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1 Introduction

In these short notes, I intend to make some of the material on quadratic
forms and symmetric matrices that was covered in the lecture but which
is not contained in the textbook. The notation will be as in the lecture,
the numbering of theorems and definitions is not (for technical reasons).
Usually, the letter Q will denote a quadratic form, its associated matrix
(which is always symmetric) is usually denoted by the letter A. The set of
all symmetric n× n-matrices is denoted by Rn×n

sym .
Should there be any typos or mathematical errors in this manuscript, I’d

be glad to hear about them via email (michael.mertens@emory.edu) and
correct them. Please note that the numbering of theorems and definitions is
unfortunately not consistent with the lecture.

Atlanta, November 2015, Michael H. Mertens
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2 The signature and Sylvester’s Inertia The-

orem

Recall the following definition.

Definition 2.1. Let Q1 and Q2 be quadratic forms in n variables with Qj(x) =
xtrAjx with Aj ∈ Rn×n

sym for j = 1, 2. We call the two quadratic form Q1 and
Q2 (resp. the symmetric matrices A1 and A2) equivalent, if there is an in-
vertible matrix g ∈ Rn×n such that

A1 = gtrA2g.

Remark 2.2. Equivalence of quadratic forms corresponds to a change of
variables. If we have (in the notation of Definition 2.1) A1 = gtrA2g, then
we have for all x ∈ Rn that

Q1(x) = xtrA1x = xtrgtrA2gx = (gx)trA2(gx) = Q2(gx).

Hence two quadratic forms take the same values if and only if they are equiv-
alent.

There is a convenient way to determine whether two quadratic forms are
equivalent or not. This is the content of the following theorem, which is
widely known as Sylvester’s Inertia Theorem.

Theorem/Definition 2.3 (Sylvester’s Inertia Theorem). Let Q be a quadratic
form in n variables with associated matrix A ∈ Rn×n

sym . Then the following are
true.

(i) Q is equivalent to a quadratic form whose associated matrix is given by

diag(1, ..., 1,−1, ...,−1, 0, ..., 0) ∈ Rn×n
sym .

Denoting the number of 1’s in the above matrix by a+, the number of
−1’s by a− and the number of 0’s on the diagonal by a0, we call the
triple sig(A) := (a+, a−, a0) the signature of A (respectively Q).

(ii) Two quadratic forms are equivalent if and only if they have the same
signature.
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Proof. By the Principal Axes Theorem, Q is (orthogonally) equivalent to
a form whose matrix is diagonal, i.e., there is an orthogonal (in particular
invertible) matrix g ∈ Rn×n such that

A = gtrDg,

where D = diag(λ1, ..., λn) and λ1, ..., λn are the eigenvalues of A, with repe-
titions according their algebraic multiplicities. Without loss of generality we
can assume that the eigenvalues are sorted such that the first a+ of them are
positive, the following a− are negative, and the remaining a0 eigenvalues are
0. Then we define the matrix

C = diag(
√
|λ1|, ...,

√
|λa++a−|, 1, ..., 1).

This matrix is clearly invertible and we have

D = C diag(1, ..., 1,−1, ...,−1, 0, ..., 0)C,

hence

A = (gtrC) diag(1, ..., 1,−1, ...,−1, 0, ..., 0)(Cg) = (Cg)tr diag(1, ..., 1,−1, ...,−1, 0, ..., 0)(Cg),

so that the first claim follows.

This follows directly from the fact that equivalence is transitive, i.e., if Q1

and Q2 are equivalent and Q2 and Q3 are equivalent, thenQ1 and Q3 are
equivalent as well.

Example 2.4. Compute the signature of the quadratic form

Q(x) = −x21 − 6x1x2 − 2x1x3 + 14x22 + 16x2x3 + 11x23.

The matrix of Q is given by

A =

−1 −3 −1
−3 14 8
−1 8 11

 .

From the proof of the Inertia Theorem, we see that one way to find the sig-
nature of A is to compute the eigenvalues of A and determine their signs.
This is however not the easiest thing to do since the minimal polynomial
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of A has no “nice” zeros (the eigenvalues of A are approximately given by
−1.61047..., 4.57546..., 21.035005...).

The following method is usually much easier to apply than the computa-
tion of eigenvalues. Recall that performing a row reduction on the matrix A
corresponds to multiplying A from the left by an invertible matrix g. It is
not hard to see that multiplying A from the right by gtr. Now it is obvious
that A and gAgtr are similar. Hence we can use simultaneous row- and col-
umn reduction to transform A into diagonal form from which we can easily
read off the signature (from the signs of the diagonal entries). It is most
important that one always performs the “same” column operation as the pre-
vious row operation. Note that this method does in general NOT preserve
the eigenvalues of A, but only their signs.

A→

−1 −3 −1
0 23 11
0 11 12


↓−1 0 0

0 23 11
0 11 12

 →

−1 0 0
0 23 11
0 0 155

23


↓−1 0 0

0 23 0
0 0 155

23


From here we see immediately that sig(A) = (2, 1, 0).

Another way to determine the signature of a symmetric matrix was dis-
covered by Adolf Hurwitz. We need one further definition.

Definition 2.5. Let B ∈ Rn×n. Then we call

δj(B) := det

b11 ... b1j
...

. . .
...

bj1 ... bjj


the jth principal minor of B. We also define the 0th principal minor to be
δ0(B) := 1.
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Theorem 2.6 (Hurwitz criterion). Let Q be a quadratic form with ma-
trix A ∈ Rn×n

sym whose principal minors are all non-zero. Then we have
sig(Q) = (n− q, q, 0), where q is the number of sign changes in the sequence
(δ0(A), ..., δn(A)) of the principal minors of A.

Proof. Suppose that sig(A) = (a+, a−, a0). By the assumption that all prin-
cipal minors of A, so in particular δn(A) = detA, are non-zero, we see that
our form is non-degenerate, i.e., a0 = 0. Furthermore, it follows from the
Inertia Theorem 2.3 that detA = (−1)a−| detA|.

With these preliminary remarks, we can now carry out the proof using
mathematical induction. The claim is clear for n = 1: Then we have δ0 = 1
and δ1 = a11 6= 0. If a11 > 0, we have no sign changes and the signature is
(1, 0, 0), if a11 < 0 then there is one sign change and the signature is (0, 1, 0).

Now assume that the claim is true for some natural number n. We need
to show that it is then also true for n + 1. So let A ∈ R(n+1)×(n+1)

sym with
signature (a+, a−, 0), whose principal minors are all non-zero. Then we have
a+ = n+ 1− a−. Now define the matrix A′ ∈ Rn×n

sym by deleting the last row
and column of A, this matrix will have signature (n − a′−, a′−, 0), where we
know, bu the induction hypothesis, that a′− is the number of sign changes in
the sequence (δ0(A

′), ..., δn(A′)) = (δ0(A), ..., δn(A)). Then we have n−a′− ≤
n− a− and a′− ≤ a−, which implies

a′− ≤ a− ≤ a′− + 1 (2.1)

Now we distinguish two cases.

(i) δn+1(A) and δn(A) have the same sign. Then we have by the preliminary
remark that (−1)a

′
− = (−1)a− , which implies with (2.1) that a′− = a−,

which is the number of sign changes in (δ0(A), ..., δn+1(A)).

(ii) δn+1(A) and δn(A) have opposite signs. Then (−1)a
′
− = −(−1)a− ,

which implies together with (2.1) that a− = a′− + 1, which is again the
number of sign changes in (δ0(A), ..., δn+1(A)).

This completes the proof.

Example 2.7. Compute the signature of the matrix

A =

 2 1 −3
1 3 0
−3 0 −2

 ∈ R3×3
sym.
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We employ the Hurwitz criterion and compute the principal minors,

δ0(A) = 1, δ1(A) = 2, δ2(A) = det

(
2 1
1 3

)
= 5, δ3(A) = detA = −37.

Since the sequence (1, 2, 5,−37) contains exactly one sign change, we find by
Theorem 2.6 that

sig(A) = (2, 1, 0).

3 Solution sets

Quadratic forms are by definition maps form some Rn to R. A natural
question to ask is whether for a given quadratic form Q and real number c,
the equation

Q(x) = c

has a solution and what the solution set looks like. In this section we want
to answer this question at least partly and list all possible cases that arise
for quadratic forms in 2 and 3 variables. By the Inertia Theorem 2.3 and
the following remark, we can regard quadratic forms up to equivalence (since
equivalence is merely a linear change of variables, that won’t change the basic
geometry of our solution set), hence only by their signatures. Moreover, since
for sig(Q) = (a+, a−, a0) we have sig((−1)Q) = (a−, a+, a0) (which is easy to
see) and

Q(x) = c ⇔ −Q(x) = −c,

it is enough to consider only signatures (a+, a−, a0) with a+ ≥ a1.
The following concepts play an important role in deciding the solubility

of the equation Q(x) = c.

Definition 3.1. let Q be a quadratic form with associated matrix A ∈ Rn×n
sym .

Then we call Q (resp. A)

(i) positive definite if sig(A) = (n, 0, 0),

(ii) negative definite if sig(A) = (0, n, 0),

(iii) degenerate if sig(A) = (a+, a−, a0) with a0 > 0,

(iv) indefinite if sig(A) = (a+, a−, a0) with a+, a− > 0,
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(v) positive semidefinite if sig(A) = (a+, 0, a0),

(vi) negative semidefinite if sig(A) = (0, a−, a0).

Remark 3.2. From the proof of the Inertia Theorem it is clear that sig(A) =
(a+, a−, a0), where a+ (resp. a−) equals the number of positive (resp. nega-
tive) eigenvalues of A, and a0 equals the number of 0 eigenvalues. Thus A is
positive (resp. negative) definite if and only if all its eigenvalues are positive
(resp. negative), etc.

Proposition 3.3. Let Q be a quadratic form in n variables. Then the fol-
lowing are all true.

(i) Q is positive (resp. negative) definite if and only if Q(x) > 0 (resp.
Q(x) < 0) for all x ∈ Rn, x 6= 0.

(ii) Q is positive (resp. negative) semidefinite if and only if Q(x) ≥ 0 (resp.
Q(x) ≤ 0) for all x ∈ Rn.

Proof. Let A ∈ Rn×n
sym be the matrix of Q. Then we know by the Spectral

Theorem (resp the Principal Axes Theorem) that there is an orthonormal
basis B = {b1, ..., bn} of Rn consisting of eigenvectors of A. Assume that bj
is an eigenvector to the eigenvalue λj.

Writing x ∈ Rn in the basis B, we obtain

x = α1b1 + ...+ αnbn

for some real weights α1, ..., αn. Then we have

Q(x) = xtrAx =(α1b1 + ...+ αnbn)tr(α1λ1b1 + ...+ αnλnbn)

B ONB
= α2

1λ1 + ...+ α2
nλn.

Now Q is positive definite if and only if λj > 0 for all j by Remark 3.2, hence
in this case we have xtrAx > 0 for all x 6= 0 (since at least one αi 6= 0. If, on
the other hand, we have, say λj = 0, then Q(bj) = 0, but bj 6= 0, or if λ1 > 0
and λ2 < 0, then Q(b1) > 0 and Q(b2) < 0, in particular, the inequality
Q(x) > 0 for all x 6= 0 does not hold.

By the same argument, one also obtains the remaining cases.

As an immediate consequence of Proposition 3.3 we obtain
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Corollary 3.4. If Q is positive (resp. negative) definite, then the equation
Q(x) = c has no solutions for c < 0 (resp. c > 0) and precisely one solution
x = 0 for c = 0.

We conclude by an enumeration of the possibilities for the solution sets
of the equation Q(x) = c for Q in 2 and 3 variables.

Two variables.

• sig(Q) = (2, 0, 0). The representative equation is given by

x21 + x22 = c.

The solution set here is

– an ellipse if c > 0,

– a point if c = 0,

– empty if c < 0.

• sig(Q) = (1, 1, 0). The representative equation is given by

x21 − x22 = c.

The solution set here is

– a pair of hyperbolas if c 6= 0,
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– a pair of intersecting lines if c = 0.

• sig(Q) = (1, 0, 1). The representative equation is given by

x21 = c.

The solution set here is

– an pair of parallel lines if c > 0,
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– a line if c = 0,

– empty if c < 0.

• sig(Q) = (0, 0, 2). The representative equation is given by

0 = c.

The solution set here is

– the full plane if c = 0,

– empty if c 6= 0.

Three variables

• sig(Q) = (3, 0, 0). The representative equation is given by

x21 + x22 + x3 = c.

The solution set here is

– an ellipsoid if c > 0,
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– a point if c = 0,

– empty if c < 0.

• sig(Q) = (2, 1, 0). The representative equation is given by

x21 + x22 − x23 = c.

The solution set here is

– a hyperboloid of one sheet if c > 0,
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– a hyperboloid of two sheets if c < 0,

– a double cone if c = 0.
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• sig(Q) = (2, 0, 1). The representative equation is given by

x21 + x22 = c.

The solution set here is

– an elliptic cylinder if c > 0,
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– a line if c = 0,

– empty if c < 0.

• sig(Q) = (1, 1, 1). The representative equation is given by

x21 − x22 = c.

The solution set is

– a hyperbolic cylinder if c 6= 0,
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– a pair of intersecting planes if c = 0.
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• sig(Q) = (1, 0, 2). The representative equation is given by

x21 = c.

The solution set here is

– a pair of parallel planes if c > 0,

– a single plane if c = 0,

– empty if c < 0.
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