > 4, so 3 is actually

a partition. Also we have that p* > 4. So all parts of ((pk)ak' ey (pi)ai) are
bigger then 2 and then as hy; = 2 if we can remove a sequence of hooks of
lengths ((p*)™ ..., (p")*) all hooks must be on the first row. Then by as

h’ig =n—4> Zf:iﬂ arp® + (a; —1)p' and l’ig = 0 we can remove all but the
last hooks of the sequence from § in a unique way and we obtain (p* — 2, 2).
As hf 2% = p' — 1 we cannot remove the last hook of the sequence and so
again we have that [ is of class i and so p|deg (XB ) by lemma .

We will show that if (¢p,...,¢,) ends with (1,1,1,1), (¢, 1), (¢, 1,1),
(2,1,1,1), (2,2,1) or (2,2,1,1), where ¢ > 3, then x,,  # 0. This is
always true if (¢1,...,¢,) = (1), as (c1,...,cp) is the cycle partition of 1
and x?(1) = deg(x?) # 0, so we can assume that ¢; > 2.

Assume that (cq1,...,¢,) = (c1,...,¢;,1™), with¢; > 3, m > 1 and m # 3.
As hg’l =2 < ¢ for | < 7 the first 7 hooks must always be removed from the
first row. First assume that m > 4. Then as hig =n—4>c+...+¢
we can remove the first j hooks in a unique way obtaining (m — 2,2). As all
1-hooks have leg-length 0 and we can always remove some 1-hook from any
partition of any positive integer, we can then conclude by lemma [54] that in
this case x” ey 7 0. Assume now that m = 2. Then as hiy =n —4 >

(Cl7~"’
c1 + ...cj—1 we can remove the first j — 1 hooks in a unique way and we

obtain (¢;+m—2,2) = (¢;,2). Now we have that h%?) =¢;—14+1=c¢; and
so as we need to remove the i-th hook from the first row we again can remove
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the i-th hook in a unique way and so as again 1-hooks have leg-length 0 we
need to have that X(BCL“_M) # 0. So let now m = 1. Then we again have that
hi3 =n—42>c +...¢j_1 and so as the first j — 1 hooks must be on the
first row we can remove the first j — 1-hooks in a unique way and we now
obtain (¢; +m —2,2) = (¢; — 1,2). As hﬁf{”’” = ¢; we can remove also the
i-th hook in a unique way, obtaining (1), from which we need to remove a

1-hook, and so again X(Bq cn) # 0.
So assume now that (ci,...,cp) = (c1,...,¢;,2,1™), with [ = 1 and

m > 3orl >2and m > 1. First assume that [ = 1 and m > 3. As
hfﬁ =n—42>c +...+¢; we can remove the first j hooks in a unique way
and we obtain (m,2), as these hooks must be removed from the first row, as
any hook in the second row as at most length 2 < ¢ for any [ < j. If m =3
it is easy to see that there is only one hook of length 2, HQ(T’Q), and so as
afterward we only need to remove 1-hooks, which have leg-lengths 0, we need
to have that in this case X?cl,.. ) # 0. If m > 3 then we can either remove
R or B2

2,1 1,m—1-

we only need to remove 1-hooks, we have by lemma [54| that X?cl,...,ch) # 0.

So assume that [ > 2 and m > 1. Again, by the same reasons as in the
previous case, we can remove the first j hooks in a unique way obtaining
(m—+20—2,2). Iffm>4as h%“l_m > 21 and as l%“l_m = 0 we have that
if at any step we remove some of the [ hooks of length 2 from the first row,
then this hook must have leg-length 0. Also if we remove any 2-hook from
the second row it must have also in this case leg-length 0. As any 1-hook as
leg-length 0 we then have that the sum of the leg-lengths of the hooks we
recursively remove from [ is always the same (is always 0) and so again by
lemma We need to have that qu’._wh) # 0, as it is possible to remove from
(m + 2l — 2,2) some sequence of [ 2-hooks and m 1-hooks.

Assume now that [ > 2 and m = 3. After having removed the first
j hooks (which can be done in a unique way), we obtain (2] + 1,2). As
hfé“’z) =2[—1>2(l—1) and lfé“’z) = 0, we again have as before that
the first [ — 1 hooks of length 2 that we remove from (2[ + 1,2) must have
leg-length 0. Now there are two possibilities. The first one is that we obtain
(5), if one of the I — 1 hooks of length 2 was removed from the second row.
This can be done in [ — 1 different ways. In this case the only 2-hook, H 1(::’4),
has leg-length 0. Otherwise all of the [ — 1 2-hooks were removed from the
first row, as we can remove at most one 2-hook from the second row, and in
this case we obtain (3,2). Again the only 2-hook, HQ(?’IQ), has leg-length 2. So
the sum of the leg-length of the sequence of hooks we removed is constant
(= 0) and so again x(ﬁqw%) # 0.

+sCh

As anyway the leg-length of this hook is 0 and afterward
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Now assume that m = 2. Then (m+2[—2,2) = (2[,2). As hy 3 =2(I—1),
the first [ — 1 2-hooks must again have leg-length 0. If one of the 2-hooks
was removed from the second row we obtain (4). This can be done in [ — 1
different ways and we can remove the last 2-hook and the 2 1-hooks in a
unique way and all of these hooks have leg-length 0. In the second case all
[ —1 hooks are removed from the first row. This can be done in a unique way
and we obtain (2,2). We can now remove the last 2-hook in two different
ways, in one we have that the leg-length of the 2-hook is 0 (when we remove
Hé?f)) and in the other is 1 (when we remove Hl(?f)). In any case we have
that the two 1-hooks can be removed in a unique way from the partition we
obtain. So we have that there are [ — 1+ 1 = [ paths in removing the hooks
from f in for which the sum of the leg-lengths is 0 (the first j hooks we
removed always have leg-length 0) and one path in which it is 1. By using
lemma [54] we then have that qu ) = [—1>0as!l>2and so we have

77777

The last case is when m = 1. Here (m + 2] — 2,2) = (2] — 1,2) and
hfé_m) =2(l-1)—1>2(-2) and lfé_m) = 0, so the first [ — 2 2-hooks
must all have leg-length 0. After having removed these hooks we either
obtain (5) or (3,2). If we obtain (5) we must remove the last hooks in a
unique way and they would all have leg-length 0, if we obtain (3,2) we must
first remove the hook corresponding to (2, 1) and then that corresponding to
(1,2) and the remove (1,1). All these three hooks have leg-lengths 0, and so
again we have that in any sequence of hooks of lengths (c1, ..., ¢;) which are
recursively removed from (3, all leg-length are 0 and it is possible to remove
at least one such sequence of hooks from [, we have again that X(ﬁq ..... o) # 0.

Case 3.

Assume now that (¢p,...,¢,) ends by (¢,1,1,1), (¢,2,1,1) with ¢ > 3,
(1, en) # (3,3,1,1,1) and doesn’t end by (d,3,3,1,1,1) or (d,2,1,1)
with d > 4. Asn > p' > 4 (as we have already proved the theorem when
p* = 1,2,3). None of these situations is possible if n = 4,5, so we actually
have that n > 5. Also n = 6 is not possible as p* > 4 need to divide n. So
we have that n > 7. Let v = (n — 3,3). We will show that p|deg(x?). As
p' > 4 and hy, = 3, it is easy to see that all hooks of the sequence with
hook-lengths ((p*)?, ..., (p*)%), which are recursively removed from ~, must
be on the first row, so that this can be done in at most one way. Assume
first that p’ > 7. Then as h], = n — 6 > Z?:i—f—l a;p’ + (a; — 1)p’, we can
removed all of them apart maybe for the last one and after having done this
we obtain (p’ — 3,3). Now as hg’jf?”:&) = p' — 2 we cannot remove the last
hook of the sequence and so in this case by lemma [66| we need to have that
p divides the degree of x7. So let now p' = 4,5 and let p/ be the second
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smallest part of ((p*)™,...,(p")"). Notice that as p' < 7 < n such a part
must exists. Then again it can be seen that all hooks can be remove apart
maybe for the last two and this way we obtain (p' +p/ — 3,3). If p' =5 we

have that h%’;”’B) =p’ +1 and h%i”’g) = p/ — 1, so in this case we cannot

remove the hook of length p?. If p* = 4 then h%“ﬁ) = p’ and so we need
to remove now the hook corresponding to (1,3). After having removed this
hook we get (2,2) which doesn’t have any 4-hook, and so again we cannot
remove a sequence of hooks of lengths ((p*)™,...,(p")*) from . So also
when p’ = 4,5 we have by lemma [66| that p| deg(x7).

We will now show that if (¢1,...,¢;) ends by (¢,1,1,1) or (¢, 2,1, 1), with
¢ >3 and (c,...,cn) # (3,3,1,1,1) or it doesn’t end with (d,3,3,1,1,1)
or (d,2,1,1) for some d > 4, then X’(ycl,...,ch) # 0. First assume that we have
(c1y--oyen) = (€1, .o Cm,d, 1,1, 1) for some d > 4. Then the first m hooks
of lengths ¢; must be removed from the first row (as the second row only
contains 3 nodes) and as by, =n —6 > c; + ...+ ¢, we can remove them in

a unique way obtaining (d,3). Now as d > 4 > hgﬁg) and hgflég) = d we can
remove the hook of length d in a unique way and so as we now only need to
remove 1-hooks, which have always leg-length 0, we have by lemma [54| that
X?q,--.,c;z) £ 0.

So assume first that (c1,...,¢,) = (cl, e Cmy 3 13), with m > 0 and
where ¢, > 4 and [ > 1. As the first m-hooks must again be removed from
the first row and hi, =n —6 > ¢ + ... + ¢, it is easy to see that we can
remove these m-hooks in a unique way and we obtain (3/,3). Now we can
either remove one of the first [ — 1 hooks of length 3 from the second row,
and then all other must be removed from the first row and all hooks have
leg-length 0, which can be done in [ — 1 ways, or we remove all the first [ — 1
hooks of length 3 from the first row and in this case all hooks removed up
to this point have leg-length 0. This last case can be done in a unique way
and would get (3,3) from which we must remove first a 3-hook and then
3 hooks of length 1. If we remove the last hook from the second row then
we need to remove the 3 1-hooks in a unique way and all hooks would have
leg-length 0. Otherwise we need to remove the hook corresponding to (1, 2),
which has leg-length 1. Now we obtain (2,1) and we can remove the 3 1-
hooks in 2 different ways. So there are [ ways to remove the hooks of length
(c1,...,cm, 34 13) from v for which the sum of the leg-length is 0 and 2 ways
for which the sum of the leg-lengths is 1. In particular by using lemma

we have that in this case X?q n) # 0 unless [ = 2.

Let (c1,...,cn) = (c1,. .., cm,34,2,1,1) for some [ > 1, where ¢,, > 4. As
hy, =3 <c¢jif j<mand hi, =n—62>c +...+ ¢, we can recursively
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remove the first m hooks of a sequence of hooks of lengths (cy, ..., ¢,) from v
in a unique way obtaining (3[4 1, 3). All these m hooks have leg-length 0. If
we remove any of the first [—1 3-hooks from the second row we need to remove
all others in a unique way and all hooks would have leg-length 0. This can
be done in [ — 1 ways. Otherwise we remove all of the first [ — 1 3-hooks from
the first row obtaining (4, 3). Also these [ — 1 hooks have leg-length 0 and
this can be done in a unique way. Now we can remove Rgi?’), in which case
we can only finish removing the 3 1-hooks in a unique way and also here all
hooks have leg-length 0, or we remove Rff), which has leg-length 1. In this
case we get (2,2). Now we can remove the last 3 hooks in two different ways,
which correspond to the following sequences of nodes ((2,1), (1,2),(1,1)) or
((1,2),(2,1),(1,1)). In the first case the sum of the leg-lengths of all the
hooks in the sequence is 1, while in the second case it is 2. So using lemma
we have that in this case X?C1,---7Ch) =l—-14+1-1+1=1#0.

Case 4.

We will now consider the case of (cy,...,c,) ending by (¢,2,1), with ¢ > 3.
Let now A = (n—4,2,2). Asn > c¢+2+1 > 6, we have that A - n. We will
now show that p| deg (X’\). As hil = 3 and p’ > 4, we need to have that all
hooks of a sequence with hook-lengths ((pk)ak s (pi)ai) are removed from
the first row and so we can remove the sequence of hooks in at most one way.
Assume first that p’ > 7. Then it is easy to see that after having removed
all but the last hooks of the sequence (which we can actually do, as can be
easily seen by looking at H?4) we obtain (p —4,2,2). As h§{’{‘4’2’2) =p' —2
we cannot remove the last hook of the sequence. If instead p’ = 4,5, let p’
be the second smallest part of ((p*)™ ..., (p*)*) (which must exists). After
having removed all but the last 2 hooks we obtain (p’ + p/ — 4,2,2). Now we
have that h{","™ ~**? = p/ + p' =3 > pJ and K7™ = pl 4 pi —6 < pi
and so in this case we cannot remove the second last hook of the sequence
and so A is of class i and so by lemma |66 we have that p|deg (X’\).

We will show that Xf‘c““’ch) # 0 whenever (cq,...,c,) ends by (¢, 2,1),
for some ¢ > 3. First assume that ¢ > 4. Then again as the hooks on the
second and third row are all at most of length 3, we need to remove all hooks
until that of length ¢ from the first row, and it can be seen that this can be
actually be done in a unique way obtaining (1%). Now from this partition we
can again remove in a unique way the last hooks, one of length 2 and one of
length 1, and so we have by the Murnaghan-Nakayama formula that in this
case Xf‘q 77777 ) # 0.

So assume now that (c1,...,c4) = (c1,...,¢;,3',2,1) for some [ > 1 and
Cm > 4. Again, as h) 3 =n—6 > c;+...+c; and hy; = 3, we can remove the

first j hooks in a unique way obtaining (3] — 1,2,2). Also as hgq,z,z) =2
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there cannot be any 3-hook on the third row. If we remove one of the [
hooks of length 3 from the second row all other 3-hooks must be removed
from the first row and it isn’t hard to see that after having removed all of
the 3-hooks we obtain (2,1), from which we cannot remove any 2-hook. So
we must remove all 3-hooks from the first row and in this case, after having
removed all 3-hooks, which again can easily be seen to be done in a unique
way as they are all on the first row (remove the hooks corresponding to
(1,31 —3), (1,3l — 6),...,(1,3),(1,2)), we obtain (1%), from which again we
can remove the last 2 hooks in a unique way and so we have again by the
Murnaghan-Nakayama formula that Xf\q,...,ch) #0.

Case 5.

We will now consider the cases where (¢1,...,¢,) = (3,3,1,1,1) or ends by
(d,3,3,1,1,1) or (d,2,1,1) with d > 4, (c1,...,cn) # (4,2,1,1) and doesn’t
end by (e, 4,2,1,1) with e > 5 for p' > 5. If n = 7 none of these possibilities
for (¢y,...,cp) as above are possible. Let 6 = (n —4,4). ¢ is a partition of n
asn > 8. We will show that p divides the degree of x® and that in these cases
X‘(S%.__’Ch) # 0. First assume that p* # 5,7. Then p’ > 8 and so (unless n = 8)
as his =n—8,1{; =0, hd, = 4 and all parts of ((p*)™,...,(p")") are
bigger then 4, we can remove all but the last part in a unique way obtaining
(p" — 4, 4) (if n = 8 we already start like this). Now 5 p ) = pi—3 < p' and
S0 we cannot remove the last hook of the sequence we are trying to remove
from 4. If p = 5,7 let p’ be the second smallest part of ((p ) L (p’)a)
P’ must exists as p' < n. Again, as h15>n—p —p? and A 1—4<pl<p
for any [ > 4, we can remove all but the last two hooks of the sequence
of hooks of hook-length ((pk)ak e (pi)ai) in a unique way and we obtain
(p" + p’ —4,4). In order to be able to remove the last hook we need to have
that after having removed the p/-hook there is at most one node on the
second row. So we first need to remove either R(p D) o) R Py = 44), as
we need to remove a hook on the first row. In the first case we Would be left
with (3), while in the second case with (3,1). As 3,4 < p’ this means that
hgp P4 and hlp P49 are bigger then p/ and so 6 is of class i and so we
again have by lemma (66 . that p divides the degree of x°.

Assume now that (cq,...,c) = (¢1,...,¢m,3,3,1,1,1), for some m > 0
and for which ¢, > 4. First assume that ¢,, > 4. Then as h2 1 = 4 we need to
remove the first m hooks from the first row. Also as h 15 =n—8>c+...+Cn
and 19 5 = 0, we can remove these m-hooks in a unique way and we obtain
(5,4) and it is easy to see that these m hooks all have leg-length 0. If we now
remove the hook corresponding to (2,2) we obtain the partition (5,1) and
we next need to remove the hook corresponding to (1, 3), which would give
the partition (2,1). Now we can remove the 3 1-hooks in two different ways,
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but in both ways we have that all hooks in the sequence with hooks-length
(c1,-..,¢,3,3,1,1,1) have leg-length 0. Otherwise we first need to remove
the hook corresponding to (1,4) obtaining the partition (3, 3). This hook has
leg-length 1. If we next remove the hook corresponding to (2,1) we obtain
(3) and so there is a unique way to remove the 3 1-hooks and these last 4
hooks have all leg-length 0. Otherwise the second 3-hook we remove must
be the one corresponding to (1,2), which has leg-length 1 and which would
leave the partition (2,1). There are two ways to remove the final 1-hooks.
So putting all of this together there are 2 ways to remove the sequence of
hooks for which the sum of the leg-lengths is 0, 1 for which the sum of the
leg-lengths is 1 and 2 for which the sum of the leg-lengths is 2. By lemma
we then have that X‘(Sq 77777 o) =3 # 0.

If now (ci,...,cp) = (c1,...,cm,4%,3,3,1,1,1), for some m > 0 and for
which ¢,, > 4 and [ > 1 we can again remove the first m hooks in a unique
way (they all must be on the first row) from ¢ and these hooks all have leg-
length 0. After having done this we can either remove all 4-hooks from the
first row, which would leave (5,4) as before. This can be done in a unique
way. Proceeding as before we have there are 4 ways to remove the sequence
of hooks for which the sum of the leg-lengths is even and one way for which
it is odd. Otherwise we need to remove exactly one of the [ hooks of length
4 from the second row and then all other hooks must be removed from the
first row and all hooks of the sequence have leg-length 0. Putting all of this
together and using lemma |54| we have that X?q )= [+ 3 # 0 also in this
case.

Assume now that (cp,...,cp) = (c1,...,cm,4%,2,1,1), for some m > 0
and for which ¢,, > 4 and [ > 0. First let [ = 0. Then m > 1. Again as
h‘{j =n—82>c + ...+ Cp1, l‘f75 =0 and hg}l = 4 we need to remove the
first m — 1 hooks in a unique way and we obtain (¢;,4). Now as we need
to remove the m-th hook from the first row and as hfg“‘” = ¢, we need to
remove this hook and this way we obtain (3, 1), from which we can remove
the last hooks in a unique way (there is a unique 2-hook and after having
removed it we get (1%)), and so by the Murnaghan-Nakayama formula we

7777 Ch

-----

Let now [ > 1. As in this case h‘f,5 =n—-8>c+ ...+ cn, l‘f75 =0
and th = 4 we must now remove the first m hooks from the first row in a
unique way and we get (4[,4). These m hooks all have leg-length 0. Now we
can either remove one of the [ 4-hooks from the second row, and then all the
other must be removed in a unique way (they are all in the first row) and all
hooks have leg-length 0. This can be done in [ different ways. Or all [ hooks
of length 4 are removed from the first row. In this case we get (3,1) and the
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first [ — 1 4-hooks have leg-length 0, while the last one has leg-length 1. We
can now remove the last hooks in a unique way and these last hooks all have
leg-length 0. So by lemma X((;cl 77777 o) = [ —1 and the X((Scl 77777 o) #0if 1 > 2.
Case 6:
The only cases left when p* > 5 are when (cy,...,c;) = (4,2,1,1) or it ends
with (e, 4,2,1,1), for some e > 5.
If (¢1,...,c0) =(4,2,1,1) then n = 8 and p = 2. It is easy to check that
2| deg( (33.2)) and that XEZ > f )y # 0, so that (4,2,1,1) isn’t 2-vanishing.
If (c1,...,cp) ends with (e 4,2,1,1) with e > 5 then as the last two rows
of (n — 5,3,2) don’t contain any hook of length > e we need to remove
all hooks until that of length e from the first row in a unique way and at
this point we get (3,3,2) from which we need to remove hooks of lengths

(4,2,1,1) and so we can conclude that also in this case XE” 53 2 ;é 0 by the
the previous part and the Murnaghan-Nakayama formula.

We will now show that if ¢+ > 1, ¢ > 3 when p = 2 and ¢« > 2 when
p = 3 are as in the text of the theorem then p divides the degree of y("=%32),
As p* > 5 and hooks in the last two rows are all at most 4, we need to

remove all hooks from the first row. If p’ > 8, then as h(n 532) =n—82>

n 5,3,2)

app®+. .. a1 p 1+ (a;—1)pt and l = 0 we can remove all but the last

hooks of the sequence of hooks Wlth lengths ((p*)* ..., (p")") in a unique

way and we obtain (p* —5,3,2). As we have that hp 3D pi 3 we
cannot remove the last hook. If instead p’ < 7, let p/ be the second smallest
part of ((p )ak e (p")a') which must exist as now p* < n. As p' > 5 and
p’ > p' we have that p* +p’ > 8 and so we can in any case remove all but
the last two hooks of the sequence and we obtain (p° +p’ —5,3,2). If p' =7
then we have that (p' +p’ —5,3,2) = (p +2,3,2). As hﬁ{j““) =pl -1,

hg{’;+2’3’2) = p/ + 1 and any hook of length p/ must be on the first row we

cannot remove a p’-hook. Otherwise we need to have that p' = 5. In this
case (p' +p’ —5,3,2) = (p/,3,2) and h%’w) =p —1, h%’&” =p' +1 and

hé{” 1’3’2) = 4, so we cannot remove any hook of length p’. So in any case

(n —5,3,2) is of class i and so by lemma |66| we can conclude that p divides
the degree of y(»=532),

So the theorem is proved for p # 2 or for p = 2 and i # 2.

Case 7.
We will now show that if p = 2 and ¢ = 2 then (¢,...,¢,) cannot end
with (d,3,3,1,1,1), for d > 4 when (¢y,...,¢p) is p-vanishing. We will first
show that 2 divides the degree of (" 635D Asn > 12 as 4|n, 8 Jn and
n>3+3+1+1+1=9 we have that n —6 > 6 and so (n—6,3,1,1,1) is a
partition of n. Again let 2/ the second smallest part of ((2’“)% ey (2’)%)
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Here we need to have that 2/ > 8, as 2/ > 2! = 4 (as a; = 0,1 for any [ when
p=2)andsoas hjs=n—9>n—p' —p’ and as all hooks not on the first
row are at most of length 6, we must remove all hooks apart for the last two
from the first row and we obtain (2° +2/ —6,3,1,1,1) = (27 —2,3,1,1,1).
Now h(2] 23LLD — 97— 2 and hfjd’g’l’l’l) = 2742, s0 we cannot remove any
hook of length 27 from (29 —2,3,1,1,1) and so we need to have by lemma
[66] that 2 divides the degree of X(” 6,3,1,1,1)

We will show that "~ 63%1)’1’1) # 0 whenever (ci,...,¢,) is ending by
(d,3,3,1,1,1) with d > 4 As the hooks not on the first row are either 6 or
at most 3, we can remove all hooks of the lengths that appear in (¢q,...,¢)
which are bigger then 3 and not equal to 6 in a unique way, if we remove
them in decreasing order of length. Now, if there were [ 6’s in (cq,...,cp)
we are left with (61 + 3,3,1,1,1). If we remove some of the 6-hooks from
the second row we have that this hook has leg-length 3 and all other hooks
must be removed in a unique way and they all have leg-length 0. This can
be obtained in [ different ways. Otherwise we remove all 6-hooks from the
first row and it is easy to see that they must all have leg-length 0 and that

we obtain (3,3,1,1,1). As XE;?HB = —3 we have that

(n—6,3,1,1,1) _
X(etrocn) =—]l-1-1-1-14+1=-1-3#0

for any [ and so Xgn 0 3’1’1’1 # 0 for any (cq,...,c,) ending by (d,3,3,1,1,1)

with d > 4.

Case 8.
So by theorem [59|in order to finish proving the theorem we only need to show
that when p = 2 and ¢ = 2 then there is some 2-vanishing (¢, ..., ¢;) ending
by (d,2,1,1) for some d > 4. Let n = 2™ + ... 4+ 2™ with m; < m;+
for each j, be the 2-adic decomposition of n (m; = ¢ = 2 and m; = k).
Let (c1,...,cn) = (2™,...,2™2 2 1,1). We want to show that in this case
X(er,en) = 0 for any x* of even degree. By lemmas and if ais a
partition of n such that 2| deg(x®), we cannot remove a sequence of hooks
of lengths (2",...,2™) from «. So assume that § is obtained by « by
removing a sequence of hooks of lengths (2™ ... ,2™2). Then  + 4 and
cannot contain any 4-hook. So f = (2,2). It is easy to see that we can
remove a sequence of one 2-hook and two 1-hooks from 3 in two different
ways, one with sum of the leg-lengths equal to 0 and one with the sum
of the leg-lengths equal to 1. So any time we can remove a sequence of
hooks of lengths (2™, ...,2™2) from « we can remove from what we obtain a
sequence of one 2-hook and two 1-hooks in two different ways and these ways
have different sum of the leg-lengths modulo 2. So using lemma [54] we need
to have that (cq,...,cp) is 2-vanishing and so the theorem is proved. O]
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Lemma 68. If for some j, ap+ ...+ a;p’ # 0,n and o = (¢, 1"7°), with
ap+ ...+ a;p’ <n—c<p™ we have that p divides the degree of x“.

Proof. Asn # ag+...4+a;p’ we need to have that n > p/*! (as then we need
to have that a; # 0 for some 7 > j and so n > a;p' > p'*!, actually n > p/*1,
but n > p’*! is enough here) and so « is a partition of n, as n — ¢ < p'*1.
Also as hg, = n — ¢ < p*', if we can remove a path of hooks of lengths
((p¥)®, ..., 1%), we need to remove all the hooks of length > p/*! from the
first row. Let p™ be the minimal of such lengths. Notice that p™ exists as
n#ag+...+a;p’. As

ht, c—l=n—(n—c)—1>n—ptt>n—p"

arp® + .o AP+ (@ — 1)p™

AVAN

and [, = 0, we can remove from « in a unique way a sequence of hooks with
lengths ((p¥)@, ..., (pmth)am+r (p™)am=1) and we obtain

(c—(axp™+. . A amap™ T+ (am—1)p™), 1"7¢) = (ag+. . +a;p’ +p"—n+c, 1"7°).

Now we have that in this partition hgy =n —c < p/™ < p™,
hig=ap+...+a;p’ +p™ >p™

as ag + ...+ a;p’ # 0 and

his = ap+...+a;p/ +p"—n+c—1=p"—1+(ap+...+a;p’)—(n—c) < p"—

and so there is this partition has no hook of length p™. So we have that
we cannot recursively remove from « a sequence of hooks with hook-lengths
((pF)®, ..., (p™)@m), that is « is of degree m and so by lemma |66/ we have
that p divides the degree of a. O]

Theorem 69. Let i be minimal such that a; # 0. If (c1,. .., cp) is p-vanishing
with ¢, > 1 we have that ¢, < a;p'.

Proof. Assume that ¢, > a;p’. As > ¢; =n = a;p’ we then need to have
that n # a;p’, by the minimality of ¢ such that a; # 0. So we have that
(n—a;p', 1%7") is actually a partition of n. By the previous lemma with j = i
we have that p divides the degree of y* and it is easy to see by the Murnaghan-

Nakayama formula that XEZ;C.‘.”ZZ’;%F ) — (=)@ (all ¢; > ap' = hgfaipi’lw :

and so all hooks must be removed from the first row). ]

Corollary 70. Let i be mazimal such that p‘|n (i minimal such that a; # 0).
Ifa; =1, i# 1ifp=3andi # 1,2 ifp =2 and if (c1,...,cp) F n is

p-vanishing and ¢, > 1, we need to have that c;, = p*.
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Proof. By theorem |67] we have that in this case ¢, needs to be at least p,
while by theorem |69 we have that this part needs to be at most a;p’ = p*, as
such an 7 is also minimal such that a; # 0. O]

Until now we have proved results on the smallest part of a p-vanishing
partition. Now we will turn to study the largest parts of a p-vanishing parti-
tion. In the following &’ is any non-negative integer, so we are not assuming
that k' < k, where k is maximal such that a; # 0.

Lemma 71. Letn =a + bpk' with 0 < a < pk' — 1 and b > 0. If we cannot
recursively remove a sequence of b hooks of length p¥ from o n then x® is
of class k' and so the degree of x* is divisible by p.

Proof. This follows easily from the definition of a partition of class k', lemma
and as removing a sequence of hooks of lengths ((p*)%, ..., (p¥)®) is
equivalent to remove a sequence of b = > ik ajpj’k' hooks all of length

P~ O

Definition 37. For a given partition (cq,...,cp) and a given k' € N, define

dk/ = Z Gy,

¢ >pk’

that is dys is the sum of the parts of (c1,...,cp) which are greater or equal to
p*.
From theorem [72{ until conjecture |76l we will let d = dj = chzpk’ cj.

Theorem 72. Letn = a + bpk' where 0 < g < p’“' — 1 and b > 0. Let
(c}, .o cp) be p—van%’shmg with ¢, > 0. If d = bp*' then c; is a multiple of
P~ whenever ¢; > p*.

Proof. If b = 0 the theorem clearly holds, as then, as for all a < p¥ — 1, we
have that n < p*¥ and so in this case no part of (c1,...,cp) can be > . So
we can assume that b > 0.

Assume that d = bp¥ but not all for all j for which cj > p*" we have that
c; is a multiple of p*. We want to show that in this case (cy,...,c,) isn’t
p-vanishing. Let [ be maximal such that ¢ > p*¥ and p¥ Jei. Notice that
we cannot have that p* = 1 in this case. Also by definition of d and [ we
need to have that bp* = d > 2¢; (as there needs to be some I’ < [ such that
p* Jop andsod > ¢y + ¢ > 2¢;). The proof of this theorem will be divided
in the following cases:

Case 1: n = bp¥,
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Case 2: n # bp¥ and ¢, = ¢p¥ + e with a < e < p¥,
Case 3: n # bp¥ and ¢, = ¢p¥ + e with 1 < e < a.

These cases cover all the possibilities, as ¢ isn’t divisible by p*'.
Case 1.

Assume that n = bpk/. In this case ¢; > pk/ for all j < h. Consider o - n
given by (n — ¢, 2, 101_2). As ¢ > p’“' >2and n — ¢ > ¢ > 2 we have that
« is a partition of n. Let m = min{j : ¢; = ¢} U {h — 1}. By definition of {
it is easy to see that [ > 2 (as ¢; appears in the summation d = chzpk’ ¢,
as p*'|d and [ is maximal such that p* J¢;, there must exists some j < [ such
that p* fc;), so that we have h > 2 and then m > 1. As all ¢; > 2, j < h,
we have that hfy =n—¢ -2 2>c+...+cp1 (m—1<,h—1). As
we also have hy; = ¢ < ¢j for all j < m —1 and as I3 = 0 we can then
remove the first m — 1 hooks of any sequence with of hooks with lengths
(c1,...,cp) in a unique way from o and we obtain (¢, +. ..+ ¢, — ¢, 2, 1972).
If ¢,, > ¢, we need to have that m = h — 1 and [ = h and then the partition
we obtain is (¢,_1,2,197%). Here hoy < ¢;—1 and hig = ¢, S0 we can
remove also the next hook of the sequence in a unique way, which would
leave (1%), for which hy; = ¢. So in this case we have by the Murnaghan-
Nakayama formula that X(er,en) = 1 # 0. Next assume that ¢,, = ¢; and
[ = h. So we now need to remove [ —m + 1 > 2 hooks all of lengths ¢; from
(Cm+...ten—cp,2,1972) = ((I—m)cy, 2, 1972). If we remove one of the first
l—m—1 of these hooks from the second row then this hook must be H,; and
we then need to remove all other hooks in a unique way (they all must be
removed from the first row). Also the hook we would remove from the second
row would have leg-length ¢; — 2 and all others would have leg-length 0. This
can be done in [ —m —1 different ways. Otherwise all the first [ —m — 1 hooks
of length ¢; must be removed from the first row and they all have leg-length 0
(asin ((I—m)c, 2,1972), hy 3 > (I—m—1)¢ and [; 3 = 0). Now we would get
(¢1,2,1972). Now we can either first remove H,; and then H;; or first Hy
and then M, ;. In the first case the last two leg-lengths are ¢; —2 and 0, while
in the second case they are 1 and ¢; — 1. So by lemma [54| we have that in this
case X0, oy = (=12 =m) + (=) = (=)l —=m+1) #0asm < .
The last case is when ¢,,, = ¢; and [ < h. If we remove one of the ¢;-hooks from
the second row then this hook would need to be Hs 1, it would have leg-length
¢;—2 and all other hooks would need to be removed from the first row and they
would all have leg-length 0. This can be done in [ —m+1 > 1 different ways.
Otherwise all ¢-hooks must be removed from the first row. Assume this is
possible. Then as the partition we obtain must be a partition of a non-zero
multiple of p* by definition of , the last hook we removed cannot have been
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Hi, or Hy5 (in the first case we would be left with either (0) or (1), while in
the second case with (1) and ¢; isn’t a multiple of p*¥'). So the partition we
obtained is of the form (e,2,1%72), for some e > 2 such that p*'|e + ¢;. We
will show that we cannot remove a sequence of (e+¢;)/p* hooks of length p*
from (e,2,1%72), which also will prove that « is of class &’ by lemma . As
any maximal sequence of p*-hooks that we remove from (e,2, 1972) consists
of the same number of hooks, it is enough to show that there is a maximal
sequence of p*-hooks which are recursively removed from (e,2,197%) which
contains less than (e + ¢;)/p® hooks. Let m; and m, maximal such that
mlpk/ <e—2and mgpk/ < ¢; — 2 respectively. As (m; + mg)pk/ <e4+c¢—4
we have that m; +mq < (e+¢)/ pk'. Now we can recursively remove first my
p*-hooks from the first row of (e,2,1%72) and then my p¥-hooks from the
first column of the resulting partition and it is easy to see that this way we
obtain (e—mqp", 2, 1Cl_m2pk,_2). In this partition we have that hyo = 1 # p*,
hii = e+ ¢ — (my +my)p® — 1, which isn’t divisible by p* as p*|e + ¢,
hia=e— mlpk/ < pk/ +1,ho1 =¢ — mgpk/ < pk/ + 1 by definition of m; and
Mg, 50 that hy; < hiz = hip—2 < p* and h;; < hgy = hgy — 2 < p* for
any i > 3 (when (1,7) or (i,1) is a node of (e —mp" 2, 1Cl_m2pk/_2)) and as
p* Je,c;, we then have that no hook of (e — mp¥, 2, 1Cl_m2pk/_2) has length
equal to p* and so any maximal sequence of p*'-hooks which are recursively
removed from (e, 2, 1972) contains m; + my < (a + ¢;)/p* hooks and so we
have that also when m = h — 1 and ¢, # ¢; then X{(eroocn) # 0 and that we

always have that when n = bp¥ then the degree of x* is divisible by p. So
we have proved the case where n = bp*'.
Case 2.

Assume now that n # bp¥ and that, when we write ¢, = ¢p¥ + e, with
0 <e<pt, then e > n — bp¥ = a. Notice that as ¢; isn’t a multiple of p¥',
e # 0, so this is always the case when n — bp* = 1. Let 8 = (n — ¢, 1%). As
n > bp¥ > ¢, as ¢ is not a multiple of p* and ¢, < d = bp¥’, we have that
[ is a partition of n. Let m be minimal such that ¢,, = ¢;. As n # bp* and
d= bpk/, we need to have that m <[ < h. So as

h’fg:n—cl—lSn—Cl—Ch§C1+...+Cm71;

lf2 = 0 and hyy = ¢ < ¢; for j < m, we can remove the first m — 1
hooks of a sequence with hook-lengths (cy,...,c,) from £ in a unique way
and we obtain (41 + ... 4+ ¢, 1%) (as ¢, = ¢). If we remove some of the
c-hooks from the second row, this hook must be Hs; and it must have leg-
length ¢; — 1. All other hooks must be removed from the first row and they
must have leg-length 0. This can be done in [ — m + 1 > 1 different ways.
Otherwise we must have removed all ¢;-hooks from the first row. If this is
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possible, after having removed these hooks we must obtain a partition of the
form (f,1%). As this partition is obtained from [ by removing a sequence
of hooks, all from the first row, whose sum of the lengths is a multiple of
p*, we need to have that f + ¢ = n = n — ap® mod p. So as removing a
gp"'-hook is equivalent to removing a certain sequence of ¢ hooks of length

p¥, in order to show that X?q en) # 0 and that p divides the order of y*,

it is enough to show that whenever A\ = (f,19), such that f + g = sp* + ¢
and f = rp¥ + u, for some s,7 > 0 and 1 < ¢t < u < p¥, then we cannot
remove from A a sequence of s hooks of length p*. As 1 < t < p* we
have that hil = f + g is not divisible by p¥. So whenever hf:j = ¥,
then we have that (i,7) = (1,¢) or (4,j) = (¢, 1) for some ¢ > 2. We can
remove a hook from the first row if and only if f > p* and in this case
byt = p/k' —1+1=p", 5o after having rel:moved this hoolf and we
obtain (f —p*,19) and now f—p¥ +b = (s—1)p* +t and g = rp* +u. We
can remove a hook from the first column if and only if ¢ > p* and in this
case hy w ,=g—1—(g9— p¥ +2) 4+ 1 = p* and after having removed this

hook and we obtain (f, 19_pk/) and we have that f +¢g —p* = (s — 1)p* +1¢
and f —p* = (r — 1)p¥ + u. So we can remove a p*-hook from \ if and
only if f > p* or g > p* and in any way we remove any such hook from it
we obtain a partition of the form (f’,19"), where f' 4 ¢’ = (s — 1)p* 4+t and
g = r'pF + u. So we have that after having removed any maximal sequence
of p*-hooks from \ we obtain a partition (f”,19"), where 1 < f” < p* and
0 < g” < p" and f” and ¢” satisfy "+ ¢" = s'p¥ +t and ¢’ = r"p* + u,
for some s, 7" > 0. As ¢" < p* we need to have that 7 = 0 and so ¢" = u.
We want to show that s’ > 1, as then we cannot remove any p*-hook from
(f”,19") and as we then need to have that this partition is obtain from X by
removing less then s p¥-hooks we have that we cannot remove any sequence
of s pk'—hooks from A. But the fact that s > 1 follows from the fact that
t < uand e > 1, and so we have that if n # bp¥, ¢ = p* + f”, with
n—ap® < f" < p¥ and B = (n — ¢, 1%), then p divides the order of x# and
X(ﬁcl,...,ch) # 0, in particular (cq,...,¢,) is not p-vanishing in this case.
Case 3.

In this case we have again that n # bp¥ but differently from the previous
case we now have that ¢, = ¢p¥ + e for some 1 < e < n — bpw. Notice that
a =n —bp* > 2 in this case. Here let v = (n — ¢;,n — bp*, 1‘31_”+b”k/). As
a < bpF', n # bpF and n — bp* < p* < ¢ we have that v is a partition of
n. We want to show that p divides the degree of x” and that in this case
X?q,‘..,c;l) # 0. We will actually show that this holds whenever 1 < e < p* and

e#n—bp". As hy, = ciis not divisible by p and hy , = n—bp¥ —1 < p*, any
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p*-hook of ¥ must be either on the first row or is of the form (g, 1), for some
g > 3. If we remove a p*-hook of the form H 41> We are left with a partition
of the form (f,n — bp*',19), for some f, g such that f 4 g is divisible by p*
(the partition we obtain is a partition of n —p* = (b—1)p* +n —bp*’) but g
isn’t divisible by p*', as n—bp¥ +g+p* = ¢; Z n—bp* mod p*¥'. Also we still
get a partition of the form (f,n — bp*',19) with p*'|(f + g), p* Jg whenever
we remove a p¥-hook from the first row of v and hln_bpk,ﬂ > p* (in this
case g = ¢;—n-+bp*). So repeating this argument, while Py ppph 11 2> P we
have that whichever p* hook we remove from the partition we obtained at
the previous stage we always get a partition of the form (f,n — bp*', 19) with
PP |(f +9), p¥ fg. Also as long as P b 41 > p¥ we always can remove
a p¥'-hook from this partition, as Lipppr 41 = 0. So we can assume that
Py it 11 < p¥ thatisn—bp¥ < f <n— (b— 1) . Now if g > p¥ we can
still remove a hook of the form H,;, for some ¢ > 3, getting again a partition
of the same kind as before, or we can remove, if possible, a p¥-hook from
the first row. If f =n —bp* + p* — 1 we have that Py g 41 = p¥ —1 and
by = p¥ 41, so we cannot remove p¥ -hooks from the first row and so, as
the only possible p¥'-hooks which we can recursively remove from this point
are those of the form H, 1, for ¢ > 3, after having removed as many p*-hooks
as possible we would get a partition of the form (n—bp* +p* —1,n—bp* , 19),
and as n — bp¥ # 0 we have that this is a partition of a number which is at
least p*', so by definition of b (b is the biggest integer such that bp* < n) we
cannot remove a sequence of b p¥'-hooks from ~ and so in this case we have
that p divides the degree of x” by lemma [71]

So assume now that when we obtain the partition (f,n — bp*',19) with
n—bp¥ < f <n—(b—1)p* we have that

f#n—bpk/—i-pkl—l:n—(b—l)pk —

Then f < n— (b—1)p* — 1. If f > p¥ it can be easily seen that in this
partition hy ;. , = P, as in this case 2 < f —p" +2 < n —bp¥. Also as
we now either have to remove this hook or a hook of the form H,;, ¢ > 3, we
have that hy ;_w_, is constant as long as we don’t remove the corresponding
hook. So, again as if we remove H,;, ¢ > 3 we still get a partition of the
kind (f,n — bp*’,19), we have that at some point we would need to remove
H pk/+27 and after having done this we obtain (n —bp¥ —1, f —p* +1,19),
with p*|(f + g) and p* [f,g. Now we have that hor = f+g—p" —1
and hy; = n - bp* —|— g are not divisible by p*. As we also have that
his = n—bp* —1 < p* we have that any p*'-hook of (n—bp 1, f—pF41,19)
must be of the form H,, for some ¢ > 3. After having removed if possible
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this hook (which exists if and only if g > p*'), we are still left with a partition
of this kind and so we can repeat the argument until we obtain a partition
of the kind (n —bp¥ — 1, f —p*¥ +1,19) with g < p*, which doesn’t have any
p¥'-hook. This partition is a partition of n—bp* —1+ f —p* +1+¢g > n—bp*
as f > pt', p" Jf and g cannot be negative. So as if it would be possible
to remove a sequence of b p¥'-hooks from v we would obtain a partition of
n—bp¥ , we cannot remove such a sequence in this case either and so we have
that also in this case x” has degree divisible by p.

So assume now that when we obtain (f,n — bp¥',19) with n — bp¥ <
f<n—(b—1)p", we have that f < p*. In this case h1o = f < p¥ and
hii =n— (n—bp¥ —1) = bp¥ + 1, which isn’t divisible by p¥', so in this
case there is no p¥-hook on the first row. Proceeding as in the case where
f=n—(b—1)p" —1 we get to the case where g < p¥, in which case are no
more p*-hooks. The partition we now have is (f,n — bp*', 19), where both
f,g < p* and f + g is divisible by p*. Also as f > n — bp¥ we have that
f+ g > 0, so this partition is a partition of a number bigger than n — bp*
and so again we have that p divides the degree of x”. So we have that in any
case the degree of x7 is divisible by p and so we only have left to show that
when n — bp¥ > 2, ¢, = cp¥ + e for some 1 < e < p* and e # n — bp¥, we
have that X’(ycl,...,ch) # 0.

Now as hy, = ¢, h?,n—bp’“’—&-l = D ene ¢ and lln_bpk,ﬂ =1, if m is
maximal such that ¢,, > ¢; (let m = 0 when ¢; = ¢;), we can remove the first
m hooks of a sequence of hooks of lengths (c1,...,¢;) from v in a unique
way, obtaining a partition of the kind (f,n — bp*’, 1"1_"+bpk/). After having
done this we can remove one of the ¢;-hooks from the second row, in which
case this hook must be Hs; and has leg-length ¢; — n + bpkl, and then all
other hooks must be removed in a unique way (they are all on the first row)
and they all must have leg-length 0. This can be done in at least one way
and by the considerations we just made on the leg-lengths we have that the
sum of the leg-lengths is constant in all these cases. Otherwise, if possible
we must have removed all the hooks of length ¢; from the first row. By the
maximality of [ such that ¢, > p* and p* [ and as d = n — bp*', the
partition we obtained this way must be a partition of a number of the form
n—bp* 4 sp*’, for some s > 0. If one of the hooks we removed was H 11, then
the partition we obtained must be (f), for some f < n — bp*’, which gives
a contradiction. Also as if at some step we removed some hook of the form
H, 4, with g <n— bp* = a as all hooks we removed are on the first row after

having removed this hook we must have obtained (n—bp* —1,¢—1, lcl*’”bpk/)
and as now hjy = n — bp¥ —1,n — bp¥ —2 < p¥ < ¢, this hook must
have been the last one we removed. So the partition we obtain removing,
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if possible, all hooks of length > ¢; from the first row of v must either be
a partition of the form (f,n — bp*', 1Cl_n+bpk/) or (n —bp" —1,q, 101_”+bpkl),
from which we first need to remove a sequence of hooks of lengths multiple
of p* and then some hooks of total length equal to n — bp¥". We will show
that if (f,n — bp*, 1Cl_"+bpk/) or (n —bp* —1,q, 1Cl_”+bpk/) is a partition of
n—>bp* +sp¥’, then it is not possible to remove from this partition a sequence
of s p*-hooks. The first case is done just like when we proved that p divides
the degree of X7 (f = (n — bp* 4+ sp*) — ¢;), so it is enough to show this for
the second case. In this case we have that

q=n—bp" +sp¥ —n+bp +1—c+n—bp" =n—bp* +pF — ¢ +1,
hlygzn—bpk,—1,n—bpk,—2<pkl,
hLl:n—bpk/—l—spkl—qul:cl>ka

and so any p*-hook must be of the form H,;, t > 3. As removing this
hook, if it exists, we obtain (n — bp* — 1,¢,19) for g = ¢; — n + bp* — p¥,
and we have that [, remains the same, H;; is decreased by p"/ and so it
still isn’t divisible by p* by definition of I, we have that we can remove p"-
hooks only as long as ¢ > p¥ and we always obtain a partition of the from
(n—bp* —1,¢,19) for some g’ = ¢;—n+bp* —ip* for some i. As we have that
¢ #Z n—bp® mod p, we also need to have that ¢ is always positive. So after
having removed some p*-hooks from (n — " —1,q, 1”_”+bpk/) we obtain
(n—bp¥ —1,¢,19), with 1 < ¢’ < p*. This partition doesn’t have any more
p¥-hooks and it is a partition of n —bp* —14+g+¢ > n—0bp*. In particular
we cannot remove a sequence of s p*'-hooks from (n — bp* — 1, ¢, 1Cl_”+bpk/)
and so when we can remove all hooks with lengths > ¢; of the sequence with
lengths (cy, ..., cy) from 7 from the first row we cannot finish removing such
a sequence of hooks. So whenever removing such a sequence of hooks from
~v we always need to remove one ¢;-hook from the second row and all other
hooks from the first row and so by the previous considerations we have by
lemma that if n — bp¥ > 2, ¢, = ¢p¥ + e for some 1 < e < p¥ and
e # n — bp* then X(vq’m’%) # 0 and so as we have finished considering also
case 3, we have that the theorem is proved. O]

)

Theorem 73. Let n = a + bp’“' with 0 < a < p"/ —1and b > 0. Let
(c1,...,cn) be p-vanishing. We have that d < bp¥ in the following cases:

°* pF#3,
e p=3,K2>2
e p=3, kK =1,n#2 mod 3.
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In addition we have in the case where p =3, k' =1 :
o [fn=2thend=0,

o [fn=>5andd> 3 then (c1,...) = (4,1),

o [fn=28 andd > 6 then (cy,...) = (4,3,1).

Proof. Here too we can assume that b > 0, as if b = 0 then n < p* and so
the theorem clearly holds in this case. Also as the particular cases (when
n =258 p=3and k' = 1) can be easily checked by finding the character
table of S,, (the case n = 2, p = 3 and k' = 1 follows also by the fact that
in this case b = 0), we will only prove the first part of the theorem. This is
done by considering the following cases:

Case 1: n = bp~,

Case 2: n # bp¥ and d = n,

Case 3: a=n—bp¥ #0,p" —1 and bp* < d < n,

Case 4: n—bp" =pF =140, bp" <d<nandn—d>d—bp¥,

Case 5: n—bp" =pF =140, bp" <d<nandn—d<d—bp¥,

Case 6: n—bp" =p" =140, p" <d<n,n—d=d—bp* and n—bp* > 4,
Case T: n—bp" =p" =140, p" <d<n,n—d=d—bp* and n—bp* = 2.

It is easy to see that this way we cover all cases where d > bp¥’, as in cases
6 and 7 n — bp* needs to be even and non-zero.

Case 1.
Let n = bp¥. Then we have that

d=>" <Y c=n=0"

cj >pk’

for any (cq,...,c) F n, so the theorem clearly holds in this case too.

Case 2.
Assume now that n # bp¥ and d = n. Let o = (bp"“', 1“). By lemma
we have that p divides the degree of y*. We will show that if d = n then
X(er,omren) # 0. When d = n we have that ¢; > pF for any 1 < j < h.

.....

Again as hg; < p* we have that any hook in a sequence of hooks of lengths
(¢1,...,cp) which are recursively removed from a must be on the first row. So
we can remove them in at most one way and so by the Murnaghan-Nakayama
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actually possible to remove such a sequence. As
h‘f‘g:(cl,...,ch)pk/—1:n—a—1 >n—p" > 4.+

as ¢, > p¥., we can remove the first h — 1 hooks of this sequence and obtain
(c¢n, — a,1%), for which hy 1 = ¢, and so we can recursively remove a sequence
of hooks of lengths (c1,...,cs) and then we have that x{, ., # 0 when
d=n.
Case 3.

Assume now that a = n — bp® # p¥ — 1, and that bp¥ < d < n. Let
B = (bpk/ —1,n—d+1, 1d*bpk/>. We will show that 3 is a partition of n,
that x” has degree divisible by p and that X?cl,...,c,L) # 0 in this case. As b # 0
we have that bp¥ — 1 > p* — 1. Also as d > bp¥ and n — bp* # p* — 1 (so
that we actually have that n — bp* < p* — 1) and as we need to have that
d < n, we have that

2<n—d+l<n—b +1<p’ —1+1=p".
So as d — bp¥ > 0 and
" —1+n—d+1+d—bp* =n

we have that 3 is a partition of n.

We will now show that we cannot remove a sequence of b hooks of length
p* from B, from which we will have that the degree of x? is divisible by p by
lemma [71l First notice that as

hglzn—d%—l—l—d—bpk/:n—bpk/+1<pk/—1+1:pk'

we have that any hook of any sequence of p*-hooks which are recursively
removed from f must correspond to some node on the first row. So if we can
remove any sequence of b p¥-hooks from 8 we can do this in a unique way.
Asn—d+1<n—0bpF +2<p” —14+2=9p" +1 < bp* + 1 we have that
n—d+2<bp" —1andso (1,n—d+2) € f. Also as lfm_dJr2 =0 and

Mty = W —1—(n=d+2)+1=—(n—bpF) +d—2
> (Y — )+ —2=(0b-1)p" —1

so that hf,nfdJrZ > (b—l)pk' and as lf,nfdJrQ = 0 we can recursively remove b—1

hooks of length p* from 3 and this way we obtain (p’“' —1,n—d+1, 1d_bpk/>.
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Now as d > bp* we have that this partition has at least three rows, and so
in it we have that hy; > P — 142 =p¥ +1. As in this partition we also
have that hy; < hgl < p¥ (the inequality is actually an equality but we
don’t need that here) and hy o = p¥ —1—1+1=7p" —1 we have that this
last partition doesn’t contain any hook of length p* and so, as it is the only
partition we can obtain from [ by recursively removing b — 1 hooks of length
p¥', we cannot remove a sequence of b p¥-hooks from 5 and so we have that
pl deg (x”).

So we only need to show that X?q,m,%) # 0 in order to finish the case
when n — bp* # p* — 1 and bp* < d < n. Let [ be such that ¢ > p¥ and

ce1 < p*. As d > bp* we need to have that ¢; > p¥', so such an [ exists and
[ > 1. Then

hf,n—d—i—Q = bpk/—l—(n—d~|—2)+1
n—(n—bp*) —(n—d)—2

> n—(pk’—l)—2j>zcj—2
= +...+qg—-p" -1
Z Cl+...—|—01_1—1

and so h/f,nfd+2 > ¢+ ...+ ¢_; and then as lf,nfd+2 = 0 and h§,1 <
pFo< ¢; for 7 < [, we can remove the first [ — 1 hooks of any sequence
of hooks with hook lengths (¢p,...,¢;) in a unique way and we obtain
(cl —1—d+bp¥ n—d+1, 1d-br* ) (what we obtain must be a partition
of ¢, + ...+ ¢, and the all rows apart from the first one must be as in ). In
this partition we have that by =¢ —1—d+ bpF +14+d—bp¥ = ¢, so we
can now remove a hook of length ¢; in a unique way and we obtain (n — d),
from which we can remove the last hooks of the sequence in a unique way.
So by the Murnaghan-Nakayama formula we have that qu ch) # 0 when
n—0bp¥ #p* —1 and bp* < d < n.
Case 4.

Let now d,bp* #n, n—bp* =p* —1,d > bp* and n —d > d — bp*'. Let
v = (bpk’ +1, 2d—bpk ’ 1n—2d—l—bp’c —1>' As d— bpk’ > 1,

n—2d+bp* —1=Mn—-d) —(d—-bp")—1>0

and bp* +1 > p¥ +1 > 3 (p¥ must be at least 2 as n # bp*') we have that
is actually a partition. Also as bp¥ +142(d —bp¥) +n—2d+bp*¥ —1=n
we have that v F n. We will now show that p|deg (x?). As hy; =d — bp* +
n—2d+bp¥ =n—d<p¥, his= bp¥ —1> (b—1)p¥ and I3 =0, we can
recursively remove b— 1 hooks of length p*¥ from ~ in a unique way obtaining
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(pk/ + 1, Qd*bpk/, 1"*2d+bpk,*1>. Now we have that h; o = pF +d —bp* > p¥

(as d > bpk'), hig= p¥ —1 and hoy < p*" and so we cannot remove any more
p¥-hooks and so we have that the degree of x7 is divisible by p by lemma

Also if [ is again such that ¢, > p¥ and ;41 < p* as then hg’l < p¥,
hWy=0bpF —1=n—p" >ci+...4¢ (as g > p") and IJ5 = 0, we
can remove from ~ the first [ — 1 hooks of a sequence of hooks with lengths
(c1,...,c,) and we obtain (cl +bp —d+1, 2d_bpk,, 1”_2d+bpk/_1>. As here

we have that hgy < p¥ < ¢ and his = c + " —d+1—14+d—bp* = ¢
we can remove the next hook in a unique way and after having done this we
obtain (1”*d), from which we can remove the remaining hooks in a unique
way. So by the Murnaghan-Nakayama formula we get that XE/CL..-,%) # 0 in
the case where d, az,pk/ #£n,n—bp" =p" —1,d>bp* andn—d > d—bp¥
and so also in this case (cq,...,cp) isn’t a p-vanishing partition.
Case 5.

Assume now that d,bp* # n, n —bp¥ = p* — 1, d > bp* and that we now
have n—d < d—bp* . Let § = <bp’f’ 4 1,9m 1, 12d—n—bp’“'—1>. Asbp¥ +1> 3,

n—d>1,2d—n—bp¥ —1=(d—bp") —(n—d)—1>0and bp¥ + 1+
2(n —d) +2d —n —bp* —1 = n, we have that 6 - n. We will now show that
p divides deg(x°®). As th =n+d+2d—n—bpF —1+1=d—b" <p~,
1§5=0and hf;=bp" —1> (b—1)p¥ we can remove b — 1 hooks of length

p¥ from 6 in a unique way and we obtain (pk/ + 1,274, 12d*”*bpk,*1> and

as for this partition we have that hy; < pk/, hia = pk/ +n—d > pk/, as
n—d>1,and hy 3 = pF" — 1, we cannot remove any more p*-hooks and then
we have that p divides the degree of x° again by lemma .

Now as h‘ls73 = bpk/ —1=n-— pk/ >c1+ ...+ ¢_1 and as again li3 =0
and hgl <pt < ¢; for j <1, we can recursively remove from ¢ the first [ — 1
hooks of a sequence of hooks (¢i,...,¢,) in a unique way and this way we

obtain <cl —d+ bt +1,27 1, 12d_”_b’”kl—1). In this partition we have that

hip = d—d+bpF +14+n—d+2d—n—bp* —1 = ¢, so we can now remove
in a unique way also the [-th hook of the sequence. It is easy to see that after
having removed this hook we obtain (1”*d), from which we can remove the
remaining hooks in a unique way. So by the Murnaghan-Nakayama formula

we have that in this case X‘(S617“_’Ch) # 0 and so (cq,...,cp) isn’'t p-vanishing

when d,bp* #n, n—bp* =p* —1,d>bp" and n —d < d—bp"".

Case 6.
The last case we need to consider is when d,bp* # n, n — bp* = p* — 1,
d>bp*¥ and n —d = d — bp". Assume now that n — bp¥ > 4. We can easily
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see that this case can only occur when p is odd, as p¥ > 2 as n # bp¥ and
n—bp* = p* — 1 must be even as n —d = d — bp*. Let A = (bp*',2"%). As
¥ >p" >3, n—d>1and bp¥ +2(n—d)=bp* +n—d+d—bp* =n
we have that \ is a partition of n. We will show that y* has degree divisible
by p and that in this case y? # 0. As

(c1ye5Ch)
h§,1 =n—d+1<2(n—d) bt = 1,

I3 =0and his = bp* —2 > (b— 1)p" we can remove in a unique way a
sequence of b — 1 hooks all of length p* from \. After having done this we
obtain (p*', 2"~4) and we now have hy; < hé\,l <p¥ hiy = p¥ —14n—d > p¥
asn—d = (n—bp¥)/2>2and hy 5 = p¥ -2 (pF > 5asp¥ —1 =n—bp" >4,
so that (1,3) € (p¥,2"%)). So we cannot remove any more p*-hooks, in
particular we cannot recursively remove from A\ any sequence of b hooks of
length p* and so we have by lemma [71|that p must divide the degree of x*.

Here too we have that hi\73 :bpk’/—2 >n—cg—...—cp,=c1+...+¢_1
as ci41 + ...+ ¢ =n—d > 2 and as again hgl < p¥ < ¢jfor j <1 and
I3 = 0 we can remove the first I — 1 hooks of a sequence of hooks with
length (cy,..., ) in a unique way and we obtain (¢ 4 bp* — d,2"%), for
which hy ;1 =¢g+b—d+n—d=c¢ as n—d:d—bpk/. So we can remove
also the next hook of this new sequence in a unique way and after having
removed this hook we are left with (1"~¢), from which we again can remove
the last hooks in a unique way and so, as again we can recursively remove a
sequence of hooks with length (cq,...,¢,) from A in a unique way we have
by the Murnaghan-Nakayama formula that XE\CL..-,%) 2 0 from which follows
that also when d, bp¥ #n, n—bp* =p¥ —1,d > bp*, n —d = d — bp* and
n — bp¥ > 4 we have that (ci,...,¢,) isn’t p-vanishing.

Case 7.
The only case we have left is when d,bp* # n, n — bp* = p¥' — 1, d > bp¥',
n—d=d—bp" and n—bp¥ =2 and n—d = d—bp"'=1, as n — bp* must be
even and non-zero. In this case we have that p* —1 = 2, so p* = 3, in which
case we need to have that ¥’ = 1 and we need to have that a = 2, so that
n = 2 mod 3 in this case and so we have that the theorem is proved. O]

Definition 38. If k' € N we define a), by
a;ﬂ/ — Z ajp]_k/
P>k

It can be easily seen that

n=a+...+ ak/_lpk/_l + <Z ajpj_k/> pk/ =a+...+ ak/_lpk/_l + a;,pk/.
J=k



92 12 p-vanishing classes

In lemma , theorem |75/ and conjecture 76 we will let aj, = >, a;p’ -,

Lemma 74. If (ci,...,c;) is p-vanishing, n # al,p® and d < al,p*', then
Z c; >n — appt.
cj<n—a'pt’

Proof. Assume that for some j # h we have that n — a;,pk/ <g¢ < p* and
Z?:jﬂ ¢ <c¢jlet a=(n—cj,19). x* has degree divisible by p by lemma @
Also as h§; = ¢; when removing any sequence of hooks of lengths (cy, ..., cp

from a we need to remove all hooks of length > ¢; from the first row. Let m
maximal such that ¢,, > ¢; (m =0if ¢; = ¢;). Now we have that

h‘f‘g:n_cj—lZn—cj—ch201+...—|—cm

and as [{'y, = 0 we can then remove in a unique way the first m hooks of the

sequence and we obtain ((m—j—1)c;+e,1%), where 1 < e = Z?:jﬂ ¢ <¢j.

If we remove one of the first m — j — 1 hooks of length ¢; (there are at least
m — j values for i such that ¢; = ¢;) from the second row it is easy to see that
this hook has leg-length ¢; — 1 and all other hooks must be removed from
the first row and have leg-length 0. Otherwise the first m — j — 1 hooks of
length ¢; are all removed from the first row, and we can easily see that after
having done this we would be left with (e,1%). As 1 < e < ¢; we have that
in this partition A1 = e —1 < ¢j, hi1 =e+c¢; > ¢;j and so as hyy = ¢; we
have that this is the only hook of this partition with length ¢;. Also in this
case this hook has leg-length ¢; — 1 and all the other hooks have leg-length
0, so by lemma [54] we have that in this case x¢ # 0.

(c1,--sCh)

If Zc]-<n—a;€,pk/ c; < n—a,,p* andn—d = ch<pk’ c; > n—al,p* we need
to have that (cy, ..., c;) has at least one part of length between n—al,p* and
p¥ — 1. Let | be maximal such that n — a;,pk/ <¢ <pf—1.1fl < h we can
conclude by the previous part with j = [ that (ci,...,¢) is not p-vanishing
in this case. If [ = h we also need to have by theorem (69| that ¢; < n — aj,
so that ¢, = ¢;, = n —a}, and as n — d > n — a},p* we need to have that
cn =n—ayp" < cp_1 < p” and so in this case we can conclude again by the
previous part, now with j = h — 1, that (c1,...,c) is not p-vanishing. [

Theorem 75. Let p = 2,3. If (c1,...,cp) is p-vanishing we need to have
that d > a},p* if

e p=2and k' #1,2,
e p=2 kK =2andn # 4 mod 8,
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e p=2,k =1 andn is odd or divisible by 8,
e p=3and k' #1,
e p=3, kK =1andn #3,56,8 mod 9.

In addition if n < 8 and p =2 orif n <9 and p = 3 we have that if for
some k' we have that d < a;,pk/, then (c1,...,cy) is one of the following:

o (1,1)F2,(2,1,1)F4or(4,1,1)F6ifp=2,
e (2,1)F 3, (1,1,1) F 3, (2,1,1,1) F 5, (3,2,1) - 6, (3,1,1,1) F 6 or

P

(3,2,1,1,1) F 8 if p = 3.

Proof. The last statement can be checked using the Murnaghan-Nakayama
formula and the hook formula, that is first by finding by the hook-formula all
irreducible characters of degree divisible by p and then by the Murnaghan-
Nakayama formula finding those equivalence classes on which they vanish.
So we will only prove the first part of the theorem.

The theorem is trivial when aj, = 0 , as then p¥ > n. We may thus
assume that aj, # 0. Also the theorem clearly holds when &’ = 0 as in this
case p* = 1 and so we have that for any partition d = n = a%,,pk/.

Assume that n # al,p”. In order to prove the theorem we only need
to show, by the previous lemma, that if ch<n_a;€,pk/ c; >mn— %/pk’ then
(¢1,...,¢p) is not p-vanishing, for those &’ for which we want to prove the
theorem for the given p and n. The proof of the theorem will be divided in
the following cases:

Case 1: p=2,nodd and ¥ =0 or 8n and k' = 0,1,2 or n = 4 mod 8 and
kK =3,

Case 2: p=2,n=2mod 4 and k¥ = 2,

Case 3: p=2,n=a},2" and k' > 3 or n # a,,2" and the theorem holds for
K —1,

Case 4: p =3, k' > 2 and the theorem holds for &' — 1,

Case 5: p=3,n=0,1,4,7 mod 9 and k¥’ =1,

Case 6: p=3,n=3,6mod 9 and k' = 2,

Case 7: p=3,n=2mod 9and ¥ =1 orn=>5,8 mod 9 and k' = 2.
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As we have already noticed that the theorem always holds for £’ = 0 we have
that these cases include all the other cases that we need to consider.

For cases 1, 2 and 3 let p = 2.

Case 1.
As we have already seen that the theorem always holds for & = 0, it needs to
hold in particular for n odd and &' = 0. Also when n is divisible by 8 we have
that the theorem holds for ¥’ = 0,1,2 by theorem [67, When n = 4 mod 8
and k' = 3 we have that the theorem easily holds by theorem [67| and lemma
(here n # 2¥'a}, as ap_1 = ay = 1).

Case 2.
We will now show that the theorem holds for n = 2 mod 4 and k¥ = 2.
Again by the lemma we only need to show that whenever ch:1 c; > 2, then
(¢1,...,¢p) isn’'t p-vanishing. In order to do this we will use (n — 2,1,1),
(n—3,2,1) and (n —3,1,1,1). As we are assuming that n = 2 mod 4 and
n > ch:1 c; > 3 we need to have that n > 6, so that these are actually
partitions of n. The degree of x(»~%1D and y™=31LLY are divisible by 2 by
lemma [68 Using the hook formula it can be easily seen that the degree of
X732 s n(n — 2)(n — 4)/3 (the degree of x*, for any a  n is equal to
the product of the numbers between 1 and n which are not equal to the
hook-lengths of the hooks on the first row of a divided by the product of the
hook-lengths of the hooks on the lower rows of &) and as n is even we then
have that also this degree is divisible by 2.

So let now (c1,...,¢c,) = (c1,...,¢,37,25, 1Y) with ¢, > 4 and assume
that ¢ > 3. First assume that s # (¢t — 1)(¢ — 2)/2. In this case we can show
that X(n_Q’l’l) # 0. To see this notice that whenever we are removing from

ClyeensC
(n — 2,(1, 1) 2 sequence of hooks with lengths (cy, ..., c), we need to remove
all hooks of length at least 3 them from the first row. As by assumption
t > 3, we can remove the first h — s — t hooks of this sequence in a unique
way and we obtain (2s +¢ — 2,1,1). Now, as again ¢ > 3, it isn’t hard to
see that we can either remove one 2-hook from the second row and all other
hooks from the first row. This can be done in s different ways and the sum
of the leg-lengths in this case is 1. Otherwise we need to remove all 2-hooks
from the first row, which would leave (t —2,1,1) and then remove ¢ 1-hooks
from this partition. In this case we have that the sum of the leg-length is 0.
It can be easily seen that {hgt,f’l’l) 2<i<t—-2}={1,2,...,t —3} and
then using the hook formula we have that

t! (t—1)(t—2)

[T 2

X(t—2,1,1) (1)

As we are assuming that s # (¢t — 1)(t — 2)/2 we have by lemma [54] that
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(n—2,1,1)
(cl,...zch)
p-vanishing.

Assume now that s = (t — 1)(t — 2)/2 and r # t(t — 2)(t — 4)/3. As t(t —
2)(t —4)/3 < 0 when t = 3 this can never happen in this case. We will show

that in this case XE" 32 1) j #0. Inthiscase }°, _;,¢; =qt+(t—1)(t=2) =5

(t—1)(t—2)/2—s # 0 and so in this case (cq,...,¢p) isn’t

as we are assuming that t > 3. So as h1"3 820, 5, l1773 20 — 0 and
hé"l 321 = 3, we can recursively remove from (n — 3, 2,1) in a unique way

the hooks of length at least 4 of a sequence with lengths (¢, ..., ¢;) and after
having done this we obtain (3r +2s+t¢—3,2,1). Now we can remove one of
the 3-hook from the second row and all other hooks from the first row. This
can be done in r different ways and here the sum of the leg-lengths is equal to
1. Otherwise we need to remove all 3-hooks from the first row, in which case
all hooks removed up to this point have leg-length 0, as again ch:m c;j > 5,
and in this case after having removed also all the 3-hooks of the sequence we
obtain (2s +t¢ —3,2,1). If £ = 3 then s = 1 and this partition is equal to
(2,2,1) and so in this case XE" B2 # 0 forany r > 0. If t =4
then s = 3 and so (25 + ¢ —3,2,1) = (7,2,1) and x(1 *2!) = —r £ 0, as
r#tlt—2)(t—4)/3=0.

So assume now that ¢ > 5. As the hooks in the second and third row of
(2s+t—3,2,1) have all odd length, when we remove any sequence of 2-hooks
from (2s +t — 3,2,1) we need to have that all these hooks are on the first
row. As we now want to remove from this Fartltlon a sequence s 2-hooks and
hf;ﬂf?”m) = 2s54+t—5>2sast > 5and ({5 T*) = 0, we can remove such
a sequence of 2-hooks (which all have leg—length 0). After having removed
them we get (t —3,2,1). As {ht321}:{t—1,t— —5,t— ., 1} we
have by the hook formula that

. ! Ht —2)(t — 4)
(t—=3,2,1) __ _(t—3,2,1) 1) = t _
Xan =X W =sa D=3 =5 3 '

So putting all of this together we have that when ¢t > 5, s = (t — 1)(t — 2)/2
and r # t(t — 2)(t — 4)/3 then

(n—3,2,1)

Niesmen) = 7 HHE=2)(E = 4)/3#0.

As we already know that XE” 32 Y 7& 0 whent =3,4, s =(t—1)(t—2)/2

and r # t(t —2)(t —4)/3 we have that in any of these cases (c1,...,¢,) isn't
p-vanishing.
So the only case we have left to consider is whent > 4, s = (t—1)(t—2)/2

and r = t(t — 2)(t —4)/3. In this case we will show that XEZ 311 D £ 0. As
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h (n—3,1%) _ (n—3,1%) _ (n—3,1%) _

ere we have that t > 4, hy =n—4, 13 =0 and hy, =3, we
can remove the hooks of length at least 4 of a sequence of hooks with lengths
(¢1,...,cp) that are recursively removed from (n —3,1,1,1) in a unique way.
These hooks all have leg-length 0 and after having removed them we obtain
(3r+2s+1t—3,1,1,1). Now we need to recursively remove r 3-hooks from
this partition. We can remove one of the 3-hooks from the second row and
all other from the first row, which can be done in r different ways and in
which case the sum of all leg-lengths is always equal to 2. Otherwise we need
to remove all 3-hooks from the first row, which can be done as ¢t > 4 and
after having done this we obtain (2s 4+t — 3,1,1, 1), from which we need to
remove s 2-hooks. We can remove one of these 2-hook from the third row and
then it can be easily seen that all other 2-hooks must be removed from the
first row, in which case after having removed all 2-hooks we obtain (t —1,1).
This can be done in s different ways and the sum of all leg-lengths of the
hooks removed until now is 1. Otherwise we need to remove also all 2-hooks
from the first row, again this can be done as t > 4, after having done this we
obtain (t — 3,1,1,1). In this case (which can be done in a unique way) we
have that the sum of the leg-lengths of the hooks removed up to this point
is 0. Now using the hook formula we can easily see that

) t!
X(t 11) _ X(t_1,1)<1) R ———

(1) t-(t—2)!

and

(t-31%) _ (1-31%) 1y _ t! _ =) -2)(t-3)
Xay X (1) 3.2t (t—4) 6 '
Putting all of this together we have that when ¢t > 4, s = (¢t — 1)(t — 2)/2
and r = t(t — 2)(t — 4)/3 then

n—3,13 _ _
X = = s () ()
_ =Rl @mD2(=2) | (=)(-2)(-3)
3 2 6
_ 2631212416t —3t34+12t% —15¢4+6413—6t°+11t—6
— —6t2412¢ ¢
6
= —t(t—2)
and so as in this case we have that XEZ;?J;)) # 0 and so (cq,...,¢p) is not
p-vanishing.
So we need to have that if n = 2 mod 4 and (¢4, ...,¢,) is p-vanishing

then ch<4 ¢; < 2 and so the theorem holds in this case for k&' = 2.
Case 3.
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If now ag + 2a1 + ...+ 28 tap_, =n — 2’“’@2/ = 0 and & > 3 the theorem
holds by theorem [67] So assume now that n — 2’“’@2/ # 0 and that

Z Cj <ap+2a14+...+ 2kl*2ak/,2

Cj <2k,_1

(that is the theorem holds for k' — 1). Using theorem [73| we then have that
ch<pk/—1 cj =ag+ a2+ ...+ ap 2252 and then by theorem we have

that ¢; is a multiple of 2k =1 whenever c; > 2K =1 S0 we have that for some
L, (cr,... en) = (2% by, ..., 2" 0y, ciyq, . .., cp) for some

(b, ..., F (n—ap—a12 — ... — ap_2""2) /281 = ap_, + 24,

and ¢;41 < 271, In order to prove the theorem as in this case n — Qk/aﬁc, # 0,
it is enough to show, by what we already proven, that if

/_
E cj>a0—|—a12—|—...—|—ak/_12k !
Cj<a0+a12+...+ak/_12k/—1

then (cq,...,¢p) isn’t p-vanishing. Also as

Z ci=ay+m2+...+ ak,,22k/’2

Cj <2k/_1
we have

/_
E cj>a0+a12+...+ak/_12k !
Cj<a0+a12+...+ak/_12k/—1

E : k-1
& > (lk/_12

2k'—1§r:j <a0+a12+...+ak1_12kl_1

if and only if

if and only if

Z bj > Qpr—1.

bj <ak/71+(a0+a12+...+ak/722k/*2)/2’6/*1

Asap_1 <land ag+a12+...+aw_o2" 2 < pk/*1 it is enough to prove that
if ij:l b; > 1, then (¢y,...,cp) isn’t p-vanishing. Notice that in this case
we need to have that aj, > 1. Let «a be the partition with core Qow/ -1y =
(ap + a12 + ... + aw_52"~2) and quotient o™ = ((2a4,,1),0,...,0). It
is easy to see that we cannot recursively remove a sequence of aj, hooks of
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length 2 from a@ ™ (aj, # 0) and so we cannot remove a sequence of aj,
hooks of length 2¥ from « and then by lemma we have that p divides the
degree of . As here the quotient contains only a partition which is different
from 0, using theorem [55] we have that

a (ap+a12+...+ay_ 2’“/*2) o o
Xtrson) = Xty 20 XD by, b)) = XD by, ).

(QG;C/vl) )

Now as hy = 1, hf;;“"l = 2a;, — 1 and 3, ., b; < 2aj, as we are
assuming that ijzl b; > 1, we can remove the hooks of length bigger than
1 of a sequence with hook-length (by,...,b;) from (2a},,1) in a unique way
and as 1-hooks always have leg-length 0 we then have by lemma that
x®% Y (by, ..., b)) # 0 and so we also have that X(er,on) 7 0-

As when &' > 3 orn # Qk'aﬁc, and ch<pk/_1 c; <ap+2a1+.. 42K 20,
we have that ch@k/ ¢; < ag+2ay+ ...+ 2" ap_; and as we now that
the theorem holds for ¥ = 0,1,2 when n = 0 mod 8, for ¥ = 0 when
n =1 mod 2, for k' = 2 when n = 2 mod 4 and for ¥’ = 3 when n = 4 mod 8
we have that the theorem is proved for the case p = 2.

Case 4.

In all the remaining part of the proof we will have that p = 3. Assume first
that &' > 2 and

Z Cj S ag + 3(11 + ...+ 3k/_2ak/_2.

cj <3k'=1

If n = 3¥ a}, we have that the theorem holds by theorem 67 so we can assume
that n # 3" aj,. Also we can assume by the first part of the proof that aj, # 0.
Using theorems (72| and 73| we then have that if (cq, ..., ¢p) is p-vanishing then
(Cl, c. 7Ch) = (Bk _lbl, C ,3k/_1bl, Cl41,-- - ,Ch), with (b17 R ,bl) F ak/71+3&§€/
and ;41 +...+cp = ag+3a1 +...+3" 2a_o < 3F~1. In order to prove the
theorem it is enough to show, by lemma[74] that if (c1, ..., cp) is of this form
and ijgak/,l bj > ap_1, then (¢, ..., ¢p) isn't p-vanishing. If ap_y = 0 this
is obvious, as no such (cy, ..., ¢,) exists. If a1 = 1 let a have core Qgki—1y =
(ap+3a+...+3"2a_,) and quotient a® ™ = ((3a,1),0,...,0). -1y
is a 3¥ 1 core as ag + 3a; + ... + 3¥ 2ap_5 < 3¥ 1. As we cannot remove
a sequence of aj, 3-hooks from a®4) we have that 3 divides the degree of a
by lemma [71] Also as in this case we can apply theorem [55] we get that

- (3al,,1)

@ sk’ (3aj,,1)
X(etsen) = FX(crgtpmmen) X(or,nbt) = X (b1,

As (by,...,b) has at least two parts equal to 1 (as Zbgéak/_l bj > ap_1 and
ap—1 = 1) and (3aj,,1) only has one node which isn’t on the first row, it
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. . . 3a’,,1 .
is easy to see by lemma that in this case XEbfk bz) # 0. In particular
X((xq,...,ch) # 0 when ap_; = 1 and ijéak/_l bj > aw_1, so that in this case
(¢1,...,¢p) isn’t p-vanishing.

So let now a1 = 2. As we are assuming that &’ > 2, we have that
3F-1 > 2. Assume that ijgak/,l bj > ap_1 = 2. First it is easy to see

that if « has core agv-1) = (ao + 3a1 + ... + 3 2a4,_5) (this is a 3% ~1-

core as ag + 3a; + ... + 3¥ 2ap_y < 3¥!) and quotient a®' ™ equal to
either ((3a},,1,1),0,...,0) or ((3a,1),(1),0,...,0) then 3 must divides the
degree of x* (as we cannot remove a, 3-hooks from the quotient and so we
cannot even remove a}, hooks of length 3* from a and by lemma . As

(3a;€/11:1) (3a;€/71) (3‘1;/71,1) (3‘1;/71) /
h2’1 = 2, h271 = 17 h1’2 = h1,2 =3a,, —1 2 Zb]->2 b], as we
LA (Bal,)
= ll

are assuming that ijgg > 2 and ij = 3a}, +2, and lfg’“” , M =0,
if s is the number of b; equal to 1 and ¢ is the number of b; equal to 2, it
is easy to see that we can recursively remove the first [ — s — ¢ hooks of a
sequence with lengths (by,...,b) from a® ™ in a unique way and this way
we obtain ((s +2t —2,1,1),0...,0) or ((s +2t —2,1),(1),0...,0).

If s = 0 let a®" ") = ((3aj,1,1),0,...,0). In this case ¢t > 2 and after
having removed from a®™ the hooks with length > 3 of the sequence with
lengths (b1, ...,b;) we have obtained ((2t —2,1,1),0...,0). Now we need
to remove ¢ > 2 hooks of length 2 from (2(¢t — 1),1,1). In order to do this
we need to remove one of the first t — 1 of these hooks from the second row
and the other from the first row. The hook we removed from the second row
has leg-length 1 and the others have leg-length 0. So using lemma [54] and
theorem [67] we have that in this case

/
(a0+a12+...4a; 3% ~2) (3aj,,1,1)
c+1,....ch) X (bl? o ’bl)

Xeen) = ixg ;
= B (b, ) =£(1—1t)

oo

and so in this case (cq,...,cp) is not p-vanishing.

If s = 1 use a® ) = ((3d},1),(1),0,...,0). In this case (by,...,b) =
(by,...,b—1,1) and by = 2. As b; > 2 for j <1 —1 it is easy to see that
whenever we recursively remove from a®' ™ g sequence of hooks with lengths
(by,...,by), we need to remove the first [ — 1 from the first component of the
quotient. As (3aj,, 1) is a partition of by+. ..+b,_; in this case, all nodes apart
for one are on the first row and b;_; > 2, it is easy to see that we can actually
do this in a unique way. After having done this we have that the new quotient
is (0,(1),0...,0), from which we can remove the last hook of the sequence
(in a unique way). As we can remove also in a unique way a sequence of

hooks of lengths (¢;11,...,cp) from Qgi-1y = (ag + 3a1 + ... + 3 2ap_y),
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we have, by definition of b; that in this case we can recursively remove in a
unique way from « a sequence of hooks with lengths (¢1, ..., ¢;) and so by the
Murnaghan-Nakayama formula we have that in this case X(. y =+l # 0.

Cl,..sCh

If s = 2 let @) = ((3a},,1,1),0,...,0). As S, —1ab; > 2 and
ij=1 b; = 2 in this case, we need to have that ¢ > 1. It is now easy to
see that we can remove the hooks of length bigger than 2 of a sequence with
lengths (by,...,b) from (3a},,1,1) in a unique way (and all these hooks have
leg-length 0) and after having removed these hooks we obtain (2s,1,1). It
isn’t hard to see that in order to remove a sequence of ¢ 2-hooks from this
partition we need to remove exactly one of them from the second row and
the other from the first row. This can be done in ¢ way and the sum of the
leg-lengths of the 2-hooks is always equal to 1. After having done this we get
(2), from which we now need to remove 2 1-hooks. So using theorem |55 we
have that o (3els 1.1

Xetoen) = FXepparen) Xty = FEF# O

and so also in this case (cq,...,¢;) isn’t p-vanishing.

The last case we need to consider is Wheln s > 3. Here let QB =
((3ajs, 1), (1),0,...,0). As in this case b\, = 3aj, —3 > ¥, by,

(30‘;@/71) (30‘;/71)

ll,z =0, h2,1

of length > 2 of a sequence of hooks with lengths (b1, ..., b;) from « ) in
a unique way and after having done this we have that the new quotient is
((t—2,1,1),(1),0...,0), from which we now only need to remove a sequence

of ¢ 1-hooks. So the sum of the leg-lengths of all the hooks in any sequence
(3k/—1

=1 and hgli = 1, we can recursively remove the hooks
(3]@/71

of hooks with lengths (by,...,b;) which are removed from « ) is always
the same and as we can remove such sequence in at least one way and as
YD we have by theorem [55| that X(er,omsen) # 0.

Soif p=3,k >2and Ecj<3k’—1 cj<ap+3a;+...+ 3204,y (that is
the theorem holds for &’ — 1, we have that the theorem holds for £'.

Case 5.
As the theorem always holds for &/ = 0, it is now enough to prove it for
k' =1 whenn=0,1,2,4,7 mod 9 and for ¥ = 2 when n = 3,5,6,8 mod 9
If n = 1 mod 3 then the theorem holds for £/ = 1 by lemma [74] as here
ag = 1. Also by theorem [67| we have that the same is true for n = 0 mod 9.

Case 6.
If n = 3,6 mod 9 and the theorem doesn’t hold for k' = 2, then it cannot
hold for &/ = 1 either by what we just saw in case 4, so in this case we
need to have that > _5¢; > ag = 0 and so by theorem 67| we need to have
that in this case ¢, = 1. Using the hook formula it is easy to see that the
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degree of x"2%) is n(n — 3)/2 and so it is divisible by 3 in this case. If
(c1,...,cn) = (c1,. .., 0,2 1), with ¢, > 3, it isn’t hard to see that

ala—3)/2+b a>4

(TL—2,2) — —
X(Clv“-vch) - b a= 3
—1+b a=1,2
and so we have that if (ci,...,¢,) is p-vanishing we must have that a = 3

and b=0ora=1,2 and b = 1. Now consider (n —4,2,1,1). Again using
the hook-formula it is easy to see that the degree of x("~%%L1 is given by
n(n—2)(n—3)(n—>5)/8 and as n = 3,6 mod 9 we have that then the degree of
x (=421 i divisible by 3. Write now (cy,...,c,) = (c1, ..., cr, 4%, 3%, 20, 1%),

(n—4,2,1,1) = e+ 1, that

with ¢y > 5. It can be easily seen that X(e o0 4 3,2,12)

(n—4,2,1,1) - (n—4,2,1,1) -~
(c1rmeyde,3e,2,1) — € and that X(er ey de,3e13) — €

at most one 4-hook from the second row and all other hooks of length at
least 3 must be removed from the first row). In particular if (¢q,...,¢p) is
p-vanishing we must have that e is always 0 and also a = 3 and b = 0 or
a =1 and b = 1. This, together with lemma [74]shows that the theorem holds
for k' = 2 when n = 3 mod 9, as then we need to have that ch<3 c; < 3.

If n =6 mod 9 consider next (n—5,3,1,1). In this case, if ch<6 cj > 6,
we need to have that n > 15, so that this is a partition of n in this case.
Again using the hook formula it is easy to see that the degree of y(*~5311)
isn(n—1)(n—3)(n—4)(n—17)/20, which is the divisible by 3. If now we let
(c1,...en) = (c1,...,cm, 57, 3¢,20 1%) with ¢ > 6 it can easily be seen that
any hook of length at least 6 of a sequence of hooks of lengths (ci,...,¢)
which are recursively removed from (n—5,3,1,1) must be removed from the
first row. As

(we can or have to remove

h§?1_5737171) =n—1 > + ...+ Cl”-i—fa
hg¢72757371,1) =n — 4 < Ccl + ...+ Cl”-i—fa
lg?;“f"”’l’” =1 and 1%75’3’1’1) = 0, it can be seen that we cannot remove all
hooks of length > 5 of such a sequence from the first row. So whenever
we are recursively removing a sequence of hooks of lengths (¢y, ..., ¢;,) from
(n—>5,3,1,1) we must remove one 5-hook from the second row and all other
(n—5,3,1,1)

hooks from the first row. So it can be easily seen that Xer, . om sl 3e21) =
yee Gty 19D T4y

Ezl_f’i’li’lgf 3e13) = f and so if (cq,...,¢cp) is p-vanishing we must have that
So if (c1,...,cp) is p-vanishing and n = 6 mod 9 we need to have that

(Cl,...,Ch) = (Cl,...,0111730,2,1),(Cl,...,Cl//,?)C,l,l,l), with cr > 6. We
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will now show that ¢ < 1. Assume that ¢ > 2 and consider (n — 6,3,2,1).
The corresponding irreducible character has degree

n(n—1)(n—2)(n—4)(n —6)(n — 8)/45

which is divisible by 3 as 3|n and 9|(n — 6). As again in this case we have
(n—6,3,2,1)

that n > 15, this is a partition of n. As ¢v > 6, hy =5,
hg’r’l4—673;271) =n — 9 Z Cl + . _|_ Cl”
~6,3,2,1) ~6,3,2,1 3¢—3,2,1
as ¢ > 2 and l& = 0, we have that XEZ1,~..7CZ//753)0,271) = XESSQJ) ) and
521_6?:;13{ 15 = ngc—li)“) If we remove 2 of the first ¢ — 2 3-hooks from the

second or third row of (n—6, 3,2, 1) we then must remove all other hooks from
the first row. It can be seen that this can be done in 2- (,%) = (¢ —2)(c—3)
different ways and in each of these ways we have that the sum of the leg-
lengths is odd. Otherwise at most one of the 3-hooks can be removed from
the second or third row (and all others must be removed from the first row).
If we remove one of the first ¢ — 2 hooks of length 3 from the second row
this hook must be Ry 4. If we remove one of the first ¢ — 2 3-hooks from the
third row this hook must be Rz ;. In each of these last two cases, as we need
to remove at most one of the first ¢ — 2 hooks of length3 from the second or
third row, we have that the sum of the leg-length of the first ¢ — 2 3-hooks
we remove from (3¢ —3,3,2,1) is 1 and each of these cases can be done in
¢ — 2 different ways. In the first of these two cases after having recursively
removed the first ¢ — 2 3-hooks we obtain (6, 1®), while in the second one we
obtain (6,3). Otherwise all of the first ¢ — 2 3-hooks that we remove from
(3¢ — 3,3,2,1) must be on the first row. In this case all these hooks have
length 0 and we obtain (3,3,2,1). Putting all of this together, if a 4+ 2b = 3,
we have that

(n—6,3,2,1) L (8c-32,)
(C1,mepr32,20,00)  — X(3¢ 20 10) \
6,1 6,2,1
= _<C - 2)(C - 3) - (C - 2)X532722}71a) - (C - 2)X232’2b)71a)
(3737271)
+X(32’2b71a)
from which we easily get, as ¢ > 2, that ngl_.(.iif;l??e o1y = —(c=2)(c+1)=2 <0

:1_.(.5_’?:’;,’1;62 y = —(c=2)(c+3)—4<0andsoifc=>2we

have that (cy,..., ¢, 3%2,1) and (cy,...,cm, 13) aren’t p-vanishing. So by
this and what we have already proven we have that when n = 6 mod 9 then
ch <9 ¢; < 6 and so also in this case the theorem holds for k' = 2.

Case 7.

and similarly XE
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At last we need to show that the theorem holds for £’ = 1 when n = 2 mod 9
and for k¥’ = 2 when n = 5,8 mod 9. So assume that n = 2 mod 3. By what
we just proved in case 4, we have that if the theorem doesn’t hold for k' = 2
then it cannot hold for k" = 1 either, that is we need to have that -, _; ¢; >
3, so that (cq,...,c,) must have at least 3 parts equal to 1 in each of these
cases. Also any n for which the theorem might not hold must be bigger or
equal to 11, so that all the partitions we will consider in the next part are
actually partitions of n. By lemma |68 we have in this case that y(~2b1)
has degree divisible by 3. Write (c1,...,cn) = (e1,...,¢,49,3",25 1%), with
¢ > 5. If (c1,...,cp) is p-vanishing we need to have that s = (t —1)(t —2)/2
by what we proved in case 2.

Next consider (n —4,2,1,1). Using the hook formula we have that the
degree of x("=*+%LD is n(n — 2)(n — 3)(n — 5)/8 and so it is divisible by 3 as
n =2mod 3. If t = 3 then s = 1 and so as h§?2_4’2’1’1) =n—4> ch>3 cj,
pn=42.10)

)

we recursively remove from (n —4,2,1,1) a sequence of hooks with lengths
(¢1,...,¢p), some hook of length > 3 must be removed from a row different
from the first row. As such a hook can only have length 4 (it must have
length at most 4 as h§71_4’2’1’1) = 4 and if this hook had length 3 then as the
previously removed hooks had length > 1 it would need to be removed from
(1*) and after having removed it we would get (1) which gives a contradiction
as then we need to remove 1 2-hook and 3 1-hooks) and so we easily have
that XE:;4?:,11)1) =gq. Soif t = 3 and (cy,...,cp) is p-vanishing we need to
have that ¢ = 0. So let now ¢t > 4. Then s > 3 and so it can be easily seen
that when we recursively remove from (n — 4,2,1,1) a sequence of hooks
with lengths (ci1,...,¢,) we can either remove all hooks > 3 from the first
row or remove one 4-hook from the second row and all other hooks from

n—6 < ch>3 c; and 1%74’2’1’1) = 0 it can be seen that whenever

the first row. So we have that in this case XEZ;“C;)D =q+ ngjf;Zl’Q’l’l)
(n—4,2,1,1)

When ¢ = 4 we have that s = 3 and so X(eren) =4~ 10 and when ¢t = 5
we have that s = 6 and (" *25Y(¢;, ... ¢;) = ¢ — 45. So let now t > 6.
If we want to recursively remove s 2-hooks from (2s +¢ —4,2,1,1) (where
s=(t—1)(t—2)/2 > 3), we can remove all 2-hooks from the first row, which
can be done in a unique way and in which case all 2-hooks have leg-length
0 and after we obtain (¢t — 4,2,1,1). Otherwise we can remove one 2-hook
from the third row and all other from the first row, which can be done in s
ways and in which case the sum of the leg-lengths of the 2-hooks is 1 and
in which case we obtain (¢ — 2,2). Otherwise we need to remove one 2-hook
form the third row and one 2-hook from the second row. This can be done
in s(s — 1)/2 ways, here too the sum of the leg-lengths of the 2-hooks is 1
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and after having done this we obtain (¢). So as now we only need to remove
1-hooks, the degrees of x*=*211) and x(*=22) are ¢(t — 2)(t — 3)(t — 5)/8 and
t(t — 3)/2 respectively and s = (t — 1)(t — 2)/2 we have that putting all of
this together when t > 6

(n—4,2,1,1)

L HEE(EE) | HD(2)(8) = )(=2)(t=3)
(c1,---5¢n) q 8 4 8
t(t—2)(t—3)(t+1)
¢— =71
So we have that if (¢q,...,¢,) is p-vanishing then ¢ must be given by
0 t=3
10 t—4
773 45 t=5
tt—2)(t=3)(t+1) ,
f t — 6-

Let’s now consider (n — 5,3,2). We have that the degree of y("=532) is
n(n—1)(n—2)(n—5)(n—7)/24 and as n = 2 mod 3, so that 3|(n—2), (n—>5),
we have that 3 divides the degree of x(">%2) If t = 3 then Deim12G =5
and so it can be seen by looking at the Young diagram of (n—5, 3,2) that we
cannot remove from this partition all hooks of length at least 3 of a sequence
of hooks with lengths (¢, ..., ¢,) from the first row. So it can be easily seen
that in this case

(n—5,3,2) (3,12) (4,1)
X(er,men) = ~TX(218) ~ WX(213) = —2¢-

Ift>4thens>6ass=(t—1)(t—-2)/2andso } . _,,c; > 8in this case,
so it can be easily seen that here

(n—5,3,2) (25+t—2,12) (25+t—1,1) (25+t—5,3,2)
rmen)  — TX@eany T WXy X
25+t—2,1 _ 254+t—5,3,2
= Xt 2 = I () X
(25+t—5,3,2)

= —q(t — 1) + X(2571t)

Using this we have that y!"~>*?)

(1o cn) is equal to —3¢+6 when t = 4, to —4q+60
when t = 5, to —5¢+270 when t = 6 and to —6¢+840 whent = 7. Whent > 8
and we are recursively removing s 2-hooks from (2s+t—5, 3, 2) we can remove
either 0,1 or 2 of them from the second and third row. In any case the sum of
the leg-lengths of the 2-hooks must be 0. If we don’t remove any 2-hook from
the lower rows we get (t — 5,3,2) and we need to remove the 2-hooks in a
unique way. If we remove 1 2-hooks from the lower rows we get (¢ — 3, 3) and
this can be done in s different ways. If we remove 2 2-hooks from the second

and third row we get (t —1,1). This can be done in s(s —1)/2 different ways
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(we need to choose 2 hooks out of s). As the degrees of y(*=232) (=33 and
XD are t(t—1)(t—2)(t—5)(t—7) /24, t(t—1)(t—5) /6 and ¢ — 1 respectively
and as s = (t — 1)(t — 2)/2, putting all of this together and simplifying we
have that if ¢ > 8 then XEZ;M::;)) = (1—1t)(qg—t(t —2)(t — 3)*/4). So from
all of this we get that if (c,...,¢p) is p-vanishing then ¢ is equal to 0 if
t=3,to2ift =4,to15ift =5, to b4 if t = 6, to 140 if t = 7 and to
t(t—2)(t—3)2/4if t > 8 Ast(t—2)(t —3)* # t(t —2)(t —3)(t + 1) for
t > 8 and checking singularly the cases t < 7 and comparing these numbers
with those we got in the previous paragraph, if we have an exception to the
theorem for n = 2 mod 3, then we need to have that t =3, s =1 and ¢ =0
whenever (cq,...,¢p,) is 3-vanishing.

If now n = 2mod 9 we have that the degree of y! equal to
n(n—2)(n—4)/3 and so is divisible by 3. Using what we just proved for the
case n = 2 mod 3 and the results we got while considering the case p = 2
and n = 2 mod 4 we have that in this case if (¢, ..., cp) is 3-vanishing then
t <2 and so in this case the theorem holds for k¥’ = 1.

If n =5 mod 9 by what we have seen until now we need to show that if
(c1,...,cp) is p-vanishing then (cy,...,c4) = (c1,. .., ¢, 3", 2,13), with ¢, > 5.
We will now show that » = 0. In order to do this consider (n —4,2,2). The
corresponding irreducible character has degree n(n — 1)(n — 4)(n — 5)/12
which is divisible by 3 as 9|(n — 5). Also as h§7274’2’2) =n—=3>) 530
h§7374’2’2) =n—06<3. 536 1%74’2’2) = 0 and hé’f{“’”) = 3, we have that
whenever removing a sequence of (cy, .. ., ¢,)-hooks from (n—4,2,2) we need
to remove one 3-hook from the second row and so we have that

n—3,2,1) is

X(oron) = ~TX(zahy = =27
from which we have that if (ci,...,c) is 3-vanishing we need to have that
ch <«5¢ < 5 and so from lemma we have that the theorem holds for
k' =2 when p =3 and n = 5 mod 9.
To finish proving the theorem for p = 3, we now only have left to prove
it for ¥ =2 and n = 8 mod 9. Write now

(cry..en) = (e, e, 79,67, 50,4937 25 11)

with ¢y > 8. We know that if there is any exception to the theorem then this
happens when ¢ = 0, s = 1 and ¢ = 3. We will now show that if (¢q,...,¢,) =
(c1,...,cr,79,67,5° 372 1%) and (cy,...,c) is 3-vanishing, then r = 1 and
e, f,g = 0, which would then prove the theorem for p = 3. Start with
considering (n — 6,3,3). By the hook-formula the corresponding character
has degree n(n — 1)(n — 2)(n — 3)(n — 7)(n — 8)/144 and as n = 8 mod 9
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we then have that 3 divides it (as then we also have that 3|(n — 2)). First
assume that r > 2. Then as hn 638) — 4, h(n 638 —p -9 > D e3¢ — 6

and l(n 638 — 0 when we recursively remove from (n — 6,3, 3) a sequence of
hooks of lengths (¢1,...,cn), we can either remove the first A — 5 hooks (so
that we removed all hooks of the sequence apart for 2 3-hooks and the 2- and
1-hooks) from the first row or remove 1 or 2 of the 3-hooks from the lower
rows. As when we remove 2 of the first » — 2 3-hooks from the second and
third row we need to remove Rz and Ry or Ry5 and Ry, we can easily see
that

5,3,3 5,3,3 8,3 8,2,1
Xewoy = X T (7 = DG 1) — (0 = 2XGEaa e + (r = 2)(r = 3)
= - 1) £0.
So if (¢, ... ,ch) is p-vanishing we need to have r = 0,1. If » = 0, then as
h§"2_6’3’3) =n—5=3 .5¢ and l(" 633 — 0, it can be easily seen by just

looking at the Young—dlagram of (n —6,3,3) that

(n-633) _ _(221) _
X(er,en) = X213y = —1

from which we have that if (¢, ..., ¢) is p-vanishing then r = 1.
Consider now (n—5,1°). Here we have that the degree of the correspond-
ing character is (n—1)(n—2)(n—3)(n— 4)(n 5)/120 and so as n = 8 mod 9

we have that it is divisible by 3. As h(n ) - 6>n—8= chZB c; and
l% %1% — 0, we have that

(n—=5,1%) _ _ (5e+3,1%) (8) (3,1%)
X(er,men) — X(53,3,2,13) = €X(3.2,1%) T X(3.2,13) = €

and so as we want (cq, ..., c,) to be 3-vanishing we need to have that e = 0.

If we now consider (n — 7,22,1%) we have that x"72>1") has degree
n(n—1)(n—=3)(n—4)(n—>5)(n—"7)(n—8)/(9-40) from which we have that
in this case 3 divides the degree of Y™~ 721%)  Ag

h§73‘7’22’13) =n—-9<n-—-8= Z cj,

c;j>6

15?3_7’22’13) =0, h§?2_7’22’13) =n—-6>n—8= ZC ¢ ¢j and hin T2 6,
we need to have that

TL—,2,3 ,
(n—7,2 1):fX(71) )=2f

(Clv'“uch) (372»13

as then we need to remove one 6-hook from the second row whenever remov-
ing a sequence of hooks of lengths (cy,...,cp), and so we need to have that
f =0 as we are assuming that (cy,...,cp) is 3-vanishing.
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At last consider (n — 7,2,1%). The corresponding character has degree
n(n—2)(n—3)(n—4)(n—5)(n—6)(n—8)/(3-280), which then is divisible
by 3. For reasons just like those in the previous point we have that

(n—7,2,18) (8) —
X(eryoen) — —9X@3213) = 9

and so we need to have that g is also 0 when (cy, ..., ¢,) is 3-vanishing.

So if n = 8 mod 9 and (¢y,...,¢,) is p-vanishing then ch<8 c; < 8 and
so by what we have already proven we have that also in this case the theorem
holds for k' = 2. As this was the last case we had to consider for p = 3, we
also have that the theorem holds for p = 3. ]

Conjecture 76. Let p # 2,3. If (c1,...,cp) is p-vanishing we need to have
that d > aj,p*.

Proof. Assume that ch@k/,l c; < aptaip+.. Aap_op 2, where K'—1 > 0,
and assume that for every n’ = a 4+ bp, with 0 < a <p—1and b > 0, and
(dy,...,ds) b n'is p-vanishing we need to have that }-, _, < a. We want to

show that then we have that ch<pk/ c;<ag+ap+...+ ak,_lpk'ﬂ’ that is
that d > a,p". By theorem |73[ (as p # 3) we have that whenever

Z Cj S Qo + ap + . —l— ak/_gpk/_Q

cj <pk,*1

we actually need to have that

Z CG=a+mp+...+ ap—op¥ 2,

cj <pk/ -1

so that we can apply theorem and we get that c¢; is a multiple of pk'—1

whenever ¢; > p*~!. Let | be maximal such that ¢; > p* . Then

(Ch s 7Ch) = (pklilbla s 7pklilbla Clt1y - - 7Ch)

for some (by, ..., b)) F ajp+aw—1. Also as the a; < p (they are the coefficients
of the p-adic decomposition of n) we have that

clﬂ—i—...—i—ch:ao—l—...—i—ak/,ka*Q<pk*1.

Assume that >, _ wc; > ag+ aip+ ...+ ap_1p" 1. As we are assum-
ing that >

Zpk’—1<cj<pk’ cj > aw_1p" ', which happens if and only if ij<p bj > ap_1.

c; <p

Wo1Cj = Qo + ...+ aw_op® 2 this happens if and only if

ci<p
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Now (b, ..., b)) is a partition of ap_; + aj,p and 0 < a1 < p and a}, > 0,
so by assumption we can find x?, an irreducible character of Sak/_ﬁa; p» of
degree divisible by p and such that X(Bbl ) # 0. Let a be the partition of n
with core a1y = (ag+. .. +ap_op" ~?) and quotient a®' ) = (8,0,...,0).
As the degree of § is divisible by p so is that of x® by lemmas and

and the fact that removing g-hooks from a®" ") (which in this case must be
removed from /) corresponds to removing gp* ~'-hooks from a. Also as in
this case we can use theorem 55 we have that

Yo -1 B

X(etyoen) = FX(efprmmen) X(br o)

Fph 1)

as here 3 is the only non-zero partition in a®' . As X(ernsroen) = 1 as
Qi -1y = (ag + ... + ap_op* ) and bel,m,bz) # 0 we have that X{(eroen) #0
in this case and so we have that under these assumptions, if (¢q,...,cp) is

p-vanishing we need to have that d > agg/pk'.

As when n = aﬁg/p’“' and p # 2,3 we have that the theorem is always
satisfied by theorem [67 and by using what we proved earlier for the case
when n # a,;,pk', we have that in order to prove the theorem for the case
where p # 2,3 it is then enough, by what we proved until now, to prove the
following lemma, which is clearly always satisfied when a = 0.

As the cases where p = 2,3 have already been proven, this conjecture is
proved up to the next condition. O

Condition 77. Let n = a + bp, where p is a prime different from 2 and 3,
0<a<pandb>0. If (c1,...,cn) is p-vanishing we need to have that

20j<a Cj S a.

Using lemma [74] it can be easily seen that this condition is equivalent to
conjecture [76] for k' = 1.

Even if we cannot prove this condition in the general case, it can be proved
when a = 0,1,2 for any p. For a = 0,1 the condition is trivial, while for
a = 2 it can be proved as in theorem [75| for the case p =2 and n = 2 mod 4
(case 3).

Theorem 78. Let 1 € S, a(r) = (¢1,...,¢p), with ¢, > 0, and define
dy = chzpk’ cj for any 0 < k' < k. If dp = awp® + ...+ app® for any
m < k' <k and [ is maximal such that ¢; > p™ we have that 7 is p-vanishing
if and only if the conjugacy class of S,_q, pm—. —apk = Sao+...tam_1pm—1 With
cycle partition (cj41,...,cp) is p-vanishing.

Proof. By theorem [72| we have that whenever dy = app® + ...+ app® and ©
is p-vanishing, all ¢; which are at > p¥ must be multiples of p*', in particular
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in this case we need to have that wu (7) = ap + ...+ arp®* . As this holds
for each k' > m it is easy to see that a(m) is of the form

<b§k)pk, e bgi)pk, e ,bgm)pk, e ,bgtnn)pk, Claly - - - ,ch> ,

where for each m < k' < k, (bgkl), o ,b%)) F ag, and ¢ 11 < p™. Assume
that a F n such that the degree of xy* is divisible by p and assume that ( is
obtained by a by removing a sequence of hooks of lengths

<bgk‘)pk7 R ?bng;)pk7 A 7b§m)pk> R bgr:tn)pk) *

Then £ can also be obtained by a by removing a sequence of hooks of lengths
((pF), ..., (p™)%) and so by lemmas , and 65| applied to both o and 3
we have that p divides also the degree of x” and so if the conjugacy class of S,
with cycle partition (¢;yq, ..., ¢,) is p-vanishing, we have that X(ﬁcl%m’%) =0
and so we also have y*(m) = 0 for any x® irreducible character of degree
divisible by p, that is 7 is p-vanishing in this case.

Let now 3 = (by, by, ...) F n—a,p™—...—ap" be such that x” has degree
divisible by p. Let a = (b1 +a,p™+. .. +arp®, b, bs,...). Then a - n and as
hyy <n—apmp™—.. —app® < p™, hep 1 = amp™+.. +ap® and $p,41 =0,
we can remove from a a sequence of hooks of lengths ((p*)%, ..., (p™)m)
in a unique way and doing this we obtain §. So again by lemmas 64]
and [65| we have that p divides the degree of a. Assume that © € S, is p-
vanishing and that dy = app® + ... + aip” for any m < k¥’ < k. As again

91 < n—app™ — ... —apt < pm < ¢y, J <1, hfy 4y ="+ ... Fappt =
dy, = c1+...+c¢ and l?,b1+1 = 0, we can remove the first [ hooks of a sequence
with hook-lengths (¢q, ..., ¢;) from « in a unique way and we obtain 5. So by
the Murnaghan-Nakayama formula we have that X@H,m,%) = +x%(m) =0,
B

(Crg1s-5Cn)

such that p divides the degree of x* we have that in this case the conjugacy
class with cycle partition (¢;41,...,¢,) is p-vanishing and so the theorem is
proved. O

in particular x = 0 and as this holds for any 8 F n—a,p™—. .. —ayp®

The next theorem completely classify 2-vanishing and 3-vanishing conju-
gacy classes of 9,,.

Theorem 79 (Classification of 2- and 3-vanishing elements of S,,). Let p =
2,3 and

o p'=8ifp=2,

e pi=9ifp=3.
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Writen = m-+p's with0 < m < p* ands > 0. Letw € S,,. 7 is p-vanishing if
and only if a(m), the cycle partition of 7, is of the form (by, ..., by, €1,...,€),
where (by, ..., by) F p's is the cycle partition of a p-adic type conjugacy class
of Spis and (c1,...,¢;) Fm is the cycle partition of a p-vanishing conjugacy
class of S,,.

Proof. By theorems (73| and [75| we know that if [ > ¢ then >
pas1 . .. +app®!, where n = ag +ayp” is the p-adic decomposition of n and
then by theorem [72| we need to have that wy(7) = a; + paj1 + ... + app"!
and so applying lemma |58 we have that a(m) = (by,...,bs,€1,...,€;), where
(b1,...,by) F p's and the corresponding conjugacy class is of p-adic type.
Using theorem we also know that (cq,...,¢) is the cycle partition of a
p-vanishing conjugacy class of S, and so one direction of the theorem is
proved.

The proof of the other direction follows easily from theorem [78] O

2pt G =

The following theorem classify p-vanishing conjugacy classes of S, for
p # 2,3 up to conjecture [76] which is proved up to condition [77]

Theorem 80 (Conjecture on p-vanishing elements of S, for p # 2,3). As-
sume conjecture [70. Let p # 2,3. Then w € S,, is p-vanishing if and only if
it 1s of p-adic type.

Proof. Assume that 7 is p-vanishing. Then by theorems and conjecture
for each i we have that >.. . ,¢; = a; + paii1 + ... + ap" ™, where
n=ay+ ...+ app’ is the p-adic decomposition of n. Now by theorem
we easily have that wyi(7) = a; + pa 1 + ...+ app"~" for each i, and so 7 is
of p-adic type by lemma As we already now the opposite implication by
theorem [59] we have proved this theorem. O

cj>p

As condition [77| holds for a = 0, 1, 2 it can be seen by the proof of conjec-
ture [76] up to condition [77] that conjecture [76 holds when all the a; are equal
to 0, 1 or 2, and so we then have that theorem |80| allows us to completely
classify p-vanishing element of S,, when p # 2,3 and all a; = 0,1, 2.

13 Sign classes

In this last section we will consider sign classes of .S,,. Parts of this section
are from [6].

Definition 39 (Sign conjugacy class). A conjugacy class of S, is a sign
conjugacy class if it takes values 0, 1 or -1 on all irreducible characters of

Sh.
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A partition of n is a sign partition if it is the cycle partition of a sign
conjugacy class of .S,,.

We will start with the following theorem, which is lemma 6 of [6].

Theorem 81. If (ay,...,ay) is a sign partition then ay, appears only once in
(a1,...,ap), unless ap, =1 in which case it can appear twice.
Proof. First assume that a; > 1 and it appears m > 2 times in (ay,...,ap) -

n. Then it is easy to see that (n — ay, ap) is a partition of n and

(nfa ,a ) _ ((mfl)a ,a ) P
X(aljnfa}s - X(QZL) ot =m Z 2
and so in this case (ay,...,ap) isn’t a sign partition.
If aj, = 1 and a;, appears m > 3 times in (a4, ..., a,) we have that
(TL—].,].) _ (m_lvl) —
(a1yman) = Xamy  =m—12>2
and so also in this case (aq,...,ay) isn’t a sign partition. O

We will only state the next theorem

Theorem 82. Ifatn and for 0 <7 <k —1, ozg are all the partitions that
we can obtain by adding an hook of length k and leg-length j to «, we have
that

> (1P led) = Y1)k~ 5.1

A proof of this can be found in the proofs of lemma 21.5 and theorem
21.1 of [1]. This proof uses the Littlewood-Richardson rule (theorem 2.8.13

of [2]).

Lemma 83. If no part of (c1,...,cn) Fn—+k is equal to k and af are as in
the previous theorem we have that

Proof. This lemma follows by the previous theorem, by theorem which
gives a formula for the induced character, by the fact that if § F k then

ka) # 0if B # (k — j,19) for some 0 < j < k in which case ng;j’lj) = (—1)/
(theorem and by characters relations of the second kind (theorem([J). O

The next theorem is theorem 7 of [6].
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Theorem 84. In a sign partition the only part that can be repeated s 1,
which can appear at most two times.

Proof. Write v = (ay,...,a;,a° aiysi1,--.,a,), where a; > a and a;4411 < a
and assume that s > 2 if a > 1 or s > 3 if a =1 (i could be 0). We want to
show that then « is not a sign partition. If a = 1 we know that the result
is true from the previous theorem, so we can assume that a > 2. Also still
by the previous theorem we can assume that a;1s11 + ... + ap # 0 (that
is ap # a). First assume that we can find 5 F as + a; 4541 + ... + a; such
that h§71 < ¢ and X?a%amﬂ,...,ah) # 0,+1. We will show that in this case
a isn’t a sign partition. Let v = (81 + a1 + ... + a;, 52, Fs,...). Then as
hj, <hyy = hgl < a whenever j > 2, if we want to recursively remove from
v a sequence of hooks of lengths (ay, ..., an) we need to remove the first i of
these hooks from the first row and as hj ; \, =a1+...+a;and l] 5 ., =0
we can remove the first ¢ hooks of such a sequence from v in a unique way
and so by the Murnaghan-Nakayama formula we have that

vy _ B
Xa = X(a%,ai1541,0an) 7& 0,+1

and so « isn’t a sign partition.

We will now show that we can always find such a 5. Let t = a; 4611 +...+
ap. First assume that 1 <t < a. In this case let § = (a(s — 1) +¢,1%). As
a(s —1) < hgl < as, it is easy to see that if we want to recursively remove
s a-hooks from [ we need to remove one of them from the second row and
the others from the first row and so we have by the Murnaghan-Nakayama
formula that

A W) = (1) syl = (—1)""1s #£0,+1

X(a,aitss1,ma (@itst1ye-,@n)

as s > 2, and so in this case « isn’t a sign partition.

By theorem [81| we can now assume that a > 3. Assume now that we have
a <t < 2a. In this case (t—a)@ = ((0),...,(0)) and so we can add an a-hook
to (t — a) in a different ways, which give the following partitions 5y = (1),
Bi=(a—jt—a+1,19"Y for 1 <j<2a—t—1and 3 =(t —a,a—j 1)
for 2a —t < j < a — 1. Notice that for each 0 < j < a — 1, the a-hook we
need to add to (t — a) in order to get f5; has leg-length j. As a; < a for each
[ > i+ s+ 1, we have by lemma [83] that

a—1 a—1
Z(_l)]x(;i+s+1wﬂh) =1+ Z<_1)Jx(é¢+s+17~--,ah) =0
=0 j=1

and so, as a > 3, so that the last summation is over at least 2 terms, we can
find 1 < j < a — 1 such that (—1)jXBj > 0.

(@igsq1sesan)
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If1<j<2a—t—1let = (t+a(s—1),a—(j—1),197"). Then 8+ t+as
and hgl =a. As hitﬂ =a(s—1) and lf}tﬂ =0asa—(j—1) <a<tif
we want to recursively remove s — 1 hooks of length a from J we can either
remove all of them from the first row or we have to remove one of them from
the second row and all others from the first row. So by the Murnaghan-
Nakayama formula we have that

(tva_(j_l)vljil) + <_1)j_1(3 _ 1)X(t+a)

X(a® aigstirman) — X(a,aissti,an) (a,Qitst1,--,an)

and as the only a-hooks of (t,a — (j — 1),1771) are Hgia_(j_l)’ljil) and

Hffi:gglmjil) (asa—j+1>a—-2a+t+1+1=t—a+2 > 2) we
have that

B _ j—1 i—1,(t) (a—jt—a+1,1971)
X(as7ai+s+17~--,ah) o (_1){ <S B 1)_ + (_1)J X(ai+s+1,~~~7ah) T A(@igst1nan)
= (-1"s - x

(ai+s+1:-~~7ah)

= P (s X))

and as s > 2 and (—1)JX(C’LZ_+S+1’M,%) 0, we have that X(as areasrnan) 7 0, EL
and so (ay,...,a,) isn’t a sign partition in this case.

If 1nstead 20 —t < j<a-11let 3= (t+a(s—1),a— 7 19). Again
B t+as, h2 . = a and if we want to remove s — 1 a-hooks from [ we either
need to remove all of them from the first row or remove one of the from the
second row and the others from the first row (as again h'it 41 =a(s—1) and
l?tﬂ = 0). Also as here a — j < a —2a+t =t — a, we have that the only
a-hooks of (t,a — j,17) are Hi; .41 and Hy; and so we have that

B _ o (ta=(=1),971) j—1 (t+a)
X@* aiparivmar) = Xaaiparioman) T = 1)](15) (e 1)X(a,ai+(st+1’-"va’%)1j)
(=1)’ (S o 1) + (=1 X(aipast,mman) - X(ai+s7+1»]~j-yah)
= (= 1)J8 + X,
(—1)!

1

><

az+9+17 -a h)

( 1) X(ai+5+1,--~7ah)>

and as again s > 2 and (—1 )jX?;MH oy = 0, we have that also in this

case X( ipeptan) # 0, £1, from which follows that (ay,...,ap) isn’t a sign
partition in this case either.

The last case we need to consider is when ¢ > 2a. In this case one of
the partitions which appear in (t — )@ is of the form (c), for some ¢ > 1
and all the other partitions appearing in the a-quotient are (0). So we can
add an a-hook to (t — a) in a + 1 ways, which give the partitions (¢) and
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B; = (t—a,a—j,17), for 0 < j < a—1. Here too we have that the leg-length
of the a-hook we add to (t — a) to obtain f3; is j and so again by lemma
we have that

a—1
1 + Z(_l)jx(‘iiﬁ-s-ﬂv“'vah) =0
§=0
and as a > 3 we can find 0 < j < a—1 such that Xﬁj > 0. Again let

A (Qits+15-,0n)
B = (t+a(s—1),a—j,17). As here again we have that t —a+1>a > a—j,
we have by the same calculations as in the previous case that

B _ j i Bi
X(as,ai+s+17---aah) - (_1>] (S + <_1)]X(éi+s+11--'7ah)>

Bj

(@igst1ye50n)

and as here too s > 2 and (—1)/x > 0 we need to have that

X(ﬁas airasrray) 7 0,£1 and so also in this case (ai, ..., ap) isn’t a sign parti-
tion and so the theorem is proved. O

Theorem 85. If (ay,...,an) is a sign partition and a;41 + ... +ap < a;+ 1
then also (aii1,...,an) is a sign partition.

Proof. Let B = (p1,52,...) be any partition of a;11 + ... + a and define
a=Li+ar+...4a; B, Ps,...). If fo=0then = (a;41+...4+ap) and so
Xar1,an) = 1. If B3 # 0 then hy, = h§,1 <Gp1+...+ap<a;+1<a;+1

for j <. First assume that hgl < a;. Then as hi'y = a1+ ...+ a; and

-----

Otherwise we have that hgl = a;. As

h§,1 <B+pf+...=ap+...tap—hh<a;+1-p
and 87 > P2 > 0 we need to have that f; = 1 and so § = (1%+1F-+9) and
then X(ﬁam an) = +1 and so we have that the theorem is true. O

The previous theorem is a generalization of one direction of proposition
2 of [6], which is the next theorem.

Theorem 86. If (ay,...,ap) F n is such that a; > as+ ...+ a, we have that
(a1,...,ap) is a sign partition if and only if (as, ..., ay) is a sign partition.

Proof. Assume that (as,. .., ap) is a sign partition and let « be any partition
of n. If a doesn’t have any a;-hook we have by the Murnaghan-Nakayama

formula that X(ar,.an) = - Otherwise as « is a partition of n < 2a; we need
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to have that w,, (o) = 1, so that « has a unique a;-hook. Let 8 be obtained
by a by removing this a;-hook. Then S F as + ...+ aj, and

X?al,...,a ) — :|:X(@L27 Lan) 0,+1

as (ag,...,ay) is a sign partition and so also (ay,...,a) is a sign partition.
As the opposite direction of the theorem follows by the previous theorem
with ¢ = 1, we have that the theorem is proved. O

By this last theorem in order to classify all sign partitions, and so also all
sign conjugacy classes, it is enough to classify those sign partitions (ay, . .., ay)
for which a; < as+...4ay. In all of the following we will assume that a; # 0.

Theorem 87. If (ay,as) is a sign partition then a; = ao if and only if
(a1>a2) = (17 1)

Proof. This is actually an easy corollary of theorem as it is clear that
(1,1) is a sign class. [

Theorem 88. If a; < as + ag then (aq,aq,a3) is a sign partition if and only
Zf (al,ag,ag) = (a1,a1 — 1, 1) and ap Z 2.

Proof. 1f (a1, as,as) is a sign partition then by theorem [81| we clearly have
that a; > 2 (as we are assuming that ag > 1). First assume that as+a3 > a;.
Then we have that

(az+az,1%1)
(a1,a2,a3)

al— 1 a2+a3) (a2+az—a1,1%1)
1 az,a3 +X(a2,a3)

(=1)
( 1)‘11 1+( )az—lX(a2+a3—a1,1al_a2)
( 1)(11 1+( )a2—1<_1)a1—a2
(—1)m12 £ 0, +1

as h§?§+a3_al’1al) =aytaz—a; —1 < az ((1,2) € (ag + az — a;,1*) as
as+as > ap), and so (a1, as, az) is not a sign partition when as +az > a;. So
if (a1, as, ag) is a sign partition we need to have that as+a3 = a;. lf a3 = 2,3
as we are assuming that ag > 1, we have that (aq,aq,a3) = (a1,a; — 1,1) is
the only possibility in which this can happen. So assume now that a; > 4
and that as > 2. Then

(a1,3,19173)
(a1,a2,a3)

a1—3. (a1) (21172)
DR X(az as) X(a2713)
(2 191— a272)

(=1)
(— 1)a — (=)~ 1X(a3)
(=1)m~
(=1)

a ( )azfl(_1>a17a272
a1 32 £0,+1
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and so we have that (aq,aq,a3) isn’t a sign partition when it is equal to
(a1,a; — ag,as) with ag > 2. So we have that whenever (ay,as,a3) is a sign
partition and a; < as + agz then (aq,as,a3) = (a1,a; — 1,1) and a; > 2.

Assume now that (ai,as,a3) = (a1,a; — 1,1) and a1 > 2. As (a1 — 1,1)
is a sign partition by theorem [86[if a; > 3 or, when a; = 2 by the fact that
(1,1) is a sign partition, we easily have that X(ay.a1-1.1) = 0, =1 whenever a
contains at most one a;-hook. So we only need to show that the same holds if
a has 2 hooks of length a;. As « is a partition of 2a; this happens if and only
if o isn’t a hook (in which case « only has one a;-hook, as it also contains a
2a1-hook) and « can be obtained by adding an a;-hook to an a;-hook. Also as
XEZi:ﬂ)) = 01if ¢ # 0,a; — 1, in which cases (a; — ¢, 1¢) = (ay), (1*), we have
that if X{a1,a1-1,1) # (0,+£1 then o must have 2 a;-hooks and removing either
one of them we need to obtain (a;) or (11). It is easy to see that if we add an
ai-hook to (a) or (1*1) and we don’t obtain an hook partition we must obtain
(ar,c,177¢) or (a1 — c+ 2,271 1917¢) for some 2 < ¢ < a;. For any of these
values of ¢ we have that h%’c’lalﬂ) = hgfllfcw’zc*l’lalfc) = a; and if we remove
the corresponding hook we obtain (¢—1,17") or (a; —c+2,1°72). If ¢ # 2
these partitions are not equal to either (a;) or (1%). So if a # (ay,2,1771)
we have that X{(a1,a1-1,1) # 0 and as

(a1,2,19172) a1—2, (a1) (Qer)y a1—2 ai—2 _
Xiarar-11) = (D" Xy 211y = Xay 21,0y = (D77 = (=1)"7 =0

we have that if a; > 2 then (a;,a; — 1,1) is a sign partition and so the

theorem is proved. O

Theorem 89. If h > 4 and (ay,...,ay) is a sign partition we have that
ay 7éa2+...—i—ah.

Proof. First assume that h is even and that a; = as + ...+ ay. Then by the
Murnaghan-Nakayama formula we have that
a1 —2 a
ngift,lai) ) = _ngllml?-,ah) + (_1)!11—2)(8;?“.7%)
— _(_1)2?:2(‘11'_1) + (_1)111
(~1)m o (— 1y
— (-2

and so in this case (ay,...,ap) isn’t a sign partition.
So assume now that h is odd and again a; = as + ... + a;,. Consider
(a1, ay —ap_1 +1,1%-171) As

Q1= Q1 — QA3 — ... —Ap2 —ap < a1 —h+2<a; —3
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and ap_1 > 1, we have that 2 < a; — a,_1 + 1 < a; from which follows that
(ay,a; — ap_1 + 1,1%-171) is a partition of a; + ... + a, = 2a;. Using the
Murnaghan-Nakayama formula we have that

(a1,ap-1+2,1717%h=172) = (_1>a1 ap_1—2. (a1) . (ap—1+1,1907%h—171)
(a1,...an) X(ag.an) — X(az,...an)

By theorem [84| we have that a; # a,—; if j < h — 1, from which follows that
(ap—1+1,1907%h=171)
(a2y..,an)

from (ap_; + 1,197%-171) a sequence of hooks of lengths (as,...,a;) the

second last hook we remove needs to be the one corresponding to the node
(1,2) and all other hooks must be on the first column. So we have that

= (—1)la=DFt(an—2=1)+@=1) a5 when we are removing

(a1,ap_1+2,1%17%h—1"2) _ (_1)a1—ah—1 _ (_1)a2+...+ah—2+ah+h—2 — (_1)a1—ah—12

(a1,...,ah) -
as ag + ...+ ap—o + ap = a3 — ap—1 and h is odd and so (ay,...,ap) isn’t a
sign partition in this case either and so the theorem is proved. O

Theorem 90. If h > 4 and (a,...,ay) is a sign partition then we have
as + ...+ ap #ay + 1, unless if (a1, ...,a5) =(3,2,1,1),(5,3,2,1).

Proof. It can be easily checked that (3,2,1,1) and (5, 3,2,1) are sign parti-
tions, so we will only prove the other direction. This will be done dividing the

proof in the following cases, which is easy to see that cover all possibilities,
by theorem [84]

Case 1: h odd,

Case 2: h even and a;, > 2,

Case 3: h even, ap_1,a, = 1 and ap_o > 3,
Case 4: h even, ap_1,a, = 1 and a,_o = 2,
Case 5: h even, ap, = 1 and a,_1 > 3,

Case 6: heven, a, =1, ap_1 =2 and ay,_o # 3,

Case 7: heven, a, =1, ap—1 = 2 and a,_y = 3.

Case 1.
Assume first that h is odd and as + ... + ap, = a; + 1. By the Murnaghan-
Nakayama formula we then have that

a ay a;+1 _ a
o) = Xy ,zzh) (=1 e
= ( 1)2] 2(a;—1) + (_1)111*1
— ( 1)a1+1 (h— 1)+(_1)a171
~ (-pe2
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and so (ay,...,ap) isn’t a sign partition in this case.

Case 2.
So we can now assume that h is even and ay + ...+ ap = a3 + 1. At first let
ap, > 2. Notice that in this case we have a; = a9 +...+ap,—1>ap,+h—3 >
ap+ 1 as h > 4. As ap_1 # a, by theorem it can be easily seen by the
Murnaghan-Nakayama formula that

(a1+1,ah+1,1”1*“h*1)

1a1 ap—1 (CL1+1) (ah’Qvlaliahil)
(a1,...,ar)

X(az,....ap) (az,...,an)
ai—ap— 1 ( 1)a2—1+a3—1+ Aap— 2—1+ah 1—2

)
)
)al ap—1 ( a2+a3+ Aap_otap_1—h—3-2
)
)

1
1 1)

1)e1—an— 1+( 1) o+az+...+ap_o+an_q
1 al—ap— 12

(=
(=
= (=
(=
(=

as hiseven and ay +as+...+ap—2 +ap_1 +a, =a; — 1.
Case 3.
Assume now that a,_1,a;, = 1 and aj,_o > 3. Then

(al-l—l,al) o (a1+1) o (a1—1,2)
(a1,....,an) X(ag7 Lap) X(a yeees@p)
— 1 _ (ah 2)
Xgah)27171)
= 1+yx X1 = 2
as a; > 3 for j < h—2 and H(ah 22) is the only hook of (aj_2,2) of length
ap—2 and has leg-length 1. So in this case we have that (ai,...,a;) isn’t a
sign partition.
Case 4.
Let now aj_1,a, = 1 and ap,_o = 2. If h = 4 then a; = 3 and so (aq,...,a,) =

(3,2,1,1). If h > 6 consider (a; + 1,ay,_3 + 1,197%-371) This is a partition
as h > 6 (so that h — 3 # 1). Then we have that

e R T T I T
(at,...,an) - X(ag,.l.,ah) (ag,...,a;ll)
R I
(a2,...,an)

al_ah—3_1)

= ap_3 < aq; for i < h—3bytheoremandas

(ap_5,2,1%1 %= 3—1 —O

(an—3,2,1
As hj

ap—3,2,1%1 " “h—3""
hg{” )—al—ah s—1>ax+...tapqand az;

we have that

(ap—3,2,1%1"%h=3"1)

— ( 1)(12 1+asz—14..+ap—4—1 (an—3,2,1,1)
(a27"'7ah) (ah 3727171)
(—1)e2tasttan—a— ht5. (an—3,2,1,1)
(ah 372a191)
( 1)a1 ap_—_3— —5—h+5 (ah73:271)1)
(ap—3,2,1,1)
( 1)a1 ap— 3 (an-3,2,1,1)
o ah73727171)
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as h is even and ay_o +ap_1 +ap, = 4. By theorem [84) we have that a;,_3 > 3.

If aj,_3 = 3 then ng“; =1 and if ap_3 = 4 then XEEH; =2 Ifa,_3>5
we have that hg(j{”’3’2’1’1) =4 < aj_3 and then we have that (aj_3,2,1,1) has
a unique hook of length a;_3 and so XEZ::igﬂg = _Xg?g) = 1. So in any
case XEZZ:zgiB > 1, from which we have that

A G0 ) Ly N st (S|

(a1,...,an) (ap—3,2,1,1
and so (ay,...,ap_3,2,1,1) isn’t a sign partition when h > 6.
Case 5.

Now assume that a;, = 1 and aj,_; > 3. Then

(a1+1,a1) _ (a1+1) . (a1—1,2)

(a1,....,an) X(ag,...,ah) (a2,...,an)

1 _ (ah,171,2
(ap—1,1)

1
= 1+XE1§=2

and so (ay,...,ap) is not a sign partition.

Case 6.
Let now a, = 1, a1 = 2 and ap_o # 3. By theorem if (ay,...,ap)
is a sign partition we then need to have that a;_o > 3. As all hooks of
(a1 + 1,a; — 1,1) which are on the second or third row have length either 3
orlandasa; >a,+a,_1+1=14+2+1=4, we have that

(a1+17a17171) _ (a’1+1) (a1727271)

(at,...,a2) - _X(az,...,ah) 21 (az,...,an)
Ah—3,4;

- X%ﬁ‘f’f’”

= L =2

and so also in this case (aq,...,ap) isn’t a sign partition.

Case 7.
At last let ap, = 1, ap—1 = 2 and ap_o = 3. If h = 4 we need to have that
a; =5 and so (aq,...,a,) = (5,3,2,1) in this case. If h > 6 is even consider
(a1 + 1,ap_3 + 1,197%=3=1) " Again this is a partition as h > 6, so that
h — 3 # 1. By the same calculation as in the case where a;_1,a; = 1 and
an—2 = 2 we have that

(a1+1ap_3+1,1%1"%h=3""1) _ (_1)a1—ah_3—1 _(ap—3,2,1917 =371
(a1,...,an) (az,..an)

and similarly again to the case where a,_1,a, = 1 and a,_» = 2 we have that

(ap—3,2,1%17%h=3""1) (—1)@—on-s (an—3,2,1%)

X(a27"~7ah) - (ah73737271)
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(now as ap_o + ap_1 + ap = 6). Here we need to have that a,_3 > 4 by

theorem If a,_3 = 4 then ngggi)) =1, if aj,_3 = 5 then XE? gig) =1 and
if aj,_3 = 6 then ngggi)) = 2. Solet now aj_3 > 7. As h(ah 221 _ =6 < ap_s
ap— 4 6 ap— 4 .
we have that XEaZ,iiél)) = _XE;,Q)J) = 1 and so we have that Xgaz,zgéf) is
always > 1, from which we have that
a1+1,ap_3+1,1917%h—371 W —a e ap—3,2,1%)
Xionr ooy D= (DT (L X e ) # 0.1

and so also in this case (aq,...,ay) isn’t a sign partition and we then have
that the theorem is proved. O]
Theorem 91. If (ay,...,ay) is a sign partition with ay + ...+ ap, > a1 and

az+ ...+ ap < aq, then ap, < a; — as.

Proof. Assume that as + ...+ ap > a1, az+ ...+ ap < a; and ap > a; — as.
Then we have that

(az-+tan,1%1)
X(al,...,ah)

as+...+ap—a1,1%1)
az,.. 7ah)

(
(
-1 alfl_l_(_l) 2— 1X§a2+ A4ap—a1,191792)
(
(

|
—_
2
8
L
<
—
o
»
s: ”s:
T
+
>

ap—a1+az,1%1792)
an)

fjees = (-1,

|
A~~~ —~
|
—_
—
5]
o
|
—
—+
—
|
—_
~—
S
m
,_.

i
(=

where the first equality follows from the fact that as + ...+ ap > ai, the
second equality follows from the fact that as + ... +a, —a; — 1 < ay as
az+...+ap < a; and the third equality from the fact that a1 —as < a, < a;
for 3 < j < h.

So as XEG2+ Fonl™) (—1)m712 #£ 0,41, we have that if as+. . .+ay, > ay,

an)
az+ ...+ a, < a and ap, > a; — ay then (ay,...,ap) isn’t a sign partition
and so the theorem is proved. O
Lemma 92. If (as,...,ay) is a sign partition with

1<as+...4+a,<a;—1

we have that if X{a1.a1—1,a5,...an) # 0,+£1 then any [-set for a is of the form
X =Ay1,- Y2, Y1+ a1,Yyx + a1}, where Y = {y1,...,yx} is a B-set for
a partition of az + ...+ ap — 1 and we have that yp_1 + a1, yx + a1 €Y and
Y1 +1€Y oryp1+a,—1 €Y and similarly yp,+1 €Y oryp,+a;—1 €Y.

Proof. As by theorem [86| we have that (a; — 1, as,...,ay) is a sign partition
and as
a;+ (a; — 1) +as+ ...+ ap < 3ay,
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so that for any o+ ay + (a3 — 1) + a3z + ... + a;, contains at most 2 hooks of
length a;, we easily get that if o contains at most 1 hook of length a; then
X?al,arl,as,...,ah) = 0,+1. Now again as a; + (a; — 1) +az+...+a, < 3ai, we
have that « contains 2 hooks of length a; if and only if the a;-quotient of «
is al™) = (g, ..., a4 1) With two of the a; equal to (1) and all others equal

to (0). From this as

al—i—(al—l)—l—ag—i—...—l—ah—Qal:a3+...—i—ah—1ZO

we easily get that if X?al,al—l,ag,...,ah)

X = {y17 cooy Yk—2, Yk—1 T Q1, Yk + a1}7 with ¥V = {y17 s ’yk’} 1S a /B_Set for a
partition of ag+ ... +ap — 1l and yp_1 + a1,y + a1 € Y.

We will show that if 5y, +1 € Y and yp +a; — 1 € Y then we need to have
that X(ar,01—1,a3,...a5) = 0,%1. In order to shorten notation if Z is a [-set let
xZ = x4, Assume that y, + 1 € Y and y, + a1 — 1 € Y. Then we have
that

# 0,41 we can write any [-set of « as

Y1, ¥Yk—1,Yk 01 Y1y Yk—2,Yk—11T01,Yk
= :I:X{ Yy :I:X{ 5

(0%
X(a17a1_17a37"'7ah) (a1—1,a3,...,ap) (a1—1,a3,...,ap)

If we can prove that yWi-¥s—2vk-1terut — (0 then we would have that
X(ar.a1-1as...ap) = 0; £1 in this case, as (ay —1,a3,...,ap) is a sign partition.
By the Murnaghan-Nakayama formula, to show that yu-—#s-1vetal —
it is enough to show that {y1,...,yx_1,yx + a1} doesn’t have any hook of
length a; — 1. As yp +a; — (a1 — 1) =y, + 1 € Y, so that it must also be in
{1, ye—1, Y + a1}, if {y1, ..., Yr—1, yx + a1 } has any hook of length a; — 1
we need to have that y;—a1+1 & {y1, ..., yk—1, Yy +a1 } and y;—a; +1 > 0 for
some 1 < j < k—1 by theorem . If we would also have that y; —a;+1 # ys,
we would then have that Y has also an hook of length a; — 1, which gives
a contradiction as Y is a f-set for a partition of ag + ... +a, — 1 < a; — 1.
So we must have that y; — a; + 1 = y;, which gives a contradiction with the
fact that we are assuming that yx +a; — 1 € Y. So when yp +1 € Y and
ypr +a1 —1 €Y then {y1,...,yr_1,yx + a1} doesn’t have any hook of length
a1 — 1 and so we have that in this case X((Xa1,a1—1,a3,...,ah) =0, +1.

Using the symmetry between y,_; and y, we then also have that if

X{a1,01—1as,..an) # 0,%+1 then we also need to have that y, 1 +1 & Y or
Yk—1 +a; —1 €Y and so the theorem is proved. O

Theorem 93. If a > 4 then (a,a — 1,2,1) is a sign partition.

Proof. The case where a = 4 can be checked by showing that X(1,321) = 0,+£1
for any o F 10.
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Assume now that a > 5. Here we can apply lemma [92] as (2,1) is a sign
partition. Using the lemma it is enough to show that X(a,a-12,1) = 0, =1 when
a has f-set X = {y1,...,Yp—2,Ys—1 + @,y + a} for some Y = {y1,...,yx}
[-set of a partition of 2, with yx1 +a,yx +a € YV and yp_1 +1 € Y or
Yp—1+a—1eYandy,+1 €Y ory,+a—1€Y. As the only partitions of
2 are (2) and (1, 1), we can assume that Y is equal to {0,...,2a —2,2a+ 1}
or {0,...,2a — 3,2a — 1,2a} (we need to have that 0,1,...,a—1€Y). In
the first case we have that the y € Y such that y+1 €Y ory+a; —1€Y
are a — 1,a+2,2a — 2,2a + 1, while in the second case those y are a — 2, a +
1,2a — 3,2a. So for each of these two possibilities for Y we have 6 = (3)
possibilities for X and so we need to check that ng,a—l,z,l) = 0,+£1 for 12
possible X. From each of these X we can remove an a-hook in two different
ways and after having removed an a-hook we can always remove a hook of
length a — 1 in a unique way. Using the Murnaghan-Nakayama formula and
theorem 45 we have that

{0,...,a—2,a,a+1,a+3,...,2a—1,2a+1,2a+2} 1)a—2 {0,...,a—2,a...,2a—1,2a+1}
X(a,a-1,2,1) = (-1 (a—1,2,1)
+(_1)a—2 {0,...,a+1,a+3,...,2a—2,2a+1,2a+2}
(a—1,2,1)

_ (_1)a_2(_1)a_QXg):i..Qa—&Qa—1,2a+1}

)
a— a— 0,...,2a—2,2a+2
+(_1 2(_1) 4X§2,1) =
(3)
2

e .
= Xan T X@n =1

and similarly it can be proved that also in all the other choices of X that

we need to consider we have that Xgé,a—l,Z,l) = 0,+£1 and so we have that
also when a > 5, (a,1 — 1,2,1) is a sign partition and then the theorem is
proved. O

Even if in the proof of the theorem we considered both partitions obtained
by adding 2 a-hooks to (2) and to (1,1), it is enough to consider only those
obtained by adding 2 a-hooks to (2), as the others are their conjugates and

X' () = sign(m)x*(m).
Theorem 94. If a; > 5 then (ay,a1 — 1,3,1) is a sign partition.

Proof. The case where a; = 5 can be checked by calculating X(5.43.1) for any
a - 13.

Assume now that a; > 6. In this case we can apply lemma |92 as (3, 1)
is a sign partition by theorem . The only partitions of 3 are (3), (2,1)
and (1,1,1) and fS-sets for them are {0,1,...,2a —2,2a+ 2}, {0,1,...,2a —
3,2a—1,2a+1} and {0,1,...,2a —4,2a —2,2a — 1, 2a} respectively. If Y is
one of these [3-sets then those y € Y suchthat y+1 &Y ory4+a—1¢€ Y are
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a—1,a+3,2a—2,2a+ 2 in the first case, a —2,a,a+2,2a —3,2a—1,2a+1
in the second case and a — 3, a+ 1, 2a — 4, 2a in the last case. So by lemma

we only need to check that )(527%17371) = 0,41 when X is obtained by Y by

increasing by a two of the given elements of Y. So we only need to consider

(;1) + (g) + (3) = 27 partitions of 2a 4+ 3. We will now show one of these cases

{0,...,a—2,a...,2a—1,3a+2} {0,...,a—2,a...,2a—1,2a+2}
(a,a—1,3,1) - (a—1,3,1)
a—1.10,...,2a—2,3a+2}
+(=D" X 5

. _1)a-2 {0,...,2a—3,2a—1,2a+2}
= (D" xg)

a— 0,...,2a—2,2a+3
+<_1) 1X§371) }

3,1 a— 4 a—
= X+ (D = (1

As the other cases can be checked similarly and in all of them we have that
Xé,a—1,3,1) = 0, £1, we have that (a,a — 1,3,1) is a sign partition. ]

Also in this theorem like in the previous one we could consider less par-
titions, as the partitions obtained by adding two a-hooks to (1,1, 1) are the
conjugates of those obtained by adding two a-hooks to (3).

We will finish by stating a conjecture by Olsson (the conjecture at the end
of [6]) which would allow by theorem [86|to completely classify sign partitions
of n and so also sign conjugacy classes of S,,.

Conjecture 95. If (ay,...,an) is a sign partition and a; < as + ...+ ay
then (ay,...,ay) is one of the following:

o (1,1), (3,2,1,1) or (5,3,2,1),
e (a,a—1,1) for some a > 2,

(
(

o (a,a—1,2,1) for some a > 4,
(

e (a,a—1,3,1) for some a > 5.
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