
Some applications of singular

moduli and complex multiplication

Kumu l i e r t e H a b i l i t a t i o n s s c h r i f t

zur

Erlangung der Lehrbefähigung und Lehrbefugnis

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Dr. rer. nat. Michael Helmut Mertens

aus

Viersen

Köln, September 2019





Für meine Eltern.



Kurzzusammenfassung

Die vorliegende kumulierte Habilitationsschrift fasst drei Originalarbeiten des Au-
tors, die sich alle mit verschiedenen Aspekten und Anwendungen singulärer Werte
von Modulfunktionen und komplexer Multiplikation befassen. Diese Arbeiten
stehen einerseits im Zusammenhang mit der algebraischen Formel von Bruinier
und Ono für die Partitionsfunktion, sowie Moonshine für die sporadisch einfachen
Gruppen von Thompson bzw. O'Nan. Im Zusammenhang mit O'Nan-Moonshine
führt der Zusammenhang mit Spuren singulärer Werte auf Resultate über die
Arithmetik gewisser elliptischer Kurven.

Abstract

The present cumulative Habilitationsschrift combines three original works of the
author, which all deal with various aspects and applications of singular moduli of
modular functions and complex multiplication. These works are connected to the
algebraic formula for the partition function due to Bruinier and Ono on the one
hand and Moonshine for the sporadic groups of Thompson and O'Nan respectively
on the other hand. In the context of O'Nan Moonshine, the connection to traces
of singular moduli leads to results on the arithmetic of certain elliptic curves.
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Chapter 1

Introduction

Complex multiplication and singular moduli are one of the most important subjects
in the arithmetic theory of modular forms, originating from the study of elliptic
functions of Gauÿ, Abel, Jacobi, and Eisenstein (among many others). Hermite
[71] was �rst to observe and explain the fact that the number

eπ
√

163 = 262537412640768743.999999999999250072597..., (1.1)

even though (now) known to be transcendental by the Theorem of Gel'fond-
Schneider [60, 95], is surprisingly close to an integer, using the theory of complex
multiplication and singular moduli. Another historically famous appearance of
this topic comes from the �rst letter the famous Indian mathematician Ramanu-
jan wrote to Hardy, where Ramanujan gives the following formula,

1

1 +
e−2π

1 +
e−4π

1 + . . .

= e2π/5

√5 +
√

5

2
− 1 +

√
5

2

 . (1.2)

Hardy commented on this and similar formulas in Ramanujan's letter as follows
[67, p. 9]:

�These formulas defeated me completely. I had never seen anything
in the least like them before. A single look at them is enough to show
that they could only be written down by a mathematician of the highest
class. They must be true because, if they were not true, no one would
have had the imagination to invent them.�

Both these observations are explained through the theory of complex multiplication,
more concretely by the fact that the value of a modular function (with algebraic
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Fourier coe�cients) at a so-called CM point, i.e. a point in the upper half-plane H
belonging to an imaginary quadratic number �eld, is an algebraic number. Such
values are called singular moduli. In Chapter 2, we give a brief account of some
important aspects of this theory.

Singular moduli and especially their traces have been a very active �eld of study
in the past and they are what connects the works comprising the main contents
of this thesis. Before giving a summary of these works, we recall some standard
notation which will be used throughout.

Notation

Throughout, let H (in Appendix A, the symbol H is used instead) denote the
complex upper half-plane

H := {τ ∈ C : Im(τ) > 0}.

The letter τ always denotes a variable in H, its real and imaginary parts are usually
denoted by u and v.

The group SL2(R) acts on H from the left via Möbius transformations

(γ = ( a bc d ) , τ) 7→ γ.τ :=
aτ + b

cτ + d
, (1.3)

inducing, together with a weight k ∈ Z, a right action on the vector space of
functions f : H→ C via the Petersson slash operator,

(f |kγ)(τ) := (cτ + d)−kf(γ.τ), γ = ( a bc d ) ∈ SL2(R), τ ∈ H. (1.4)

This action can be extended to half-integral weights by passing from the group
SL2(R) to the metaplectic group Mp2(R), a double cover of SL2(R).

A holomorphic function f : H→ C which is invariant under the weight k slash
action of a discrete subgroup Γ ≤ SL2(R) of �nite covolume and, in case Γ is not
cocompact, moderate growth towards the cusps of Γ, is called a modular form of
weight k for Γ. The space of such functions is denoted by Mk(Γ).

In this thesis, all occurring groups Γ will be congruence subgroups of SL2(Z)
(or occasionally normalizers of such groups in SL2(R)). More precisely they will
almost always be of the form

Γ0(N) := {( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N)} (1.5)

for some positive integer N .
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Occasionally, one relaxes the requirement of invariance under the slash action
by allowing a multiplier system ψ of weight k, i.e. one has

(f |kγ)(τ) = ψ(γ)f(τ), τ ∈ H

for a function ψ : Γ→ C∗ satisfying |ψ(γ)| = 1 and the cocycle condition

ψ(γ3)(c3τ + d3)k = ψ(γ1)(c1(γ2.τ) + d1)kψ(γ2)(c2τ + d2)k, (1.6)

where γj =
( ∗ ∗
cj dj

)
∈ Γ and γ3 = γ1γ2. Note that by �xing a branch of the

logarithm and setting zk := ek log z for k ∈ C, the above can be used to de�ne
multiplier systems, and therefore modular forms, of arbitrary real or even complex
weights, while for k ∈ Z, the condition in (1.6) reduces to the requirement that ψ
be a homomorphism of groups.

The space of modular forms of weight k with multiplier system ψ for Γ is
denoted by Mk(Γ, ψ). If a modular form f ∈ Mk(Γ, ψ) vanishes towards all the
cusps (if there are any), we call it a cusp form and the subspace of cusp forms in
Mk(Γ, ψ) is denoted by Sk(Γ, ψ). If instead one relaxes the growth condition at the
boundary to allow poles at the cusps, one obtains the space of weakly holomorphic
modular forms, denoted by M !

k(Γ, ψ). If ψ is trivial, we suppress it from the
notation.

Suppose the weight k is half-integral, Γ = Γ0(4N) for some N , and the mul-
tiplier system ψ is compatible with the �trivial� multiplier system ψ0 of weight k,
i.e. the one corresponding to the embedding of Γ0(4) into the metaplectic group
due to Shimura [97]. Explicitly, this multiplier system is given by

ψ0

((
a b
c d

))
=
( c
d

)(−4

d

)−k
, c ≡ 0 (mod 4),

where the corresponding branch of the square root is chosen which is positive
for positive real arguments. Then there is an important subspace of the space
M !

k(Γ, ψ), the Kohnen plus space, de�ned by

M !,+
k (Γ, ψ) :=

{
f(τ) =

∑
n�−∞

af (n)qn : af (n) = 0 forn 6≡ 0, (−1)k−1/2 (mod 4)

}
.

(1.7)

The spaces M+
k (Γ, ψ) and S+

k (Γ, ψ) are de�ned analogously and we suppress the
multiplier system from the notation if it is the aformentioned �trivial� one.

Various further relaxations of the concept of modular forms exist and are stud-
ied. One such relaxation which will occur frequently in this work is that of har-
monic (weak) Maaÿ forms, which are invariant under the slash operator (possibly
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with a multiplier system) and grow at most exponentially towards the cusps of Γ,
but instead of being holomorphic on H, they are merely required to be annihilated
by the weight k hyperbolic Laplacian,

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
. (1.8)

The space of these functions is denoted by Hk(Γ, ψ), so that we have the inclusion
of spaces

Sk(Γ, ψ) ⊆Mk(Γ, ψ) ⊆M !
k(Γ, ψ) ⊆ Hk(Γ, ψ).

It is not hard to see that a harmonic Maaÿ form f of weight k for Γ = Γ0(N),
say, naturally splits into a holomorphic part f+ and a non-holomorphic part f−.
The holomorphic part of a harmonic Maaÿ form is called a mock modular form.
The image of f under the so-called ξ-operator, a variation of the Maaÿ lowering
operator, is called the shadow of the mock modular form f+.

We now give a summary and some background of the results in the relevant
papers [82, 62, 45]. The published versions (or in the case of [45] the version
accepted for publication) are included in the appendix.

1.1 On class invariants for non-holomorphic mod-

ular functions and a question of Bruinier and

Ono

Since the days of Euler, partitions have been an object of interest to number the-
orists, being one of the most fundamental concepts in Combinatorics. A partition
of a positive integer n is a non-increasing sequence of positive integers summing
to n. The number of partitions of n is commonly denoted p(n), where one sets
p(0) := 1 for convenience. For example, the partitions of 5 are given by

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1),

so that p(5) = 7. Despite its very simple de�nition, a closed formula to compute
p(n) has long been searched for. Euler [49] was able to give the following recursive
formula for p(n).
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Theorem 1.1.1 (Euler, 1775). For any integer n > 0 and B := d(1+
√

24n+ 1)/6e
one has the identity

p(n) =
B∑
k=1

(−1)k+1

[
p

(
n− 1

2
k(3k − 1)

)
+ p

(
n− 1

2
k(3k + 1)

)]
,

where we use the convention p(n) = 0 for n < 0.

This formula is indeed fairly e�cient if n is not too large and was famously
used by MacMahon around 1916 to compute p(n) for all n ≤ 200, see [68, Table
IV]. It is a direct corollary of the product representation of the generating function
of the partition function,

∞∑
n=0

p(n)qn =
∞∏
n=1

(1− qn)−1, |q| < 1, (1.9)

and Euler's Pentagonal Number Theorem,

∞∏
n=1

(1− qn) =
∑
m∈Z

(−1)mq
m(3m−1)

2 , |q| < 1. (1.10)

In 1918, Hardy and Ramanujan [68] found a complete asymptotic expansion for
p(n), pioneering a now vital tool in Analytic Number Theory, the Circle Method.
A simpli�ed version of their result is given as follows.

Theorem 1.1.2 (Hardy-Ramanujan, 1918). We have the asymptotic equality

p(n) ∼ 1

4n
√

3
eπ
√

2n/3, n→∞.

Some 20 years later, Rademacher [90] was able to re�ne the method of Hardy
and Ramanujan to obtain a convergent in�nite series representation for p(n). A
short proof has recently been given by Pribitkin and Williams [89].

Theorem 1.1.3 (Rademacher, 1937). For any integer n ≥ 1 we have that

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k

d

dn

sinh
(
π
k

√
2
3
(n− 1

24
)
)

√
n− 1/24

 ,

where
Ak(n) =

∑
h (k)∗

exp (πis(h, k) + 2πih/k) ,
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the notation h (k)∗ signifying that the sum runs over all h modulo k coprime to k,
and

s(h, k) =
1

4k

k−1∑
µ=1

cot(πµ/k) cot(πhµ/k)

denotes the classical Dedekind sum1.

Rademacher's formula is essentially what is used in many modern computer
algebra systems such as Pari/Gp, Sage, or Magma [65, 104, 12] to compute
p(n). However, the formula is an in�nite series which needs to be truncated some-
where for practical computations. This may be not quite satisfactory as p(n) can
intrisically be obtained from a �nite process.

In 2013, Bruinier and Ono [23] found a representation of p(n) as a �nite sum of
algebraic numbers, more precisely as the trace of the singular moduli of a speci�c
non-holomorphic modular function. Their result is a consequence of the general
properties of a certain theta lift they introduce [23, Equation (3.1)] which maps
harmonic Maaÿ forms of weight −2 for Γ0(N) to vector-valued harmonic Maaÿ
forms of weight −1/2 with respect to the Weil representation associated to the
lattice

L =

{(
b a/N
c −b

)
: a, b, c ∈ Z

}
in the quadratic space of rational 2 × 2-matrices with trace 0 endowed with the
quadratic form X 7→ N detX. A similar theta lift had been studied previously by
Bruinier and Funke [21, 55] and it has been extended to general weights and its
properties have been studied further by Alfes [1].

In order to state the formula of Bruinier and Ono, we �rst recall the de�nition
of the Eisenstein series of weight k ∈ 2Z>0 for the full modular group SL2(Z),

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn, τ ∈ H, q := e2πiτ . (1.11)

For k ≥ 4, these are modular forms for SL2(Z), while E2 is a so-called quasimodular
form. In particular, it is not modular, but the non-holomorphic function

E∗2(τ) := E2(τ)− 3

πv

with v = Im(τ) transforms like a modular form of weight 2. Also recall the
Dedekind eta function

η(τ) := q1/24

∞∏
n=1

(1− qn), (1.12)

1This is not the standard defnition of the Dedekind sum, but usually an identity that has to
be proven, see e.g. [92, Equation (26)]
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which is a cusp form of weight 1/2 for SL2(Z) with respect to a certain multiplier
system involving the Dedekind sums that appear in Theorem 1.1.3. The 24th
power of this multiplier system is trivial, so that

∆(τ) := η(τ)24 =
E4(τ)3 − E6(τ)2

1728

is a cusp form of weight 12 for SL2(Z).
Using these functions, we de�ne the weakly holomorphic modular form

F (τ) :=
E2(τ)− 2E2(2τ)− 3E2(3τ) + 6E2(6τ)

2η(τ)2η(2τ)2η(3τ)2η(6τ)2
∈M !

−2(Γ0(6)) (1.13)

and apply the Maaÿ raising operator to it. This operator is de�ned by

Rk :=
1

2πi

∂

∂τ
− k

4πv
(1.14)

and maps modular forms of weight k to modular forms of weight k + 2 (without
preserving holomorphicity of course). Thus we obtain a non-holomorphic modular
function

P (τ) := R−2F (τ). (1.15)

The formula of Bruinier and Ono is then given as follows [23, Theorem 1.1].

Theorem 1.1.4 (Bruinier-Ono, 2013). For n ∈ N let δ := 1− 24n and Qδ denote
a set of representatitives of positive de�nite quadratic forms Q(X, Y ) = aX2 +
bXY + cY 2 with a, b, c ∈ Z, a ≡ 0 (mod 6), and b ≡ 1 (mod 12) of discriminant
δ, modulo the action of Γ0(6). Then we have

p(n) =
1

24n− 1

∑
Q∈Qδ

P (τQ),

where for any positive de�nite binary quadratic form Q we write τQ for the unique
point in H satisfying Q(τQ, 1) = 0.

Thus p(n) can be written as a trace of singular moduli (see Section 2.4). It
can be shown [79] that (24n− 1)P (τQ) is an algebraic integer for all Q ∈ Qδ. The
formula in Theorem 1.1.4 has also essentially been derived from Rademacher's
formula in Theorem 1.1.3 by Bringmann and Ono [16] (the function P there is
given as a Poincaré series, so less explicitly than in [23]). Folsom and Masri [50]
used the formula to derive a new asymptotic and error term for the partition
function. A derivation of the Hardy-Ramanujan formula in Theorem 1.1.2 from
Theorem 1.1.4 has been given by Dewar and Murty [36].
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Bruinier and Ono also show that the polynomial

Hδ(X) =
∏
Q∈Qδ

(X − P (τQ)), (1.16)

whose roots are the singular values P (τQ) is de�ned over Q. It is however not in
general irreducible over Q [24, Lemma 3.7]. In loc. cit., Bruinier, Ono, and Suther-
land �nd an e�cient algorithm using CM elliptic curves and what is called isogeny
volcanos to compute Hδ and therefore p(n), as well as the related polynomial

Ĥδ(X) =
∏
Q∈Pδ

(X − P (τQ)) ∈ Q[X], (1.17)

where Pδ denotes the set of primitive forms in Qδ, i.e. those whose coe�cients
are relatively prime. We note here that this construction is analogous to the class
polynomial considered in Equation (2.4). They use their algorithm to compute
Ĥδ for many values of δ and always �nd that it is irreducible over Q, leading
them to ask (see [23, Section 5]) if this is always the case. In [82], reproduced in
Appendix A, Rolen and the author show that this is indeed true.

Theorem 1.1.5 (M.-Rolen, 2015). The polynomial Ĥδ is irreducible over Q.
Moreover we have that

Ωt
∼= K[X]/Ĥδ(X),

where we write δ = t2d for a fundamental discriminant d < 0 and K := Q(
√
d),

is the ring class �eld of the order of conductor t in K.

The proof of this has two main parts: First we show that Ĥδ is the power of
an irreducible polynomial, i.e. the sets

{P (τQ) : Q ∈ Pδ} and {P (τQ0)
σ : σ ∈ Gal(Ωt/K)}

are equal for all Q0 ∈ Pδ (see [82, Proposition 3.2]). This follows essentially from
a convenient formulation of Shimura reciprocity due to Schertz [94] in combination
with a formula of Masser [80, Appendix I]. The second part of the proof relies on
explicitly bounding the value P (γτ) for all γ in a �xed set of representatives of
SL2(Z)/Γ0(6) and τ in the standard fundamental domain for SL2(Z) ([82, Lemma
3.3]). This explicit (but actually rather crude) bound is enough to show that all the
values P (τQ) for Q ∈ Pδ are distinct for all n ≥ 54 (i.e. δ ≤ 1− 24 · 54 = −1295).
Using the data computed by Sutherland2, it can be veri�ed directly by computer
that Ĥδ is irreducible for the remaining n, completing the proof.

Building on the same kind of ideas, Braun, Buck, and Girsch [13] showed the
following more general result.

2available online at http://math.mit.edu/~drew/Pfiles/

http://math.mit.edu/~drew/Pfiles/
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Theorem 1.1.6 (Braun-Buck-Girsch, 2015). Let F ∈ M−2k(SL2(Z)) with ratio-
nal Fourier coe�cients and let P := R−2 ◦ ... ◦ R−2k+2 ◦ R−2kF . Then for each
su�ciently small negative discriminant D < 0, the polynomial

ĤD,P (X) =
∏
Q

(X − P (τQ)) ∈ Q[X],

where Q ranges over a set of representatives of primitive, positive de�nite, integral
binary quadratic forms modulo SL2(Z), is irreducible over Q.

It should be pointed out that in [13], an explicit bound on the discriminant
D, from which on the above theorem holds, is given in terms of the weight and
principal part of F .

1.2 A proof of the Thompson Moonshine Conjec-

ture

The subject of Moonshine is, very broadly speaking, concerned with surprising
and sometimes strange connections between di�erent areas of Mathematics, e.g.
Representation Theory of �nite groups and modular forms. The most well-studied
example of this is Monstrous Moonshine which we describe now.

According to the classi�cation theorem of �nite simple groups [6], a �nite simple
group is isomorphic to either

1. a cyclic group of prime order,

2. an alternating group of degree ≥ 5,

3. a �nite group of Lie type (or the Tits group),

4. one of 26 sporadic simple groups.

The largest of the sporadic simple groups is the so-calledMonster group M of order

#M = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8.08 · 1053.

Its character table was �rst computed in 1976, assuming its existence, by Fischer,
Livingstone, and Thorne (see [33]) and it was �rst constructed in 1982 by Griess
[61] as the automorphism group of a certain 196884-dimensional commutative, but
non-associative R-algebra, called the Griess algebra. Even before the existence of
the Monster had been established, some people noted some seemingly coincidental
connections between the monster and the realm of modular forms. The �rst such
observation was made by Ogg [86] who showed the following.
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Theorem 1.2.1 (Ogg, 1975). Let p be prime. The modular curve X0(p)+, i.e. the
compacti�ed quotient Γ0(p)+ \ H, has genus 0 if and only if

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

Ogg remarks in [86] that these primes are precisely the prime divisors of the
order of the Monster group and o�ers a bottle of Jack Daniels whiskey to the
�rst person to o�er an explanation for this coincidence. For a relatively recent
discussion of this question as well as a partial solution to the Jack Daniels Problem,
we refer to [47]. An analogue of this phenomenon in the context of so-called Umbral
Moonshine (see below) has recently been found by Aricheta [5].

Another observation of a di�erent sort of connection between the Monster
and modular forms was made in 1978 by McKay who noticed that the �rst few
coe�cients of the modular j-function

j(τ) =
E4(τ)3

∆(τ)
= q−1 + 744 + 196884q + 21493760q2 + .... (1.18)

or rather the so-called Hauptmodul, i.e. a (suitably normalized) generator of the
�eld of modular functions, for the group SL2(Z) given by J = j − 744, can be
written in terms of dimensions of irreducible representations of M,

196884 = 1 + 196883, 21493760 = 1 + 196883 + 21296876, ...

This led Thompson [107, 108] to conjecture the existence of an in�nite-dimensional
graded representation of the Monster, where the dimension of the nth graded com-
ponent is the nth coe�cient of J . The observations of McKay and Thompson were
much extended by Conway and Norton [33] who managed to associate to each of
the 194 conjugacy classes of M a Hauptmodul for a genus 0 subgroup of SL2(R)
whose coe�cients agree, like those of J , with character values of the Monster.
Note here that the dimension of a representation is simply the value of its asso-
ciated character at the neutral element of the group. Their �ndings led Conway
and Norton to conjecture that there should be an in�nite-dimensional graded rep-
resentation of M whose McKay-Thompson series coincide with the Hauptmoduln
speci�ed in [33], re�ning Thompson's original conjecture. For a graded G-module
V =

⊕
n Vn for a �nite group G and a conjugacy class [g] ⊆ G, the associated

McKay-Thompson series is de�ned by

T[g](τ) :=
∑
n

trace(g|Vn)qn. (1.19)

The conjecture of Conway and Norton is usually referred to as the Monstrous
Moonshine Conjecture. Following a suggestion of Thompson, an abstract proof for
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the existence of the Moonshine module was sketched by Atkin, Fong, and Smith
[103]. As pointed out in [57, 62], this proof contains at least one and possibly two
gaps, but the proof strategy is sound and has been used several times, for instance
in the works just referenced. Frenkel, Lepowsky, and Meurman [53, 54] constructed
a so-called vertex operator algebra V \, i.e. a graded vector space endowed with an
in�nite collection of products, with an action of the Monster and showed that the
associated McKay-Thompson series of the neutral element is indeed the function J ,
therefore con�rming Thompson's original conjecture. The �rst non-trivial graded
component of V \ is exactly the Griess algebra mentioned above. In subsequent
work, Borcherds [8] was able to verify that the McKay-Thompson series of the
other conjugacy classes of the Monster agree with the Hauptmoduln found by
Conway and Norton, therefore proving the full Monstrous Moonshine Conjecture.

Theorem 1.2.2 (Frenkel-Lepowsky-Meurman, 1988, and R. Borcherds, 1992).
The Monstrous Moonshine Conjecture is true, i.e. there is an in�nite-dimensional
M-module V \ whose McKay-Thompson series are given by the Hauptmoduln speci-
�ed by Conway and Norton. Moreover, V \ carries the structure of a vertex operator
algebra, on which M acts via automorphisms.

Borcherds's proof of this result employed a variety of deep ideas from both
Mathematics and Mathematical Physics, among them a new axiomatic description
of vertex operator algebras, Borcherds-Kac-Moody algebras, and bosonic string
theories. The work related to Monstrous Moonshine was one of the reasons to
award him the Fields Medal in 1998.

Other kinds of Moonshine have been observed over the years, such as Gen-
eralized Moonshine as conjectured by Norton [85] and proven by Carnahan [25],
Mathieu Moonshine as conjectured by Eguchi, Ooguri, and Tachikawa [48] and
proven abstractly by Gannon [57], and more generally, Umbral Moonshine as con-
jectured by Cheng, Duncan, and Harvey [29] and proven abstractly by Duncan,
Gri�n, and Ono [42]. For a fairly recent and more detailed survey on the sub-
ject of Moonshine, the reader may consult [41] and for further information on the
background and details the book [56].

In 2015, Harvey and Rayhaun [69] found evidence for moonshine for the �-
nite sporadic Thompson group Th, which was �rst discovered and constructed by
Thompson and Smith [102, 106] as the automorphism group of the 248-dimensional
Thompson lattice. Their �rst observation was that the �rst few coe�cients of the
function f3 in Zagier's basis of the space M !,+

1/2(Γ0(4)) of weakly holomorphic mod-
ular forms of weight 1/2 for Γ0(4) satisfying the Kohnen plus space condition
(see (2.8)) are closely related to dimensions of irreducible representations of the
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Thompson group: We have

f3(τ) = q−3 +
∞∑
n=1

A(n, 3)qn

= q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 +O(q12)

Comparing to the character table of Th [32, 59], one sees that 248, 85995, 1707264
occur as dimensions of irreducible representations of Th and we can decompose
26752 = 27000 − 248 and 4096248 = 4096000 + 248, where again, 27000 and
4096000 are dimensions of irreducible representations of Th. The function f3 is
connected to the Thompson group via the aforementioned Generalized Moonshine:
The Thompson group (or rather Th×C3) is the centralizer of the conjugacy class
3C in the Monster group, so that Generalized Moonshine predicts a natural action
of Th on the so-called 3C-twisted module of the Monstrous Moonshine module V \.
The associated graded dimension function is given by the unique cube-root of the
j-function which is real-valued on the imaginary axis

j(τ)1/3 = q−1/3 + 248q2/3 + 4124q5/3 + 34752q8/3 + ...,

which is the Borcherds lift of the function f3, i.e.

j(τ)1/3 = q−1/3

∞∏
n=1

(1− qn)A(n2,3),

see also Theorem 2.4.4. Harvey and Rayhaun modify the function f3 slightly by
adding a weight 1/2 theta function called a theta correction and de�ne

F3(τ) = 2f3(τ) + 248ϑ(τ) = 2q−3 + 248 + 2 · 27000q4

− 2 · 85995q5 + 2 · 1707264q8 − ..., (1.20)

with ϑ(τ) =
∑

n∈Z q
n2

and we see that the �rst few coe�cients are now all (two
times)3 dimensions of irreducible representations of Th with alternating signs. This
is in �avour related to Umbral Moonshine and a �rst case of so-called Penumbral
Moonshine, on which there is ongoing work of Duncan, Harvey, and Rayhaun. Be-
cause of these observations Harvey and Rayhaun conjecture that F3 is the graded
dimension function of a graded Th-supermodule W . This means that each graded
component decomposes asWm = W 0

m⊕W 1
m, a direct sum of an even and odd part.

In this case, W i
m is trivial whenever m 6≡ i (mod 2). The supertrace of an element

is de�ned as

strace(g|Wm) = trace(g|W 0
m)− trace(g|W 1

m) (1.21)

3Actually, they are rather the sum of the dimensions of two Galois conjugate representations,
which necessarily have the same dimension, see Theorem 1.2.3.
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and the McKay-Thompson series for a supermodule are de�ned as for usual mod-
ules but with the trace replaced by the supertrace.

The coe�cients of f3 are in fact twisted traces of singular moduli of the J-
function (see Theorem 2.4.3). Using twisted traces of singular moduli of Haupt-
moduln for the groups Γ0(N) for N ∈ {2, ..., 10, 12, 13, 16, 18, 25} with appropri-
ate theta corrections, Harvey and Rayhaun are able to obtain further tentative
McKay-Thompson series of the Th-supermodule W .

All of these can also be realized in terms of Rademacher sums, essentially a low-
weight analogue of Poincaré series, projected to the plus space: A Poincaré series
is obtained by averaging a 1-periodic seed function over a set of representatives
Γ∞ \ Γ0(N), say, and, provided that the thus de�ned series converges absolutely,
the function de�ned in this manner will transform like a modular form of the
desired weight. For the most common types of Poincaré series, the convergence
solely depends the weight, see for instance [15, 19, 31, 84, 88] and the references
therein for details. Rademacher sums and series were �rst devised by Rademacher
[91] in his study of the coe�cients of the j-function. Their theory was developed
systematically, with applications to moonshine in mind, mainly by Duncan and
Frenkel [40] as well as Cheng and Duncan [27, 28]. Instead of averaging over the
whole group, one only averages over a certain �rectangle� and lets this rectangle
grow. This procedure improves the convergence properties of the sum compared to
those of a Poincaré series. However, the resulting series is in general not modular
but rather mock modular. Employing the approach via Rademacher sums with
certain multiplier systems similar to those occuring in Umbral Moonshine enabled
Harvey and Rayhaun to (numerically) compute candidates for all the tentative
McKay-Thompson series T[g], supporting their conjecture.

Together with Gri�n, we showed in [62], which is reproduced in Appendix B,
that the conjecture of Harvey and Rayhaun is indeed true.

Theorem 1.2.3 (Gri�n-M., 2016). The Thompson-Moonshine Conjecture of Har-
vey and Rayhaun is true. Moreover, the McKay-Thompson series T[g] are the

unique modular forms in the space M !,+
1/2(4o(g), ψ[g]), where o(g) denotes the order

of a group element g and ψ[g] is the multiplier system associated to [g], satisfying
the following conditions:

� The Fourier expansion at ∞ is given by

2q−3 + χ2(g)− (χ4(g) + χ5(g))q4 +O(q5),

where χ1, ..., χ48 denote the irreducible characters of Th as in [62, Tables
1�4],

� Apart from the pole at ∞, there is a pole of order 3/4 at the cusp 1/2o(g) in
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case o(g) is odd; otherwise, the only pole is at ∞. The function vanishes at
all other cusps of Γ0(4o(g)).

Remark. 1. For an element g with o(g) 6= 36, it su�ces to specify that the
function T[g] should have an expansion 2q−3 + χ2(g) + O(q4) in addition to
the second condition in Theorem 1.2.3 in order to determine it uniquely.

2. In the statement of Theorem 1.2.3 in the original publication (see Theorem
1.2 in Appendix B), the conjugacy classes 12A and 12B of Th are excluded.
The reason for this is that according to [62, Remark 3.3], the multpliers
of the Rademacher sums and the corresponding theta corrections were not
identical. While this is true at �rst glance when one computes the multiplier
system of the given theta correction directly, the two multipliers actually
agree on the group Γ0(48) as was pointed out to the author by Maryam
Khaqan and John Duncan. Hence there is no reason to exclude the two
conjugacy classes from the statement of the theorem.

The proof of this result follows similar lines as Gannon's proof of Mathieu
Moonshine [57] and Duncan-Gri�n-Ono's proof of Umbral Moonshine in general
[42]. As �rst step it is necessary to verify that all the functions provided by
Harvey and Rayhaun are indeed weakly holomorphic modular forms rather than
mock modular forms, as Rademacher sums generically would be. This follows
from the fact that the space of possible shadows is either trivial or has a basis
such that the Bruinier-Funke pairing (see e.g. [20, Proposition 3.5]) allows to
show that the shadow must be 0. Through the Schur orthogonality relations, one
can write down the generating function for the (tentative) multiplicities of each
irreducible character in the graded supermodule whose existence one wants to
prove. The claim follows if all these multiplicities are integers whose signs are
exactly alternating (or 0). The integrality of these multiplicities can be veri�ed by
showing that the McKay-Thompson series satisfy su�ciently many congruences.
An idea of Thompson [108] allows to compute the required congruences from the
character table, however it is also possible, as done in [62], to �nd all congruences
modulo powers of primes dividing the order of Th and check a posteriori that
these su�ce to deduce integrality of the multiplicities. For the �positivity�, i.e.
the fact the signs alternate as conjectured by Harvey and Rayhaun, requires the
representation of the McKay-Thompson series as Rademacher sums. Their Fourier
coe�cients can be represented as in�nite sums of Kloosterman sums weighted
by Bessel functions. Through explicit estimates on Kloosterman zeta functions,
mimicking and extending the procedure established in [57] and building essentially
on work by Kohnen [76], one �nds that from a certain point on, the coe�cients
of T[1A] dominate all the other coe�cients, which allows to deduce the expected
sign behaviour of all the multiplicities from an explicit point on. The rest can be
checked directly by inspection.
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One important feature of the Hauptmoduln in Monstrous Moonshine is that
they are replicable, which means for example that their Fourier coe�cients can
be computed recursively from the �rst 23 of them (see for instance [52]). This is
reminiscent of the VOA structure of the Moonshine module V \. IN [42], a mock
modular anaolgue of replicability is established for the McKay-Thompson series
in Umbral Moonshine using work of Imamo§lu, Raum, and Richter [73] and the
author [81] on holomorphic projection (see also [35]). In [62], we connect some of
the McKay-Thompson series of Thompson Moonshine to such replicable functions
via their associated weak Jacobi forms.

It remains to be remarked that unlike in the case of Monstrous Moonshine, no
construction of the Th-supermodule whose existence is asserted in Theorem 1.2.3
is available to date. For several cases of Umbral Moonshine, a module has been
constructed [4, 26, 46, 43], but in particular not yet for the case of Mathieu Moon-
shine. We hope to be able to construct the Thompson-supermodule in the future
in order to complete the picture.

1.3 O'Nan Moonshine and Arithmetic

The 26 sporadic groups may be subdivided into two collections, the Happy Family,
consisting of those 20 sporadic simple groups which are quotients of subgroups of
the Monster, and the six so-called Pariahs or non-monstrous sporadic groups : the
Lyons group Ly, the three4 Janko groups J1, J3, and J4, the Rudvalis group Ru,
and the O'Nan group O'N. It has long been an open question in Moonshine, asked
already by Conway and Norton [33], whether these groups, which have nothing to
do with the Monster, are in any way connected to Moonshine (see also [11]).

In [45], which is reproduced in Appendix C, we show together with Duncan
and Ono that the O'Nan group indeed has a connection to Moonshine (see also
[44, 58]). Evidence for the existence of this group was �rst found in 1976 by O'Nan
[87] and according to loc. cit., it was �rst constructed by Sims. The fact that it is
a Pariah, i.e. not a subquotient of the Monster, was �rst shown by Griess [61].

A �rst observation leading to Moonshine for the O'Nan group comes from
inspecting Zagier's basis of the space M !,+

3/2(Γ0(4)), see (2.10). The function g4 in
this basis has Fourier expansion

g4(τ) = q−4 − 2− 26752q3 − 143376q4 − 8288256q7 − 26124256q8 +O(q11)

and one notices that 26752 is a dimension of an irreducible representation of the
O'Nan group, and one can write 143376 = 1+58311+85064, where 1, 58311, 85064
are also dimensions of irreducible represenations of O'N. Similar decompositions
can be observed for higher level analogues of g4.

4The second Janko group J2 is a member of the Happy Family.
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Using essentially the same approach as described above in the context of
Thompson Moonshine, the existence of a module for the O'Nan group is estab-
lished, whose McKay-Thompson series are special modular forms [45, Theorem
1.1, Theorem 3.1].

Theorem 1.3.1 (Duncan-M.-Ono, 2017). There exists an in�nite-dimensional
graded O'N-module W =

⊕
0<m≡0,3 (4) Wm whose McKay-Thompson series

F[g](τ) = −q−4 + 2 +
∑

0<m≡0,3 (4)

a[g](m)qm

for each conjugacy class [g] ⊆ O'N are weakly holomorphic modular forms of weight
3/2 of level 4o(g) in the Kohnen plus space with trivial multipliers for o(g) 6= 16.
Moreover, these forms are uniquely determined by the following conditions:

(a) F[g] ∈M !,+
3/2(Γ0(4o(g)), ψ[g]),

(b) F[g](τ) has the principal part at in�nity speci�ed above and additionally a pole
of order 1/4 at 1/o(g) as forced by the plus space condition and vanishes at all
other cusps,

(c) we have a[g](3) = χ7(g), a[g](4) = χ1(g)+χ12(g)+χ18(g) and a[g](7) as speci�ed
in [45, Tables B.1�B.3], where χ1, ..., χ30 denote the irreducible characters of
O'N as in [45, Table A.1].

Note that the conditions (a) and (b) inTheorem 1.3.1 determine a weakly holo-
morphic modular form up to the addition of cusp forms. This leaves a choice for the
contribution from cusp forms which is �xed by condition (c). A reason for choosing
this particular contribution from cusp forms comes from the required congruences
that the McKay-Thompson series, see the remark following [45, Theorem 3.1].

Remark. It should be pointed out that the module W whose existence is asserted
in Theorem 1.3.1 is slightly virtual, i.e. �nitely many (four to be precise) graded
components can only be decomposed into irreducible O'N-modules using negative
multiplicities (see [45, Table B.1-B.2]. This could be remedied by adding weight
3/2 unary theta functions to some of the McKay-Thompson series, but at the
expense of the classifying properties (see the second remark following [45, Theorem
1.1]).

Remark. In an earlier version of [45], a variation of Theorem 1.3.1 was consid-
ered where we required all multiplier systems to be trivial and instead allowed
mock modular forms with the properties given. These mock modular forms au-
tomatically have trivial shadows unless o(g) = 16. The multipliers occurring in
Theorem 1.3.1 are connected to the cohomology of O'N (cf. [45, p. 15f]), while
the existence of non-trivial shadows is not known to be.
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Returning to the Zagier basis in weight 3/2, Zagier showed (see Theorem 2.4.2)
that the coe�cients of the �rst element

g1(τ) = q−1− 2 + 248q3− 492q4 + 4119q7− 7256q8 + 33512q11− 53008q12 +O(q15)

in this basis are the negatives of the traces of the singular moduli of the J-function
in (1.18). It also follows from his work on the action of Hecke operators on these
traces [114] as well as the work of Miller and Pixton [83] that one can write the
coe�cients of the McKay-Thompson series F[g] of theO'N-module in Theorem 1.3.1
in terms of traces of singular moduli of explicit modular functions of level o(g) (see
[45, Proposition 5.1 and Appendix D], generalized Hurwitz class numbers (which
are the traces of the constant function 1 as studied in detail in [55]), as well as
coe�cients of weight 3/2 cusp forms.

By important work of Waldspurger [110] and Kohnen [76] we know that coef-
�cients of weight 3/2 cusp forms (or more precisely newforms) in the plus space
are closely connected to L-values of weight 2 cusp forms.

Theorem 1.3.2 (Waldspurger, 1981, Kohnen, 1985). Let N ∈ N be odd and
square-free, f ∈ S+

k+ 1
2

(Γ0(4N)) be a newform with Fourier expansion f(τ) =∑∞
n=1 bf (n)qn. Further let F ∈ S2k(Γ0(N)) the image of f under the Shimura

correspondence. For a prime `|N , let w` be the eigenvalue of F under the Atkin�
Lehner involution W` and choose a fundamental discriminant D with (−1)kD > 0
and

(
D
`

)
= w` for all `. Then we have

〈f, f〉 =
〈F, F 〉πk

2ω(N)(k − 1)!|D|k− 1
2L(F,D; k)

· |bf (|D|)|2,

where L(F,D; s) denotes the twist of the newform F by the quadratic character(
D
•

)
and ω(N) denotes the number of distinct prime divisors of N .

The Conjecture of Birch and Swinnerton-Dyer [7, 113] together with the Mod-
ularity Theorem [14, 105, 112] asserts that the L-values in Theorem 1.3.2 contain
arithmetic information about the associated elliptic curve in case the weight 2
newform has rational coe�cients.

Conjecture 1.3.3 (Birch and Swinnerton-Dyer, 1964). Let E/Q be an elliptic
curve. Then we have that

L(r)(E, 1)

r!ΩE

=
#X(E) · Reg(E)

∏
` c`(E)

(#E(Q)tors)2
, (1.22)

where r denotes the analytic rank, i.e. the order of vanishing of L(E, s) at s = 1,
which equals the Mordell�Weil rank of E, ΩE is the real period of E, #X(E) and
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Reg(E) denote the order of the Tate-Shafarevich group and the regulator of E,
respectively, the c`(E) for prime ` are the Tamagawa numbers of E, and #E(Q)tors
is the order of the torsion subgroup of the Q-rational points of E.

Using these results and conjectures together with the work of Kolyvagin [77] and
Gross and Zagier [64] on the Birch and Swinnerton-Dyer Conjecture we can obtain
non-trivial information on p-divisibility of class groups of imaginary quadratic
number �elds for small primes p as well as on p-torsion of Selmer- and Tate-
Shafarevich groups of quadratic twists of certain elliptic curves. The precise results
are as follows (see [45, Theorems 1.2-1.4]).

Theorem 1.3.4 (Duncan-M.-Ono, 2017). Suppose that −D < 0 is a fundamental
discriminant. Then the following are true:

1. If −D < −8 is even and g2 ∈ O'N has order 2, then

dimWD ≡ trace(g2|WD) ≡ −24H(D) ≡ 0 (mod 24).

2. If p ∈ {3, 5, 7},
(
−D
p

)
= −1 and gp ∈ O'N has order p, then

dimWD ≡ trace(gp|WD) ≡

{
−24H(D) (mod 32) if p = 3,

−24H(D) (mod p) if p = 5, 7.

In what follows, let EN denote the strong Weil curve of conductor N , i.e. in
the cases under consideration here, where the genus of the modular curve X0(N)
equals 1, a model of said modular curve.

Theorem 1.3.5 (Duncan-M.-Ono, 2017). Assume the Birch and Swinnerton-Dyer
Conjecture 1.3.3. If p = 11 or 19 and −D < 0 is a fundamental discriminant for

which
(
−D
p

)
= −1, and gp ∈ O'N has order p, then the following are true.

1. We have that Sel(Ep(−D))[p] 6= {0} if and only if

dimWD ≡ trace(gp|WD) ≡ −24H(D) (mod p).

2. Suppose that L(Ep(−D), 1) 6= 0. Then we have that rk(E(−D)) = 0. More-
over, we have p|#X(Ep(−D)) if and only if

dimWD ≡ trace(gp|WD) ≡ −24H(D) (mod p).
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Note that due to the work of Kolyvagin [77] as well as Gross and Zagier [64],
part (2) of Theorem 1.3.5 is in fact unconditionally true.

Thanks to work of Skinner and Urban on the Iwasawa main conjectures for
GL2 [100, 101], we have the following completely unconditional result.

Theorem 1.3.6 (Duncan-M.-Ono, 2017). Suppose that N ∈ {14, 15}. If p is the
unique prime ≥ 5 dividing N , then let δp := p−1

2
and let p′ := N/p. If −D < 0

is a fundamental discriminant for which
(
−D
p

)
= −1 and

(
−D
p′

)
= 1, then the

following are true.

1. We have that Sel(EN(−D))[p] 6= {0} if and only if

trace(gp′|WD) ≡ trace(gN |WD) ≡ δp · (H(D)− δpH(p′)(D)) (mod p).

2. Suppose that L(EN(−D), 1) 6= 0. Then we have that rk(E(−D)) = 0. More-
over, we have p|#X(EN(−D)) if and only if

trace(gp′|WD) ≡ trace(gN |WD) ≡ δp · (H(D)− δpH(p′)(D)) (mod p).

The proofs of Theorems 1.3.4 to 1.3.6 all rely heavily on the fact that one
can write all the graded characters for the O'N-module W essentially in terms of
traces of singular moduli (and coe�cients of cusp forms). This allows to control
very easily when certain constituents of the McKay-Thompson series are forced
to vanish, allowing to examine the remaining constituents (i.e. class numbers or
coe�cients of cusp forms) directly.

Arithmetic implications of this sort have not been noticed in the context of
Moonshine prior to [45]. Similar results are the subject of ongoing work of the
author with Cheng and Duncan as well as with Duncan, Gri�n, and Rolen. The
former of these for instance involves mock modular McKay-Thompson series with-
out poles but satisfying certain optimality requirements. The coe�cients there
can essentially be written down in terms of generalized class numbers and coe�-
cients of cusp forms. These yield in�nitely many virtual modules for example for
the group 2.M12 which also appears in Umbral Moonshine, to which that work
is directly connected. The there obtained modules yield an amusing criterion to
decide if a given odd discriminant is a congruent number, depending on the de-
composition of the corresponding graded component into irreducibles. The latter
work in progress concerns Moonshine of a similar �avour as O'Nan Moonshine for
some of the Janko groups, which allow us to obtain statements like Theorems 1.3.5
and 1.3.6 for other elliptic curves.

At the current stage, it is not clear how the Arithmetic can be linked directly
to the O'Nan group, say, without using strong results on modular forms. In par-
ticular, there is no known group action of O'N on the arithmetic quantities to
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date. One future goal would be to �nd a construction of the module in Theo-
rem 1.3.1, hoping that it admits a group theoretic explanation for the results in
Theorems 1.3.4 to 1.3.6.

1.4 Summary

As we have seen in Sections 1.1 to 1.3, the connecting feature of the results in
this thesis are singular moduli and especially their traces. In [82], we investigated
algebraic properties of a class polynomial built from singular moduli of a non-
holomorphic function, where the traces of these singular moduli are the partition
numbers p(n). We show that, similar to the classical case of the class polynomial
in (2.4) associated to the j-function, this polynomial is irreducible over Q and that
its roots generate the ring class �eld of the order of conductor t in Q(

√
d), where

we write 1− 24n = t2d with d < 0 a fundamental discriminant.
In [45, 62], we show that traces of singular moduli of various modular functions

essetially yield character values of certain representations of the �nite sporadic
Thompson group and the pariah group O'N. More precisely we show the existence
of an in�nite-dimensional graded module for the respective groups whose McKay-
Thompson series are essentially given as generating functions of(twisted) traces of
singular moduli plus some appropriate corrections (weight 1/2 theta functions for
the Thompson group and generalized class numbers and cusp forms in the case of
O'N). For the O'Nan group, this description in terms of traces allows us to deduce
information for example on arithmetic properties of quadratic twists of certain
elliptic curves.
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Chapter 2

Complex multiplication and singular

moduli

As mentioned in the introduction, we now give a very brief overview of some of
concepts and classical applications of complex multiplication and singular moduli.
All of the material presented here can be found in many places, including numerous
textbooks. This account is mainly based on [115, Section 6] and [34, Chapters 2
and 3].

2.1 Complex multiplication and elliptic curves

It is a standard result from the theory of elliptic functions that an elliptic curve

E : y2 = 4x3 − g2x− g3, g3
2 − 27g2

3 6= 0 (2.1)

over C are isomorphic to a �at torus C/Λ, where Λ = Zω1 ⊕ Zω2 ⊂ C is a two-
dimensional lattice in C. This isomorphism is such that if we have λ ∈ C and a
lattice Λ′ with λΛ ⊆ Λ′, we obtain an algebraic map, called an isogeny, from E
to E ′ ∼= C/Λ′. Indeed all isogenies, i.e. morphisms E → E ′ sending the point at
in�nity to the point at in�nity, are of this form [99, Theorem VI.4.1 (b)]. This is
of particular interest when we can choose Λ′ = Λ, in which case one also calls the
isogenies endomorphisms of E. For λ = m ∈ Z one clearly always has mΛ ⊆ Λ
and for a generic lattice Λ, these are the only λ ∈ C satisfying λΛ ⊆ Λ. On the
elliptic curve E, this corresponds to the isogeny

[m] : E → E, P → mP.

If we have λΛ ⊆ Λ for some λ /∈ Z, this automatically implies that λ lies in an
order O in some imaginary quadratic number �eld K and Λ is then of the form

29
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αa for some α ∈ C× and a proper fractional O-ideal a in K. In this case, we say
that the elliptic curve E = C/Λ has complex multiplication (or CM for short) by
the order O. Note that we can write the associated lattice of E as λ(Z⊕ Zτ) for
some τ ∈ H, which is unique up to SL2(Z)-equivalence. If E has CM, then the
corresponding τ satis�es a quadratic equation aτ 2 + bτ + c = 0 for some (coprime)
a, b, c ∈ Z and vice versa. Such points τ are called CM points and the discriminant
of the corresponding equation is called the discriminant of τ .

We note that an equivalent characterization of elliptic curves or rather lattices
with complex multiplication can be given using the Weierstrass ℘-function.

Lemma 2.1.1. Let Λ be a lattice in C and ℘ its associated Weierstrass ℘-function.
The a number λ ∈ C\Z satis�es λΛ ⊆ Λ if and only if ℘(λz) is a rational function
in ℘(z).

2.2 Algebraicity of singular moduli

An important invariant of an elliptic curve E ∼= C/Λ as given in (2.1) is its j-
invariant

j(E) = 1728
g3

2

g3
2 − 27g2

3

.

Note that we have j(E) = j(τ) for j(τ) as in (1.18) and τ ∈ H such that Λ =
λ(Z ⊕ Zτ). Note again that this τ is unique up to action of SL2(Z). Two elliptic
curves are isomorphic (over C) if and only if they have the same j-invariant and
one can show that if j(E) is contained in a sub�eld K of C, then there is an elliptic
curve de�ned over K with the same j-invariant [99, Proposition III.1.4].

It can be inferred essentially from Lemma 2.1.1 that if E has complex multi-
plication, then the singular modulus j(E) is an algebraic number. In particular,
elliptic curves with CM can always be de�ned over a number �eld.

However, using the theory of modular forms, one can prove a much stronger
result.

Theorem 2.2.1. For a CM point τ of discriminant D < 0 the value j(τ) is
an algebraic integer of degree h(D), where h(D) denotes the class number of D,
i.e. the number of equivalence classes of positive de�nite binary primitive integral
quadratic forms modulo SL2(Z).

Proof outline. We sketch a proof based on modular forms for the fact that j(τ) is
an algebraic integer. For this, we consider the mth modular polynomial Ψm(X, Y )
for m ≥ 2 de�ned by

Ψm(X, j(τ)) :=
∏

M∈SL2(Z)\Γm

(X − j(M.τ)), (2.2)
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where Γm denotes the set of 2× 2 matrices over Z with determinant m. This is a
polynomial in X of degree σ1(m) =

∑
d|m d, because the set{(

a b
0 d

)
∈ Z2×2 : ad = m, 0 ≤ b < d

}
is a full set of representatives of SL2(Z) \ Γm and has cardinality σ1(m). The
coe�cients are holomorphic functions in τ . The function Ψ(X, j(τ)) also doesn't
depend on the choice of representatives due to the modular invariance of j(τ).
Replacing τ by γ.τ for some γ ∈ SL2(Z) only changes the system of representa-
tives, hence the coe�cients of Ψ(X, j(τ)) as a polynomial in X are all modular
functions for SL2(Z) without poles in H, hence polynomials in j(τ). Since j(τ) is
a transcendental function, we may replace a formal variable Y for it and obtain a
polynomial Ψm(X, Y ) ∈ C[X, Y ]. By using the explicit system of representatives,
the fact that j(τ) has integer Fourier coe�cients, as well as Galois conjugation,
one sees that the coe�cients are indeed integers, so that Ψm(X, Y ) ∈ Z[X, Y ].

Assuming for simplicity that m is not a perfect square1, one can in fact also
show with a similar argument that the restriction to the diagonal Ψm(X,X) is
monic (up to sign) and of degree σ+

1 (m) =
∑

d|m max(d,m/d).
Now let τ ∈ H be a CM point satisfying aτ 2 +bτ+c = 0 for coprime a, b, c ∈ Z,

a > 0. An equivalent way of saying this is that τ is a �xed point of the matrix
M = ( 0 −c

a b ) of determinant m = ac. Assuming for simplicity that m is not a
perfect square2, we have by construction

0 = Ψm(j(M.τ), j(τ)) = Ψm(j(τ), j(τ)),

whence j(τ) is the root of a non-zero polynomial with integer coe�cients and
leading coe�cient ±1 and therfore an algebraic integer.

Since any modular function for any �nite index subgroup of SL2(Z) is an al-
gebraic function in the j-function, which can be seen using a construction similar
to the modular polynomial in (2.2), it follows directly from Theorem 2.2.1 that
the singular moduli of any modular function with algebraic Fourier coe�cients are
algebraic numbers. For example, the Rogers-Ramanujan continued fraction

r(τ) :=
q1/5

1 +
q

1 +
q2

. . .

= q1/5

∞∏
n=0

(1− q5n+1)(1− q5n+4)

(1− q5n+2)(1− q5n+3)
(2.3)

1If m is a perfect square, then Ψ(X,Y ) is divisible by (X−Y ), so that the diagonal restriction
is identically zero.

2If it is, we may factor out the factor (X − Y ) in Ψm(X,Y ) without a�ecting the other basic
properties of the polynomial.
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is a modular function (in fact a generator for the �eld of modular functions) for
the principal congruence subgroup

Γ(5) = {γ ∈ SL2(Z) : γ ≡ ( 1 0
0 1 ) (mod 5)}

and one can show that

j(τ) = −(r(τ)20 − 228r(τ)15 + 494r(τ)10 + 228r(τ)5 + 1)3

r(τ)5(r(τ)10 + 11r(τ)5 − 1)5
,

an identity that essentially goes back to Klein [74, 75], see also [37]. Using the
well-known evaluation j(i) = 1728, one arrives at Ramanujan's evaluation of the
continued fraction given in (1.2).

Returning to the singular moduli of the j-function, one can determine their
degrees over Q and their minimal polynomials explicitly. For this let QD for a
discriminant D < 0 denote the set of all positive de�nite binary primitive integral
quadratic forms Q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z, a > 0, gcd(a, b, c) = 1, of
discriminant D = b2−4ac. Every such quadratic form has an associated CM point
τQ ∈ H, namely the unique root in H of the quadratic polynomial Q(τQ, 1). With
this we de�ne the class polynomial

HD(X) :=
∏

QD/SL2(Z)

(X − j(τQ)). (2.4)

Then we have the following result.

Theorem 2.2.2. The polynomial HD(X) has integer coe�cients and is irreducible
over Q. In particular, the singular modulus j(τQ) is an algebraic integer of degree
exactly h(D) = #QD/ SL2(Z) and its Galois conjugates are given by j(τQ′), Q

′ ∈
QD/ SL2(Z).

It is well-known that h(−163) = 1, in fact −163 is the smallest discriminant
with this property, so that by Theorem 2.2.2 we �nd that j((1 +

√
−163)/2) is a

rational integer. Furthermore, exp(−π
√

163) ≈ 3.809 · 10−18 and the coe�cients
cn of the j-function can be bounded from above by exp(4π

√
n)/(
√

2n3/4) (see [18,
Section 5.3]), showing that the integer

j((1 +
√
−163)/2) = −eπ

√
163 + 744 +

∞∑
n=1

cn(−1)ne−π
√

163n = −eπ
√

163 + 744 + ε

for some small error ε with |ε| < 7.724 · 10−13. This explains Hermite's original
observation that eπ

√
163 is so surprisingly close to an integer (see (1.1)).
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2.3 Explicit class �eld theory

One of the most important applications of the theory of complex multiplication
lies in explicit class �eld theory. This theory aims to describe relatively abelian
extensions of algebraic number �elds whose Galois group is isomorphic to a class
group in some sense. To state the main theorem of class �eld theory, we need
to introduce some notation. Let K be a number �eld with ring of integers OK
and m a modulus of K, i.e. a formal product of �nitely many �nite primes of K,
denoted by m0, and distinct real in�nite primes, whose product we denote by m∞.
Further denote by IK(m) the group of fractional ideals coprime to the �nite primes
dividing m and let

PK,1(m) := {αOK ∈ IK(m) : α ∈ OK , α ≡ 1 (mod m0), σ(α) > 0 for all σ | m∞}.

A subgroup H ≤ IK(m) containing PK,1(m) is called a congruence subgroup and
the (�nite) quotient IK(m)/H is called generalized class group for m.

Theorem 2.3.1 (Main theorem of class �eld theory). Let K be a number �eld.
Then the following are true.

(i) If L/K is a �nite abelian extension, then there exists a modulus m of K,
divisible by all �nite and in�nite primes which ramify in L, such that the
Galois group Gal(L/K) is canonically isomorphic to a generalized class group
for m via the so-called Artin map.

(ii) Let m be a modulus of K and H a congruence subgroup for m. Then there
exists a unique abelian extension L/K whose Galois group is canonically
isomorphic to the generalized class group IK(m)/H via the Artin map.

Remark. There is a choice for the modulus m in (i) of Theorem 2.3.1, in fact
there are always in�nitely many eligible moduli. The so-called conductor f =
f(L/K) provides a unique �minimal� choice in the sense that any eligible modulus
is divisible by f.

In many textbooks, the �rst application of the main theorem of class �eld theory
2.3.1 one encounters is the proof of the celebrated Theorem of Kronecker-Weber
[78, 111], whose �rst complete proof was found by Hilbert [72] in 1896.

Theorem 2.3.2 (Kronecker, 1853, Weber, 1886). Let K/Q be a �nite abelian
extension of Q. Then there is some N ∈ N such that K ⊆ Q(exp(2πi/N)).

One reason why this result is so remarkable is that abelian extensions of Q
can be generated by special values of a single transcendental function, namely the
exponential function. The 12th of Hilbert's famous 23 problems asks for a gener-
alization of this result to arbitrary number �elds, in particular for an appropriate
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analogue for the roots of unity occuring in Theorem 2.3.2. Kronecker's Jugend-
traum gives a (at the time conjectural) generalization of Theorem 2.3.2 to the
case of imaginary quadratic number �elds. This result was �rst proven by Takagi,
later important contributions are due to Fueter and Hasse (see for instance [109,
pp. 89 �.] for an account of the history). It is to date the only fully resolved
generalization of the theorem of Kronecker-Weber.

Theorem 2.3.3 (Second main theorem of class �eld theory). Kronecker's Jugend-
traum is true. More precisely, any �nite abelian extension L/K of an imaginary
quadratic number �eld K with ring of integers OK = Z ⊕ Zτ for some τ ∈ H is
contained in the ray class �eld Km for the modulus m = NOK for some positive
integer N . Furthermore, we have that

Km = K(j(τ), h(s)(1/N))

where

h(1)(z) := (g2g3/∆)℘(τ, z), h(2)(z) := (g2
2/∆)℘(τ, z)2, h(3)(z) := (g3/∆)℘(τ, z)3

(2.5)

with gk = gk(OK) and ∆ = g3
2 − 27g2

3 denote the elliptic Weber functions and s is
half the number of roots of unity in OK.

Special abelian extensions of imaginary quadratic �elds can be generated just
by singular moduli. For this consider the Hilbert class �eld of an imaginary
quadratic number �eld, i.e. the maximal unrami�ed abelian extension of K, which
has the property that its Galois group overK is canonically isomorphic to the ideal
class group of K, i.e. the corresponding modulus is simply OK .

Theorem 2.3.4. Let K/Q be an imaginary quadratic number �eld of discriminant
D. Then the class polynomial HD(X) de�ned in (2.4) is irreducible over K. The
Hilbert class �eld H/K is generated by any one value j(τQ), Q ∈ QD, i.e.

H = K(j(τQ)) ∼= K[X]/(HD(X)).

The same result is true if one considers an order O of conductor f in K and
the singular moduli j(τQ) for Q ∈ Qf2D. The �eld generated over K by any one
these values is the so-called ring class �eld of O.

We remark that the general case of Hilbert's 12th problem is still open. Shimura
and Taniyama [96, 98] were able to construct abelian extensions of so-called CM-
�elds, i.e. imaginary-quadratic extensions of totally real number �elds, using an
approach through abelian varieties rather than that of modular functions, which
had been used for instance by Hecke [70].
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2.4 Norms and traces of singular moduli

Since singular moduli are algebraic numbers, it makes sense to study their norms
and traces. As indicated in the introduction, their traces are of greater importance
in the context of this thesis, but nevertheless we start by discussing norms of
singular moduli. These were studied by Gross and Zagier [63] and the methods
used in the proof gave rise to their seminal work on heights of Heegner points
and derivatives of L-functions [64]. As it turns out, it is more natural to study
norms of di�erences of singular moduli (note that j((1+

√
−3)/2) = 0, so that one

doesn't lose the information about the singular moduli themselves). For coprime
discriminants D1, D2 < 0 let

J(D1, D2) =
∏

Q1∈QD1
/ SL2(Z)

∏
Q2∈QD2

/ SL2(Z)

(j(τQ1)− j(τQ2)). (2.6)

Up to sign, this is the resultant of the two polynomials HD1(X) and HD2(X).

Theorem 2.4.1 (Gross-Zagier, 1985). For coprime discriminants D1, D2 < 0,
every prime divisor of J(D1, D2) must divide 1

4
(D1D2 − x2) for some x ∈ Z sat-

isfying |x| ≤
√
D1D2 and x2 ≡ D1D2 (mod 4). In particular, all prime factors of

J(D1, D2) are at most D1D2/4.

If we choose for example the discriminants D1 = −163 and D2 = −3, the
primes satisfying the conditions in Theorem 2.4.1 are 2, 3, 5, 11, 17, 23, 29, 61,
and indeed we have

J(−163,−3) = j

(
1 +
√
−163

2

)
= −262537412640768000 = −218 ·33 ·53 ·233 ·293.

The fact that this number is a perfect cube is connected to the fact that the
function

γ2(τ) :=
E4(τ)

η(τ)8
= q−1/3 + 248q2/3 + 4124q5/3 + 34752q8/3 + ...

is a cube root of the j-function and γ2(3τ) is a modular function for Γ0(9). These
facts combined with Theorem 2.3.4 can be used to show that γ2 takes algebraic
integer values at certain CM points of discriminants not divisble by 3.

We note that there is actually a completely explicit formula for the prime fac-
torization of the number J(D1, D2), at least for fundamental discriminants D1, D2.

Now we take a look at traces of singular moduli. We begin by summarizing the
main results in Zagier's in�uential paper [114] on the subject, focussing on traces
of singular moduli for the j-function.
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We begin by de�ning the functions fd(τ) ∈ M !,+
1/2(Γ0(4)), where −d ≤ 0 is a

discriminant, by the property

fd(τ) := q−d +
∞∑
D=1

D≡0,1 (4)

A(D, d)qD ∈M !,+
1/2(Γ0(4)). (2.7)

This condition su�ces to determine the functions uniquely and they form a basis
of the space M !,+

1/2(Γ0(4)). Explicitly, we have

f0(τ) = 1 + 2q + 2q4 + 2q9 + 2q16 +O(q25),

f3(τ) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 +O(q12),

f4(τ) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 +O(q12),

f7(τ) = q−7 − 4119q + 8288256q4 − 52756480q5 + 5734772736q8 +O(q9),

f8(τ) = q−8 + 7256q + 26124256q4 + 190356480q5 + 29071392966q8 +O(q9).

(2.8)

Similarly, we de�ne a basis of the space M !,+
3/2(Γ0(4)) given by the functions gD

indexed by discriminants D > 0, which are determined by the property

gD(τ) := q−D +
∞∑
d=0

d≡0,3 (4)

B(D, d)qd ∈M !,+
3/2(Γ0(4)). (2.9)

Explicitly, we have

g1(τ) = q−1 − 2 + 248q3 − 492q4 + 4119q7 − 7256q8 + 33512q11 +O(q12),

g4(τ) = q−4 − 2− 26752q3 − 143376q4 − 8288256q7 − 26124256q8 +O(q11),

g5(τ) = q−5 + 0 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 +O(q11),

g8(τ) = q−8 + 0− 1707264q3 − 18473000q4 − 5734772736q7 +O(q8),

g9(τ) = q−9 − 2 + 4096248q3 − 51180012q4 + 22505066244q7 +O(q8).

(2.10)

Looking at the coe�cients A(D, d) and B(D, d), one observes that they seem to
agree up to sign. This is indeed true in general [114, Theorem 4] and is now usually
called Zagier duality, a phenomenon which has inspired a �urry of subsequent
works generalizing this observation to di�erent contexts (see for instance [17, 30,
39, 51, 66, 93] and the references therein).

Connecting these functions to singular moduli, Zagier shows the following [114,
Theorems 1 and 5].
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Theorem 2.4.2 (Zagier, 2002). For an SL2(Z)-invariant function f and a dis-
criminant D < 0 let

TrD(f) =
∑

Q∈QD/ SL2(Z)

1

wQ
f(τQ), (2.11)

where wQ := # StabSL2(Z)(Q)/2.

1. We have for any discriminant −d < 0 that

B(1, d) = Tr−d(J).

2. Letting Bm(D, d) denote the dth coe�cient of the function gD|Tm2, where
Tm2 denotes the mth Hecke operator acting on M !,+

3/2(Γ0(4)), we have for any
discriminant −d < 0 and m ≥ 1,

Bm(1, d) = Tr−d(mJ |Tm).

Note that mJ |Tm is the unique modular function for SL2(Z) with Fourier ex-
pansion q−m +O(q) at ∞ and no poles anywhere else.

Another way to state Theorem 2.4.2 is that the so-called Zagier lift, i.e. the
mapM !

0(SL2(Z))→M !,+
3/2(Γ0(4)) de�ned through the trace operator Tr in (2.11), is

well-de�ned and Hecke-equivariant. Generalizations of this lift have been studied
more systematically in level 1 by Duke and Jenkins [38] and generalized to arbitrary
level (but without action of Hecke operators) by Miller and Pixton [83]. The image
of the constant function, which in level 1 yields the mock modular Hurwitz class
number generating function, has been studied by Funke [55] as a theta lift, which
was generalized by Bruinier and Funke [21] to lifts of arbitrary modular functions
for the groups Γ0(N), which then map to mock modular forms of weight 3/2.

Theorem 2.4.2 interprets the coe�cients B(m2, d) and therefore by Zagier du-
ality also A(m2, d) as traces of singular moduli of distinct modular functions. For
discriminants D > 0 which are not squares, Zagier proves [114, Theorem 6] that
we can realize the coe�cients A(D, d) as twisted traces of singular moduli.

Theorem 2.4.3 (Zagier, 2002). Let D > 0 and −d < 0 be coprime fundamental
discriminants and χ = χD,−d denote the associated genus character, de�ned on

Q−Dd by χ(Q) =
(
−d
p

)
for any prime p - Dd which is represented by Q. Then we

have

A(D, d) =
1√
D

∑
Q∈Q−Dd/ SL2(Z)

χ(Q)j(τQ).
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Later works generalizing this and the results mentioned above include for in-
stance [1, 2, 3, 22], just to name a few.

An important application of Zagier's work, speci�cally Theorem 2.4.2, is an
almost elementary proof of the following result due to Borcherds [9, Theorem
14.1].

Theorem 2.4.4 (Borcherds, 1995). Let −d ≤ 0 be a disciminant, then the modular
function

Hd(j(τ)) =
∏

Q∈Q−d/SL2(Z)

(j(τ)− j(τQ))1/wQ

with wQ as in Theorem 2.4.2 has a product expansion

Hd(j(τ)) = q−H(d)

∞∏
n=1

(1− qn)A(n2,d).

This is the easiest case of the so-called Borcherds lift established in [9, 10],
which in general enables one to construct automorphic forms on orthogonal groups
whose divisors have a special shape.



Bibliography

[1] C. Alfes. Formulas for the coe�cients of half-integral weight harmonic Maaÿ
forms. Math. Z., 277(3-4):769�795, 2014.

[2] C. Alfes and S. Ehlen. Twisted traces of CM values of weak Maass forms. J.
Number Theory, 133(6):1827�1845, 2013.

[3] C. Alfes-Neumann and M. Schwagenscheidt. On a theta lift related to the
Shintani lift. Adv. Math., 328:858�889, 2018.

[4] V. Anagiannis, M. C. N. Cheng, and S. M. Harrison. K3 elliptic genus and
an umbral moonshine module. Comm. Math. Phys., 366(2):647�680, 2019.

[5] V. M. Aricheta. Supersingular elliptic curves and moonshine. SIGMA Sym-
metry Integrability Geom. Methods Appl., 15:Paper No. 007, 17, 2019.

[6] M. Aschbacher. The status of the classi�cation of the �nite simple groups.
Notices Amer. Math. Soc., 51(7):736�740, 2004.

[7] B. J. Birch and H. P. F. Swinnerton-Dyer. Notes on elliptic curves. II. J.
Reine Angew. Math., 218:79�108, 1965.

[8] R. E. Borcherds. Monstrous moonshine and monstrous Lie superalgebras.
Invent. Math., 109(2):405�444, 1992.

[9] R. E. Borcherds. Automorphic forms on Os+2,2(R) and in�nite products.
Invent. Math., 120(1):161�213, 1995.

[10] R. E. Borcherds. Automorphic forms with singularities on Grassmannians.
Invent. Math., 132(3):491�562, 1998.

[11] R. E. Borcherds. Problems in Moonshine. In First International Congress of
Chinese Mathematicians (Beijing, 1998), volume 20 of AMS/IP Stud. Adv.
Math., pages 3�10. Amer. Math. Soc., Providence, RI, 2001.

39



40 BIBLIOGRAPHY

[12] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235�265, 1997. Computational
algebra and number theory (London, 1993).

[13] J. Braun, J. Buck, and J. Girsch. Class invariants for certain non-
holomorphic modular functions. Res. Number Theory, 1:Art. 21, 13, 2015.

[14] C. Breuil, B. Conrad, F. Diamond, and R. Taylor. On the modularity of
elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843�
939, 2001.

[15] K. Bringmann, A. Folsom, K. Ono, and L. Rolen. Harmonic Maass forms
and mock modular forms: theory and applications, volume 64 of American
Mathematical Society Colloquium Publications. American Mathematical So-
ciety, Providence, RI, 2017.

[16] K. Bringmann and K. Ono. Arithmetic properties of coe�cients of half-
integral weight Maass-Poincaré series. Math. Ann., 337(3):591�612, 2007.

[17] K. Bringmann and K. Ono. Arithmetic properties of coe�cients of half-
integral weight Maass-Poincaré series. Math. Ann., 337(3):591�612, 2007.

[18] N. Brisebarre and G. Philibert. E�ective lower and upper bounds for the
Fourier coe�cients of powers of the modular invariant j. J. Ramanujan
Math. Soc., 20(4):255�282, 2005.

[19] J. H. Bruinier. Borcherds products on O(2, l) and Chern classes of Heegner
divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 2002.

[20] J. H. Bruinier and J. Funke. On two geometric theta lifts. Duke Math. J.,
1(125):45�90, 2004.

[21] J. H. Bruinier and J. Funke. Traces of CM values of modular functions. J.
Reine Angew. Math., 594:1�33, 2006.

[22] J. H. Bruinier and Y. Li. Heegner divisors in generalized Jacobians and
traces of singular moduli. Algebra Number Theory, 10(6):1277�1300, 2016.

[23] J. H. Bruinier and K. Ono. Algebraic formulas for the coe�cients of half-
integral weight harmonic weak Maass forms. Adv. Math., 246:198�219, 2013.

[24] J. H. Bruinier, K. Ono, and A. V. Sutherland. Class polynomials for non-
holomorphic modular functions. J. Number Theory, 161:204�229, 2016.



BIBLIOGRAPHY 41

[25] S. Carnahan. Generalized Moonshine IV: Monstrous Lie algebras. preprint,
available at https://arxiv.org/abs/1208.6254.

[26] M. C. N. Cheng and J. F. R. Duncan. Meromorphic Jacobi Forms of
Half-Integral Index and Umbral Moonshine Modules. preprint, available
at https://arxiv.org/abs/1707.01336.

[27] M. C. N. Cheng and J. F. R. Duncan. On Rademacher sums, the largest
Mathieu group and the holographic modularity of moonshine. Commun.
Number Theory Phys., 6(3):697�758, 2012.

[28] M. C. N. Cheng and J. F. R. Duncan. Rademacher Sums and Rademacher
Series. In Conformal Field Theory, Automorphic Forms and Related Top-
ics, volume 8 of Contributions in Mathematical and Computational Sciences,
pages 143�182. Springer-Verlag, 2014.

[29] M. C. N. Cheng, J. F. R. Duncan, and J. A. Harvey. Umbral moonshine.
Commun. Number Theory Phys., 8(2):101�242, 2014.

[30] B. Cho and Y. Choie. Zagier duality for harmonic weak Maass forms of
integral weight. Proc. Amer. Math. Soc., 139(3):787�797, 2011.

[31] H. Cohen and F. Strömberg. Modular forms, volume 179 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2017. A
classical approach.

[32] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson.
Atlas of �nite groups. Oxford University Press, Eynsham, 1985. Maximal
subgroups and ordinary characters for simple groups, With computational
assistance from J. G. Thackray.

[33] J. H. Conway and S. P. Norton. Monstrous moonshine. Bull. London Math.
Soc., 11(3):308�339, 1979.

[34] D. A. Cox. Primes of the form x2 + ny2. Pure and Applied Mathematics
(Hoboken). John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2013.

[35] A. Dabholkar, S. Murthy, and D. Zagier. Quantum Black Holes, Wall Cross-
ing, and Mock Modular Forms. Cambridge Monographs in Mathematical
Physics, to appear.

[36] M. Dewar and M. RamMurty. A derivation of the Hardy-Ramanujan formula
from an arithmetic formula. Proc. Amer. Math. Soc., 141(6):1903�1911,
2013.

https://arxiv.org/abs/1208.6254
https://arxiv.org/abs/1707.01336


42 BIBLIOGRAPHY

[37] W. Duke. Continued fractions and modular functions. Bull. Amer. Math.
Soc. (N.S.), 42(2):137�162, 2005.

[38] W. Duke and P. Jenkins. Integral traces of singular values of weak Maass
forms. Algebra Number Theory, 2(5):573�593, 2008.

[39] W. Duke and P. Jenkins. On the zeros and coe�cients of certain weakly
holomorphic modular forms. Pure Appl. Math. Q., 4(4, Special Issue: In
honor of Jean-Pierre Serre. Part 1):1327�1340, 2008.

[40] J. F. R. Duncan and I. B. Frenkel. Rademacher sums, moonshine and gravity.
Commun. Number Theory Phys., 5(4):849�976, 2011.

[41] J. F. R. Duncan, M. J. Gri�n, and K. Ono. Moonshine. Res. Math. Sci.,
2:Art. 11, 57, 2015.

[42] J. F. R. Duncan, M. J. Gri�n, and K. Ono. Proof of the Umbral Moonshine
Conjecture. Research Math. Sci., 2(26), 2015.

[43] J. F. R. Duncan and J. A. Harvey. The umbral moonshine module for
the unique unimodular Niemeier root system. Algebra Number Theory,
11(3):505�535, 2017.

[44] J. F. R. Duncan, M. H. Mertens, and K. Ono. Pariah moonshine. Nat.
Commun., 8(670), 2017.

[45] J. F. R. Duncan, M. H. Mertens, and K. Ono. O'Nan moonshine and
arithmetic. Amer. J. Math., to appear. preprint available at https:

//arxiv.org/abs/1702.03516.

[46] J. F. R. Duncan and A. O'Desky. Super vertex algebras, meromorphic Jacobi
forms and umbral moonshine. J. Algebra, 515:389�407, 2018.

[47] J. F. R. Duncan and K. Ono. The Jack Daniels problem. J. Number Theory,
161:230�239, 2016.

[48] T. Eguchi, H. Ooguri, and Y. Tachikawa. Notes on the K3 Surface and the
Mathieu group M24. Exper. Math., 20:91�96, 2011.

[49] L. Euler. Evolutio producti in�niti (1−x)(1−xx)(1−x3)(1−x4)(1−x5)(1−x6)
etc. in seriem simplicem. In Opera Omnia., volume 3 of 1, pages 472�479.
1780.

[50] A. Folsom and R. Masri. Equidistribution of Heegner points and the partition
function. Math. Ann., 348(2):289�317, 2010.

https://arxiv.org/abs/1702.03516
https://arxiv.org/abs/1702.03516


BIBLIOGRAPHY 43

[51] A. Folsom and K. Ono. Duality involving the mock theta function f(q). J.
Lond. Math. Soc. (2), 77(2):320�334, 2008.

[52] D Ford, J. McKay, and S. Norton. More on replicable functions. Comm.
Algebra, 22(13):5175�5193, 1994.

[53] I. Frenkel, J. Lepowsky, and A. Meurman. A natural representation of the
Fischer-Griess monster with the modular function J as character. Proc. Nat.
Acad. Sci. U.S.A., 81(10):3256�3260, 1984.

[54] I. Frenkel, J. Lepowsky, and A. Meurman. Vertex operator algebras and the
Monster, volume 134 of Pure and Applied Mathematics. Academic Press,
Inc., Boston, MA, 1988.

[55] J. Funke. Heegner divisors and nonholomorphic modular forms. Compositio
Math., 133(3):289�321, 2002.

[56] T. Gannon. Moonshine beyond the Monster. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, Cambridge, 2006. The
bridge connecting algebra, modular forms and physics.

[57] T. Gannon. Much ado about Mathieu. Adv. Math., 301:322�358, 2016.

[58] T. Gannon. A pariah �nds a home. Nature, 550:191�192, 2017.

[59] The GAP Group. GAP � Groups, Algorithms, and Programming, Version
4.10.2, 2019.

[60] A. Gel'fond. Sur le septième problème de Hilbert. Bulletin de l'Académie des
Sciences de l'URSS. Classe des sciences mathématiques et na., (4):623�634,
1934.

[61] R. L. Griess, Jr. The friendly giant. Invent. Math., 69(1):1�102, 1982.

[62] M. J. Gri�n and M. H. Mertens. A proof of the Thompson Moonshine
Conjecture. Research Math. Sci., 3(36), 2016.

[63] B. H. Gross and D. B. Zagier. On singular moduli. J. Reine Angew. Math.,
355:191�220, 1985.

[64] B. H. Gross and D. B. Zagier. Heegner points and derivatives of L-series.
Invent. Math., 84:225�320, 1986.

[65] The PARI Group. User's Guide to Pari/Gp (version 2.11.1), 2018. avail-
able at https://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.1/

users.pdf.

https://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.1/users.pdf
https://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.1/users.pdf


44 BIBLIOGRAPHY

[66] P. Guerzhoy. On weak harmonic Maass-modular grids of even integral
weights. Math. Res. Lett., 16(1):59�65, 2009.

[67] G. H. Hardy. Ramanujan. Twelve lectures on subjects suggested by his life
and work. Chelsea Publishing Company, New York, 3rd (corrected) edition,
1978.

[68] G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory anal-
ysis. Proc. London Math. Soc., 17(2):75�115, 1918.

[69] J. A. Harvey and B. C. Rayhaun. Traces of Singular Moduli and Moonshine
for the Thompson Group. Commun. Number Theory Phys., 10(1):23�62,
2016.

[70] E. Hecke. Zur Theorie der Modulfunktionen von zwei Variablen und ihrer
Anwendung auf die Zahlentheorie. PhD thesis, Georg-August-Universität
Göttingen, 1910.

[71] C. Hermite. Sur la théorie des équations modulaires. In É. Picard, editor,
×uvres de Charles Hermite, volume 2, pages 38�82. Cambridge university
Press, reprint of the 1908 original edition, 2009.

[72] D. Hilbert. Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über
Abelsche Zahlkörper. Nachrichten der Gesellschaft der Wissenschaften zu
Göttingen, pages 29�39, 1896. in D. Hilbert, Gesammelte Abhandlungen,
vol. I, Springer-Verlag, 2nd ed. (1970), pp. 53�62.

[73] Ö. Imamo§lu, M. Raum, and O. Richter. Holomorphic projections and Ra-
manujan's mock theta functions. Proc. Nat. Acad. Sci. U.S.A., 111(11):3961�
3967, 2014.

[74] F. Klein. Weitere Untersuchungen über des Ikosaeder. Math. Ann.,
12(4):503�560, 1877.

[75] F. Klein. Über die Transformation der elliptischen Functionen und die Au-
�ösung der Gleichungen fünften Grades. Math. Ann., 14:111�172, 1878.

[76] W. Kohnen. Fourier coe�cients of modular forms of half-integral weight.
Math. Ann., 271(2):237�268, 1985.

[77] V. A. Kolyvagin. Finiteness of E(Q) and CH(E,Q) for a subclass of Weil
curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3):522�540, 670�671, 1988.



BIBLIOGRAPHY 45

[78] L. Kronecker. Über die algebraisch au�ösbaren Gleichungen (I. Abhand-
lung. Monatsberichte der Kgl. Preuss. Akad. Wiss. Berlin, pages 365�374,
1853. in L. Kronecker (ed. K. Hensel), Mathematische Werke, vol. 4, Chelsea
Publishing (Reprint) (1968), p. 1�12.

[79] E. Larson and L. Rolen. Integrality properties of the CM-values of certain
weak Maass forms. Forum Math., 27(2):961�972, 2015.

[80] D. Masser. Elliptic functions and transcendence. Lecture Notes in Mathe-
matics, Vol. 437. Springer-Verlag, Berlin-New York, 1975.

[81] M. H. Mertens. Eichler-Selberg Type Identities for Mixed Mock Modular
Forms. Adv. Math., 301:359�382, 2016.

[82] M. H. Mertens and L. Rolen. On class invariants for non-holomorphic mod-
ular functions and a question of Bruinier and Ono. Res. Number Theory,
1(4):13 pp., 2015.

[83] A. Miller and A. Pixton. Arithmetic traces of non-holomorphic modular
invariants. Int. J. Number Theory, 6(1):69�87, 2010.

[84] D. Niebur. A class of nonanalytic automorphic functions. Nagoya Math. J.,
52:133�145, 1973.

[85] S. P. Norton. More on moonshine. In Computational group theory (Durham,
1982), pages 185�193. Academic Press, London, 1984.

[86] A. P. Ogg. Automorphismes de courbes modulaires. In Séminaire Delange-
PisotPoitou (16e année: 1974/75), Théorie des nombres, Fasc. 1, Exp. No.
7, page 8. 1975.

[87] M. E. O'Nan. Some evidence for the existence of a new simple group. Proc.
London Math. Soc. (3), 32(3):421�479, 1976.

[88] K. Ono. Unearthing the visions of a master: harmonic Maass forms and
number theory. In Current developments in mathematics, 2008, pages 347�
454. Int. Press, Somerville, MA, 2009.

[89] W. de Azevedo Pribitkin and B. Williams. Short proof of Rademacher's
formula for partitions. Res. Number Theory, 5(2):Art. 17, 6, 2019.

[90] H. Rademacher. On the Partition Function p(n). Proc. London Math. Soc.
(2), 43(4):241�254, 1937.



46 BIBLIOGRAPHY

[91] H. Rademacher. The Fourier Coe�cients of the Modular Invariant J(τ).
Amer. J. Math., 60(2):501�512, 1938.

[92] H. Rademacher and E. Grosswald. Dedekind sums. The Mathematical As-
sociation of America, Washington, D.C., 1972. The Carus Mathematical
Monographs, No. 16.

[93] J. Rouse. Zagier duality for the exponents of Borcherds products for Hilbert
modular forms. J. London Math. Soc. (2), 73(2):339�354, 2006.

[94] R. Schertz. Weber's class invariants revisited. J. Théor. Nombres Bordeaux,
14(1):325�343, 2002.

[95] T. Schneider. Transzendenzuntersuchungen periodischer Funktionen I. Tran-
szendenz von Potenzen. J. Reine Angew. Math., 172:65�69, 1935.

[96] G. Shimura. Construction of class �elds and zeta functions of algebraic
curves. Ann. of Math. (2), 85:58�159, 1967.

[97] G. Shimura. Modular Forms of Half Integral Weight. Ann. of Math. (2),
97(3):440�481, 1973.

[98] G. Shimura and Y. Taniyama. Complex multiplication of abelian varieties
and its applications to number theory, volume 6 of Publications of the Math-
ematical Society of Japan. The Mathematical Society of Japan, Tokyo, 1961.

[99] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

[100] C. Skinner. Multiplicative reduction and the cyclotomic main conjecture for
GL2. Paci�c J. Math., 283(1):171�200, 2016.

[101] C. Skinner and E. Urban. The Iwasawa main conjectures for GL2. Invent.
Math., 195(1):1�277, 2014.

[102] P. E. Smith. A simple subgroup of M? and E8(3). Bull. London Math. Soc.,
8(2):161�165, 1976.

[103] S. D. Smith. On the head characters of the Monster simple group. In
Finite groups�coming of age (Montreal, Que., 1982), volume 45 of Contemp.
Math., pages 303�313. Amer. Math. Soc., Providence, RI, 1985.

[104] W. A. Stein et al. Sage Mathematics Software (Version 8.8). The Sage
Development Team, 2019. http://www.sagemath.org.



BIBLIOGRAPHY 47

[105] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras.
Ann. of Math. (2), 141(3):553�572, 1995.

[106] J. G. Thompson. A conjugacy theorem for E8. J. Algebra, 38(2):525�530,
1976.

[107] J. G. Thompson. Finite groups and modular functions. Bull. London Math.
Soc., 11(3):347�351, 1979.

[108] J. G. Thompson. Some numerology between the Fischer-Griess Monster and
the elliptic modular function. Bull. London Math. Soc., 11(3):352�353, 1979.

[109] S. G. Vl duµ. Kronecker's Jugendtraum and modular functions, volume 2
of Studies in the Development of Modern Mathematics. Gordon and Breach
Science Publishers, New York, 1991. Translated from the Russian by M.
Tsfasman.

[110] J.-L. Waldspurger. Sur les coe�cients de Fourier des formes modulaires de
poids demi-entier. J. Math. Pures Appl. (9), 60(4):375�484, 1981.

[111] H. Weber. Theorie der Abel'schen Zahlkörper. Acta Math., 8:193�263, 1886.

[112] A. Wiles. Modular elliptic curves and Fermat's last theorem. Ann. of Math.
(2), 141(3):443�551, 1995.

[113] A. Wiles. The Birch and Swinnerton-Dyer conjecture. In The millennium
prize problems, pages 31�41. Clay Math. Inst., Cambridge, MA, 2006.

[114] D. Zagier. Traces of singular moduli. In Motives, polylogarithms and Hodge
theory, Part I (Irvine, CA, 1998), volume 3 of Int. Press Lect. Ser., pages
211�244. Int. Press, Somerville, MA, 2002.

[115] D. Zagier. Elliptic modular forms and their applications. In The 1-2-3 of
modular forms, Universitext, pages 1�103. Springer, Berlin, 2008.



48 BIBLIOGRAPHY



Appendix A

On class invariants for

non-holomorphicmodular functions

and a question of Bruinier and Ono

See [82].





Appendix B

A proof of the Thompson

Moonshine conjecture

See [62].





Appendix C

O'Nan Moonshine and Arithmetic

See [45].
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